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Abstract: Co-clustering is used to analyze the row and column clusters of a dataset, and it is widely used in 
recommendation systems. In general, different co-clustering models often obtain very different results for 
a dataset because each algorithm has its own optimization criteria. It is an alternative way to combine dif-
ferent co-clustering results to produce a final one for improving the quality of co-clustering. In this paper, 
a semi-supervised co-clustering ensemble is illustrated in detail based on semi-supervised learning and 
ensemble learning. A semi-supervised co-clustering ensemble is a framework for combining multiple base 
co-clusterings and the side information of a dataset to obtain a stable and robust consensus co-clustering. 
First, the objective function of the semi-supervised co-clustering ensemble is formulated according to nor-
malized mutual information. Then, a kernel probabilistic model for semi-supervised co-clustering ensemble 
(KPMSCE) is presented and the inference of KPMSCE is illustrated in detail. Furthermore, the corresponding 
algorithm is designed. Moreover, different algorithms and the proposed algorithm are used for experiments 
on real datasets. The experimental results demonstrate that the proposed algorithm can significantly outper-
form the compared algorithms in terms of several indices.

Keywords: Co-clustering, co-cluster ensemble, semi-supervised learning, kernel probabilistic model, 
recommend system.
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1  �Introduction
Co-clustering [4, 5] has recently received much attention in recommendation system applications. Co-clus-
tering and the motivations were first illustrated in a paper [16]. The term co-clustering was later used by 
Mirkin. A co-clustering algorithm based on variance [5] was proposed for biological gene expression data 
analysis, in one of the most important literature reports in gene expression analysis. There are also some 
research works [6, 7] that applied cluster algorithms for bio-information processes. Two algorithms [9] were 
presented to apply co-clustering to documents and words. The two algorithms were designed based on bipar-
tite spectral graph partitioning and information theory. A co-clustering algorithm-based weighted Bregman 
distance instead of KL distance [2] was proposed, and the algorithm is suitable for any kind of matrix. A 
new preference-based multi-objective optimization algorithm [12] was proposed to compete with the gradi-
ent ascent approach. The proposed approach use multiple heuristics to process the co-clustering problem, 
and it also makes a preference selection through the gradient ascent algorithm and the heuristic. A scalable 
algorithm [18] was designed to co-cluster massive, sparse, and high-dimensional data, and to combine indi-
vidual clustering results to produce a better final result. The proposed algorithm is particularly suitable for 
distributed computing environment, which have been revealed in the experiments, and it is implemented on 
Hadoop platform with MapReduce programming framework in practice. For higher-order data, the authors 
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developed [28] a new tensor spectral co-clustering (SCC) method that applies to any non-negative tensor of 
data. The authors presented a new distributed framework [8] to support efficient implementations of the 
algorithms with sequential updates, and the framework was evaluated on both a local cluster of machines 
and the Amazon EC2 cloud.

Co-clustering results are improved by an ensemble learning technique. An ensemble approach [13] is 
used to improve the performance of these co-clustering methods. The bagged co-clustering method gener-
ates a collection of co-clusters by using the bootstrap samples of the original data and aggregates them into 
new co-clusters. The principle consists in generating a set of co-clusters and aggregating the results. A novel 
ensemble technique for co-clustering solutions using mutual information [1] is presented. Asteris et al. [3] 
firstly presented the algorithm with provable approximation guarantees for Max-Agree, which relied on for-
mulating the algorithm as a constrained bilinear maximization over the sets of cluster assignment matri-
ces. Ensemble [17, 25] is a very popular way to improve the accuracy, robustness, and flexibility of learning. 
A novel robust spectral ensemble clustering [20, 24] approach is proposed for the cluster ensemble, which 
learns a robust representation for the co-association matrix through a low-rank constraint. Random projec-
tion [23] is used in ensemble fuzzy clustering. A co-clustering ensemble method [11] is used to overcome some 
limitations through repeatedly applying the plaid model with different parameters. Hanczar and Nadif [14] 
proposed a new method that can improve the accuracies of co-clustering with the ensemble methods, and 
they [15] also used a bagging approach for gene expression data. An ensemble co-clustering can be formal-
ized by using a binary tri-clustering problem. The author designed a simple and efficient algorithm for the 
co-clustering problem described above. In order to generate more diverse and high-quality co-clusters to be 
fused through an ensemble perspective, the author have adopted a well-known multi-modal particle swarm 
optimization algorithm [21]. An ensemble method for the co-clustering problem [1] that uses optimization 
techniques to generate consensus is presented. Manifold ensemble learning [19] is used to improve the co-
clustering performance, which aims to maximally approximate the intrinsic manifolds of both the feature 
and sample spaces. An approach [14] is proposed to improve the performance of co-clustering. It is shown 
that ensemble co-clustering can be considered a problem of binary tri-clustering and the problem can be 
solved by the proposed algorithm. Except for the co-clustering ensemble algorithms described above, there 
are also several semi-supervised co-clustering ensemble algorithms. Wang et al. [27] proposed a non-para-
metric Bayesian approach to co-clustering ensembles. Similar to clustering ensembles, co-clustering ensem-
bles combine several base co-clustering results to obtain a final co-clustering that is a more robust consensus 
co-clustering. Pio et al. [22] used the co-clustering method to discover the miRNA regulatory networks. Teng 
and Tan [26] proposed a semi-supervised co-clustering algorithm to find a combinatorial histone code, which 
is a successful example of co-clustering.

In general, most of the above existing algorithms did not take advantage of ensemble learning and semi-
supervised learning. There are two motivations in this paper. First, ensemble learning and semi-supervised 
learning are integrated to improve the accuracy of co-clustering, which is inspired by the advantage of ensem-
ble learning. Second, the model selection of co-clustering is partially solved by ensemble learning, which is 
practically used in recommendation systems.

The rest of the paper is organized as follows. In Section 2, the objective function of semi-supervised 
co-clustering ensemble is proposed in detail. In Section 3, a kernel probabilistic model for semi-super-
vised co-clustering ensemble (KPMSCE) is designed, and the corresponding algorithm is illustrated in 
detail. Experimental results are presented in Section 4, and the paper ends with the conclusions in 
Section 5.

2  �Semi-supervised Co-clustering Ensemble
In this section, the pairwise constraints (side information) of co-clustering, which are the extensions of clus-
tering pairwise constraints, are introduced. In general, the pairwise constraints are a popular way for semi-
supervised learning. Then, the semi-supervised co-clustering ensemble is illustrated in detail.
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2.1  �Pairwise Constraints of Co-clustering

The popular way of semi-supervised clustering algorithms is to use the background information of pairwise 
constraints, such as must-link (ML) and cannot-link (CL) constraints. An ML constraint means that two data 
points are in the same cluster, while a CL constraint denotes that two data points are in different clusters. 
However, pairwise constraints will be extended in the problem of co-clustering. Co-cluster ML constraints 
specify that two entities, or two features, or one entity and one feature must be related, which can be used in 
co-clustering.

Suppose gi and gj are two connected components. Let xi and xj be the entities in gi and gj, respectively. Let 
M denote the set of ML constraints. We have

( , ) , , .i j i i j jx x M x g x g∈ ∈ ∈

CL constraints denote that two entities, or two features, or one entity and one feature cannot be placed 
in the same cluster, and CL constraints can also be entailed. Suppose gi and gj are two connected components 
(completely connected subgraphs by ML constraints). xi and xj denote the entities in gi and gj, respectively. 
Denote C as the set of CL constraints. Then

( , ) , , .i j i i j jx x C x g x g∈ ∈ ∈

Given a data matrix Xm with m rows and n columns. oi and oj denote the ith and jth objects (rows) of Xmn, 
while fi and fj denote the ßik and æth features (columns) of Xmn. Let ki, kj, ki, and kj be four connected components.

Then, the corresponding pairwise ML constraint sets (including object ML constraint set Mo and feature 
ML constraint set Mf) are

{( , ) | ; },
{( , ) | ; }.

o i j i i j j

f i j i i j j

M o o o k o k
M f f f k f k

= ∈ ∈
= ∈ ∈

Moreover, the pairwise CL constraint sets (including object CL constraint set Co and feature CL constraint 
set Cf) are

{( , ) | ; ; },
{( , ) | ; ; }.

o i j i i j j i j

f i j i i j j i j

C o o o k o k k k
C f f f k f k k k

= ∈ ∈ ≠
= ∈ ∈ ≠

2.2  �Semi-supervised Co-clustering Ensemble Problem Formulation

In this subsection, the semi-supervised co-clustering ensemble objective function is defined. In detail, 
suppose there is an original data matrix Xmn with m rows (i.e. objects) and n columns (i.e. features).

These m objects can be simultaneously grouped into κ row clusters and n columns into ℓ column clusters, 
so there are κ × ℓ co-clusters in total. Moreover, co-clustering can be considered as a set of κ sets of objects 
{αr | r  =  1, …, κ} and a set of ℓ sets of features {βc | c  =  1, …, ℓ}, respectively. In general, the procedure can 
deliver row labels of objects and column labels of features. If there are several base co-clustering algorithms 
to process the same dataset, sets of row labels and column labels are obtained. Co-clustering ensemble uses a 
consensus function Γ to combine the set of q row labels μ(1, …, q) into a single row label μ, and it simultaneously 
combines the set of q column labels ν(1, …, q) into a single column label ν.

Commonly, in a dataset, there are (μ(q), ν(q)) groupings including κ(q) row clusters and ℓ(q) column clus-
ters. Γ is defined as a consensus function ℕ{m×t,n×t}→ℕ{m,n} projecting a set of co-clusterings to an integrated 
co-clustering:

	 ( ) ( ): {( , ) | {1, , }} {( , ),( )}.q q d dq t C MΓ µ ν µ ν∈ → −… � (1)
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Let the set of groupings {(μ(q), ν(q)) | q∈{1, …, t}} be denoted by Φ. The co-clustering ensemble is used to seek a 
consensus co-clustering that shares the most information with the original co-clusterings.

Moreover, the side information in the dataset is the two sets of CL C and ML M, and it is called semi-super-
vised co-cluster ensemble that the side information is used in the combining step of co-clustering. In order 
to measure the quality of the statistical information that is shared between two co-clusterings, the objective 
function of the semi-supervised co-clustering ensemble can be defined as follows:

	 �( , opt) (NMI) ( ) ( )
=1( , ) = arg max {( , ),( , ),( )},t q q d d
q C Mκµ ν Σ φ µ ν µ ν− −� � (2)

where (μ, ν)(κ,ℓ−opt) is the consensus result of co-clustering and it is one of the results that maximize the average 
mutual information among all individual co-clustering labels (μ(q), ν(q)) in Φ. We define a measure between 
a set of t co-clustering labels, Φ, and a single co-clustering label, �µ ν( , ),  as the average normalized mutual 
information (ANMI) based on this pairwise measure of mutual information, and the definition of ANMI for 
co-clustering is as follows:

	

� �(ANMI) (NMI) ( ) ( )

1

1( ,( , )) (( , ),( , )).
t

q q

qt
φ Φ µ ν φ µ ν µ ν

=

= ∑
�

(3)

Mutual information is a sound indication of the shared information between a pair of co-clusterings. The 
normalized mutual information (NMI) was defined as follows:

	

( , )
NMI( , ) ,

( ) ( )
I X Y

X Y
H X H Y

=
�

(4)

where X and Y denote the variables described by the cluster labeling, and I(X, Y) denotes the mutual informa-
tion between X and Y. H(X) denotes the entropy of X and H(X)  =  I(X, Y).

In co-clustering, suppose there are two co-clustering labeling variables (Xr, Xc) and (Yr, Yc), i.e. (Xr, Yr), 
(Xc, Yc) denote the row cluster labeling variables and column cluster labeling variables, respectively. When we 
want to obtain the mutual information between the two co-clustering variables, we must measure the mutual 
information of row cluster labels (Xr, Yr) and column cluster labels (Xr, Xc), respectively. We define the NMI of 
co-cluster labeling as follows:

	

NMI(( , ),( , )) NMI( , ) NMI( , )
( , ) ( , )

.
( ) ( ) ( ) ( )

r c r c r r c c

r r c c

r r c c
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H X H Y H X H Y

= +

= +
�

(5)

One can easily find that NMI(Xr, Xr) = NMI(Yc, Yc) = 1. Equation (3) needs to be estimated by using the sampled 
quantities provided by the co-clusterings. Then, from Eq. (5), the estimation of the NMI φ(NMI) is

	

(NMI) (NMI) (NMI)

( ) ( )( ) ( )
, ,

, ,
1 1 1 1

( )( ) ( )
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(6)

where |O |  and |F |  denote the number of objects and features in a co-cluster, respectively; ( , )i iO F
α α

 denote 
the number of objects and features in co-cluster Co

α
 according to (μi, νi); and ( , )j jO F

β β
 denote the number of 

objects and features in co-cluster Co
β
 according to (μj, νj). O

α,β and F
α,β denote the number of objects and fea-

tures, respectively, in co-cluster Co
α
 according to (μi, νi) as well as in group Co

β
 according to (μj, νj).
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3  �Semi-supervised Co-clustering Ensemble Based on Kernel  
Probabilistic Model

In this section, a generative model for semi-supervised co-clustering ensemble based on the kernel probabil-
istic theory is proposed, and the gradient descent method is used to infer the model. At last, the correspond-
ing algorithm is illustrated step by step.

3.1  �Kernel Probabilistic Model for Semi-supervised Co-clustering Ensemble

The model in KPMSCE, a zero mean Gaussian process of U:;d and V:;d, is regarded as the prior distribution for 
the feature of a data set. For a universal situation, a generalization of the multivariate Gaussian distribution 
can be used for this process in the model. In general, a mean value and a covariance matrix can determine a 
multivariate Gaussian, and in the same situation, a mean function m(x) and a covariance function k(x;xT) can 
also determine the Gaussian process.

For the semi-supervised co-cluster ensemble problem, x is an index of matrix rows or columns in differ-
ent ways. If m(x) equals 0 and the corresponding kernel function is k(x;xT), the function can represent the 
covariance and the corresponding pair of objects or features. KU∈RN×N is set to be a full covariance matrix for 
objects, and it can be a prior that can force the factorization to capture the covariance among rows. Mean-
while, KV∈RM×M is set to be a full covariance matrix for features, and it can be a prior that can force the factori-
zation to capture the covariance among columns.

If KU and KV are the priors and they are assumed to be known, the generative process steps for KPMSCE 
are as follows:
1.	 Sample U:,d according to GP(0, KU), 1[ ] .Dd
2.	 Sample V:,d according to GP(0, KV), 1[ ] .Dd
3.	 For each object Rn,m, sample Rn,m according to 2( ,: ,:, ),T

n mN U V σ  where σ is a constant.

If U and V are known, the likelihood over the visible objects in the target field R is

	
2 2

, ,
1 1

( | , , ) [ ( | , , )] ,
N M

T
n m n m n m

n m
p R U V N R U Vσ σ δ

= =

= ∏∏
�

(7)

and U and V are given by

	
:,

1
( | ) ( |0, ),

D

U d U
d

p U K GP U K
=

= ∏
�

(8)

	
:,

1
( | ) ( |0, ).

D

V d V
d

p V K GP V K
=

= ∏
�

(9)

For simplicity, we denote 1
UK
−  by SU and 1

VK
−  by SV. The log-posterior over U and V can be calculated by

	

2 2
, ,2

=1 =1

2
:, :, :, :,

=1 =1

1log ( , | , , , ) ( , )
2

1 1 log (log | | log | |) ,
2 2 2

N M
T

U V n m n m n m
n m

D D
T T
d U d d V d U V

d d

p U V R K K R U V

DU S U V S V A K K C

σ δ
σ

σ

= − −

− − − − + +

∑∑

∑ ∑
�

(10)

where A is the total number of objects and |K |  is the determinant of K. The proposed model is a genera-
tive model that is used to simulate how to sample the results of base co-clustering results. Then, if we 
extract the latent labels in the graphical model, at last the semi-supervised co-cluster ensemble results 
are obtained.
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3.2  �Inference of KPMSCE Based on Gradient Descent

There are several latent variables to be inferred in this model. Expectation maximization and maximum a 
posteriori can be used to estimate these latent variables. In this paper, a maximum a posteriori is applied to 
estimate the latent matrices U and V, and these matrices can maximize the posteriors of the model. In other 
words, the following objective function can be minimized:

	

2
, , :, :, :, :,2

=1 =1 =1 =1

1 1 1( , ) .
2 22

N M D D
T T T

n m n m n m d U d d V d
n m d d

E R U V U S U V S Vδ
σ

= − + +∑∑ ∑ ∑
�

(11)

In general, gradient descent can be used for minimizing the function E. The gradient of objects (rows) is as 
follows:

	
, , , ( ) :,2

=1,

1 ( , ) ,
M

T T
n m n m n m d m n U d

mn d

E R U V V e S U
U

δ
σ

∂ = − − +
∂ ∑

�
(12)

where e(n) is an token vector with the corresponding bit being 1 and others being 0. Then, the gradient of 
features (columns) is defined as

	
, , , ( ) :,2

=1,

1 ( , ) ,
M

T T
n m n m n m d m m V d

mm d

E R U V U e S V
V

δ
σ

∂ = − − +
∂ ∑

�
(13)

where e(m) is also an token vector with the corresponding bit being 1 and others being 0. Given the initial 
guess of the priors, U is updated by

	

1
, ,

,

,t t
n d n d

n d

EU U
U

η+ ∂= −
∂ �

(14)

where η is the learning rate for flexibility. It can be settled from 0 to 1. V is updated by

	

1
, ,

,

.t t
n d n d

n d

EV V
V

η+ ∂= −
∂ �

(15)

According to the updating functions, U and V are updated alternatively until convergence. When KU and 
KV remain stable throughout all iterations, SU and SV are computed only once. In the extreme case, the whole 
objects or feature are missed but the appropriate side information is known. The update rules with missing 
values are the following equations:

	

( 1) ( ) ( )
, , ( ) :, , ,

=1
( , ) ,

N
t t T t
n d n d n U d n d U n d

n
U U e S U U S n n Uη η+

′
′

= − = − ′∑
�

(16)

and

	

( 1) ( ) ( )
, , ( ) :, , ,

=1
( , ) .

N
t t T t

m d m d m V d m d V m d
m

V V e S V V S m m Vη η+
′

′

= − = − ′∑
�

(17)

In this case, Un,: is updated according to the weighted average of the current U over all rows, whether the 
rows are missing or not. The weights SU(n, n′) show the correlation between the current n and all the rest. Vm,: 
is updated according to the weighted average of the current V over all rows, whether the columns are missing 
or not. The weights SV(m, m′) show the correlation between the current m and all the rest.
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3.3  �Algorithm

In this subsection, the KPMSCE algorithm is described. The diversity of base co-clustering results is an impor-
tant reason to improve the result of semi-supervised co-cluster ensemble, so KPMSCE is used to semi-super-
vise some diversity base co-clustering results to integrate and obtain the final semi-supervised co-clustering 
ensemble result. According to the above model and inference, a kernel probabilistic algorithm for semi-super-
vised co-clustering ensemble algorithm is designed. The algorithm procedure is described step by step below.

Algorithm: KPMSCE Algorithm.
Input: Pairwise constraint set P(i, j), original data matrix Xmn, number of row clusters κ, and number of 
column clusters ℓ (i.e. κ × ℓ co-clusters in total).
Output: The final consensus co-clustering result.

1.	 Divide Xmn into κ row clusters and ℓ column clusters by the co-clustering algorithms, and the base co-
clustering labels are obtained.

2.	 Compute the NMI among the base co-clusters and obtain a new data matrix.
3.	 Calculate the likelihood for each column according to the equation

2
< >, < >, < >,:( | , ) ( |( ,:), ).T
n m m n m m n m mP R U V N R U V Iσ=

4.	 Marginalize the probability over V, obtaining < >,=1
( | ) ( | ).M

n m mm
P R U p R U= ∏

5.	 Compute the objective function, −= + +∑ ∑1
< >, < >, :, :,=1 =1

( log( )) ,M DT T
n m m n m m d U dm d

E R C R C U S U  and we can see that 
V is deleted in the objective function, so the gradient descent can be obtained on U, which is updated at 
each iteration according to the inversion of C.

6.	 The maximum likelihood estimation is computed by , ,: ,:
ˆ ˆ ˆ .T
n m n mR U V=

7.	 Obtain the column and row cluster ensemble according to maximum likelihood.
8.	 Integrate the final row and column clusters.

4  �Empirical Study
In this section, 10 datasets are used in the experiments. In particular, eight datasets are from the UCI machine 
learning repository, and a dataset is from the KDD Cup. The last dataset, called yeast cell data, has been ana-
lyzed by using many clustering and co-clustering algorithms. For all reported results, there are two steps to 
obtain the final co-clustering ensemble results in the experiments. First, a set of base co-clustering labels is 
obtained by running the base co-clustering algorithms. Second, KPMSCE is applied to the base co-clustering 
labels to generate the final consensus co-clustering.

The standard deviation of the co-clusters is applied as the criterion. For a machine learning method, a 
final co-clustering ensemble result has two equally important measures of accuracy. The result is not only 
good for clusters of objects but also for clusters of features. The quality of the co-cluster is the final compre-
hensive assessment measure that takes into account both co-clustering aspects. RSD is defined as the stand-
ard deviation of all rows in a co-cluster, CSD as the standard deviation of all columns in a co-cluster, and 
CoSD as the standard deviation of all entries in the co-cluster. The smaller the RSD, CSD, and CoSD, the better 
the quality of row clustering, column clustering, and co-clustering, respectively.

Because all datasets have their labels, micro-precision (MP) is used to measure the accuracy of the cluster 
with respect to the true labels. MP is defined as = ∑ =1

MP / ,k
ii
a N  where k is the number of clusters, N is the 

number of objects, and ai denotes the number of objects in the cluster i that are correctly assigned to the cor-
responding class [29]. Moreover, AMP means average MP.
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4.1  �Comparison of Experimental Results Among SCC, Information Theoretic 
Co-clustering, Bregman Co-clustering, and KPMSCE

To illustrate the performance of KPMSCE, the results obtained by KPMSCE are compared with the co-cluster-
ing results generated by SCC [9], information theoretic co-clustering (ITCC) [10], and Bregman co-clustering 
(BCC) [2]. The experimental procedure is described as follows. First, the base co-clusterings are obtained by 
running each co-clustering algorithm three times on each dataset, i.e. nine co-clusterings of each dataset 
are obtained. Then, the final consensus co-clustering is obtained by combining the base co-clusterings via 
KPMSCE. The experimental results are shown in Table 1.

Among all the algorithms on the 10 datasets, it was six times that KPMSCE achieved the best results, while 
the other three algorithms only achieved four best results. Table 1 shows that the performance of KPMSCE 
is better than the other three algorithms most of the times. All results showed that the performance of co-
clustering can be enhanced by the ensemble method. Table 1 also shows that the row clustering performance 
of BCC is better compared to the other two co-clustering algorithms because the number of the best row clus-
tering results obtained by BCC is bigger than that of the other co-clustering algorithms. Similarly, we can find 
that the column clustering performance of ITCC is the best among the three base co-clustering algorithms.

4.2  �Comparison of Experimental Results Between KPMSCE and Relational 
Multi-manifold Co-clustering Ensemble

To demonstrate how the method works for the co-clustering problem and improves the co-clustering per-
formance, it is compared with the co-clustering ensemble method named relational multi-manifold co-
clustering ensemble (RMCCE) [19]. The base co-clustering labels are obtained by running each co-clustering 
algorithm five times on each dataset, and the results are shown in Table 2. In Table 2, it is clear that KPMSCE 
outperforms the RMCCE most of the times. In other words, the co-clustering ensemble method actually gives 
better results than RMCCE.

4.3  �AMP Results

In this subsection, SCC, ITCC, BCC, KPMSCE, and RMCCE are used for this experiment on all datasets. There 
are two steps in the proposed experiment. First, SCC, ITCC, and BCC with random initializations are used 
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Figure 1: AMP Results of Algorithms on 10 Datasets.
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many times for the base co-clustering, and the average AMPs are recorded on different numbers of base 
co-clusterings. Second, all base co-clustering results are drawn as input data of KPMSCE and RMCCE for 
the co-clustering ensemble, and the ensemble results are recorded. The results are reported in Figure 1. The 
x-axis shows the number of base co-clusterings, and the y-axis shows the AMP results on different numbers 
of base co-clusterings. We can see that KPMSCE obtains the best AMP result, and RMCCE obtains the second 
best. The results show that ensemble learning can improve the performance of co-clustering. Moreover, semi-
supervised learning can positively leverage the base co-clustering and co-clustering ensemble.

5  �Conclusions
In this paper, the semi-supervised co-cluster ensemble was illustrated in detail based on semi-supervised 
learning and ensemble learning. Semi-supervised co-cluster ensembles provide a framework for combining 
multiple base co-clusterings and the side information of a dataset to generate a stable and robust consensus 
co-clustering. Moreover, the objective function of the semi-supervised co-cluster ensemble was formulated in 
detail. Then, KPMSCE was presented, and the inference-oriented KPMSCE was illustrated in detail. Further-
more, the corresponding algorithm was designed. In addition, different algorithms and the proposed algo-
rithm were used for experiments on a real dataset. The experimental results demonstrated that the proposed 
algorithm can significantly outperform the compared algorithms in terms of several indices.

Future work will focus on the diversity of the base co-clustering labels for the co-clustering ensemble.
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