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Abstract: In this paper, a fresh method is offered regarding training of particular neural networks. This tech-
nique is a combination of the adaptive genetic (AG) and cuckoo search (CS) algorithms, called the AGCS 
method. The intention of training a particular artificial neural network (ANN) is to obtain the finest weight 
load. With this protocol, a particular weight is taken into account as feedback, which is optimized by means 
of the hybrid AGCS protocol. In the beginning, a collection of weights is initialized and the similar miscalcu-
lation is discovered. Finally, during training of an ANN, we can easily overcome the training complications 
involving ANNs and also gain the finest overall performance with training of the ANN. We have implemented 
the proposed system in MATLAB, and the overall accuracy is about 93%, which is much better than that of the 
genetic algorithm (86%) and CS (88%) algorithm.

Keywords: Adaptive genetic (AG) algorithm, cuckoo search (CS) algorithm, genetic algorithm (GA), back prop-
agation algorithm (BPA), artificial neural network (ANN), Levy flight.

1  �Introduction
Artificial neural network (ANN) is a new field connected with computational science, which integrates various 
strategies for difficulty resolution that cannot be consequently effortlessly achieved without the help of an 
algorithmic conventional concentration. The particular ANNs stand for big as well as diverse classes con-
nected with computational types [8]. Together with biological template modules, these networks are created 
basically by more or less comprehensive examples. The particular general approximates as well as computa-
tional types having specific traits, such as the ability to learn or even adapt, to prepare or to generalize data, 
are recognized as the particular ANNs. Contemporary development of a (near) optimal network architecture 
is carried out by people skilled with the use of a monotonous learning from trial-and-error processes. Neural 
networks are generally algorithms for optimization as well as searching, and are freely dependent on princi-
ples prompted merely by research on the characteristics of the brain. For optimization as well as searching 
using neural networks in tandem with genetic algorithms (GAs), there are generally two techniques, each 
with its own advantages coupled with weaknesses. By means of different paths, the two processes are com-
monly evolved [13, 14].

Optimization algorithms, in addition to being called learning algorithms, are, according to a number of 
features of scientific advancement, usually known as GAs. An easy method involving encoding answers to 
the issue in chromosomes; an assessment purpose, which, on return, starts to attain chromosome directed 
at the idea; involving initializing a population of chromosomes; and workers that could be put on parents 
whenever they reproduce to correct the genetic composition are the five expected criteria. Integration could 
be by mutation or crossover, in addition to site-specific workers. Parameter configurations for the particular 
criterion are the workers or can be anything else [12]. The criteria can develop populations involving much 
better ones in addition to the individuals, converging eventually in effect to an international ideal, every time 
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a GA actually run has a portrayal, which encodes a solution to a problem in addition to workers that can gen-
erate much better young ones through good parents [7]. In numerous situations, with regard to performing 
the particular optimization on the standard workers, mutation in addition to crossover is usually adequate 
[2]. GAs can assist similar to a black box function optimizer, without requiring any kind of know-how about 
computers of the particular domain in these cases. However, understanding of the particular domain is fre-
quently exploited to raise the performance of particular GAs with the incorporation involving new workers 
highlighted in this particular paper [17].

In neural networks, functionality enhancement partition space can be a space that is used to classify 
data samples right after the test is actually mapped by a neural network [19]. Centroid can be a space with 
partition and also denotes the particular middle of the class. In traditional neural network functionality, the 
location of centroids and the partnership involving centroids and also classes are generally fixed personally 
[21]. Furthermore, with reference to the quantity of classes, a variety of centroids are actually set. To locate the 
optimum neural network, this particular set centroid restriction minimizes the risk [21]. GAs have emerged 
to be practical software as heuristic alternatives for sophisticated discrete optimization issues. Particularly, 
there has been large fascination with their use in the most effective arrangement and timetabling issues [18]. 
However, nowadays, there have been several attempts to become listed on both systems. Neural networks 
could be rewritten, as a type of GA is termed as some sort of classifier program and also vice versa [11]. GA is 
meant for training feed-forward networks. It does not merely work with its own task but also performs rear 
distribution, the normal training criteria [10]. This accomplishment comes from tailoring the particular GA to 
the domain of training neural networks.

Cuckoo search (CS) is a recent meta-heuristic optimization algorithm launched by Yang and Deb in 2009 
[20]. This is a certain kind of swarm intelligence that is based on brooding actions of several kinds of cuckoo 
birds. CS is utilized for dealing with intricate marketing difficulties, and according to the maximum remedies 
received by simply C, it can be more effective than the finest remedies achieved with simply different swarm 
intelligent algorithms.

Although the ANN feature has several advantages, it also has several complications similar to conver-
gence in addition to receive neighborhood minima during training by means of back propagation [9]. That is 
why analysts are engaged to produce a new and the finest protocol to train the ANN. On this routine optimiza-
tion protocol, algorithms similar to particle swarm optimization (PSO), CS, and others have been utilized to 
enhance the overall performance; however, they certainly do not fulfill the overall performance prerequisites. 
On this impression, our system is also thought to be able to overcome a real issue during training involving 
ANN. Thus, we proudly propose the novel AGCS technique for training the ANN.

2  �Related Work
Karegowda et al. [5] have recommended a method to enhance the overall performance associated with neural 
networks. To involve various elements like providing the optimal quantity of concealed covering, offering 
actual relevant feedback factors, and also offering maximum connection loads, different model varieties of 
neural networks have been proposed. To initialize and also optimize the connection loads associated with the 
back propagation network (BPN), the authors finally recommended the application of a hybrid type of built-
in GA and also BPN wherever GAs were employed. Moreover, this process also had necessary capabilities 
identified by a couple approach. Thus, to help spot diabetes mellitus, decision tree and also GA-correlation 
based feature selection processes had been used with feedback toward the hybrid type. The effects showed 
that a GA-optimized BPN strategy had outperformed the actual BPN tactic without having GA optimization. 
Moreover, the hybrid GA-BPN having relevant inputs additionally enhanced the classification detail in com-
parison with the effects made by GA-BPN by itself with a number of repetitive inputs.

Sagar et  al. [16] systematically suggested a way to the neural network, which has been measured for 
adaptive technique that increasingly self-organizes to approximate the solution, creating the situation to 
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solve of the need as well as decidedly specify the actual methods headed for the solution. Moreover, with 
unnatural neural network, evolutionary computation may very well be included in order to increase the 
actual performance by various amounts, and consequently this kind of neural network is named as evolu-
tionary ANN. Moreover, they have suggested one particular difficulty associated with neural network, par-
ticularly realignment associated with connection loads for understanding display by means of GA around 
a feed-forward architecture. The particular performance associated with developed solution evaluation is 
presented with respect to well-established means of gradient procedure. A standard problem associated with 
category, XOR, has been taken in order to rationalize the actual research. The offered procedure has not only 
been used for acquiring extreme possibility to obtain the actual international minima but also for very quick 
convergence.

Iqbal [4] remarkably offered a strategy to help confirm diverse attributes and importance with a specific 
learning problem. Even though essential, a number of attributes are usually much less appropriate. The pro-
tocol might be with all this information about characteristic value which depends on expert opinion or even 
earlier learning which is an alternative associated with choosing the most appropriate attributes to employ 
characteristic selection. In the event of pupils taking characteristic values into account, learning is usually 
quicker and more correct. Correlation-aided neural networks (CANNs) seem to present this kind of protocol. 
CANN presents characteristic values because of its effects coefficient relating to the concentration on credit 
and also the attributes. A CANN custom-made regular feed-forward neural network (FFNN) adjusts each cor-
relation value and training data. Empirical evaluation has shown that CANN seems to be quicker and more 
specific compared to making use of the two-step strategy associated with characteristic selection after apply-
ing the regular learning algorithms.

Arotaritei [1] has deftly recommended a technique for fuzzy feed-forward (FFNR) and fuzzy recurrent 
networks (FRNN), which have turned out to be solutions for real-world problems. When it comes to fuzzy 
numbers, the learning algorithms have been based on gradient strategies designed for fuzzy logic together 
with heuristic principles. A new learning process based on GAs together with local crossover that is put on 
various topologies of fuzzy neural networks with fuzzy numbers is recommended in this paper. Having L-R 
fuzzy numbers as inputs, outputs, and loads along with fuzzy arithmetic for the future transmission propa-
gation, their process had ended up being put on FFNR as well as FRNN. Their α-cuts and also fuzzy biases 
had been furthermore investigated. The effectiveness of their recommended process was proven using a 
couple of programs, as evidenced by the mapping of a new vector of triangular fuzzy numbers straight into 
another vector of triangular fuzzy numbers for FFNR plus the vibrant record of fuzzy sinusoidal oscillations 
for FRNN.

Credit goes to Okkan [15] for the unique and outstanding features offered for monthly runoff prediction 
by using wavelet change and FFNNs. For the modeling in the hybrid model, discrete wavelet transform (DWT) 
and Levenberg-Marquardt optimization criteria-based FFNN had been regarded as appropriate and therefore 
applied. In the Turkish Aegean coast, the study area covering the actual basins associated with the Medar 
River was found. DWT meteorological facts, which usually characterize the study area, were decomposed 
into wavelet sub-time sequences. By utilizing Mallow’s coefficient based on almost all achievable regression 
methods to prevent co-linearity, unsuccessful sub-time sequences were eradicated. Consequently, powerful 
sub-time sequence elements constituted the new inputs associated with FFNN. Several preferred evaluation 
measures such as determination coefficient, adjusted determination coefficient, Nash-Sutcliffe efficiency 
coefficient, root mean squared error, and weighted mean absolute percentage error were used in order to 
determine modeling performances.

Kawam and Mansour [6] have amazingly recommended an innovative training algorithm for ANN by 
employing the CS approach. They put in place the CS criteria regarding training a feed-forward multi-
layer perceptron network. They have compared and contrasted the performance together with some other 
approaches such as PSO and guaranteed convergence PSO on four benchmark problems. By those evalua-
tions, CS has shown its superiority. The particular CS criteria are applied below to the training involving ANN. 
To boost the performance, each of our recommended approach uses the adaptive genetic (AG) with the CS 
algorithm for the ANN training.
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3  �Proposed Technique for Training ANN
An ANN is a programmed computational model that aims to duplicate the neural structure and the function-
ing of the human brain. It is made up of an interconnected structure of artificially produced neurons that 
function as pathways for data transfer. ANNs are flexible and adaptive, learning and adjusting with each 
different internal or external stimulus. ANNs are used in sequence and pattern recognition systems, data 
processing, robotics, and modeling. The ANN consists of a single input layer and a single output layer in 
addition to one or more hidden layers. All nodes are composed of neurons except the input layer. The number 
of nodes in each layer varies depending on the problem. The complexity of the architecture of the network is 
dependent on the number of hidden layers and nodes. Training an ANN means to find a set of weights that 
would give desired values at the output when presented with different patterns at its input. Figure 1 shows 
an example of a simple ANN.

Training is a very important process in ANN. A traditional method for training the ANN is the back propa-
gation algorithm (BPA). However, while using this method for training the ANN, we have to face some prob-
lems, and in order to overcome these problems, we have developed a new technique for training the ANN 
method called the AGCS technique, which is explained clearly in following sections.

3.1  �AGCS Technique

In order to overcome the difficulties and also to improve the performance of neural networks, we have pro-
posed the innovative AGCS technique for training neural networks. The main goal of the training algorithm 
is to obtain optimized weights. Hence, to obtain the best suitable weights, the hybrid of the AG and CS algo-
rithms is used in our system. The flowchart for our AGCS technique is shown in Figure 2.

In the AGCS training method, the weights are considered as the input, i.e. weights are initialized. Then, 
the fitness value is evaluated for the initialized weights. After that, parent weights are selected as per the 
fitness vale. Then, the selected parent weights are processed by two optimization algorithms such as the AG 
and CS algorithms. The separate solutions obtained by both methods are merged to get the best solution or 
weight for the ANN.

3.1.1  �Step-by-Step Procedure of the AGCS Technique

The aim of the training algorithm of ANN is to get the best suitable weights. In this sense, our technique is 
suggested for training the ANN. In order to get the best optimized weight, we have used the hybrid of two 

Figure 1: Example of ANN.
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optimization algorithms such as adaptive GA (AGA) and CS algorithm. The step-by-step procedure of our pro-
posed AGCS technique for training the ANN is shown as follows.

Step 1: Initialization of Weights
At first, weights are initialized in a random manner and trained to get the optimal weights. In this initiali-
zation step, the hidden biased values are also assigned. From the second step, these initialized values are 
optimized to obtain the best weights.

Step 2: Error Prediction
In this step, the error is identified for the initialized weights. In our method, the error is evaluated by using 
the equation given below:

	 ,E AV H= − � (1)

where E is the error and H is the activation function and AV is the actual value. The activation function is 
found by using the following equation:
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where M is the total number of hidden neurons, N is the total number of inputs, O
jw  is the jth weight assigned 

between the hidden and output layers, I
ijw  is the weight assigned between the input and hidden layers, and xi 

is the ith input value.

Figure 2: Block diagram of the AGCS technique.
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Step 3: Parent Weights Selection
The main aim of an optimization algorithm is to reduce the error. Hence, in this step, the parent weights are 
selected as per the error predicted in the previous step. The weights having high error are selected as parent 
for the optimization purpose. In the upcoming steps, the selected parents are optimized by two different 
algorithms, such as the AG and CS, to reduce the error.

Step 4: Crossover
The crossover is performed to generate new offspring based on the AG algorithm. The new offspring is gener-
ated by combining two parent chromosomes.

Step 5: Adaptive Mutation
Adaptive mutation is performed to obtain complete new offspring (weights). In general, by using a muta-
tion rate, the mutation process is performed. In the traditional GA scheme, the mutation rate is selected at 
random. However, in our adaptive method, we have modified it and used an expression to find the mutation 
rate. The equation to find the mutation rate is given below:
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where mr is the mutation rate, R is a random value [0, 1] that changes in every iteration, and c and μ are muta-
tion parameters considered as 2 (i.e. c = 2 and μ = 2).

After performing the mutation process, we will obtain the complete new offspring. The new offspring is 
nothing but the new optimized weight by the AGA; that is, a set of new optimized weights will be obtained 
after performing steps 4 and 5.

Step 6: Step Size Evaluation
In this step, the step sizes for individual parent weights obtained in step 3 are evaluated. The following 
expression is used to determine the step size:

	 best( ) ,t t
zS S w w rα= − ⋅ � (4)

where Sz is the step size, α is a step size parameter (α = 0.01), wt is the current parent weight, 
best
tw  is the best 

solution so far, r is a random number from a standard normal distribution [0, 1], and S is step. Step S is deter-
mined by using Mantegna’s algorithm, shown in the equation below:
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where β is a parameter arising in the interval [8, 13], which we choose in our system as 1.5 (i.e. β = 3/2), and u 
and v are normal distributions, which are estimated as follows:
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Step 7: Generation of New Solution
In this step, the new optimized solutions or weights are generated for the corresponding parent weights 
based on the CS algorithm (Levy flight). The new weights are generated by using the step size values obtained 
in step 6. The new weights are generated by using the expression given below:
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where w(t+1) is the new weight, Sz is step size, and wt is the current parent weight. From this step, another set 
of optimized weights are obtained.

Step 8: Merging
In this step, the solutions obtained in steps 5 and 7 are merged to get the best solutions or weights. The 
merged weights are considered as the optimized weights and also the resultant weights of the AGCS training 
algorithm.

Step 9: Termination Criteria
The maximum number of weights to train the ANN is considered as the termination criterion. If the process 
meets this criterion, it is terminated; else, step 2 is started for the next iteration.

4  �Results and Discussion
The proposed AGCS technique for training the ANN is implemented in the working platform of MATLAB 
(version 7.1, MathWorks, Natick, MA, USA) with the following system configuration:

Processor: Intel core i5
CPU Speed: 3.20 GHz
OS: Windows 7
RAM: 4 GB

In order to analyze and prove the performance of our proposed AGCS technique, we have to train the ANN 
by some similar training methods like GA, AGA, and BP, which are at last compared to our proposed method. 
To train the ANN, selected features have been normalized. This normalization is necessary to prevent non-
uniform learning. Hence, the weights associated with some features increase the speed of convergence. The 
ALL/AML (Acute Lymphoblastic Leukemia/Acute Myeloid Leukemia) data set for this experimental analysis 
is collected from Ref. [3]. After the normalization, the randomly chosen sample is divided into three catego-
ries such as training, cross-validation, and testing data sets. The training data set is used for learning the 
network. Cross-validation is used to measure the training performance during the training as well as to stop 
the training if necessary. Leukemia contains four types. In our system, we consider only two major types, 
namely ALL and AML. For this training purpose, we consider 38 patients who are divided into two clusters 
with 25 and 13 patients for ALL and AML, respectively, with 7129 genes overall.

Tables 1–4 show the true positive (TP), true negative (TN), false positive (FP), and false negative (FN) of 
BPA, GA, AGA, and AGCS for different data sets.

The graphical representation of sensitivity, specificity, accuracy, positive prediction value (PPV), nega-
tive prediction value (NPV), false positive rate (FPR), Matthews’s correlation coefficient (MCC), and false 
discovery rate (FDR) of the BPA, GA, AGA, and AGCS techniques for different numbers of data sets are shown 
and discussed below.

Table 1: TP, TN, FP, and FN for data set 1.

Training method   TP   TN   FP   FN

BPA   3   2   1   3
GA   2   3   2   3
AGA   2   5   2   0
AGCS   2   6   1   0
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Figure 3 shows the sensitivity comparison chart of different training algorithms. From this algorithm, 
we can prove that the sensitivity of our proposed method is good and comparatively higher than those of the 
other training algorithms. The sensitivity of our proposed AGCS method is 100% except for the third data set, 
which also has a greater sensitivity of 75%. It proves that the AGCS technique has an overall sensitivity that is 
25% greater than those of the other methods.

Figure 4 shows the specificity comparison; from this chart itself, we can clearly prove that the AGCS tech-
nique has higher specificity. Numerically, the overall specificity of AGCS is 93%, which is nearly 20% greater 
than that of the other training methods.

Figure 5 shows the accuracy comparison. The accuracy of our AGCS technique is also good like the other 
methods. The overall accuracy is about 93%, which is 20% higher than that of the other methods.

Figure 6 shows the PPV comparison chart. The PPV for our AGCS technique is 83% on average, which is 
comparatively 7% higher than those of the other methods.

The NPV comparison is shown in Figure 7. The overall NPV of AGCS is 96%, which is 16% higher than that 
of the other training algorithms, viz. ANN.

Table 2: TP, TN, FP, and FN for data set 2.

Training method   TP   TN   FP   FN

BPA   2   3   1   3
GA   3   0   1   5
AGA   1   6   1   1
AGCS   3   6   0   0

Table 3: TP, TN, FP, and FN for data set 3.

Training method   TP   TN   FP   FN

BPA   0   5   3   1
GA   2   3   3   1
AGA   2   3   1   2
AGCS   3   5   0   1

Table 4: TP, TN, FP, and FN for data set 4.

Training method   TP   TN   FP   FN

BPA   2   3   1   3
GA   3   3   1   2
AGA   3   3   2   1
AGCS   2   6   1   0

Figure 3: Sensitivity comparison of different training algorithms.



K.K. Katha and S. Pabboju: AGCS Technique for Training Neural Networks      1243

Figure 4: Specificity comparison of different training algorithms.

Figure 5: Accuracy comparison of different training algorithms.

Figure 6: PPV comparison of different training algorithms.

Figure 7: NPV comparison of different training algorithms.

The comparison of FPR and FDR is shown in Figures 8 and 9, respectively. Both the values have low rates, 
i.e. 7.1% for FPR and 17% for FDR, which are comparatively 20% and 26% lower than the other methods. It 
shows that our AGCS technique has higher performance.
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The MCC comparison is shown in Figure 10. From the chart, we can show that the MCC value of our AGCS 
technique is higher than that of the other training algorithms. The overall MCC of AGCS is nearly 50%, which 
is 21% higher than that of the other training methods.

From these performance analyses, we can prove that our AGCS technique for training the ANN has the 
best performance when compared to the other training methods like BPA, GA, and AGA.

5  �Conclusion
In this work, we have proposed the AGCS technique for training ANNs. It utilizes two major algorithms for 
training ANNs, such as the AGA and CS algorithm. These two algorithms are run separately, and the outputs 
are merged to make the best solution. Hence, AGCS is nothing but the hybrid of the AG and CS algorithms. 
By using this training technique, we can get better performance. The performance of the AGCS technique is 

Figure 8: FPR comparison of different training algorithms.

Figure 9: FDR comparison of different training algorithms.

Figure 10: MCC comparison of different training algorithms.
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verified by comparing with those of the other traditional training methods. In this paper, we have used BPA, 
GA, and AGA for training ANN to compare their performance with our AGCS technique. In the performance 
review, we have proved the effectiveness of the AGCS technique. From these results, we suggest that our pro-
posed AGCS technique is the best training algorithm for ANN vis-a-vis the other traditional training methods.
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