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Abstract: This paper presents an alternativemethod for predicting biochar yields from biomass thermochem-
ical processes. As biochar is considered a renewable and sustainable energy source, it has received more
attention. Several methods have been presented to predict biochar, such as neural network (NN) and least
square support vectormachine (LS-SVM).However, eachof themhas its owndrawbacks, such as getting stuck
in a local optimum, which occurs in NN, and lack of uncertainty and time complexity, as in LS-SVM. There-
fore, this paper avoids this limitation by using a hybrid method between the adaptive neuro-fuzzy inference
system (ANFIS) and gray wolf optimization (GWO) algorithm. The proposed method is called ANFIS-GWO,
which consists of two stages. In the first stage, GWO is used to learn the parameters of ANFIS using the train-
ing set. Meanwhile, in the second stage, the testing set is used to evaluate the performance of the proposed
ANFIS-GWOmethod. Three experiments were performed to assess the performance of the proposed method.
The first experiment used a set of UCI (University of California, Irvine) benchmark datasets to evaluate the
effectiveness of ANFIS-GWO. The aim of the second experiment was to evaluate the performance of the pro-
posed ANFIS-GWO method to predict biochar yield from manure pyrolysis. The third experiment aimed to
estimate the values of input parameters of pyrolysis that maximize biochar production. The obtained results
were compared to those of other methods, such as ANFIS using gradient descent, practical swarm optimiza-
tion, genetic algorithm, whale optimization algorithm, sine-cosine algorithm, and LS-SVM. The results of the
ANFIS-GWOmethod were >35% of the standard ANFIS and also better than those of other methods.

Keywords: Gray wolf optimization (GWO), adaptive neuro-fuzzy inference system (ANFIS), renewable energy
production, biochar prediction.

1 Introduction
The world’s energy use has increased>10-fold during the 20th century. Energy purchases account for 5–10%
of the entire national product in developed economies. However, in some of those countries, imports of fossil
fuel may cost over half the value of overall exports. These economic realities are unsustainable, and pose a
challenge to sustainable development [50]. Furthermore, fossil fuel is decreasing dramatically; therefore, the
use of renewable energy from various sources has significantly grown in recent years. The renewable energy
sources include biomass, solar radiation, ocean waves, wind, geothermal heat, and others.

Biochar is considered an attractive renewable energy source [51]. It is created from biomass through ther-
mochemical methods, the yields of which rely on the methodological circumstances. Pyrolysis is the most
popular process used to produce biochar [22]. Based on residence time andheating rate, pyrolysis is classified
into two kinds: slow and fast. Biochar is created from biomass by using slow pyrolysis through a compara-
tively long residence period and a low heating degree, whereas fast pyrolysis uses a high heating degree and
little residence period to yield a biochar.
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The most attractive feature of biochar is its ability to represent a sustainable, inexpensive, and easy-to-
producemethod. Also, biochar hasmany applications in the economic-, technical-, soil-, and climate-related
aspects [4, 21, 26, 31, 47]. These applications include oil amendment, energy, gas storage, water purification,
and catalysis. Biochar can be used as a precursor for creating a catalyst for syngasmade from the gasification
of biomass, which includes a substantial quantity of tar [9]. Increase in agricultural productivity by using
biochar for soil improvement can be translated into an increase in soil fecundity [40].

The prediction of biochar may be considered an optimization problem, where various artificial intelli-
gence models are implemented to predict sustainable and renewable energy, such as solar energy [33, 37],
wind energy [10], hydropower [32], bioenergy [39], geothermal energy [49], and hybrid systems [24].

Several artificial intelligence algorithms have been applied inmany renewable energy applications, such
as the artificial NN (ANN) [27, 46]. However, ANN has some drawbacks, such as it may get stuck in a local
point; thus, the least square support vector machine (LS-SVM) is used as a method to resolve the drawbacks
of ANN [8]. The performance of the LS-SVMmodel in predicting biochar was higher than the performance of
the ANNmodel. Cao et al. [8] gave two reasons for this result: (i) LS-SVMuses the structural riskminimization
principle that works tominimize an upper limit for the error of generalization instead of minimizing the error
of training. In the other words, ANN uses the empirical risk minimization principle. (ii) LS-SVM can achieve
a globally optimal solution, but ANN could not in most cases.

Nevertheless, LS-SVM suffers from some drawbacks, such as its performance is highly dependent on the
selected kernel function. Also, it is relatively slow because the parameters of SVMmust be tuned by conduct-
ing a coarse grid search and then a fine grid search. It cannot use the fuzzy rules as the change rules between
the biochar characteristics and operating conditions occur in a fuzzy manner. Therefore, the fuzzy set theory
is applied to address these cases [29]. Therefore, fuzzy sets have many interests in renewable energy issues
[48], and the fuzzy inference system was used widely in renewable energy. A fuzzy-based model uses logical
operators and IF-THEN rules in order to build qualitative relationships between its variables. The neuro-fuzzy
systems combine the advantages of each of fuzzy logic and ANN in one model, through applying the ANN in
adapting rule-based fuzzy systems. A particular model in neuro-fuzzy systems is the adaptive neuro-fuzzy
inference system (ANFIS), which has achieved great outcomes in modeling non-linear functions. The mem-
bership function parameters of ANFIS are obtained from a dataset that defines the system operation. The
ANFIS uses the features of the dataset to learn, and modifies the system parameters based on an error crite-
rion [23]. The ANFIS has recorded many successful implementations in predicting the results of renewable
energy, such as in solar energy [41], wind energy [1, 3], and bioenergy [13, 18].

However, the ANFIS model has some drawbacks when it is used for real applications; these drawbacks
result from training the parameters of the memberships function and weights between layers of the ANFIS
model. The gradient descent approaches are popular algorithms that are used to learn the parameters of
ANFIS. However, in each repetition, the gradient is computed and its performance is affected by the initial
point. Also, it can get stuck in the local point and therefore is not a global solution for parameters that can
be determined [23]. To solve these drawbacks, meta-heuristics like genetic algorithm (GA) [30] and particle
swarm optimization (PSO) [16, 45] were applied. However, GAs have always been criticized for their slow con-
vergence speed, whereas PSO could encounter premature convergence at the later stage of the search process
and is sensitive to neighborhood topology. Thus, the gray wolf optimization (GWO) algorithm is used to deal
with this issue [36].

The GWO is a new meta-heuristic that emulates the behavior of gray wolves in nature [36]. In GWO, four
kinds of wolves (i.e. α, β, δ, and ω) are utilized, where α wolves control the β, which in turn control the δ,
whereas all the higherwolves control theωwolves. There are three steps used tomimic the hunting behaviors
(i.e. tracking, encircling, and attacking the prey). The GWO algorithm has a small number of parameters com-
pared to other algorithms, and its performance has been established in several applications, such to enhance
the performance of an NN, as in Refs. [17, 38]. Also, Robandi [42] used GWO to estimate photovoltaic param-
eters. It is applied to solve the system reliability optimization as in Ref. [25], which provides better results
than other algorithms. In addition, it has been applied in optimizing support vector machines and clustering
applications [6] (formore applications, see Ref. [20]). From the promised results of GWO in these applications,
we decide to use it in this paper.
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The main contributions of the current work are to (i) improve the performance of ANFIS through learn-
ing its parameters using the GWO algorithm, and (ii) to apply the improved ANFIS model as a new prediction
method for renewable energy production, especially biochar production. Therefore, the proposedmethod for
predicting biochar, which is called ANFIS-GWO, consists of two stages: (i) training ANFIS and (ii) testing. In
the first stage, the ANFIS parameters are estimated using the GWO algorithm in which each solution of the
population of GWO contains the parameter’s value. Meanwhile, the ANFIS-GWO algorithm is evaluated in
the second phase by using the testing set (which is not used before in the training stage) as input and then
predicting the output and computing the performance.

This paper is arrangedas follows: in Section 2, the standardANFISmodel, GWO, and fuzzyC-means (FCM)
are explained. In Section 3, the proposed method is introduced. Section 4 gives the experimental results and
discussion. The conclusion is given in Section 5.

2 Preliminaries
2.1 ANFIS

Jang [23] introduced ANFIS, which is a hybrid model that combines fuzzy logic and NNs. ANFIS is based on
the Takagi-Sugeno inferencemodel that creates a non-linearmapping from input to the output space by using
fuzzy IF-THEN rules. The ANFIS model contains five layers, as shown in Figure 1.

The crisp inputs x and y to the node of the first layer and the output O1i of this node are defined as

O1i = µAi (x), i = 1, 2, O1i = µBi−2 (y), i = 3, 4, (1)

where Ai and Bi are the membership values of the generalized Gaussianmembership function defined as [23]

µ(x) = e−
(︁
x− ρi

αi

)︁2

, (2)

where pi and σi are the premise parameters. In the second layer, the node’s output is the firing strength of a
rule, as

O2i = µAi (x) × µBi−2 (y). (3)

The node’s output in the third layer is the normalized firing strength as

O3i = wi =
ωi∑︀2

(i=1) ωi
. (4)

The node in layer 4 is an adaptive node, and its output is computed as

O4,i = wi fi = wi(pix + qiy + ri), (5)

Figure 1: Layers of the ANFIS Model.
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where pi, qi, and ri are the consequent parameters of the node i. In the last layer, there exists only one node
whose output is computed by using the following equation:

O5 =
∑︁
i
wi fi . (6)

There are two sets of adjustable parameters of theANFISmodel: the premise and the consequent parame-
ters. The least squaremethod (LSM) canbeused to determine the fitness values of the consequent parameters.
However, if the premise parameters are not steady, the search space will be wider and the convergence of
training will be slower. Therefore, the hybrid learning techniques can be used to overcome this problem. One
of these hybrid learning algorithms is the hybrid between the back-propagation algorithm and the LSM. This
algorithm involves a two-step process [23].

In the first one, if the premise parameters are steady, the functional signals will propagate to layer 4,
where the LSMspecifies the consequent parameters. Thereafter, the consequent parameterswill be kept fixed.

The adaptation methods of most fuzzy inference systems rely on the back-propagation algorithm that
is applied to deal with parameter optimization in general. This traditional optimization technique can get
trapped in a local optimum. To fix this problem, evolutionary methods like GA have been widely applied.
Nevertheless, these methods could not achieve the promised results in all experimental cases and need
much computation time; therefore, we use the GWO algorithm to determine the optimal weights of ANFIS
and reduce the time complexity.

2.2 GWO Algorithm

The GWO algorithm is a swarm algorithm that emulates the social hierarchy of wolves [36], wherein wolves
aim to determine the location of prey. The hierarchy of wolves consists of three layers: the first is the αwolves
that correspond to the fittest wolves; meanwhile, the other two layers are called β and δ wolves, which rep-
resent the second and third best wolves, respectively. Therefore, these wolves are responsible for searching
for prey in the search space, while the other wolves follow them. Three steps are used to simulate the hunt-
ing behavior: (i) encircling, (ii) tracking, and (iii) attacking the prey. The definition of encircling is given in
Eq. (7) [36]:

D(t + 1) = |A.Xp(t + 1) − X(t + 1)|, (7)

X(t + 1) = |Xp(t + 1) − F.D(t + 1)|, (8)

where D is the distance between the wolf X and the prey Xp, while F and A represent the coefficient vectors
that are computed as follows:

F = 2f .r1 − f , (9)

A = 2r2, (10)

where r1 and r2 represent random vectors that belong to the interval [0, 1], and the value of parameter a is
decreased from 2–0 in linear form with each iteration increased.

The position of any wolf X in the current population can be updated, as in Figure 2, according to the
position of α, β, and δ as

X =
(X1 + X2 + X3)

3 , (11)

where

X1 = |Xα − Aα .Dα|, X2 = |Xβ − Aβ .Dβ|, X3 = |Xδ − Aδ .Dδ|, (12)

Dδ = |C3.Xδ − X|, Dα = |C2.Xα − X|, Dβ = |C2.Xβ − X|. (13)
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Figure 2: Updating the Wolves’ Positions in the GWO Algorithm.

2.3 FCM Clustering Method

The most important concept in ANFIS is defining the number of membership functions. This can be con-
sidered a clustering problem; therefore, the FCM is used to achieve a small number of fuzzy rules. FCM is
a clustering method; it was improved by Bezdek et al. [7], who determined the degree of data belonging to
different clusters through minimizing the following objective function:

Tr =
N∑︁

(i=1)

C∑︁
(t=1)

grit||xi − ct||2, 1 ≤ r ≤ ∞, (14)

where r > 1 is a real number, git represents the degree ofmembership of themeasured data xi ∈ Rd to belong
to the cluster of center ct ∈ Rd. Fuzzy partitioning is executed through minimizing Eq. (14), with updating of
the membership (git) and the center of clusters (ct) using Eqs. (15) and (16):

git =
1∑︀c

(k=1)

(︁
||xi−ct ||
||xi−ck ||

)︁(︁
2

r−1

)︁ . (15)

ct =

∑︀N
(i=1) g

r
itxi∑︀N

(i=1) grit
. (16)

This iterationwill stopwhenmaxit{|g(k+1)
it −g(k)it |} <∈, where∈ [0, 1] is an ending criterion. The previous

steps are repeated until the stopping conditions are reached.

3 Proposed Method
This section introduces the proposed method for predicting the biochar yield from manure pyrolysis. This
model is based on a hybrid between the GWO and ANFIS. It is called ANFIS-GWO, in which the parameters
of the ANFIS are determined by using the GWO algorithm. This model has five layers similar two traditional
ANFIS. The nodes in layer 1 are represented by input variables (heating rate, pyrolysis temperature, holding
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time, moisture content, sample mass). The nodes in layer 2 are the membership functions of the input vari-
ables. The fuzzy logic rules are represented by the nodes in layer 3. The nodes of layer 4 use the consequent
part of the Takagi-Sugeno-Kang model. The output of layer 5 is the biochar. In the learning stage, the GWO is
used to determine the best value of the weights between layers 4 and 5, as well as to train the membership
function according to the input variable.

The proposed method starts by normalizing the dataset and dividing it into two groups (training and
testing). Then, the FCM is used to define the number of clustering (i.e. the number of membership functions).
The next step is constructing the ANFIS using the FCM output. The parameters in ANFIS are updated based
on the GWO algorithm, where the GWO explores different regions of the search space that has many local
minima and then reduces the domain of search to the area that contains the global solution. In the training
phase, the error information between the actual output and the corresponding predicted values are used to
update the parameters (weights between layers 4 and 5 and parameters of Gaussian membership function).
Where the GWO starts by generating a population X, the population with a random position for each wolf the
size of X is set to N and dimension D, which represents the number of ANFIS parameters. Then, the objective
function for a solution inside the population X is computed and the value of α, β, and γ are updated based
on the smallest three fitness functions. The objective function (obj) in our model is defined as

obj = ||y − ŷ||2, (17)

where y and ŷ are the original biochar value and its predicted value, respectively. This function represents the
summation of the square error between the predicted biochar value ŷ and the original value (y). Therefore,
the best solution is that which has the minimum objective function value.

Figure 3: Proposed ANFIS-GWO Method.
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The next step in the GWO algorithm is to update the position of other solutions according to the value of
α, β, and γ using Eqs. (11)–(13). These steps previously performed are still repeated until the stop condition
is satisfied. Then, the best solution is passed to the ANFIS model. The training phase is completed if the stop
conditions (maximumnumber of iterations and error less than the small value) are satisfied. Then, the ANFIS
is constructed based on the parameters coming from the best solution. In the testing phase, the test data set is
applied to the proposed method that predicts the output (biochar) based on input parameters and evaluates
the performance of the model. The proposed method is explained in Figure 3.

4 Experimental Results and Discussion
In this study, three experiments were performed to test the performance of ANFIS-GWO. The first one was
applied to evaluate the performance of the proposed method in achieving a minimum error using six regres-
sion datasets that are collected from the UCI (University of California, Irvine) repository [28]. The results of
this experiment are recorded in Section 4.3. The second experiment was applied to predict a biochar yield
from manure pyrolysis, and it is explained in Section 4.4. The last one was used to estimate the values of
input parameters of pyrolysis that maximize the biochar production, as in Section 4.5.

4.1 Performance Measures

To assess the performance of the proposed ANFIS-GWO method and to test the quality of solutions, several
measures were used, which are defined as follows:
1. Mean square error (MSE): measures the dispersion of the data around zero. It is computed as

MSE =
1
n

n∑︁
i=1

(yi − ŷi)2, (18)

where ŷi is the ith predicted element, yi is the ith measured element, and n is the number of samples. yi is
the average of the corresponding predicted value.

2. Mean absolute error (MAE): measures the mean absolute deviation of the values of the output from the
values of the target. It is computed as

MAE =
1
n

n∑︁
i=1

|yi − ŷi|, (19)

where ŷi is the ith predicted element, yi is the ith measured element, and n is the number of samples. yi is
the average of the corresponding predicted value.

3. RootMSE (RMSE): the square ofMSE tomeasure thedispersionof thedata aroundzero, as in the following
equation:

RMSE =

⎯⎸⎸⎷1
n

n∑︁
i=1

(yi − ŷi)2. (20)

4. Average absolutepercent relative error (AAPRE): computes the relative absolutedeviationof thepredicted
output from the experimental output; the lowest AAPRE value indicates the most accurate prediction. It
is defined mathematically as follows:

AAPRE =
100
n

(︃ n∑︁
i=1

⃒⃒⃒⃒
(ŷi − yi)

yi

⃒⃒⃒⃒)︃
. (21)
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5. Coefficient of determination (R2): measures the relationship between the experimental data and the
predicted data, and the algorithm that has R2 value closer to 1. R2 is defined as

R2 = 1 −
n∑︁

i=1

(yi − ŷi)
(yi − ȳi)

. (22)

The highest R2 value indicates the most accurate prediction.
6. Standard deviation (SD):

SD =

⎯⎸⎸⎷ 1
n − 1

n∑︁
i=1

(yi − ȳi)2. (23)

4.2 Experimental Settings

In all experiments, a 10-fold cross-validation method was used to divide the data into training and testing
sets. The 10-fold cross-validation split the data into 10 groups, assigning nine groups as the training set and
one group as the testing set. These processes are repeated 10 times until all groups become a testing set. The
output is computed as the average of the total 10 runs.

The experiments were implemented in Matlab R2014b and MS Windows 10 (64 bit) over Intel Core2Duo
processor and 4 MB of RAM. The parameters of all optimization algorithms were set as follows: size of the
population (n) = 25, maximum iteration = 100, lower bound = −5, and upper bound = 5. These parame-
ters were used for fair comparison between the algorithms. However, we found that in the case of increasing
the population size to become >25, the performance increased little but the algorithms took very large CPU
time(s). Also, we noticed that, if the population size decreased to <25, the performance is decreased (the
same for the maximum number of iterations).

4.3 Experiment Series 1: Evaluating the Performance of ANFIS-GWO

In this section, six datasets are used to evaluate the performance of the proposed method (ANFIS-GWO),
which are collected from the UCI repository [28]. The descriptions of these datasets are given in Table 1.
In the following experiment, we refer to the Yeast, Wine, AirfoilSelfNoise, Forestfires, Heart, and Housing
datasets as Dataset1, Dataset2, Dataset3, Dataset4, Dataset5, andDataset6, respectively. In tables and figures,
ANFIS-GWO, ANFIS-PSO, and ANFIS-GA are referred to as GWO, PSO, and GA, respectively. The results of
the proposed ANFIS-GWO method are compared with the other three algorithms, namely ANFIS-PSO [5],
ANFIS-GA [44], and the original ANFIS.

The experiments were applied 15 times, and the average of all measures are recorded in Table 2 and
Figures 4–7.

From Table 2 and Figures 4–7, we can conclude that ANFIS-GWO outperformed the other algorithms in
four datasets out of six in terms of MSE and RMSE, whereas it outperformed three datasets out of six in terms
of MAE. Meanwhile, ANFIS-PSO came in second place. According to the time complexity, we can see that the

Table 1: Description of the Six Datasets Used to Evaluate the Proposed Method.

Code name Dataset name Attribute number Instance number

Dataset1 Yeast 8 1484
Dataset2 Wine 13 178
Dataset3 AirfoilSelfNoise 6 1503
Dataset4 Forestfires 13 517
Dataset5 Heart 13 303
Dataset6 Housing 13 506
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Table 2: Results of ANFIS-GWO Over Six Datasets against Three Algorithms.

Dataset Algorithm MSE RMSE MAE Time

Dataset1 GWO 0.03290 0.18106 0.13120 45.54160
PSO 0.03322 0.18203 0.12499 46.86776
GA 0.03386 0.18369 0.13146 43.55836
ANFIS 2.45680 1.56283 1.02184 30.63989

Dataset2 GWO 0.01496 0.12173 0.09816 35.86977
PSO 0.01656 0.12831 0.10301 36.20687
GA 0.01622 0.12660 0.10128 36.39580
ANFIS 0.30172 0.51610 0.32813 11.56986

Dataset3 GWO 0.01608 0.12671 0.09875 31.13066
PSO 0.01168 0.10800 0.08258 26.91375
GA 0.01500 0.12238 0.09444 30.07782
ANFIS 0.06087 0.21176 0.16457 9.97239

Dataset4 GWO 0.00146 0.03332 0.01739 37.00145
PSO 0.00413 0.06071 0.02144 47.11759
GA 0.00402 0.05797 0.02055 37.31711
ANFIS 7.06525 1.94732 0.21341 22.18185

Dataset5 GWO 0.04390 0.20857 0.15655 35.51686
PSO 0.05130 0.22547 0.16682 37.21948
GA 0.04626 0.21367 0.15858 36.25798
ANFIS 6.54830 1.64775 0.56228 19.37667

Dataset6 GWO 0.01101 0.10477 0.07590 46.51049
PSO 0.01122 0.10501 0.07123 43.33064
GA 0.01052 0.10221 0.07191 48.34658
ANFIS 0.06536 0.21647 0.08408 28.60306

Boldface indicates the best result.

Figure 4: Results of the MSE Measures.

original ANFIS is faster than all other compared algorithms, although it fails to obtain the smallest error in
all datasets and the differences in the time complexity between it and the other algorithms are still small.
Thus, we excluded its results from our comparison because although it has the best time complexity, it has
the worst performance. According to the time complexity, it can be seen that ANFIS-GWO achieved the lowest
time complexity in three datasets out of six,whereasANFIS-PSO came in secondplace followedbyANFIS-GA.

To provide more evidence about the quality of the ANFIS-GWO method in prediction, a non-parametric
Wilcoxon rank sum test was used. It was applied to the analysis of the median of the ANFIS-GWO with
the median of the compared algorithms according to the RMSE measure at a significance level 0.05. The
value p < 0.05 indicates that there is a statistically significant difference between ANFIS-GWO and the other
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Figure 5: Results of the MAE Measures.

Figure 6: Results of the RMSE Measures.

algorithms. The results of the Wilcoxon test are listed in Table 3, and it can be observed that there are statis-
tically significant differences between ANFIS-GWO and the compared algorithms in general. In this context,
there was a statistical difference between ANFIS-GWO and the original ANFIS over all experiments, whereas
therewere statistical differences betweenANFIS-GWOand both ANFIS-PSO andANFIS-GA in all experiments
except for Dataset1 and Dataset6, and except for Dataset5 for ANFIS-GA.

4.4 Experiment Series 2: Predicting Biochar Yield

In this experiment, the proposed algorithm was used to improve the prediction performance of the biochar
yield. However, this section starts with the problem formulation, followed by the results of the comparison
algorithms.
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Figure 7: Results of Time Complexity.

Table 3: Results of the Wilcoxon Statistical Test.

Dataset PSO GA ANFIS

Dataset1 0.455 0.263 0.000
Dataset2 0.038 0.042 0.000
Dataset3 0.000 0.038 0.001
Dataset4 0.001 0.003 0.000
Dataset5 0.047 0.648 0.000
Dataset6 1.000 0.246 0.034

4.4.1 Problem Formulation

The prediction of biochar yield is considered a non-linear regression problem, as there are several parameters
that are influenced by the production of biochar. For example, the dataset used in this study was taken from
Ref. [8] and consists of 33 records; each record has five operating parameters. These parameters are the pyrol-
ysis temperature (°C), holding time (min), heating rate (°C min−1), percentage of moisture content (%), and
sample mass (g), in which the pyrolysis temperature (x1) is constrained in the range 400 °C to 600 °C, heat-
ing rate (x2) in the range 4 to 16 °C min−1, holding time (x3) in the range 40–100 min, moisture content (x4)
in the range 45 to 85%, and sample mass (x5) in the range 5–20 g. The objective function fit that maximizes
biochar production is defined as

y = max
x1 ,x2 ,x3 ,x4 ,x5

�t(x1, x2, x3, x4, x5), subject to, 400 ≤ x1 ≤ 600,

45% ≤ x2 ≤ 85%, 40 ≤ x3 ≤ 100, 5 ≤ x4 ≤ 20, 4 ≤ x5 ≤ 16. (24)

4.4.2 Results and Discussion

To evaluate the ANFIS-GWO in predicting biochar yield, it is compared with the original ANFIS and seven
optimized ANFIS with different meta-heuristic algorithms, i.e. PSO, GA, grasshopper optimization algorithm
(GOA) [43], sine-cosine algorithm (SCA) [34], whale optimization algorithm (WOA) [35], and flower pollination
algorithm (Flower) [52], aswell as LS-SVMand regressionNN [8]. These algorithmswere selected because they
achieved good results in previous works [2, 11, 12, 14, 15, 19]. The parameter settings of these algorithms are
listed in Table 4.

The first step in this experiment is to determine the optimal number of membership functions (clusters)
by using the FCM method. Therefore, the FCM is applied at different cluster number values, and the results
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Table 4: Parameter Setting of the Algorithms.

Algorithm Parameter values

GWO a = [2 : 0]
GA pc = 0.8, γ = 0.2, pm = 0.3, µ = 0.02, β = 8
PSO w = 1, wDamp = 0.99, C1 = 1, C2 = 2
GOA cmax = 1, cmin = 0.00004
SCA a = 2
WOA a = [0, 2], b = 1, l = [−1, 1]
Flower Proximity probability = 0.8
ANFIS ErrorGoal = 0, initial step size = 0.01

are shown in Figure 8. From this figure, it can be concluded that the optimal numbers of memberships are 3
and 6 with RMSE 0.32 and 0.31, respectively; hence, we set the number of memberships to 6.

The results of the proposed method against nine models are presented in Tables 5 and 6 and Figures 9
and 10, which are the average of 15 independent runs. From Table 5, it can be concluded that, first, when the
proposed method was compared with the original ANFIS model and the optimized ANFIS models, it had the
best values of RMSE and AAPRE. Therefore, its performance is >35% of the original ANFIS. Second, when
the proposed method was compared with five optimized ANFIS models, regression NN, and LS-SVM, it also
had the best results in terms of all measures.

Moreover, in terms of R2, the result of the proposed method was better than that of all other algorithms,
as shown in Figures 9 and 10. These figures indicate that the results of ANFIS-GWOwere nearest to the target
data compared with the original ANFIS and all other models.

To test the stability of the models, the standard division measure was calculated and listed in Table 5.
From this table, it can be seen that the optimized ANFIS with GWO had the best value and showed a high
stability against the other models.

Figure 8: Results to Determine the Optimal Number of Clusters of FCM.

Table 5: Performance of the Proposed Method against Other Algorithms.

GWO PSO GA GOA SCA WOA Flower ANFIS LS-SVM NN

RMSE 0.259 0.263 0.263 0.388 0.294 0.311 0.307 0.720 0.365 0.835
AAPRE 4.525 4.688 6.106 7.967 5.791 5.981 5.965 4.945 4.945 9.662
R2 0.980 0.976 0.974 0.826 0.928 0.883 0.969 0.348 0.963 0.804
SD 0.0463 0.0479 0.0478 0.0839 0.0494 0.0519 0.0767 0.1824 − −
Time 9.857 10.118 11.373 180.55 9.859 10.685 10.110 − − −

Boldface indicates the best result.
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Table 6: Comparison between the Sample Case of Predicted Data and Target Data.

System output (predicted data) Target data

Improved ANFIS using

GWO PSO GA GOA SCA WOA Flower ANFIS LS-SVM NN

3.995 4.199 4.011 4.240 3.897 3.848 4.018 3.952 3.990 3.870 3.97
7.732 7.459 7.638 7.581 7.587 7.478 7.659 6.207 7.390 5.410 7.28
7.014 7.877 6.942 6.776 6.814 7.015 6.951 6.288 6.700 7.360 7.36
5.631 5.596 5.593 5.189 5.604 5.755 5.558 6.432 5.590 4.770 5.35
5.183 4.972 5.121 5.273 5.196 5.055 5.171 6.070 4.900 6.550 4.98
3.317 3.383 3.246 3.132 3.278 3.138 3.228 2.876 3.260 3.790 3.53
1.653 1.727 1.814 2.209 1.990 2.051 1.848 1.749 2.150 1.950 1.94
4.554 4.464 4.516 4.437 4.828 4.488 4.537 4.857 4.490 4.860 4.55
3.670 3.897 3.658 3.645 3.301 3.435 3.525 3.624 3.700 3.690 3.79
7.974 8.677 7.786 7.240 7.535 7.550 7.733 6.627 7.400 7.530 8.24

Figure 9: Accuracy of All Algorithms According to R2 Measure.

From the above results, in general, it can be noticed that when meta-heuristic techniques were used to
learn the parameters of ANFIS, the performance of the ANFIS model improved in terms of RMSE, R2, and SD.

In terms of computational time, the proposed model had the lowest run time than other models due to
the ability of GWO to explore and exploit the population in less time than the other algorithms.

For a deeper analysis of the performance of the proposed method, the convergence curves were consid-
ered and illustrated in Figure 11 to show the convergence behavior of the algorithms. From this figure, it can
be seen that the GWO came in fourth place after GA, PSO, and WOA. Nevertheless, GWO reached the best
fitness value compared with all other algorithms.

The sample cases of the predicted data are arranged in Table 6, which shows the effectiveness of the
proposed method against that of the other models.

These results imply that the proposed ANFIS-GWO model improves the performance and efficiency of
ANFIS by utilizing the strengths of the GWO algorithm, which led to good accuracy and stability compared
with the other models.

4.5 Experiment Series 3: Estimating the Values of Input Parameters of Pyrolysis

In this experiment, the performance of the proposed ANFIS-GWOmethod is evaluated by using it to estimate
the values of input parameters of pyrolysis that maximize the biochar production. The problem formulation
in this experiment is the same as in the previous one except for the input parameters, which here are consid-
ered unknown; only the biochar yield value is given in Eq. (24). Solving the biochar production approach is
a challenge; the GWO algorithm is used to solve the approach in Eq. (24). To evaluate the performance of the
proposedmethod, the average of the RMSE for 15 runs is computed. The estimated values of the input param-
eters of pyrolysis are illustrated in Table 7. According to the results in Table 7, it can be concluded that the
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Figure 10: Predicted Data of All Algorithms against the Target (Real) Data.

Number of iterations

10 20 30 40 50 60 70 80 90 100

0.4

0.6

0.8

1

1.2

A
v
e
ra

g
e
 f
it
n
e
s
s

1.4

1.6

1.8

GWO

PSO

GA

GOA

SCA

WOA

Flower

Figure 11: Convergence Curve of All Optimization Algorithms.
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Table 7: Estimating the Values of Input Parameters.

Pyrolysis Heating Holding Moisture Sample Biochar RMSE
temperature (°C) rate (°C min−1) time (min) content (%) mass (g) mass (g)

Target 500 12 40 55 20 7.28 0.34
Estimated 500.46 11.89 39.63 55.27 19.60
Target 500 12 60 55 10 3.9 0.49
Estimated 500.91 12.53 59.78 55.13 9.88
Target 500 12 60 65 10 4.24 0.30
Estimated 499.45 11.78 59.89 65.31 9.97
Target 450 8 40 85 15 5.35 0.40
Estimated 449.61 8.45 40.09 84.38 14.78
Target 600 12 60 45 10 3.77 0.53
Estimated 600.0 12.33 60.79 44.19 10.07

proposed ANFIS-GWOmodel has high accuracy to estimate the input parameters that can reach the required
biochar production.

5 Conclusions and Future Works
In this study, the improvement of the ANFIS based on the GWO algorithm has been proposed to enhance the
predictionperformanceof thebiochar yield,where this process is consideredanoptimizationproblem. There-
fore, several machine learning methods have been proposed to solve this problem, such as NN and LS-SVM.
All of thesepreviousmethodshave their shortcomings thatwill affect theperformanceof theprediction. Thus,
the proposed ANFIS-GWO model avoids these limitations and was used to improve the performance of the
prediction of the biochar yield frommanure pyrolysis. The experimental results showed that the ANFIS-GWO
model for the UCI dataset is better than other algorithms in terms of the performance measure. Meanwhile,
for the prediction of biochar yield, the proposed ANFIS-GWO had the best values of RMSE and AAPRE, which
were 0.259 and 4.525, respectively. Therefore, its accuracy is >35% of the standard ANFIS, and its results are
also better than those of ANFIS-PSO, ANFIS-GA, LS-SVM, and regression NN. Moreover, the values of input
parameters thatmaximize the biochar productionwere estimated using the GWOalgorithm and showed good
results.

Based on the promising results of the proposedmodel, in futureworks, it can be applied to different other
applications such as quantitative structure-activity relationship, solar radiation, and biogas production.
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