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Abstract: The present paper describes a hybrid group search optimization (GSO) and center-based genetic 
algorithm (CBGA)-based model for task scheduling in cloud computing. The proposed hybrid model com-
bines the GSO, which has been successful in its application in task scheduling, with the use of the CBGA. 
The basic scheme of our approach is to utilize the benefits of both the GSO algorithm and CBGA excluding 
their disadvantages. In our work, we introduce the hybrid clouds, which are needed to determine which task 
to be outsourced and to what cloud provider. These choices ought to minimize the expense of running an 
allotment of the aggregate task on one or various public cloud providers while considering the application 
prerequisites, e.g. deadline constraints and data requirements. In the hybridization approach (HGSOCBGA), 
each dimension of a solution represents a task and the solution as a whole signifies all the task priorities. The 
vital issue is how to allocate the user tasks to exploit the profit of the infrastructure as a service (IaaS) pro-
vider while promising the quality of service (QoS). The generated solution proficiently assures the user-level 
QoS and improves the IaaS providers’ credibility and economic benefit. The HGSOCBGA method also designs 
the hybridization process and suitable fitness function of the corresponding task. According to the evolved 
results, it has been found that our algorithm always outperforms the traditional algorithms.

Keywords: Hybrid GSO-CBGA, scheduling, cloud computing, quality of service, IaaS providers.

1  �Introduction
Cloud computing has emerged as a developing model that is well geared to effectively exploit the manifold 
distributed resources that can be allotted to clients as per their needs. As a result, it leads to the economic and 
effective deployment of accessible and trouble-free management of gigantic computational issues. Further, 
it incredibly scales down the total outlay on several resources such as hardware and software [6], and easily 
facilitates the resources to be utilized for the purpose of leasing and releasing. Moreover, it boasts of a host 
of vantage points such as transparency of resources, flexibility, location independence, consistency, afford-
ability, better accessibility of services, and so on [23]. For the purpose of enabling the related facilities, the 
tasks have to be planned suitably on the basis of resources in order to elicit the greatest accomplishment with 
the shortest time frame. Moreover, the cloud services are hosted on the infrastructure of the service providers 
themselves or those of the intermediary cloud infrastructure providers [19]. Basically, there are three types 
of services that are offered, such as the platform as a service (PaaS), infrastructure as a service (IaaS), and 
software as a service (SaaS) [4].

Further, the clouds may be broadly categorized into three types such as public, private, and hybrid [18]. 
When the cloud services are offered intended for the ordinary client on the basis of the pay-per-use pattern, it 
is labeled as the public cloud. When the institutions design their own unique applications and manage their 
own internal infrastructure, it is called the private cloud, as the access thereto is restricted to users within the 
institution [13]. The scheduling of the relative gigantic number of assignments has emerged as a vital problem 
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in the domain of cloud computing. In this regard, a lot of scheduling techniques are becoming popular, as 
illustrated in Refs. [11, 16, 22]. The corresponding techniques take into account a number of divergent features 
such as the cost matrix created by means of the credit of tasks to be allotted to a specific resource [22], quality 
of service (QoS)-based meta-scheduler and backfill strategy-based lightweight virtual machine scheduler for 
dispatching jobs [11], QoS needs [22], and heterogeneity of the cloud scenario and workloads [16].

Normally, the scheduling issue may involve two distinct categories, such as static and dynamic. As far 
as static scheduling is concerned, the attributes of an analogous program like the task processing periods, 
communication, data dependencies, and harmonization needs are identified well ahead of accomplishment 
[21]. In the case of dynamic scheduling, certain presumption regarding the identical program has to be spelt 
out prior to the performance, and thus the scheduling decisions have to made on the fly [15]. With the inten-
tion of effectively addressing scheduling issues, a novel cloud resources allotment structure has been intro-
duced recently to facilitate the effective deployment of external clouds (ECs) so as to enable an IaaS cloud 
itself to become flexible [27]. In the relative configuration, an IaaS cloud is endowed with its own unique 
personal cloud and is capable of effectively outsourcing its functions to the parallel cloud providers known 
as the ECs, especially when its local resources are scarce. Further, each and every assignment carries with it a 
sharp cutoff date to complete the relative assignment in order for the resource allocation issue to be broadly 
deemed as a deadline constrained task scheduling (DCTS) one. An integer programming formulation of the 
DCTS issue is brilliantly brought to the limelight, with the intention of maximizing the benefit of the personal 
cloud on the concept of ensuring the QoS. The major contributions made in research for the task scheduling 
process are as follows:

–– An approach named the HGSOCBGA is done for task scheduling, which has the advantages of easy reali-
zation and quick convergence, so that this scheduling approach is able to get an optimal or suboptimal 
solution with maximum profit than the individual group search optimization (GSO) and center-based 
genetic algorithm (CBGA) optimization algorithm.

–– In the HGSOCBGA, the hybridization uses the process of best solution replacement ahead of the worst 
solution to improve the solution quality.

The organization of the paper is as follows. Section 2 presents a review of the literature. Section 3 describes 
the algorithm used in this research. Section 4 explains the solution framework and problem definition, and 
Section 5 describes the proposed task scheduling. Section 6 explains the experimental results, and Section 7 
presents the conclusion part.

2  �Literature Survey
Of late, the scheduling technique has began to play a critical part in modern applications, and notably, task 
scheduling has increasingly gained the attention of enthusiastic investigators, thanks to its extensive popu-
larity, viability, and the copious expansion of the cloud computing system. The underlying motive behind 
cloud computing is furnishing effective accessibility to far-flung and geographically disseminated resources. 
In this regard, scheduling has emerged as one of them, as it indicates a group of policies to manage the order 
of job to be carried out with the help of a computer system. A proper scheduler has to invariably change its 
scheduling plans in phase with the ever-changing scenario and the category of the task (Table 1).

In this regard, Omara and Arafa [20] introduced genetic algorithms (GAs) for the purpose of successfully 
addressing the task scheduling problem. They effectively employed two genetic techniques to overcome the 
corresponding scheduling hurdles. In their novel modified GAs, they brilliantly brought in certain heuristic 
principles that were supplemented to enhance the efficiency of the accomplishment. With the intent to over-
come the resultant problems, Abrishami and Naghibzadeh [1] elegantly launched the innovative deadline-
constrained workflow scheduling in software as a service cloud. They brilliantly employed the partial critical 
Paths, which was very effective in drastically bringing down the expenditure related to the workflow accom-
plishment by appropriately satisfying a user-defined cutoff date. Further, for the purpose of cutting back the 
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cost of the processing considerably, Guo et al. [7] envisioned task scheduling with the help of the particle 
swarm optimization (PSO) algorithm, which is dependent on the small position value rule. In order to tackle 
the workflow issue, workflow scheduling meant for the cloud scenario dependent on the artificial bee colony 
algorithm was brought to the limelight by Kumar and Anand [14].

Moreover, Xu et al. [26] excellently envisioned an effective task scheduling scheme on heterogeneous 
computing systems by employing a multiple-priority queue GA. The novel technique integrated the GA tech-
nique to allocate a priority to each subtask while employing a heuristic-based earliest-finish time method 
in the hunt for a solution for the task-to-processor mapping. Singh and Singh [24] remarkably introduced 
the innovative score-based deadline constrained workflow scheduling algorithm, which was able to carry 
out the workflow within affordable expenses, simultaneously fulfilling the user-defined cutoff date stipula-
tion. The novel technique elegantly employed the idea of a score that illustrated the capacities of hardware 
resources. Moreover, Agarwal and Jain [2] launched the optimal algorithm of task scheduling in the cloud 
computing environment. It represented a generalized priority technique for the effective performance of the 
assignments, and was further contrasted with the outcomes of the first come, first served and round robin 
scheduling. Similarly, Zuo et al. [27] excellently designed a self-adaptive learning PSO-based deadline con-
strained task scheduling for the hybrid IaaS cloud. The vital issue in the scheduling was concerned with the 
manner in which the assignments of the clients were to be allotted with the intention of taking the fullest 
benefit of the IaaS provider while assuring the QoS.

3  �Algorithm Design
In this section, we first discuss the background of the GSO algorithm and CBGA. Then, the details of the pro-
posed algorithm, HGSOCBGA, will be presented.

3.1  �CBGA

The GA, kick-started by Holland in 1975 with a big bang [9], represents an iterative stochastic in which the 
natural evaluation is elegantly employed to model the search technique. These days, the novel technique 
is handed a red carpet welcome, thanks to its innate skill in successfully solving several optimization 
problems by emulating the genetic process of the biological organism [25]. As evident from the name, the 

Table 1: Parameters Used in Task Scheduling.

Parameter   Variable description

n   Number of cloud provider 
I   Number of VM type 
m   Number of application
Mu   Price of the uth VM type in 1

SCP
Cku   Cost of the uth VM type in S

kCP
Di   Deadline of the ith application 
Ri   Run time of each task in the ith application 
Qiu   If Qiu = 1, the ith application uses VM type ;M

uV  otherwise, it does not use this type 

CPUu   Number of CPUs for the uth VM type in 
1
SCP

uth   Size of memory for the uth VM type in 
1
SCP

Total_CPU   Total number of CPUs in 1
SCP

Total_mem   Total size of memory in 1
SCP

SStil   Integer decision variable 
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GA effectively imitates the evolutionary trend in nature to successfully address optimization issues. The 
straightforward GA effectively navigates through the three genetic functions of selection, crossover, and 
mutation. In the selection function, certain solutions from the populations are shortlisted as the parents. 
Further, in the crossover activity, the parents are subjected to the process of crossbreeding to generate the 
offspring. The final mutation function involves the task of orchestrating the offspring in accordance with 
the mutation regulations. In the novel technique, solutions are labeled as the “individuals” and the itera-
tions of the technique are afforded the name “generations.” In this regard, a lion’s share of the genetic 
techniques invariably employs elitism, which indicates that a multitude of the best individuals are copied 
to the succeeding generation.

Of late, the GA has been afforded red carpet welcome in the domains of several scientific and engineering 
applications [10]. Nevertheless, in several engineering applications, a straightforward GA habitually encoun-
ters innate deficiencies like the untimely and sluggish convergence to the universal minimum. With an eye 
on alleviating the related defects, many variants of the GA have been popular. Jiaqing and Ling [12] deftly 
designed a CBGA in which a central chaotic mutation was devised to direct the evolutionary searching task 
by means of the data of the population center. Further, an innovative Cauchy preferential crossover opera-
tor was elegantly employed to investigate the search space. Their suggested technique was effectively per-
formed to steer clear of the stiffness equivalence hassles of the small-aspect-ratio aircraft wing to the tapered 
beam. Enthused by the above-mentioned investigations, in the document, an earnest endeavor is made to 
launch the novel CBGA approach for the purpose of task optimization in the cloud computing structure for 
the purpose of considerable cost reduction.

Striking a quite divergent note from the time-tested search approaches, the CBGA effectively employs 
multiple search nodes concurrently. Each and every search node relates to one of the modern solutions and 
is characterized by a progression of symbols. The relative series is known as the chromosome, whereas the 
symbols constituting the series are named as the genes. Each chromosome is endowed with a linked value 
termed as the fitness value, which is effectively estimated by means of the objective function (fitness function) 
value f(x). In the novel CBGA technique, only the excellent chromosomes enjoying superlative fitness values 
are found to survive longer and produce the offspring, thereby communicating their biological heredity to the 
successive generations. By developing the chromosome in a gradual manner, the solutions associated to the 
search nodes are augmented progressively. A set of chromosomes at a specified phase of the CBGA is known 
as the pop. The number of chromosomes (individuals) in a population is termed as the pop size. Moreover, 
the elitism size constitutes the number of fit individuals that are copied straight to the successive generation.

3.2  �GSO Algorithm

The novel GSO technique was kick-started by He et  al. [8]. It represents a population-based optimization 
approach that elegantly employs the producer-scrounger (PS) pattern and the animal scanning system. The 
PS technique devoted for devising the optimum searching technique had its humble origin, thanks to the 
motivation derived from the animal searching trend and the community living concept. It has habitually 
resulted in the espousal of two foraging techniques within the groups as follows: (i) one method is concerned 
with production and the hunt for food resources, and (ii) the other relates to the process of scrounging, or 
joining resources exposed by others. With the intention of not being trapped in the local minima, the GSO 
effectively utilizes the “ranger” foraging technique. The population of the GSO technique is known as a group 
and each individual in the population is labeled as a member. Altogether, there are three distinct types of 
members in the group, which are furnished as follows.

–– Producer: The producer is entrusted with the task of generating appropriate stratagems and hunting 
for food sources. In each and every iteration, the member who has succeeded in locating the most gifted 
resource is shortlisted as the producer.

–– Scrounger: The scrounger elegantly executes the scrounging techniques, joining resources exposed by 
others. Any member other than the producer in the group can be chosen as the scrounger.
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–– Ranger: The duties of the ranger include carrying out arbitrary walks and investigating the strategies for 
the arbitrarily disseminated resources. The members other than the producer and scroungers in a group 
are known as the rangers.

Recently, Couzin et al. [5] proposed that if the group is large, a small fraction of skilled persons is enough to 
direct the group with superlative precision. Hence, for the sake of precision and ease of evaluation, the PS 
technique is simplified based on the presumption that each searching bout contains a solitary producer and 
the residual members are either scroungers or rangers. Further, it is implicit that the producer, the scroung-
ers, and the rangers do not exhibit any kind of divergence as regards the pertinent phenotypic attributes, 
enabling them to easily switch between the three diverse roles.

4  �Solution Framework and Problem Definition
In this part, we offer a brief overview of the hybrid cloud architecture in order to additionally enhance the 
content of the research offered in this document. The overview of the hybrid cloud is given in Figure 1. Fun-
damentally, the hybrid cloud design is home to two types of clouds, such as the private cloud and the public 
cloud. The hybrid cloud in essence signifies a deft mixture of the public and private clouds. At times, it 
becomes essential for an entity to allocate a segment of its data as a public resource. Therefore, to preserve 
data secrecy, it appropriately seeks the aid of the hybrid cloud so that only limited resources are made public, 
without any damage to the secrecy of private resources that have to be kept intact as private. In the current 
investigation, with the ultimate objective of enabling the IaaS cloud itself adaptable, a novel cloud resource 
allocation structure is envisaged so as to facilitate the effective deployment of the ECs. Now, the IaaS cloud 
itself is endowed with its own unique private cloud and is competent to outsource its assignments to the 
parallel cloud providers known as the ECs, especially when it is resources-starved with regard to the local 
resources. In the relative structure, the ECs elegantly present a public interface for the generation and admin-
istration of the virtual machine (VM) instances within their proprietary infrastructure. From the outlook of an 
IaaS provider, the private clouds habitually represent its own resources while the ECs constitute the parallel 

User

Task 1

Task 2

Task 4

Task N

Task 3

Insert task N

Sent task to public
cloud necessary  

Scan the
unfeasible task on

private cloud    

Schedule first task
on private cloud 

Scheduler

Figure 1: Basic Architecture of Hybrid Cloud.
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clouds that are outsourced. In this regard, both the private clouds and ECs play their own unique role in this 
hybrid design.

In this regard, special mention has to be made regarding the vital contribution of scheduling in effec-
tively addressing various functions within the hybrid cloud. In fact, scheduling deftly decides the nature 
of the task to be allocated in addition to the quantity of resources and computing components. It also 
prudently allots each and every task to the appropriate computing module. In case of availability of suf-
ficient computational resources needed to perform the entire functions within the private cloud, it is not at 
all essential to accept on lease additional resources from the public cloud. However, in resource-crunched 
scenarios, making it difficult to accomplish the tasks within the deadline in the private cloud, the resources 
of the public cloud are availed on lease so that the essential assignments could be achieved well within the 
cutoff date. The resource allotment to the divergent assignments on the hybrid cloud is elegantly shown 
in Figure 1. It is clear from Figure 1 that the user assigns n number of tasks to the scheduler. The scheduler 
module, in turn, gathers the relative scheduling data from the user and takes prudent decisions to allot 
each and every task to either the private cloud or one of the ECs existing in the public cloud, with the inten-
tion of taking the profit to hill level. In fact, the scheduling challenge has emerged as a deadline-inhibited 
task scheduling affair. In the novel technique, m numbers of applications are employed, and each and 
every offered application consists of a host of analogous and self-governing chores, with a uniform and 
steady cutoff date common for all the constituent assignment tasks so that all the tasks are accomplished 
within the common deadline. Further, each and every task has to be performed in one VM instance type. Let 

1 2{ , , ..., }S S S s
nCP CP CP CP=  be a set of cloud providers. Here, 1

SCP  represents a private cloud and 2 , ....,
S S

nCP CP  
corresponds to an EC. Further, 1 2{ , , ..., }M M M M

IV V V V=  constitutes a set of VM types and AaP = {AaP1, AaP2, 
…, AaPm} symbolizes a set of applications. Each application AaPi (i ∈ {1, 2, …, m}) is assigned a fixed dead-
line Di and runtime Ri and contains a task set 1 2{ , , ..., }.

i

i
iTKTK T T T=  Further, time is evidently characterized 

in the IP model by means of introducing time slots with a granularity of 1 h. The ultimate motive is to allo-
cate m applications to ,SkCP  where (k ∈ {1, 2, …, n}) are to utilize the profit of 1 .

SCP  Further, each task has to 
be allotted to a single ,SkCP  k ∈ {1, 2, …, n}. When a task TKi is initiated for performance, it is to be ensured 
that it is not interrupted and that its running slots are successive. In any time slot SS (SS ∈ {1, 2, …, S}), the 
resources deployed by the entire task accomplished in 1

SCP  should not exceed the total resources of 1
SCP  

at any point of time from the perspective of 1 ,
SCP  and all its ECs are endowed with never-ending sources. 

In task scheduling, each task has a strict deadline to meet, so that the resource allocation problem can be 
considered a DCTS one. To solve this problem nowadays [27], many optimization algorithms are used. In 
our work, we have used the hybrid GSO and CBGA-based scheduling approach in the hybrid cloud. Here, 
each submitted application contains a number of parallel and autonomous tasks and has a firm deadline 
of when all its consisting tasks must be completed. Each task needs to be implemented in one VM instance 
type only.

5  �Proposed Task Scheduling Based on the GSO-CBGA Algorithm
In this section, we explain the proposed task scheduling using the hybrid GSO-CBGA algorithm. Task sched-
uling is one of the major problems in the cloud system. The main intention of the scheduling algorithm is to 
maximize the profit of the task, as well as minimize the execution time and cost of the task along with QoS 
requirements of the user. The step-by-step process is explained below.

Step 1: Solution encoding
In cloud computing, one of the vital ideas is to specify a solution for the task scheduling. Each applica-
tion is home to a host of tasks, and hence all applications may be treated as a set of tasks as illustrated by 

( )1 2 1{ , , ..., } .w
TN i iTK T T T TN T== = ∑  Here, the solution is represented as a TN(D = TN) dimension vector and each 

dimension (position) characterizes a task. The position with a bigger value indicates the fact that the task 
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specified by this position possesses a superior priority and has to be shortlisted first and foremost for the 
allotment of the scheduling process.

The ranked-order value rule [17] is employed to treat a particle Ai = (ai1, ai2, …, aiD) into a variant of tasks 
TK = {T1, T2, …, TD} for the purpose of appraising the corresponding particle [3]. For example, let us consider a 
problem with five distinct tasks (D = 5); the ith particle is specified by ai = (7.16, 7.34, 6.52, 4.32, 5.28). The posi-
tion ai2 possesses the highest value, so that the task is represented by ai2 and it is allotted a rank value one, as 
exhibited in Table 2. The next-in-line ai1 = 6.14 is allotted a rank value two. Similarly, the rank values of 3, 4, 
and 5 are allotted to ai3, ai5, and ai4, respectively. Hence, a priority series of task is achieved as Priority = {2, 1, 
3, 5, 4}. The search solution represents the observed task and its dimension is represented by N × M.
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Here, N indicates the number of the application existing in the investigation and M represents the task.

Step 2: Fitness calculation
A fitness function is required when applying the hybrid GSA-CBGA to optimize the task permutation to maxi-
mize the profit of 1

SCP  and to work out the fitness value of each task in the application. Each task in set T is 
allocated to one S

kCP  (k = 1, 2, …, n) according to the priority expressed by the code of a solution. We try to 
allocate each task to 1

SCP  because the cost of 1
SCP  is the lowest among all the clouds. If 1

SCP  has available 
resources to meet a task demand during its run time, then the task is allocated to 1 ;

SCP  otherwise, the task is 
allocated to an EC with the minimal cost. The fitness value calculation formula is given in Eq. (4).
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	 Fitness total_income total_cost( ).lT= + � (4)

Step 3: Divide the agent into two groups based on the hybrid probability P
One group uses the GSO to update their positions while the other uses the CBGA.

Step 4: GSO stage
We perform the GSO stage; here, we need three types of employees like the producer, scroungers, and 
rangers. These three employees make different operations to the population (task) and produce the optimal 
population.
(i)	 Producer operation

At first, the producer AP is located from the group member A dependent on the best fitness function. The 
producer represents the best fitness value of Ai, which is represented by AP.

The head angle of each and every individual is illustrated by means of Eq. (16) shown below.

Table 2: Solution Coding and Decoding.

Dimension   1  2  3  4  5

Position value   7.16  7.34  6.52  4.32  5.28
Priority   2  1  3  5  4
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	 1 ( 1)( , ..., ) .t t t n
i i i n Rϕ ϕ ϕ −= ∈ � (5)

The search direction of the member in accordance with the head angle is represented by the following 
equation:

	 1( ) ( , ..., ) .k k k k n
i i i inU u u Rϕ = ∈ � (6)

The search direction is effectively evaluated from the head angle with the help of polar and Cartesian 
coordinate transformation, as illustrated by the following equations:
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In the GSO technique, at the kth iteration, the producer AP exhibits the following conduct.
The producer performs the task of scanning at zero degree and thereafter continues the scan laterally 

by arbitrarily sampling the three points in the scanning domain:
–– For the first point at zero degree, the scanning is as shown in Eq. (10) below:

	 1 max ( ).k k k
z p p pA A r l H ϕ= + � (10)

–– For the second point in the right-hand side in the hypercube, scanning is expressed in the following 
equation:

	
max

1 max 2 .
2

k k k
r p p pA A r l H r

θ
ϕ

 
= + +   �

(11)

–– For the third point in the left-hand side in the hypercube, scanning is carried out by means of 
Eq. (12):

	
max

1 max 2 .
2

k k k
l p p pA A r l H r

θ
ϕ

 
= + −   �

(12)

Here, r1 ∈ R1 represents a generally disseminated arbitrary number with mean 0 and standard deviation 1, 
and r2 ∈ Rn−1 indicates an evenly disseminated arbitrary sequence in the range (0, 1).

The maximum search angle θmax is furnished with the help of the following equation:

	
max 2 .c

π
θ =

�
(13)

The constant c is represented by Eq. (14), as follows:

	 ( )round 1 .c n= + �
(14)

Here, n reveals the size of the search space:

	
max .

1n
π

θ =
+ �

(15)

The maximum distance lmax is effectively evaluated with the following equations:
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	 max || || .U Ll l l= − � (16)

	

2
max

1
( ) .

n

Ui Li
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Here, lUi represents the upper bound for the ith dimension and lLi corresponds to the lower bound for 
the ith dimension. The best point with the best resource is effectively ascertained by means of Eqs. (7–9). 
In case the best point is endowed with a better resource than the present best position, then it moves to 
the new best point. Or else, it continues in its existing position and turns the producer head to the arbi-
trarily produced head angle direction, with the assistance of Eq. (18) given below:

	 1
2 max .

k k rϕ ϕ α+ = + � (18)

Here, αmax ∈ R1 corresponds to the maximum turning angle.
If the producer fails to locate a superior area after α iterations, it turns its head back to zero degree 

as illustrated in Eq. (19) given below:

	 .k kαϕ ϕ+ = � (19)

Here, α represents a constant.
(ii)	 Scrounger operation

At each iteration, in addition to the producer, there are a number of group members who are shortlisted 
as the scroungers. The common scrounging conduct in the GSO algorithm is the area copying trend. In 
kth iteration, the area copying conduct of the ith scrounger is formulated as a movement in the direction of 
the producer by means of Eq. (20) shown below:

	 1
3 ( ).k k k k

i i p iA A r A A+ = + −� � (20)

Here,  represents the Hadamard product, which effectively evaluates the entry-wise product of the two 
vectors and r3 ∈ Rn−1 uniform arbitrary sequence in the range (0, 1). The ith scrounger continues to be on 
the hunt for the optional opportunities to join. The corresponding trend is designed by turning the ith 
scrounger head to a new arbitrarily produced angle [Eq. (18)].

(iii)	Ranger performances
The remaining group members that are isolated from their current positions are known as the rangers. 
They invariably carry out the searching tactics, which involve arbitrary walks and systematic searching 
strategies to effectively identify the resources. In this regard, the random walks emerge as the most ideal 
searching technique for the arbitrarily disseminated resources. It further generates an arbitrary head 
angle as illustrated in Eq. (18), and favors the arbitrary distance as the following equation:

	 1 max .il a r l= ⋅ � (21)

Further, the arbitrary walk to the new point is effectively exhibited in Eq. (22) shown below:

	 1 1.k k k k
i i iY Y l H ϕ+ += + � (22)

When all the above processes are finished, the fitness of the modernized solution is evaluated. The rela-
tive procedure is endlessly followed until the li = kth iteration so as to locate the best solution.

Step 5: CBGA stage
The CBGA effectively employs three distinct operators such as the selection, crossover, and mutation, which 
are elucidated below.
(i)	 Selection operation

Here, the roulette wheel selection approach is extensively employed in the CBGA selection procedure. It 
is capable of ensuring that the selection probability of every particle is in direct proportion to its fitness. 
In other words, if the fitness of a particle is superior, it becomes further eligible to get shortlisted.
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(ii)	 Crossover operation
When the selection function is over, it is followed by the execution of the crossover and mutation func-
tions. The population of a center-based genetic technique takes its origin predominantly by means of the 
crossover and mutation functions. In the current investigation, the most leading genetic operator is the 
crossover, as it habitually modernizes the solutions almost always. Incidentally, a crossover represents 
the process of substituting certain genes in one of the parents by the matching genes of the other. In the 
task scheduling challenge, the crossover operator deftly blends two legitimate parents, whose subtasks 
are arranged topologically, to create two offspring, which also become legitimate. Figure 2 illustrates the 
single-point crossover model.

(iii)	Mutation operation
When the crossover task is finished, for the purpose of increasing the skills to run away from the local 
optima, a central chaotic mutation is launched in accordance with the central data of the population. In 
this connection, the chaos represents a type of a non-linear dynamic that can be effectively employed 
for the universal optimization in view of its ergodicity and arbitrary nature. Further, a Loren system is 
elegantly utilized to generate the chaotic variables and thereafter infuse the chaotic variables into the 
chosen individuals so as to carry out the mutation function. The roadmap for the central chaotic muta-
tion is drawn in the following section.

–– Step 1: Choose the number of individuals from the population by means of the crossover function.
–– Step 2: Create an eight-dimensional random vector r1, each element of which is in the interval [0, 1], 

and thereafter generate new chaotic vectors with iteration rk = 4rk−1(1 − rk−1), k = 2, …, CL,
where

	 [ ].rCL L Tµ= × × � (23)

L represents the chaos length factor.
–– Step 3: Map all the chaotic vectors to the search space, and chaotic individuals are achieved by 

means of Eq. (24):

	 new ( 0.5),i g kA PC rξ= + − � (24)

where ξ is the factor to control the chaos scope, rk is a chaotic vector, and PCg is the population center.
The population center is calculated based on Eq. (25):

	 1

2 pob fit(pop ).
( 1)

T

G j j
j

PC
T T =

= ∗
+ ∑

�
(25)

Here, T represents the dimension of the population. It is clear from Eq. (25) that the population 
center represents the weighted center of the entire positions of the individuals, where the fitness 
value is employed as the weight. Obviously, the center may be changed at various generations and is 
employed to effectively direct the evolutionary process.

Crossover position

Father

Mother

DaughterSon

3 6 9 12 15 18 21 24

10 20 30 40 50 60 70 80

2 4 6 8 5 7 13 15

3 6 9 12 15 18 21 24

10 20 30 40 50 60 70 80

1 3 5 7 4 6 10 16

Crossover position

Figure 2: Single-Point Crossover Operator.
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Table 3: Pseudo Code for the Proposed Hybrid Algorithm.

Input:
 Parameter of GSO algorithm
 Parameter of CBGA algorithm
 Parameter of task scheduling
Output:
 Scheduled task
Assumption:
 Initial population Pi, fitness FFi, crossover Cr, mutation μr
Initialization:
 Initialize the position of the population = 1 2( , ,..., ,..., ),d n

i i i i iA a a a a  
  head angle φi of all members
   crossover rate Cr
Start:
  Generate the initial population Ai, i = 1, 2, …, n
    Evaluate the fitness (FFi) of the population 
  Set cycle to 1
Repeat:
Stage 1: for GSO
 While (the termination conditions are not met)
  for (each members i in the group)
   Choose producer: Find the producer Ap in the group;
Perform producing: 
 {
The producer will scan at zero degree and then scan laterally by randomly sampling three points in the scanning field using Eqs. 
(7)–(9).
Find the best point with the best resource (fitness value). If the best point has a best resource than its current position, then it 
will fly to this point. Otherwise, it will stay in its current position and turn its head to a new angle using Eq. (18).
If the producer cannot find a better area α iteration, it will turn its head back to zero degree using Eq. (19).
 }
Perform scrounging: Randomly select 80% from the rest of the members to perform scrounging.
Perform ranging:
{
 For the rest of the members, they will perform ranging:
  To generate a random head angle using Eqs. (18) and (2)
   To choose a random distance li from the Gaussian distribution using Eq. (21)
    Finally move to the new point using Eq. (22)
}
Check feasibility: Check weather each member of the group violates the constraints. 
    If it does, it will move back to the previous position to guarantee a feasible solution. 
  end for 
   Set k = k + 1;
 end while
Stage 1: for CBGA
   while (t  ≤ maximum iteration) 
    chose the roulette wheel selection strategy-based population selection
     crossover operation is performed, which is given in Figure 2
      population center is calculated based on Eq. (25)
      new chromosome updation is based on mutation in Eq. (24)
   end while
Stage 3: Hybridization
Combine the solutions GSO and CBGA
    if (GSObest < CBGAbest) 
     Replace GSObest to CBGAbest
    end if
     if (GSObest > CBGAbest) 
       Replace CBGAbest to GSObest
     end if
     Let g = g + 1
Output
A scheduled task 
stop
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Step 6: Hybridization
While comparing the GSO and CBGA, if the GSO best fitness value (GSObest) is less than the CBGA fitness value 
(CBGAbest), the best position of the GSO is replaced by that of the CBGA. Else, if the CBGA fitness value is less 
than the GSO fitness value, the position is replaced by the GSO solution.

Step 7: Termination criteria
The technique stops its operation only if the maximum number of iterations is attained and the solution that 
possesses the best fitness value is shortlisted and labeled as the best feature to the task scheduling. When the 
best fitness is achieved with the help of the HGSOCBGA technique, the chosen task is allotted for the cloud 
computing procedure. The HGSOCBGA-dependent task scheduling technique pseudo code is demonstrated 
in Table 3.

6  �Results and Discussion
In this section, we discuss the results obtained from the proposed HGSOCBGA algorithm-based task schedul-
ing technique (Figure 3). We have implemented our proposed task scheduling using Java (jdk 1.6) with cloud 
Sim tools, and a series of experiments have been performed in a 2-GHz dual-core PC machine with 4 GB main 
memory running a 64-bit version of Windows 2007. The experiment is carried out mainly based on the profit 
and run time.

The utilization rate of CPU or memory at the sth time slot for the private cloud is calculated by the follow-
ing equation:

	 1
( ) Res Total-Res; {1, 2, ..., },

D

i is
i

M s E s S
=

= ∈∑
�

(36)

where Resi is the number of CPU or the size of memory requested by task Ti and Total-Res is the total CPU or 
memory in the private cloud.

The average utilization rate of CPU or memory is calculated by

	 ( ) / .AU M s S= � (37)

(i)	 Experimental design
In this, we utilize three types of problem instances and several experimental results to authenticate the 
efficiency of our approach. Each instance has different numbers of tasks, CPU, and memory utilization. 
The VM instance types and the personal cloud and the EC prices are placed based on our observation 
on public clouds, and are specified in Tables 4–8. Two kinds of resources, i.e. CPU and memory, are 
selected, as they are two of the most typical configurations in selecting a VM instance in the cloud. Now, 
we describe the different resources used in our experiments.

–– Problem instance 1: In order to be able to compare the output of the hybrid task scheduling algorithm 
with the optimal solution, the scale of the problem has to be relatively small. Here, in instance 1, 
the number of application is 8, the number of task is 20, and memory utilization is 40 GB. The VM 
instance type requested by each application is arbitrarily chosen from the above three VM types. 
The deadline of each application is a consistently distributed random integer between 1 and 5 h in 
order to limit the search space. To make certain that the deadline of each application is longer than 
its runtime, the runtime is selected as a consistently allocated integer between 1 h and its deadline.

–– Problem instances 2 and 3: In problem instance 2, the number of applications is 5, the number of 
tasks is 512, and the memory utilization is 1024 GB. Similarly, problem instance 3 consists of 10 appli-
cations, 512 tasks, and memory utilization of 1024 GB. These two instances are large in size and are 
used for handling large-sized problems. Instances 2 and 3 are the most vital tasks and resources 
compared to instance 1.
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(ii)	 Performance evaluation
The basic idea of our research is to schedule the task using the HGSOCBGA optimization algorithm. Here, 
the performance of the proposed approach is mainly evaluated using the maximum profit and average 
run time. Figures 4–6 show the performance of the proposed approach.

Start

Randomly initialize the population
with N members

Compute the fitness of each population and
record it, or update the position and fitness  

Find the best population, which has the
maximum objective function, and record it

Stopping
condition 
atisfied?
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optimal
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Figure 3: Overall Diagram of Our HGSOCBGA.

Table 4: VM Instance Types.

Name   CPU   Memory

Small   1   1.7
Large   4   7.5
X large   8   15
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6.1  �Discussion

The main intention of our work is task scheduling based on the optimization algorithm. Here, we have used 
the hybridization approach (HGSOCBGA) for the scheduling. The GSO approach is one of the optimization 
algorithms used to select the optimal or suboptimal solution, which is stimulated by animal behavior, espe-
cially animal searching behavior. In addition, the CBGA is the optimization algorithm that searches the best 
solution at the multi-dimensional search space according to the “best lives” principle. By hybridizing these 
two optimization algorithms, we assume that the optimization performance will be increased simultane-
ously, helping improve the profit and run time. By our assumptions, this result section shows that the pro-
posed algorithm of the HGSOCBGA has achieved better performance than the individual algorithms. Table 8 
shows the performance of the maximum profit and average time for problem instances 1, 2, and 3. From the 
table, in problem instance 1, we clearly understand that our proposed approach HGSOCBGA achieves the 
maximum profit of 8.91, which is 7.64 for using the GA-based task scheduling, 8.01 for using the GSO-based 
task scheduling, 8.41 for using the SLPSO-based task scheduling, and 8.25 for using the GSO-GA-based task 

Table 5: Private Cloud Cost and Price.

  Cost   Price

Small   0.03   0.08
Large   0.12   0.32
X large   0.24   0.64

Table 6: EC Price.

EC   Small   Large   X large

A   0.085   0.34   0.68
B   0.070   0.30   0.70
C   0.100   0.40   0.72

Table 7: Parameters of Problem Instance 1.

Application  
 

Cloud resources

Parameters   Values (integer) Resources   Number

Number of tasks   ~unit[1, 5]   CPU   20
VM instance type   ~unit[1, 3]   Memory   40 GB
Deadline (h)   ~unit[1, 5]    
Runtime (h)   ~unit[1, Deadline]    

Table 8: Parameters of Problem Instances 2 and 3.

Application  
 

Cloud resources

Parameters   Values (integer) Resources   Number

Number of tasks   ~unit[1, 50]   CPU   512
VM instance type   ~unit[1, 3]   Memory   1024 GB
Deadline (h)   ~unit[1, 168]    
Runtime (h)   ~unit[1, Deadline]    



S. Parthasarathy and C. Jothi Venkateswaran: Deadline Constrained Task Scheduling Method      67

scheduling. When we use problem instance 2, we achieve the maximum profit of 8.74, which is high com-
pared to the profit of existing approaches. Similarly, using instance 3, we also obtain the maximum profit of 
9.04 by using our proposed approach (Table 9).

Table 10 shows the performance of the average memory utilization rate for the proposed approach. Here, 
we obtain the maximum memory utilization rate of 6,584,384 by using instance 1, 6,176,474 by using instance 
2, and 8,154,651 by using instance 3. Table 11 shows the performance of the resource utilization ratio. From the 
table, we understand that our proposed approach achieves the maximum resource utilization ratio of 92 for 
instance 1, 91 for instance 2, and 93 for instance 3. Similarly, Table 12 shows the comparison of the CPU utiliza-
tion rate. Figures 4–6 show the performance of the three problem instances based on the profit. The horizon-
tal axis represents the number of iterations and the vertical axis represents the profit value. The suggested 
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approach attains the maximum profit in 40 assessments for the small-size instance, which is high compared 
with the other algorithms like FA, GSA, SLGSA, SLPSO, and HSLGSAFA. The standard profit is acquired in 40 
runs of the FA, GSA, SLGSA, SLPSO, and HSLGSAFA, and their average runtimes are specified in Table 9. From 
the results, we clearly understand that our proposed hybrid approach yields better performance compared to 
existing approaches.

Table 9: Parameters of Problem Instances 2 and 3.

Algorithms  
 

Problem instance 1  
 

Problem instance 2  
 

Problem instance 3

Maximum 
profit

  Avg. run 
time (ms)

Maximum 
profit

  Avg. run 
time (ms)

Maximum 
profit

  Avg. run 
time (ms)

GA   7.64   8126   7.68   7498   7.79   9351
GSO   8.01   8624   7.98   8123   7.91   8612
SLPSO   8.41   9471   8.01   8674   7.93   7641
GSO-GA   8.25   9354   8.27   9872   8.94   9541
CBGA-GSO (proposed)  8.91   9547   8.74   9321   9.04   9647

Table 10: Comparison for Memory Utilization Rate.

Average memory utilization rate

Algorithm Instance 1 Instance 2 Instance 3

GA 6,146,141 6,587,414 6,971,789
GSO 5,951,165 6,761,114 6,951,141
SLPSO 4,816,167 7,594,141 7,941,561
GSO-GA 7,164,141 7,646,416 8,046,464
CBGA-GSO (proposed) 6,584,384 6,176,474 8,154,651

Table 11: Comparison for Resource Utilization Rate.

Resource utilization ratio

Algorithm Instance 1 Instance 2 Instance 3

GA 76 79 78
GSO 81 82 78
SLPSO 79 82 84
GSO-GA 74 80 85
CBGA-GSO (proposed) 92 91 93

Table 12: Comparison for CPU Utilization Rate.

Average CPU utilization rate

Algorithm Instance 2 Instance 2 Instance 3

GA 0.445632 0.45335 0.46332
GSO 0.55621 0.54224 0.613325
SLPSO 0.71245 0.68441 0.72335
GSO-GA 0.913254 0.84653 0.79555
CBGA-GSO (proposed) 0.953254 0.85775 0.807566
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7  �Conclusions
In this paper, we have described a method based on a technique to solve the task scheduling problem using 
the hybridization approach. The main problem of task scheduling is how to assign the user task to maximize 
the profit of the IaaS provider while guaranteeing the QoS. By hybridizing the two optimization algorithms 
like the GSO and CBGA, this approach competently attains a high quality of scheduling. In the experimenta-
tions, we have carried out three types of problem instances having various numbers of tasks and applica-
tions. Here, our novel technique achieves the maximum profit of 9.04, which is better compared to that of the 
existing approaches.
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