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Abstract: A Bayesian approach using wavelet coefficient modeling is proposed for de-noising additive white 
Gaussian noise in medical magnetic resonance imaging (MRI). In a parallel acquisition process, the magnetic 
resonance image is affected by white Gaussian noise, which is additive in nature. A normal inverse Gauss-
ian probability distribution function is taken for modeling the wavelet coefficients. A Bayesian approach 
is implemented for filtering the noisy wavelet coefficients. The maximum likelihood estimator and median 
absolute deviation estimator are used to find the signal parameters, signal variances, and noise variances 
of the distribution. The minimum mean square error estimator is used for estimating the true wavelet coef-
ficients. The proposed method is simulated on MRI. Performance and image quality parameters show that the 
proposed method has the capability to reduce the noise more effectively than other state-of-the-art methods. 
The proposed method provides 8.83%, 2.02%, 6.61%, and 30.74% improvement in peak signal-to-noise ratio, 
structure similarity index, Pratt’s figure of merit, and Bhattacharyya coefficient, respectively, over existing 
well-accepted methods. The effectiveness of the proposed method is evaluated by using the mean squared 
difference (MSD) parameter. MSD shows the degree of dissimilarity and is 0.000324 for the proposed method, 
which is less than that of the other existing methods and proves the effectiveness of the proposed method. 
Experimental results show that the proposed method is capable of achieving better signal-to-noise ratio per-
formance than other tested de-noising methods.

Keywords: Modeling of wavelet coefficients, MRI image, de-noising, Bayesian estimator.

1  �Introduction
During the acquisition process, noise affects the magnetic resonance (MR) image and de-noising is required 
because clinical diagnosis accuracy depends on the visual quality of the MR image. MR imaging (MRI) pro-
vides detailed images of organs and tissues in the human body. MRI is generally affected by random noise 
during the reconstruction process. Artifacts due to scanned object, magnetic susceptibility, radiofrequency 
coil, eddy current, pulse sequence design, and rigid and non-rigid motions are the sources of noise in MRI 
[26, 33, 34, 41]. The scanned object in the acquisition process causes thermal noise in MRI [31]. The noise 
in MRI can be Gaussian distributed or Rician distributed, depending on the reconstruction process of MRI 
[37]. The acquisition system of MR images can be a series or parallel acquisition system. A series acquisition 
system works in single-coil technology, while a parallel acquisition system works in multiple-coil technology. 
Single-coil technology introduces Rician distribution of noise, and multiple-coil technology introduces zero 
mean complex additive Gaussian noise with equal variance 

η
σ2( )  in each coil [19].
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Noise in MRI may be reduced by acquiring the data several times and averaging them. This method takes 
more acquisition time, and for that reason de-noising methods are preferred. A variety of studies on de-nois-
ing MR images have been published in the literature. The de-noising methods can be classified as a filtering 
approach, transform domain approach, and statistical approach [31]. Filters like spatial filters [30], non-local 
mean filters [28], bilateral filters [20], and anisotropic diffusion filters [24] are filtering approach filters. Filter-
ing using wavelet transform [22], curvelet transform [7], and contourlet transform [3] are transform domain 
approach filtering methods. Filters based on statistical modeling and estimation methods like the maximum 
a posteriori (MAP) approach, maximum likelihood estimator (MLE) approach, and minimum mean square 
error (MMSE) approach come under statistical approaches.

De-noising using wavelet filters based on the multiresolution approach is more popular than the spatial 
domain and frequency domain filters. Wavelet filters decompose the noisy image into sub-bands at various 
levels. The signal components are estimated using thresholding (hard and soft) techniques. Neigh Shrink, 
Visu Shrink, Bayes Shrink, and Sure Shrink are popular wavelet de-noising methods. Wu et al. [39] proposed a 
wavelet-based de-noising filter for MR images. Anand and Sahambi [2] presented a de-noising method based 
on wavelet-based bilateral filtering for MR images. De-noising with complex wavelet transform was proposed 
by Zaroubi and Goelman [40]. An adaptive multiscale thresholding was proposed by Bao and Zhang [5] to 
de-noise MR images. Gai et al. [16] proposed a new multiscale-based de-noising algorithm. The de-noising 
algorithm is based on hidden Markov tree model utilizing the quaternion wavelet transform.

De-noising based on the statistical approach has been promising, as the de-noising efficiency depends 
on the correct estimation of noise and signal variances by use of estimators. The MLE-based de-noising 
approach was proposed by Sijbers and Den Dekker [36] for estimation of Rician noise level and de-noising 
MR images. A linear MMSE-based filter was proposed by Krissian and Aja-Fernandez [24] for filtering MRI for 
Rician noise. A wavelet-based median absolute deviation (MAD) estimator was developed by Coupe et al. [13] 
for estimating and de-noising MR images. He and Green Shields [21] proposed a post-acquisition de-noising 
method for MRI, using non-local maximum likelihood estimation (NLME). The authors proved that NLME 
performs better than MLE. Manjon et al. [29] proposed a de-noising method for removing both Rician and 
Gaussian distributed noise from MR images. They implemented a non-local noise estimation method, which 
adjusts the de-noising strength of the filter to remove the spatially varying noise present in the MR image. 
A homomorphic approach was proposed by Aja-Fernandez et al. [1] to reduce spatially variant noise in MR 
images. Rajan et al. [33] designed an NLME based on the Kolmogorov-Smirnov test to remove Rician noise 
from MR images. The method is an improvement over the NLME estimated method, based on the Euclidian 
distance. Awate and Whitaker [4] proposed a Bayes estimator for de-noising MR images. Gai et al. [17] devel-
oped a color image de-noising method based on color monogenic wavelet transform. The authors applied 
trivariate Gaussian distribution to capture the statistical dependencies between the wavelet coefficients and 
further used the MAP estimator to derive the shrinkage filter. In Ref. [14], the authors proposed an image de-
noising algorithm using an improved sparse representation in three-dimensional (3D) transform domain. The 
performance of the algorithm highly depends on the effective patch size/block. The algorithm estimates the 
codes of the overlapping patches and averages the estimates. Reconstruction of the patches by finding similar 
ones in the image is known as block matching. Further, the patches are stacked into 3D blocks and de-noised 
using hard thresholding and a Wiener filter.

In this study, the proposed method combined the features of wavelet transform and Bayesian estimator 
to remove additive and signal-independent noise. This method utilizes the properties of wavelet coefficient: 
that they are independent and identically distributed [12]. It is assumed that the wavelet coefficients are 
random variables and distributed by a probability density function (PDF). An appropriate PDF is required 
for effective modeling of the wavelet coefficients. The Bayesian approach estimator utilizes the PDF to obtain 
noise-free wavelet coefficients. Further, the proposed method utilizes the normal inverse Gaussian PDF for 
modeling wavelet coefficients. Our method is based on statistical modeling of wavelet coefficients, and it is 
applied for medical images. The effectiveness of the proposed method highly depends on the correct choice 
of PDFs.

Therefore, the proposed de-noising method is totally different from the method proposed in Ref. [14].
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2  �Background

2.1  �Wavelet Transform and Statistical Modeling of Coefficients

Wavelet transform effectively performs image de-noising by converting image information into transform 
coefficients. Wavelet transform based on thresholding performs de-noising by retaining the large coefficients 
and setting others to zero [23]. The de-noising accuracy of the technique depends on the correct choice of 
the threshold value. In this paper, the authors attempt to find the threshold value by modeling the wavelet 
coefficients.

The application of wavelet transform converts the image into four sub-bands, namely approximation, 
horizontal, vertical, and diagonal sub-bands.

Let x(i, j) be the (i, j)th pixel in an MR image, corrupted by additive Gaussian noise n(i, j), resulting in 
noisy image y(i, j).

The noisy image can be expressed as

	 = +( , ) ( , ) ( , ).y i j x i j n i j � (1)

The PDF of additive noise is given by
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(2)

where, 2
nσ  is the variance of noise.

Wavelet transform up to m level converts the image into the LLm, LHk, HLk, and HHk sub-bands [27]. 
The LLm sub-band contains the low-frequency information of the image, which possesses most of the infor-
mation. Discrete wavelet transform (DWT) has the capability to describe the local features either spectrally 
or spatially. This feature makes DWT perform de-noising while preserving corners and edges. The wavelet-
transformed image can be written as

	 = +( ) ( ) (, ), , ,l l l
k k ky i j x i j n i j � (3)

where l = 1, 2, 3; k = 1, 2, … m; l = 1; corresponds to horizontal orientation; l = 2 corresponds to vertical orienta-
tion; l = 3 corresponds to diagonal orientation; and yk(i, j), xk(i, j) and nk(i, j) are the (i, j)th wavelet coefficients 
of y(i, j), x(i, j), and n(i, j), respectively, at level k. Figure 1 shows the wavelet decomposition of the MRI into 
level 3.

The distribution of wavelet coefficients is peaked at zero and has a heavy tailed structure [27], as shown 
in Figure 2. NIG PDF fits heavy-tailed data and is analytically tractable [11]. NIG PDF has been implemented 
in modeling of wavelet coefficients and results in effective noise reduction [8, 9]. The NIG distribution is 
the mixed distribution of normal distribution and inverse Gaussian distribution. NIG distribution defines a 
homogeneous Levy-type process [6]. The proposed NIG prior is defined as

	 αδαδ α δ π δ= + +2 2 2 2/( ,) ( )x jp x e k x x � (4)

where k is the modified Bessel function with j (index) = 1 and δ, α are the parameters. α defines tail heaviness 
and the steepness of the distribution can be controlled by it. δ defines the scale parameter [9].

The steepness of the NIG distribution curve increases with α. For heavier tails, a small value of α is pre-
ferred. When α→ ∞  and δ→ ∞, the NIG distribution results in Gaussian distribution. When α→0, the NIG PDF 
converts to a Cauchy distribution [9].

Figure 3 shows that the NIG distribution fits better than the Gaussian (normal) distribution. The empirical 
distribution of wavelet coefficients in sub-band LL at level 1 and the corresponding fitting of NIG distribution 
are shown in Figure 4. The HH sub-band contains the most noise information. Thus, a Gaussian distribution 
can perfectly model the wavelet coefficients in the HH sub-band. The empirical cumulative distribution of 



192      S. Sahu et al.: Noise Removal in MRI

–50 0 50 100 150 200 250 300
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

Data

D
en

si
ty

 

 
Data

Figure 2: Distribution of Wavelet Coefficients.

Data

0.9999
0.9995
0.999

0.995
0.99

0.95
0.9

0.75

0.5

P
ro

ba
bi

lit
y

0.25

0.1
0.05

0.01
0.005

0.001
0.0005
0.0001

–200 –150 –100 –50
Data

0 50 100 150

Normal
Normal inverse Gaussian

Figure 3: Probability Plot for MRI Data.

Figure 1: Three-Level Wavelet Decomposition of MR Image.
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wavelet coefficients in the HH sub-band in level 1 and the corresponding fitting of Gaussian distribution are 
shown in Figure 5.

2.2  �MMSE Estimator

This section discusses the proposed MMSE estimator. The MMSE estimator is used to retrieve the noise-free 
coefficients, assuming the coefficients are distributed by a suitable prior. The problem is retrieving the noise-
free coefficients from the noisy image. Let the estimation of ,( )l

kx i j  be ).,ˆ (lkx i j  The problem is to minimize the 
mean squared error (mse) between the true and estimated data. mse is given by

	

2 2
2 2

, 1

1 1mse ( , ,   , )  |ˆ ˆ ˆ( ) ( ) ( ) ( ) | ( )| , , | ( , , ) ,( )
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�

(5)

where M is the size of image given by product of rows and columns of image.
Due to the orthogonality property of DWT, the wavelet-transformed additive noise can be approximated 

by Gaussian distribution with mean = 0 and variance 2ˆ .nσ  The MMSE estimator for the wavelet coefficients of 
the true image is a linear function and is given by Eq. (6):
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Figure 4: Probability Plot for LL Sub-band.
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Figure 5: Cumulative Distribution Plot for HH Sub-band.



194      S. Sahu et al.: Noise Removal in MRI

	

2

2 2

ˆ
ˆ ( ) ( )

ˆ ˆ
, , ,l lx

k k
x n

x i j y i j
σ

σ σ
=

+ �
(6)

where σ2ˆ x  is the estimated variance of true wavelet coefficients and σ2ˆ n  is the estimated variance of the addi-
tive noise.

2.3  �Estimation of Signal and Noise Variances

Estimation of the variance is the most important step in the de-noising technique, based on statistical mod-
eling of wavelet coefficients. The MMSE estimator depends upon the quality of the estimation of σ2ˆ x  and σ2ˆ .n  
The estimation of true wavelet coefficients needs information of the variances σ2ˆ x  and σ2ˆ .n  An MLE is used 
to find the parameters of NIG PDF in a sub-band. The statistical properties of the transformed coefficients 
are modeled to estimate the variance. Local data statistics play an important role in the estimation of signal 
parameters α and δ. It is assumed that the coefficients in a sub-band form a vector. The maximum likelihood 
estimate for α̂  and δ̂  can be approximated by using the Hermite–Gauss quadrature rule and given by
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where Mb = size of the sub-band, R = order of Hermite polynomial, xs = root of Hermite polynomial, and 
ws = weight of the root.

Using the estimated value of signal parameters, the signal variance σ2ˆ x  is calculated and is given by [25]
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where ˆ ( )xp x  is the NIG PDF taking α̂  and δ̂  as distribution parameters and defined by Eq. (4).
To estimate the Gaussian noise variance σ2ˆ ,n  a median estimator is used [27]:
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where l = 3 and k = 3.

3  �Proposed De-noising Algorithm
This section discusses the de-noising algorithm for removing additive noise in MR images. In the proposed 
method, the input noisy image is first converted to wavelet sub-bands by applying wavelet transform. Wavelet 
sub-bands consist of wavelet coefficients. Further wavelet coefficients are statistically modeled by NIG and 
Gaussian PDFs, and processed by MLE and MAD estimators. By utilizing the dependency between the wavelet 
coefficients, the signal and noise information are collected. The MMSE estimator utilizes the variance infor-
mation of signal and noise, and calculates the shrinkage factor. The wavelet coefficients are shrunk by the 
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shrinkage factor. The resulting wavelet coefficients are then inverse wavelet transformed to obtain the desired 
de-noised image. Figure 6 shows the block diagram of the proposed Bayesian multiresolution approach for 
de-noising MR images. A detailed explanation of block diagram and summary of the proposed de-noising 
algorithm are discussed through the following steps.

Step 1: Perform wavelet transform of the input noisy image, degraded by additive noise.
Step 2: Model the wavelet coefficients using NIG PDF, generated in step 1.
Step 3: By applying MLE, find the signal parameters α̂  and δ̂  using Eqs. (7) and (8), respectively.
Step 4: Find the signal and noise variances using Eqs. (9) and (10), respectively.
Step 5: Obtain the modified wavelet coefficients applying the MMSE estimator given in Eq. (6).
Step 6: Carry out inverse wavelet transform to reconstruct the noise-free image.

4  �Simulation Results
Simulation is carried out using an MR image of size 400 × 400 [32]. A three-level DWT using Daubechies 8 
(db8) wavelet is carried out to decompose the MRI. Qualitative and quantitative comparisons are performed, to 
evaluate the effectiveness of the proposed method. The performance and quality parameters of the proposed 
method are compared with Donoho’s soft thresholding [15], Bayes Shrink [10], and method in Ref. [8]. Figure 7 
shows a qualitative comparison of the proposed method and state-of-the-art methods. It can be noticed that 
the proposed algorithm has the best visual quality compared with the other compared methods. The com-
parison of the proposed method and state-of-the-art methods in terms of peak signal-to-noise ratio (PSNR), 
structure similarity index (SSIM), Pratt’s figure of merit (pratt-FOM) [18], Bhattacharyya coefficient (BC) [38], 
mean squared difference (MSD) [35], and signal-to-noise ratio (SNR) is given in Tables 1–6, respectively. PSNR 
is the performance evaluation parameter. SSIM and BC are the similarity measures. The maximum value in 
SSIM and BC shows high similarity between the measured quantities. pratt-FOM is the edge preservation 
parameter. It shows the edge preservation accuracy by obtaining the displacement between the detected edge 
location and ideal edge location. A high value of pratt-FOM indicates less difference between the detected 
and actual edge points. The value varies between 0 and 1, for SSIM, pratt-FOM, and BC parameters. MSD 
shows the degree of dissimilarity. A high value of MSD shows less similarity, and less value shows high simi-
larity between the measured quantities and pixel intensities. SNR is a performance parameter and is defined 
as the ratio of signal power to noise power. A high value of SNR is required for better results. The comparison 
parameters are discussed as follows.
(i)	 The PSNR is defined as

	
= 10

255PSNR 20 log ,
mse �

(11)

where mse is defined as

	

×

=

= −
× ∑ 2

1

ˆ1mse ( ( , ) ( , )) .
m n
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y i j y i j
m n �

(12)

Figure 6: Block Diagram of Bayesian Multiresolution Approach for De-noising MR Image.
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Table 1: Comparison of PSNR (dB) Performance for MR Images.

Method Noise standard deviation (ση)

0.1 0.2 0.3 0.4 0.5

Donoho’s soft threshold [15] 33.39 29.68 26.35 24.17 22.40
Bayes Shrink [10] 34.22 30.54 28.49 26.23 24.87
Bhuiyan et al. [8] 36.61 32.49 31.71 30.05 28.26
Proposed method 40.16 36.25 34.60 33.02 31.87

Figure 7: De-noising Performance on MR Image.
(A) Ground truth. (B) Ground truth image corrupted with white Gaussian noise with ση = 0.3. (C) Image de-noising using Donoho’s 
soft threshold. (D) Image de-noising using Bayes Shrink. (E) Image de-noising using method in Ref. [8]. (F) Image de-noising 
using the proposed method.
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(ii)	 The SSIM is the quality assessment parameter and shows the similarity between two images. SSIM is 
given by

	 σ σ σ= + + + + + +ˆ ˆ

2 2 2 2SSIM (2 ( , ) ( , ) 2.55)(2 7.65) /( ( , ) ( , ) 2.55)( 7.65),ˆ ˆ
yy y yy i j y i j y i j y i j �

(13)

where, ( , )y i j  and ˆ( , )y i j  are the expectation of input and recovered image, respectively. σ ˆyy  is the covari-
ance information between input and recovered image. σ2

y  and σ ˆ
2
y  are the variance of input and recov-

ered image, respectively. For good visual quality, a unit value of SSIM is required.
(iii)	The pratt-FOM is defined as

	 α=

=
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1
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O D
j
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(14)

where D is the difference between the original image edge points and detected image edge points. IO is 
the number of edge points in the original image. ID is the number of edge points in the detected image. α 
is the scaling constant and usually taken as a value of 1/9.

(iv)	 The BC is defined as
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where CO is the covariance matrix of original image matrix and CD is the covariance matrix of detected 
image matrix.
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E is the diagonal matrix containing the eigenvalues of Q and N is the number of modes required to capture 
90% variance of Q.

(v)	 The MSD is defined as

	 = − 2MSD ( ( , ) ( , )ˆ ) ,y i j y i j � (17)

where, ( )−
i  denote the expected value.

(vi)	The SNR is defined as
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It is observed that the proposed method gains better PSNR, SSIM, pratt-FOM, BC, MSD, and SNR value 
irrespective of the noise parameter. The proposed approach is based on a multiresolution approach. Com-
pared to other transform techniques, DWT provides a powerful tool for removing noise from the image. 
Daubechies wavelet defines the scaling signals and wavelets using more values from the signal. This feature 
provides great improvement in image enhancement. One of the most important properties of Daubechies 
wavelet transform is that it conserves the energy of signal, thus reducing the losses and improving the de-
noising efficiency. All noise and signal parameters and shrinkage factor are estimated using Bayesian esti-
mators. The Bayes approach is based on prior knowledge. NIG PDF and Gaussian PDF are used as priors to 
find the signal and noise data. HH sub-band contains most of the noise information. Thus, this sub-band is 
modeled using Gaussian PDF to obtain the correct noise variance information. Knowledge of the suitable 
prior has a great role in de-noising performance. It is clearly shown in Figures 3, 4, and 5 that the proposed 
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Table 2: Comparison of SSIM Performance for MR Images.

Method Noise standard deviation (ση)

0.1 0.2 0.3 0.4 0.5

Donoho’s soft threshold [15] 0.9423 0.9261 0.9175 0.8941 0.8792
Bayes shrink [10] 0.9668 0.9479 0.9393 0.9311 0.9168
Bhuiyan et al. [8] 0.9781 0.9685 0.9466 0.9478 0.9249
Proposed method 0.9983 0.9719 0.9612 0.9560 0.9431

Table 3: Comparison of Pratt-FOM Performance for MR Images.

Method Noise standard deviation (ση)

0.1 0.2 0.3 0.4 0.5

Donoho’s soft threshold [15] 0.8032 0.7954 0.7668 0.7307 0.7418
Bayes Shrink [10] 0.9165 0.8863 0.8778 0.8651 0.8125
Bhuiyan et al. [8] 0.9324 0.9298 0.9221 0.9119 0.9009
Proposed method 0.9985 0.9892 0.9730 0.9654 0.9571

Table 4: Comparison of BC Performance for MR Images.

Method Noise standard deviation (ση)

0.1 0.2 0.3 0.4 0.5

Donoho’s soft threshold [15] 0.3761 0.3578 0.3363 0.3222 0.3136
Bayes Shrink [10] 0.4974 0.4736 0.4532 0.4361 0.4229
Bhuiyan et al. [8] 0.5415 0.5194 0.5055 0.4972 0.4936
Proposed method 0.7819 0.7530 0.7357 0.7267 0.6929

Table 5: Comparison of MSD Performance for MR Images.

Method Noise standard deviation (ση)

0.1 0.2 0.3 0.4 0.5

Donoho’s soft threshold [15] 0.000667 0.000732 0.000884 0.000943 0.001044
Bayes Shrink [10] 0.000355 0.000410 0.000479 0.000529 0.000765
Bhuiyan et al. [8] 0.000342 0.000395 0.000464 0.000491 0.000582
Proposed method 0.000324 0.000377 0.000441 0.000474 0.000529

Table 6: Comparison of SNR (dB) Performance for MR Images.

Method Noise standard deviation (ση)

0.1 0.2 0.3 0.4 0.5

Donoho’s soft threshold [15] 19.60 16.88 15.80 12.47 10.04
Bayes Shrink [10] 20.35 17.38 16.57 15.55 12.74
Bhuiyan et al. [8] 23.69 18.81 18.20 17.27 16.19
Proposed method 25.10 22.90 20.47 19.39 18.78

PDFs correctly model the wavelet coefficients in different sub-bands. The obtained results from Tables 1–6 
validate the choice of PDFs, and hence the effectiveness of the proposed method. Thus, wavelet transform in 
the Bayesian environment works effectively to reduce noise from MR image.
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Referring to Table 1, it can be observed that the proposed method gains the highest value of PSNR (dB). 
It is 40.16 for noise standard deviation (σ

η
) of 0.1, which is more than the required PSNR for medical images. 

The improvement of PSNR of the proposed method is 16.85%, 14.79%, and 8.83% over Donoho’s soft thresh-
olding, Bayes Shrink, and method in Ref. [8], respectively. Table 2 shows the SSIM parameters for different 
de-noising methods. The SSIM of the proposed method is 0.9983, 0.9719, 0.9612, 0.9560, and 0.9431 for noise 
standard deviation of 0.1, 0.2, 0.3, 0.4, and 0.5, respectively. The SSIM of the proposed method is closer to 1 
than that of the other tested methods. The improvement of SSIM of the proposed method is 5.61%, 3.15%, and 
2.02% over Donoho’s soft thresholding, Bayes Shrink, and method in Ref. [8], respectively, for noise standard 
deviation of 0.1. Table 3 shows the comparison of pratt-FOM for different de-noising methods. The proposed 
method achieves good improvement in edge preservation, which is a desirable property in high-resolution 
images. For noise standard deviation of 0.1, the pratt-FOM improvement of the proposed method is 19.55%, 
8.21%, and 6.61% over Donoho’s soft thresholding, Bayes Shrink, and method in Ref. [8], respectively. Table 4 
shows the measured values of BC for different de-noising methods. The improvement of BC of the proposed 
method is 51.89%, 36.38%, and 30.74% over Donoho’s soft thresholding, Bayes Shrink, and method in Ref. 
[8], respectively, for noise standard deviation of 0.1. This shows the effectiveness of the proposed method in 
terms of similarity measures. From Table 5, it can be seen that the lowest value of MSD is 0.000324 (σ

η
 = 0.1) 

for the proposed method, and it can be concluded that the degree of dissimilarity of the proposed method is 
less than that of other state-of-the-art methods. Table 6 shows the SNR for the proposed and state-of-the-art 
methods. The SNR improvement of the proposed method is 5.61%, 17.86%, 11.08%, 12.27%, and 13.79% over 
the next best method for noise standard deviation of 0.1, 0.2, 0.3, 0.4, and 0.5, respectively. This demonstrates 
the effectiveness of the proposed method for suppression of white Gaussian noise.

The comparison of de-noising algorithm in terms of computational time is shown in Table 7. The de-
noising methods were run using 1.70-GHz Intel Core i3 processor with σ

η
 = 0.3. The run time of the proposed 

method is better than the method proposed in Ref. [8] with the exception of Donoho’s soft threshold [15] and 
Bayes Shrink [10] methods. The computation time of the proposed method was reduced by 16% compared 
with the method proposed in Ref. [8]. However, the proposed method is still recognized as a fast method.

A high value of the SNR parameter proves the effectiveness of the proposed method in reducing Gaussian 
noise from MR images. The proposed algorithm is simple and computationally less complex.

5  �Conclusion
The authors have proposed a de-noising method based on multiresolution and Bayesian approaches. A normal 
inverse Gaussian probability distribution function was used to model the wavelet coefficients. Modeled coef-
ficients were analyzed by use of MLE to obtain the signal parameters and hence the signal variance. Noise 
variance was estimated using a median estimator in diagonal sub-bands. The proposed method was able 
to suppress the additive noise, while keeping the structure of the MR image unaltered. The algorithm simu-
lated on the MR image showed that the combination of the Bayesian approach estimator and multiresolution 
approach is efficient and easier to implement.

We would like to further evaluate the performance of the method for Rician distributed noise, which will 
be reported in a future communication.

Table 7: Comparison of De-noising Algorithms in Terms of Computational Time.

Method Time (s)

Donoho’s soft threshold [15] 1.46
Bayes Shrink [10] 3.43
Bhuiyan et al. [8] 4.91
Proposed method 4.12
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