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Abstract: Speech signals are usually affected by noises during the communication process. For suppress-
ing the noise signal that is combined with the speech signal, a Wiener filter is adapted in digital hearing
aids. Weiner filter plays an important role in noise suppression and enhancement by estimating the rela-
tion between the power spectra of the noise-affected speech signal and the noise signal. Power consumption
and the hardware requirement are the important problems in adapting Weiner filter for major communica-
tion systems. In this work, we implemented an efficient Wiener filter and applied it for noise suppression
along with a real-valued fast Fourier transform (FFT)/real-valued inverse FFT processor in digital hearing
aids. The pipelined process was adopted for increasing the performance of the system. The proposedWiener
filter was designed to remove the iteration problems in the conventional Wiener filter. The division opera-
tion was replaced by an efficient inverse and multiplication operation in the proposed design. A modified
architecture for matrix inversion with low computation complexity was implemented. The complete design
computation was based on IEEE-754 standard single-precision floating-point numbers. The Wiener filter and
the whole system architecture was implemented and designed on a Field Programmable Gate Array platform
and simulated to validate the results inXilinx ISE tools. An efficient reduction in power and areawas obtained
by adapting the proposed method for speech signal noise degradation. The performance of the proposed
design was found to be 50.01%more efficient than that of existing designs.
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1 Introduction
Digital hearing aids are widely used by hearing-impaired people to improve their speech intelligibility and
quality of life. However, hearing aid performance is usually degraded due to acoustic feedback, which gen-
erates other problems. This phenomenon is produced when the sound propagates from the loudspeaker to
the microphone. This causes instability and a high-frequency oscillation that can be perceived by hearing-
impaired people if its level exceeds their hearing thresholds. Also, these effects limit the maximum gain that
the hearing aid can perform and reduce the sound quality when the gain is close to the limit. To reduce
acoustic feedback, several methods based on adaptive algorithms have been used [20] for feedback reduc-
tion. A number of techniques are used for speech noise reduction, like non-local diffusion filters [18], acoustic
feedback reduction based on finite impulse response and infinite impulse response adaptive filters in digi-
tal hearing aids [14], and noise reduction Wiener filter [5]. In the above techniques, the noise is suppressed
using filters such as adaptive filters or Wiener filter. Many documented implementations (least mean square,
recursive least square, Kalman filters) have been done by using adaptive filters. Adaptive filters are optimal
in that they minimize the mean squared estimation error [13] and they can also be computed in real time.
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However, the drawbacks of adaptive filters are that they assume that the process dynamics are linear, only
provide a point estimate, and can only handle processes with additive, unimodal noise.

The spectral subtraction technique is a generally knownmethod for noise reduction [24]. In this method,
the noisy speech signal is first transformed from the time domain into the frequency domain by means of
the fast Fourier transform (FFT). The noise spectrum is then determined in the speech pauses and subtracted
from the frequency spectrum of the noisy speech signal before the noisy speech signal is reconverted from the
frequency domain into the time domain by means of the inverse FFT (IFFT). The result depends essentially
on the accuracy of the determination of the noise spectrum. Although good results are achieved in the case of
stationary noise, in practice noises are not stationary and the achievable results are therefore unsatisfactory.
In contrast, Weiner filter exploits the signal properties. It controls output error and is also straightforward to
design. Among the numerous techniques that have been developed, the optimal Wiener filter [5, 24] can be
considered one of the most fundamental noise reduction approaches, which has been delineated in different
forms and adopted in various applications. The knowledge of the spectral properties of the original signal
and the noise should be known for designing the Wiener filter. To use the availability of certain statistical
parameters like mean and correlation function of the original speech signal and unwanted additive noise,
the Wiener filter is designed. To reduce the effect of noise signal according to some statistical criterion, the
noisy speech signal is fed as input to the Wiener filter. By minimizing the mean square error, the unwanted
noise signal can be removed using the Wiener filter.

Although it is not a secret that the Wiener filter may cause some detrimental effects to the speech signal,
few efforts have been reported to show the inherent relationship between noise reduction and speech dis-
tortion. From the described disadvantages of the noise reduction method using a Wiener filter, the object of
altering the noise estimation by means of the Wiener filter and the rules for transforming the noisy speech
signals from the time domain into the frequency domain and vice versa were considered, so as to permit an
adaption to the non-linear transmission behavior of the human ear.

For reducing the unwanted noise signal from the original speech signal, the digital hearing aid is
designed with our proposed effective noise degradation architecture in this paper. The continuous time
domain signal is segmented into overlapping chunks called frames, and the frames are multiplied by a win-
dow function for avoiding the spectral artifacts, to perform frequency domain processing of the speech signal
in our system. The signal in time domain is converted into frequency domain by using an FFT processor, and
to reduce the noise signal from the speech signal, the Wiener filter is used in the digital hearing aid. The
output signal from the Wiener filter is converted into time domain by using an IFFT processor and then mul-
tiplied with the same window function, and the frames are then overlapped to create a continuous output
signal.

In our work, to make the system more efficient for the domain conversion instead of using two separate
processors for FFT and IFFT, we have designed it within a single processor. The FFT is defined over complex
data; however, in many applications, the input is real. Real-valued FFT (RFFT) algorithms take advantage
of the symmetry properties of the FFT and have a speed advantage over complex algorithms of the same
length. RFFT achieves higher throughput area and lower latency. Computational efficiency is low to imple-
ment. Hence, we prefer RFFT implementation rather than an FFT processor for ourwork, as the input signal is
a real-valued signal. The modified Wiener filter implementation in our work incorporates an efficient power
spectrum and energy analysis technique. Low-power floating-point adders and multipliers are adopted to
contribute to the power reduction of our work. Also, in very large scale integration (VLSI), floating-point divi-
sion [16] is a slow process and it also takes more clock cycles for computation; thus, in order to speed up our
computations,we replaced the floating-point division operationswith a reciprocal andamultiplier operation.
We also made the whole architecture pipelined so that the performance of the system is increased.

The rest of the paper is organized as follows. Section 2 reviews some related works to our work. Section 3
discusses the motivation for the proposed work along with the modified Wiener filter and the methods
adopted for making it efficient. Section 4 explains each block of the proposed noise degradation system, and
their outputs are verified individually. Section 5 reports the simulation result compared with other existing
methods, and the work is concluded in Section 6.
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2 Related Works
Awide range of literature reports about VLSI FFT/IFFT andWeiner filter design are available, and we discuss
a few among them in this section. Arunachalam and Raj [1] concentrated on the trivial multiplications in the
input stage of the IFFT unit and replaced themby the proposed “pass-logic”. In an orthogonal frequency divi-
sion multiplexing-based digital transmitter [7], the IFFT processing unit consumes the most hardware area
and power, especially because of the twiddle multipliers in the Cooley-Tukey-based decimation-infrequency
(DIF) IFFT architecture. The replacements can be possible because the inputs are bitwise with binary-phase
shift keying (PSK) or quadrature-PSK digital modulation. The input stage of DIF-FFT for 8–128 points (N)
were implementedwithmultipliers and “pass-logics”. The performance improvements (PIs) of their proposed
FFT/IFFT implementation have been analyzed. For a 64-point FFT in Field Programmable Gate Array (FPGA),
the number of slices was reduced by 9% and the total power by 6.5%. The same implementation on an ASIC
consumed 28% less power and 27% lesser gates. In 128-point implementation, these PIs are more than those
of the 64-point implementation; thus, PI is in upward trend as N increases. A chip for FFT processing as per
IEEE 802.11a specifications (64-point, 16-bit data) is designed with pass-logics, which uses 24,947 gates and
consumes 6.45 mW at 1.8 V, 20 MHz in 0.18 µm 1P6M complementary metal oxide semiconductor (CMOS)
process.

Yu and Yen [25] presented a novel 128/256/512/1024/1536/2048-point single-path delay feedback (SDF)
pipeline FFT processor for long-term evolution and mobile worldwide interoperability for microwave access
systems. FFT is widely used in digital signal processing and telecommunications, particularly in orthogonal
frequency division multiplexing systems, to overcome the problems associated with orthogonal subcarriers.
Their proposed design employs a low-cost computation scheme to enable 1536-point FFT, which significantly
reduces hardware costs as well as power consumption. In conjunction with the aforementioned 1536-point
FFT computation scheme, their proposed design included efficient three-stage SDF pipeline architecture on
which to implement a radix-3 FFT. The new radix-3 SDF pipeline FFT processor simplifies its data flow and
is easy to control, and the complexity of the resulting hardware is lower than that of existing structures.
Their paper also formulated a hardware-sharingmechanism to reduce thememory space requirements of the
proposed 1536-point FFT computation scheme. Their proposed design was implemented using 90-nm CMOS
technology. Post-layout simulation results revealed a die area of approximately 1.44 × 1.44 mm2 with power
consumption of only 9.3 mW at 40 MHz.

Tsai and Lin [19] presented a generalized conflict-free memory addressing scheme for memory-based
FFT processors with parallel arithmetic processing units made up of radix multi-path delay commutator.
Their proposed addressing scheme considers the continuous-flow operation with minimum shared mem-
ory requirements. To improve throughput, parallel high-radix processing units are employed. They prove
that the solution to non-conflict memory access satisfying the constraints of the continuous-flow, variable-
size, higher-radix, and parallel-processing operations indeed exist. In addition, a rescheduling technique
for twiddle-factor multiplication is developed to reduce hardware complexity and to enhance hardware effi-
ciency. From the results, they can see that their proposed processor has high utilization and efficiency to
support flexible configurability for various FFT sizes with fewer computation cycles than the conventional
radix-2/radix-4 memory-based FFT processors.

Biswas et al. [3] discussed about wavelet packet acoustic features that are found to be very promising
in unvoiced phoneme classification tasks, but they are less effective in capturing periodic information from
voiced speech. Thismotivated them todevelopawavelet packet-based feature extraction technique that signi-
fies both the periodic and aperiodic information. This method is based on the parallel distributed processing
technique inspired by the human speech perception process. This front-end feature processing technique
employs equivalent rectangular bandwidth (ERB) filter, like the wavelet speech feature extraction method
called WERB-SPADE (Wavelet ERB Sub-band based Periodicity and Aperiodicity Decomposition). Wiener fil-
ter is usedat the front end tominimize thenoise for further processing. The speech signal is filteredby 24-band
ERB, like wavelet filter banks, and then the output of each sub-band is processed through a comb filter. Each
comb filter is designed individually for each sub-band to decompose the signal into periodic and aperiodic
features. Thus, it carries the periodic information without losing certain important information like formant
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transition incorporated in aperiodic features. Hindi phoneme classification experiments with a standard hid-
den Markov model recognizer under both clean-training and multi-training conditions are conducted. This
technique shows significant improvement in voiced phoneme class without affecting the performance of
unvoiced phoneme class.

A Wiener filter approach to microphone leakage reduction in close-microphone applications was imple-
mented byWang et al. [21]. The applicability of twowidely used signal enhancementmethods to this problem
was discussed, namely blind source separation and noise suppression. They showed that the noise sup-
pression framework was a valid choice and can effectively address the problem of microphone leakage. An
extended form of the single-channel Wiener filter was used, which took into account the individual audio
sources to derive a multichannel noise term. A novel power spectral density (PSD) estimation method was
also implemented based on the identification of dominant frequency bins by examining themicrophone and
output signal PSDs. The performance of the method was examined for simulated environments with various
source-microphone setups, and it was shown that the proposed approach efficiently suppressed leakage.

A method for noise estimation using mean square cross-prediction error (MSCPE) for speech enhance-
ment was designed byWu et al. [22]. They experimented the feasibility of noise extraction from noisy speech,
andpresenteda two-stage approach for speechenhancement. TheMSCPE-basedblind source extractionalgo-
rithm was utilized to extract the additive noise from the noisy speech signal in the first stage. After that,
a modified spectral subtraction and a modified Wiener filter approach were designed to extract the speech
signal in the second stage,where all the frequency spectra of the extractednoisewereutilized. Theoretical jus-
tification showed that the MSCPE-based algorithm can extract the desired signal frommixed sources. Experi-
mental results showed that the averaged correlation coefficient between the extracted noise and the original
additive noise are beyond 85% for Gaussian noise and beyond 75% for real-world noise at signal-to-noise
ratio (SNR) = 0 dB, and the designed speech enhancement approaches performed better than conventional
methods, such as spectral subtraction and Wiener filter.

Yang et al. [23] proposed the first VLSI design enabling high-throughput data detection in single-carrier
frequency-divisionmultiple access-based large-scalemultiple-inputmultiple-output (MIMO) systems. Large-
scale (or massive) MIMO is expected to be one of the key technologies in next-generation multi-user cellular
systems based on the upcoming 3GPP LTE Release 12 standard, for example. They proposed a new approx-
imate matrix inversion algorithm relying on a Neumann series expansion, which substantially reduces the
complexity of linear data detection. They analyzed the associated error, and compared its performance and
complexity to those of an exact linear detector. They presented corresponding VLSI architectures, which per-
form exact and approximate soft-output detection for large-scale MIMO systems with various antenna/user
configurations. The reference implementation results for a Xilinx Virtex-7 XC7VX980T FPGA show that their
designs are able to achieve >600 Mb/s for a 128-antenna, 8-user 3GPP LTE-based large-scale MIMO system.
They finally provided a performance/complexity trade-off comparison using the presented FPGA designs,
which revealed that the detector circuit of choice is determined by the ratio between BS antennas and users,
as well as the desired error-rate performance.

Carvajal et al. [4] proposed a selected inversion technique to reduce the computation cost of matrix
inversion for vectorless verification. Vectorless power grid verification is a practical approach for early-stage
safety check without input current patterns. The power grid is usually formulated as a linear system and
requires intensive matrix inversion and numerous linear programming, which is extremely time consuming
for large-scale power grid verification. In their paper, the power grid is represented in themanner of a domain-
decomposition approach. The locality existence among power grids is exploited to decide which blocks of
matrix inversion should be computed while the remaining blocks are not necessary. The vectorless verifica-
tion could be purposefully performed by this manner of selected inversion, while previous direct approaches
are required to perform full matrix inversion and then discard small entries to reduce the complexity of linear
programming. Meanwhile, constraint locality is proposed by them to improve the verification accuracy. In
addition, a concept of quasi-Poisson block is introduced to exploit grid locality among realistic power grids,
and a scheme of pad-aware partitioning is proposed to enable the selected inversion approach available for
practical use. Experimental results show that their proposed approach could achieve significant speedups
compared with previous approaches while still guaranteeing the quality of solution accuracy.
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3 Research Methodology
For suppressing the noise signal that is combined with the speech signal, Wiener filter is adapted [5, 24].
Weiner filter plays an important role in noise suppression and enhancement by estimating the relation
between the autocorrelation of the noise-affected speech signal and the noise signal. The architecture of
Wiener filter includes five main processing units, which are PSD, matrix inverter, matrix subtractor, matrix
multiplier, andmatrix-vectormultiplier. Autocorrelation is a special case of cross-correlation that computes a
signal with itself [6]. This provides the relationship between the noisy and noise-free signal. Matrix inversion
is an important challenge for researchers while designing any signal processing system, as it consumes a vast
area and power [8].

Considering the matrix inversion problem in Wiener filter design, we are going to implement a noise
degradation system for noisy speech signals in digital hearing aids incorporating a power- and hardware-
efficient Wiener filter. In this work, the pre-processing and post-processing of Wiener filter for converting
the input speech and noise signal in time domain to frequency domain and vice versa is done by adopting
our pre-designed real-valued FFT processor by contributing it to modify as an RFFT/real-valued IFFT (RIFFT)
processor [2]. Our main contribution with this work is a low-power and hardware-efficient matrix inversion
module design adopting the advantage of QR [10] decomposition with the given rotation. As the RFFT/RIFFT
process is done using a single processor and also by the use of a modified analytic method, we can design an
efficient speech signal enhancement system.

4 Proposed Method
The proposed noise degradation system includes two main blocks: (i) efficient pipelined architecture for
RFFT/RIFFT processor and (ii) a modified Wiener filter. The overall block diagram of the proposed system
is shown in Figure 1.

4.1 Eflcient Pipelined Architecture for RFFT/RIFFT Processor

The initial process in the proposed technique for noise degradation is the transformation of input signals in
the time domain to the frequency domain. As speech and noise signals are real-valued signals, the conven-
tional FFT architecture for domain conversion can be replaced with a modified low-power pipelined archi-
tecture so as to make the complete hardware architecture efficient in terms of area and power consumption.
The main difference between the FFT and IFFT is used here to design the FFT/IFFT processor.

Figure 1: Overall Block Diagram of the Proposed System.
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The basic FFT equation is given as

X(ω) =
M−1∑︁
ϕ=0

x(ϕ)Wϕω
M , ω = 0, 1, . . . , M − 1, (1)

where

Wϕω
M = e−j(2π/M) (2)

is the twiddle factor.
The IFFT equation is

x[ϕ] =
1
M

M−1∑︁
ω=0

X[ω]W−ϕω
M , (3)

where

ϕ = 0, 1, . . . ,M − 1.

Then, Eq. (3) can be rewritten as

x[ϕ] =
1
M

M−1∑︁
ω=0

[X[ω] * Wϕω
M ] * . (4)

By using the relation between Eqs. (3) and (4), we can design the basic structure of our FFT/IFFT
processor, as shown in Figure 2.

4.1.1 RFFT

The RFFT architecture includes four stages of pipelining, as shown in Figure 3. The working process of each
stage can be discussed as below.

Figure 2: Basic Structure of Our FFT/IFFT Processor.

Figure 3: Block Schematic for Two-Parallel Pipelined Architecture for 16-Point Radix-2 RFFT.
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Stage 1
At stage 1, the butterfly unit will process the pair of real samples x( ) and x( + M/2). The butterfly unit con-
sists of a 2:1multiplexerwith one selector line S.When the inputs are real, then the selector line S is set to 1 and
the butterfly starts to compute the input values. When the inputs are complex S set to 0, then the multiplexer
just passes the input without computation.

Stage 2
At stage 2, the architecture consists of shuffling unit, butterfly unit, and twiddle factor block A. The shuffling
unit is used to transform the order of the data that are required from stage 1 to stage 2,which also contains a 2:1
multiplexer and two delay elements at input and output of themultiplexer. Figure 4 shows the architecture of
theW ϕmodule. The stage includes four twiddle factors, asW 0, W1, W2, andW3, with real and imaginary
values as tabulated in Table 1.

From Table 1, the value of W 0 is 1, so the selector line S is set to 0 and the input passes to the out-
put without any complex multiplication. For twiddle factors W 1 and W 3, the selector line is set to 1 and
allow the multiplexer for complex multiplication. To reduce the number of additions and shifts, canon-
ical signed digit (CSD) is introduced. In CSD calculation, we have to convert the twiddle factor coeffi-
cients from binary to CSD, as shown in Table 2. The steps for conversion of binary to CSD is given as
follows:

Step 1: Check consecutive number of 1’s in the binary sequence.
Step 2: Replace the “0” before the first “1” in the sequence with “+” or “1”.
Step 3: Replace the last “1” in the sequence with “−”.

For W 2, real and imaginary values are similar; hence, we can use our modified shift and add/subtract
module only.

Figure 4: Architecture ofW ϕ Module.

Table 1: Twiddle Factor Real and Imaginary Coeflcients forM = 16.

Twiddle Factor (Wk) Real Imaginary

W0 1 1
W1 0.9239 0.3827
W2 0.7071 0.7071
W3 0.3827 0.9239

Table 2: Twiddle Factor Coeflcients forM = 16.

Decimal Binary CSD

0.9239 0011111101101100 0100000-10-10-00
0.3827 0011111011000011 010000-10-00010-
0.7071 0011111100110101 0100000-010-0101
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Stage 3
At stage 3, shuffling unit 1 transforms the order of the data that are required from stage 2 to stage 3, then shuf-
fling unit 2 also shuffles the computed samples from the butterfly unit. In case of shuffling unit 2, the initial
selector signal “0” last for 21 clock cycles and rest for the clock cycles it operates similar to the shuffling unit
1. In the twiddle factor block B, we use only the twiddle factorW 2; hence, we can adopt the same as before
in stage 2.

Stage 4
At stage 4, the shuffling unit transforms the samples from stage 3 to stage 4, then the butterfly unit computes
the samples and we get the output sample x(ω).

4.2 Modified Wiener Filter Design

Some assumption should be made for the efficient design of the Wiener filter. First, the noise-affected input
speech signal is single-channel (from one source), and the noise and speech signals are uncorrelated. If the
noise affecting the speech signal is additive, then

x(t) = s(t) + a(t), (5)

where
x(t) – noisy speech signal in time domain;
s(t) – original speech signal in time domain;
a(t) – additive noise in time domain.

By merely observing the time domain samples, detecting noise or interference in the input signal is very
difficult. Theanalysis anddetectionof such signals becomeeasybymapping the signals in frequencydomain.
Thus, we need to convert the time domain noise-affected signal to the frequency domain. By taking RFFT,
we get

X(f ) = S(f ) + A(f ). (6)

The original speech signal S(f ) can be extracted from the noisy signal by multiplying the noisy speech
signal X(f ) with the Wiener filter functionW(f ).

S(f ) = W(f )X(f ). (7)

In Eq. (7),W(f) represent the Wiener filter in frequency domain and can be estimated as

W(f ) =
|S(f )|2

|S(f )|2 + |A(f )|2
, (8)

where
|S(f )|2 is the PSD of the original speech signal;
|A(f )|2 is the PSD of the noise speech signal.

In reality, we have no idea about the original speech and noise spectra, as the input to the device is
noisy speech signal and noisy signal. TheWiener filter is approximated from the noisy speech signal and the
estimated noisy signal as

W(f ) ≈ |X(f )|2 − |N(f )|2

|X(f )|2
, (9)

where
|X(f )|2 is the PSD of input noisy speech signal;
|N(f )|2 is the PSD of input noisy signal.
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Taking IFFT, we get the original signal s(t)

s(t) = RIFFT{S(f )}. (10)

To implement an efficient denoising system for speech signal enhancement, we have to realize Eqs. (5)
to (10) with optimal computation units that can adapt to various criteria like low power, high throughput,
and less area consumption. Figure 5 shows the complete architecture of our proposed noise degradation
system.

Figure 5: Complete Architecture of Our Proposed Noise Degradation System.
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4.2.1 Matrix Subtractor

The algorithms for adding and subtracting matrices are the same. The main idea is that similarly addressed
cells of the two inputmatrices are added together or subtracted fromeach other. A detailed BlockArchitecture
of Matrix Subtractor is shown in Figure 6. The result is then placed at the same address (cell) in the output
matrix. Given three 4 × 4 matrices, A, B, and C, the following pseudocode describes matrix subtraction. The
same pseudocode can be used to describe addition by replacing the “−” sign with a “+” sign.

for i = 1 : 4

for j = 1 : 4

C[i, j] = A[i, j] − B[i, j];

end for;

end for.

From the hardware implementation, values from two random-access memory (RAM) modules will be
passed to the adder/subtractor module. The result of the adder/subtractor will then be written to the third
RAM module. This will be used to address the three RAM modules while the registers will delay the address
signal to the output RAM. These registers will compensate for the delay caused by the adder/subtractor logic.
This is important to ensure that the result is written to the proper address.

4.2.2 Matrix Multiplier

Basically, every row of the first matrix must be multiplied by every column of the second matrix. For a row-
column pair, every element of the row is multiplied by the similarly addressed element of the column. The
sum of the four products forms one element of the resulting matrix. A detailed Block Architecture of Matrix
Multiplier is shown in Figure 7. The following pseudocode describes this process:

for k = 1 : 4

for j = 1 : 4

for i = 1 : 4

C[k, j] = C[k, j] + A[j, i] * B[i, j];

end for;

end for;

end for.

From the hardware implementation of the matrix multiplier, counters A and B will control the address-
ing of matrices A and B, respectively. Counter A will increment at one-fourth the frequency of counter B.
Counter C is a two-bit counter that selects one of the four temporary RAM modules for writing. Each of the
output bits from the decoder is multiplexed with a logic low and sent to the write enable of one of the tem-
porary memories. When write is enabled, the decoder determines which of the four temporary memories is
written to. The truth table in Table 3 describes the behavior of the decoder. The decoder input is the two-bit
counter. Counter D has two addressing modes depending on the read/write state of the temporary memory.
When in write mode, the counter increments every four clock cycles to ensure that each temporary memory
module is written to before an address change.When in readmode, the counter increments every clock cycle.
This addressing scheme is used to read from the temporary memories and write to the final result memory.
The address bus controlling the output RAM must be pipelined to compensate for the combinational logic
delay of the adders. Two stages of adders are used to add all the products to form an element of the result
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Figure 7: Block Architecture of Matrix Multiplier.

Table 3: Truth Table of Decoder.

Counter Decoder

00 0001
01 0010
10 0100
11 1000

matrix. The first stage is made up of two adders, each of which adds two of four products. The second stage
consists of one adder that adds the outputs of the previous adders together. The output of this third adder is
an element of the final matrix product and is written to the output RAM.

4.2.3 PSD

From the block-level architecture of PSD computation as shown in Figure 8, we can calculate the PSD of
the input sequence using an N-point FFT estimator, window filter, and absolute square multiple accumula-
tor circuits (ASMACs). From the block diagram, the input signal is divided into N/2 samples. Then, FFT is
applied to each N/2 sample. Windowing block is used to calculate the subset of the dataset to avoid complex-
ity of the whole dataset calculation. The function of the ASMAC circuit is to compute the periodograms and
average them over L segments. The control blocks control the address decoder and multiplexer to correctly
accumulate the periodograms outputs over different segments. Finally, we get PSD of the input signal as

PSD = (1/K)
∑︁

|Xk|2. (11)
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Figure 8: Block Architecture of PSD.

Figure 9: Block Architecture of Matrix Vector Multiplier.

4.2.4 Matrix Vector Multiplier

From the block architecture of the matrix vector multiplier as shown in Figure 9, A is a matrix and C is a
vector. These matrix and vector are multiplied, and we get the multiplier output as vector G = AC. Then, the
output vector is stored in the accumulator. The output of themultiplier is given as one input of the adder. The
previous output of the adder is feedback as the second input to the adder. When the process is completed,
the output of the adder will be stored in the output RAM.

4.2.5 Matrix Inversion Using Given Rotation

In this paper for matrix inversion, we used the method called given rotation. Matrix inversion is done by QR
decomposition using given rotation. Q is an orthogonal matrix and R is an upper triangular matrix. From the
block diagram of given rotation, as shown in Figure 10 the input signal gets rotated until we obtain the upper
triangular matrix R. The rotation is done based on the given algorithm.

When a given rotation matrix G (i, j, θ) multiplies another matrix A, from the left GA, only rows i and j of
A are affected. Given a and b, find c = cosθ and s = sinθ such that[︃

c −s
s c

]︃[︃
a
b

]︃
=

[︃
r
0

]︃
, (12)

where r =
√
a2 + b2 is the length of the vector (a, b), c = a/r, s = −b/r. Using this algorithm, we can get the

upper triangular matrix R. Then, the Q value is calculated by multiplying the transpose of G values, i.e.

Q = GT
1GT

2 , · · · , GT
k . (13)

To get the inverse of A, we have to multiply the transpose of Q and inverse of R. The inverse of R will be
calculated by simple matrix inversion using a back-substitution method. The identical matrix I is given by
input of the simple matrix inversion. The pseudocode for the back substitution is given below:
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Figure 10: Block Diagram of Matrix Inversion Using the Given Rotation Method.

function BACKSOLVE (U, b)
% Find the solution to Ux = b, where U is an n × n upper triangular matrix
Xn = bn/unn
for i = n − 1:−1:1

sum = 0.0;
for j = i + 1:n

sum = sum + UijXj;
end for;

x(i) = (b(i) − sum)/Uii;
end for;
return x;
end function .

The transpose matrix QT requires simple register renaming due to usage of scheduling and does not
require any calculation. The pseudocode for the transpose of 3 × 3 is given below:
1. Let the input matrix be A;
2. Let the matrix holding the transpose be called transpose;
3. For I in 1. . .3 loop;

i. For J in 1. . .3 loop;

Transpose (I, J) = A (J, I).

4. Return matrix transpose.
After getting the transpose of Q and the inverse of R, these values are multiplied by the multiplier, then
we get the final output as

A−1 = R−1QT . (14)
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Figure 11:MATLAB Plot for Filtered Output Speech Signal, Noisy Signal, and Original Noise-Free Signal.
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Figure 12: Spectrogram for Original Speech Signal and Filtered Speech Signal.
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5 Results and Comparison
The experimental results of our proposed method are presented below. Initially, a sample speech signal and
a random noise signal is mixed together and then fed to the MATLAB model (MathWorks, Natick, MA, USA)
of our proposed noise degradation system, and the resulting signal is found to be noise-free, as shown in
Figure 11.

Then, our proposed architecture is coded in Xilinx ISC 14.5 using Verilog-HDL. The target device is
chosen as Vertex-4(xc4vlx160-11ff1148). Moreover, all experiments were performed on 3.10 GHz Intel(R) i5,
4.00 GB RAM and 32-bit operating system with Windows 8 Professional (Microsoft, Redmond, WA, USA).
Figure 12 shows the Spectrogram for Original Speech Signal and Filtered Speech Signal. Figure 13 exhibits
the register-transfer level (RTL) schematic of our proposed noise degradation system.

5.1 Power

The report generated by the XPower analyzer tool (Xilinx, San Jose, CA, USA) is shown in Figure 14. Our
implemented noise degradation system consumes a dynamic power of 0.027 W and a quiescent power of
0.167 W. Hence, our proposed architecture for noise degradation of speech signal needs a total power supply
of 0.194 W. The power consumption by the sub-modules is listed in Table 4.

Figure 13: RTL Schematic for the Proposed Noise Degradation System.

Figure 14: XPower Analyzer Report for Our Proposed Noise Degradation System.
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Table 4: Power Consumption by Each Module.

Modules Dynamic power (W) Quiescent power (W) Total power (W)

RFFT 0.000 0.027 0.027
Power spectrum 0.006 0.166 0.172
Matrix subtractor 0.009 0.167 0.176
Matrix inversion 0.014 0.167 0.181
Matrix multiplier 0.018 0.167 0.185
Vector multiplier 0.007 0.167 0.174
Proposed noise degradation system 0.027 0.167 0.194

5.2 Area

Figure 15 shows the device utilization table for our proposed noise degradation system. The proposed design
occupies 8 among the available 5472 slices utilizing about 1%of the available resources and utilizes 16 lookup
tables (LUTs) among the available 10,944, thereby utilizing about 1% of the resources. Table 5 lists the area
occupied by various sub-modules used within our proposed system.

Table 6 lists the power and area comparison of our proposed noise degradation system with other exist-
ing systems. From the comparison table, we can prove that our proposed noise degradation is much efficient
in power and area than the existing systems.

5.3 Performance

The performance of our system can be analyzed efficiently by calculating the SNR values. Table 7 shows the
results of the analyses of SNR for input noisy signal and the Wiener-filtered noise-free signal SNR, and also

Figure 15: Device Utilization Summary for the Proposed Noise Degradation System.

Table 5: Area Occupied by Each Module.

Modules Slices LUT Flipflop

RFFT 69 32 117
Power spectrum 8 16 17
Matrix subtractor 16 32 32
Matrix inversion 218 311 91
Matrix multiplier 582 586 1080
Vector multiplier 62 62 64
Proposed noise degradation system 722 933 641
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Table 6: Comparison of Power and Area with Existing Methods.

Module Power (W) Area

Proposed Existing Proposed Existing

LUT Flipflop LUT Flipflop

RFFT 0.027 0.121 [12] 32 117 17,793 [12] 8998 [12]
Matrix inverse 0.181 0.191 [9] 311 91 4993 [17] 791 [17]
Noise degradation system 0.194 0.194 [9] 933 641 8360 [9] 2385 [9]

Table 7: Performance Analysis.

SNR (dB) PSNR (dB) MSE

Filtered output signal 49.0307 52.0059 0.4097
Input noisy signal 24.5277 50.5251 0.5762
Improved SNR 24.503 29.3226

Table 8: Comparison of the Proposed Filter with Existing Filters.

Kalman filter Median filter Proposed filter

Input noisy signal
SNR (dB) 24.55 24.54 24.52
MSE 0.5778 0.577 0.5762
PSNR (dB) 50.51 50.518 50.52

From filtered output signal
SNR (dB) 23.39 24.05 49.03
MSE 0.405 0.406 0.409
PSNR (dB) 51.05 51.04 52.0059

the improvement in SNR between the two signals. Table 7 shows that an improvement of about 50.01%of SNR
is obtained from our proposed method.

5.4 Comparison of the Proposed Filter with Existing Filters

Table 8 shows the comparison of our proposedmodifiedWiener filter with the existing filters such as Kalman
filter [15] and median filter [11]. From the table, we inferred that the output peak SNR (PSNR) of our modified
Wiener filter is improved by 1.8% compared with that of the existing filters (Kalman filter and median filter).
Similarly, the SNR of our proposed filter is improved compared with that of the existing filters. Although the
noisy signal with same SNR and PSNR values is given as input to the three filters, the filtered output signal
of our proposed filter has the better SNR and PSNR values than the rest of the filters.

6 Conclusion
In this paper, an FPGA-based denoising system for speech signal enhancement in digital hearing aids using
Wiener filter and RFFT/RIFFT is proposed. The proposed modified Wiener filter and RFFT/RIFFT processor
were used to reduce the power consumption and hardware requirement of the system. Matrix inversion using
the given rotation method is proposed here, also used to reduce the computational complexity of the system.
Our system, when coded, synthesized, and simulated in Xilinx ISE, exhibited efficient SNR values. The SNR
analysis proved that our proposed systemexhibits about 50.01% improvement in SNR comparedwith existing
methods.
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