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Abstract: Conventional integer order differential operators suffer from poor feature detection accuracy and 
noise immunity, which leads to image misalignment. A new affine-based fractional order feature detec-
tion algorithm is proposed to detect syntactic and semantic structures from the backscattered signal of a 
TerraSAR-X band stripmap image. To further improve the alignment accuracy, we propose to adapt a view 
synthesis approach in the standard pipeline of feature-based image alignment. Experiments were performed 
to test the effectiveness and robustness of the view synthesis approach using a fractional order feature detec-
tor. The evaluation results showed that the proposed method achieves high precision and robust alignment 
of look-angle-varied TerraSAR-X images. The affine features detected using the fractional order operator are 
more stable and have strong capacity to reduce sturdy speckle noise.

Keywords: Image alignment, feature detection, feature description, affine camera model, view synthesis, 
fractional derivatives.

1  �Introduction
The standard pipeline for feature-based image alignment (FIA) involves feature detection, feature descrip-
tion, feature matching, and transformation estimation using a homography matrix [2, 15]. The standard 
FIA approach fails mainly due to three reasons: (i) complex and challenging characteristics of TerraSAR-X 
images, (ii) challenging geometric deformation that can arise between source and target image, and (iii) chal-
lenges arising due to inherent speckle noise of TerraSAR-X images. Lepetit and Fua [7] demonstrated that 
generation of supplementary synthetic views from a single-view image helps in improving the performance 
of image matching in optical images. Morel and Yu [13] combined a view synthesis approach with SIFT extrac-
tor and matching. This framework is called Affine SIFT (ASIFT), which improves the matching performance 
significantly. Mishkin et al. [12] combined view synthesis with an affine covariant detector (Hessian Affine 
and MSER) and SIFT matching. The resulting matching approach is called MODS, which outperforms the 
ASIFT approach in terms of the number of true matches and speed. The incorporating view synthesis algo-
rithm in the standard pipeline of FIR has been proved to be effective in finding more precise and correct 
feature correspondences, aligning difficult matching cases, and also improves the performance of feature 
detectors like Hessian Affine [10], MSER [9], and SIFT [8, 11], in terms of addressing the range of deforma-
tions between the images. All these aforementioned observations are made for optical images and may not 
be true for TerraSAR-X images. In this paper, we examine and evaluate the concept of view synthesis, which 
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is of late being used for optical images for aligning complex TerraSAR-X images. It is observed that the incor-
porating view synthesis approach in feature-based image registration addresses the challenging geometric 
deformation that can arise between the source and target images. However, in case of TerraSAR-X images, in 
addition to geometric deformation, we need to address the problems arising due to sturdy speckle noise. To 
counter the problem of inherent speckle noise, we have developed a fractional derivative-based feature detec-
tor to detect robust and affine invariant feature points.

The contributions of our paper are as follows:
–– A new fractional derivative-based affine covariant feature detection algorithm is proposed to detect syn-

tactic and semantic structures from the backscattered signal of TerraSAR-X band stripmap images.
–– The adaptive TerraSAR-X image alignment using view synthesis (AIAVS) with an affine covariant frac-

tional order feature detector is proposed.

Employing view synthesis for SAR image alignment is a recent development, and the literature is limited. 
The rest of the paper is organised in a top-down manner. In Section 2, we introduce the AIAVS. Experimental 
results and analysis for fractional derivative-based affine covariant detector and the AIAVS framework are 
presented in Section 3. Finally, Section 4 concludes the paper.

2  �AIAVS
AIAVS is used to address the challenging geometric deformation that can arise between source and target 
images. Adaptive image alignment algorithm generates synthetic views of TerraSAR-X images and then 
applies the standard image alignment pipeline on an entire set of images until the alignment error is less 
than the threshold. However, in case of TerraSAR-X images, in addition to geometric deformation, we need to 
address the problems arising due to sturdy speckle noise. As the integer order feature detectors fail to detect 
more numbers of feature points, we have developed a fractional derivative-based feature detector to counter 
this problem. In each iteration, features are detected using the proposed fractional derivative-based affine 
covariant detector. Synthetic views generated in each iteration are different to the next iteration. The rest of 
the section describes the stages of the AIAVS algorithm.

–– Stage 1: Synthetic view TerraSAR-X image generation.
–– Stage 2: Local feature extraction using the proposed fractional derivative-based affine covariant detector.
–– Stage 3: Two-way nearest neighbour matching strategy.
–– Stage 4: Transformation estimation, error estimation, and loop iteration.

2.1  �Stage 1: Synthetic View Image Generation

The affine transformation decomposition matrix A was proposed by J. M. Morel:
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where homography matrix H is approximated by affine transformation; scale parameter λ > 0; R1, R2 para-
meters represent rotations; and Tt = t > 1, where t is absolute tilt; φ ∈(0, π) is the longitude w.r.t optical axis; 
and Ψ ∈(0, 2π) is the camera rotation parameter along with optical axis. Therefore, tilt, longitude, and scale 
are the three main parameters involved in generating the views.

2.1.1  �Algorithm for Generating Synthetic Views

–– The Gaussian scale space pyramid is built with Gaussian σ − σbase < 1.
–– The scale space image obtained is rotated using step Δφ − Δφbase/t.
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–– The rotated scale space image is convolved with Gaussian filter in horizontal and vertical direction with 
(σ − σbase) and (σ − t.σbase).

Scale λ, latitude φ, and longitude θ are the three main parameters that determine the number of views that 
can be generated in view synthesis. The images first undergo scale change and then rotations followed by 
tilts. The tilt-t operation is accomplished by employing anti-aliasing filter convolution by a Gaussian filter σh 
in horizontal direction and σv in vertical direction, and shrunk in the same direction by t. Figure 1 shows the 
synthetic views generated for scale {λ} = 1, first tilt 2,t =  angle Δφ = 72/t = 50°, and θ < 180. The number of 
views generated is four, i.e. a = 0°, b = 51.4°, c = 102.84°, and d = 154.2°.

2.2  �Local Feature Extraction Using Fractional Order Derivatives

In TerraSAR images, the grey level intensities between the two adjacent pixels are highly correlated due to 
high self-similarity. These fractal structures of SAR images are very difficult to extract when associated with 
speckle noise. In this paper, we propose a fractional differential-based feature detector to detect complex 
fractal features and describe it using RootSIFT [1].

2.2.1  �Construction of Fractional Differential Masks

Fractional calculus is non-integer order calculus. It is the branch of calculus that generalises the derivative 
of a function to non-integer order [3]. The fractional order differential is more efficient in the detection of 
edges and linear features than integer order differential techniques. The fractional order differential tech-
nique highlights high-frequency components and preserves all the low-frequency components of the image. 
The most commonly used fractional differential operators are the Grünwald-Letnikov, Riemann-Liouville, 
Weyl-Riesz, Erdélyi-Kober, and Caputo operators [6, 14]. The Grünwald-Letnikov derivative of a function f is 
defined as
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Iterating this operation yields an expression for the nth derivative of a function.
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Figure 1: Synthetic Views Generated for Tilt = 2,t  Angle Δφ = 72/t = 50°, θ < 180.
Number of views generated is four, i.e. a = 0°, b = 51.4°, c = 102.84°, and d = 154.2°.
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The above expression can be generalised to any non-integer number because
–– for any natural number, the calculation of the nth derivative is given by an explicit formula;
–– the generalisation of the factorial by the gamma function allows;
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which is valid for non-integer values. Let f(t) be the one-dimensional signal with Ω = [p, q]. The support 
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Γ = gamma function. The signal f(t) is now expressed as
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The two-dimensional fractional derivative mask is obtained by linear filtering [5]. Let the x and y coordi-
nates be x ∈[x1, x2], y ∈[y1, y2].

The partial order fractional derivative of f(x, y) is
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Using Eqs. (8) and (9), a 3 × 3 fractional derivative mask is constructed. Figure 2 shows the images 
obtained after convolving with a fractional mask of order k = 0.1–0.8. It can be observed from Figure 2 that the 
characteristics of the image change as the order of k varies. As the order of k increases, the high-frequency 
responses are highlighted without smoothing the low-frequency components. Hence, the textural, structural 
components are preserved.

2.3  �Proposed Fractional Affine Detector

2.3.1  Algorithm

(i)	 Spatial localisation: First-order derivative filters, like Robert, Prewitt, and Sobel, are convolved with frac-
tional order differential filters to obtain a second-order fractional mask. The gradient image of the first-
order derivative Sobel filter is given as
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The fractional order differential gradient equations in x and y directions are given below:
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The gradient image of the first-order derivative Sobel filter gx in Eq. (10) is convolved with the frac-
tional order differential filter fx in Eq. (12) to obtain a second-order fractional mask Lx.

The gradient image of the first-order derivative Sobel filter gy in Eq. (11) is convolved with the frac-
tional order differential filter fy in Eq. (13) to obtain a second-order fractional mask Ly.

The gradient image of the first-order derivative Sobel filter gx in Eq. (10) is convolved with the frac-
tional order differential filter fy in Eq. (13) to obtain a second-order fractional mask Lxy.

The gradient image of the first-order derivative Sobel filter gy in Eq. (11) is convolved with the frac-
tional order differential filter fx in Eq. (12) to obtain a second-order fractional mask Lyx.

Scale-adapted fractional derivative detector:
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Lx, Ly are fractional second-order image derivatives computed in their corresponding directions using 
the Gaussian scale σD.

The σI decides the present scale at which fractional points are detected in Gaussian scale space and 
also performs weighted averaging of derivatives in eight neighbourhoods. The σD-derivative scale decides 
the Gaussian kernel size.

Cornerness is calculated using the determinant trace of scale-adapted second moment matrix.
Key points are obtained by detecting the local maxima of a point in its eight neighbourhoods. The 

threshold value is used to filter the poor cornerness points. Figure 3 shows the cornerness image for order 
k = 0.8.

(ii)	 Each detected feature point is normalised to be affine invariant using affine shape adaptation.
(iii)	The affine region is assessed iteratively by carefully selecting the integration scale, differentiation scale, 

and spatially localised feature points.

Figure 2: Images Obtained after Convolving the Test Image with the Fractional Mask of Order k (0.1–0.8).
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(iv)	 The affine region is updated with the selected spatial locations and scales.
(v)	 Step (iii) is rerun if the stopping criterion is not met. The stopping criterion is decided based on the eigen-

values of the affine transformation matrix.

It is observed that the fractional differential filter not only maintains the low-frequency contour information 
in the smooth area, but also highlights the high-frequency edge and texture part in the image. This property 
has special advantage and visual effect for the images whose texture information has important meaning. 
Hence, fractional derivative-based affine detector responds very well to textural, structural scenes compared 
to integer order Hessian Affine detector.

2.4  �Stage 3: Two-Way Nearest Neighbour Matching Strategy

The standard first- to second-nearest neighbour ratio matching fails when multiple interpretation of the same 
features are present. The drawback of multiple detections of the same features is enlarged in case of view 
synthesis, as Hessian Affine-detected local feature points often have a response in several synthetic views. 
In order to address this, we use two-way nearest-neighbour matching of the feature descriptors using Bhat-
tacharyya distance.

Let Sx and Ty be the input image pair with corresponding sets of feature points X = Xi and Y = Yj. A match 
between the pair of feature points is established only if Xi is the perfect match for Yj in association with all the 
other feature points in X, and Yj is the perfect match for Xi in association with all the other feature points in Y.

This matching approach improves the alignment accuracy, as the number of true matches obtained using 
the two-way matching approach is higher than that obtained using traditional matching. Figure 4 shows the 
corresponding feature points of two SAR images that vary by a scale factor of 4.5. Figure 4A shows the cor-
respondences obtained using the standard first- to second-nearest neighbour ratio matching strategy, and 

Figure 3: Cornerness Image for (k = 0.8).
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Figure 4B shows the correspondences obtained using the two-way nearest-neighbour ratio (NNR) matching 
strategy. It is also observed that when the scale factor between the image pair increases, two-way matching is 
very robust in finding correspondences where traditional approaches fail.

2.5  �Stage 4: Geometric Verification, Error Estimation, and Loop Iteration

The main aim of the transformation model is to spatially align the reference and sensed image. To increase 
the model robustness, outliers should be detected and removed, and only the matched corresponding inlier 
points should be subjected to transformation. This is achieved using Random Sample Consensus (RANSAC) 
[4], which detects the inliers of the corresponding feature points and estimates the transformation matrix, H. 
The source image can be transformed using H to the coordinate system of the target image. Alignment error 
is computed between the transformed and target images. If the error is above a predefined threshold, the 
process is iterated with increasing the number of views.

3  �Experimental Results and Analysis
The proposed image alignment approach using view synthesis was compared to the standard FIA algorithm 
and ASIFT algorithm. The experimental results were evaluated and tested on 540 TerraSAR-X images.

3.1  �Evaluation Dataset

Though SAR image analysis has been studied extensively, there exists no benchmark dataset of TerraSAR-X 
band images to compare the performance of various algorithms. Both standard and simulated images are used 
to evaluate the performance of the proposed prediction model. In this paper, four TerraSAR-X band images, 
of dimension 10,556*9216 of the same scene but captured at different look angles, are used for the evaluation. 
The specification details are as follows: acquisition mode, spotlight 1 m resolution; wavelength, approximately 
3 cm; polarisation mode, single; polarizing channel, VV; angle of incidence (look angle), 40.9, 41.9, 42.9, 43.9; 
date of acquisition, 12 October 2008; look direction, right. Images of size 850 × 1000 have been cropped from 
these four images to generate 10 target images. Figure 5 shows 10 target images used in our experiments. From 
the standard images acquired by the synthetic aperture radar, the dataset is generated by synthetic alteration 
to incorporate the desired image properties, like scale, rotation, and induced speckle noise.

An area similar to the target image is cropped from the other look-angle SAR images. The source images 
are generated by applying transformations on the same area cropped from a different look-angle SAR image. 
One look-angle image is considered the target image, and another look-angle image transformed by applying 

Figure 4: Comparison of the Proposed Two-Way Nearest-Neighbour Ratio Matching Strategy Using (A) Bhattacharya Distance 
and the (B) Standard First to Second NNR Matching Strategy.
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a known geometric transformation is considered the source image. We have created 10 datasets in which the 
amount of common area (overlap) between the fixed and moving images is varied. The common area between 
the target and source images in dataset 1, 2 is 100%, in dataset 3 is 95%, in dataset 4 is 90%, in dataset 5 is 
85%, in dataset 6 is 80%, in dataset 7 is 75%, in dataset 8 is 70%, in dataset 9 is 60%, and in dataset 10 is 50%. 
In each dataset, there are 54 SAR images; hence, a total of 540 image pairs are generated, as the pairs differ 
in varying degrees of scale, rotation, noise, and overlap. The deformation specifications for each dataset are 
listed in Table 1.

3.1.1  �Evaluation of Fractional Affine Feature Detector

The performance of the fractional affine feature detector is tested on dataset 1, which is composed of 54 
TerraSAR-X images that vary in look angle, scale, rotation, and speckle noise. The results are analysed in the 
following ways:
(i)	 Selection of suitable first-order derivative filter to be convolved with fractional order derivative filter to 

obtain a second-order fractional mask.
(ii)	 Selection of suitable fractional order-k.

Figure 5: Images Obtained after Convolving with the Fractional Mask of Order k (0.1–0.8) with the Test Image.
(A, B) k = 0.1, (C) k = 0.2, (D) k = 0.3, (E) k = 0.4, (F) k = 0.5, (G) k = 0.6, (H) k = 0.7, and (I) k = 0.8.

Table 1: Synthesized SAR Image Dataset with Induced Deformation Details.

Type of deformation   Deformation details   Number of image pairs

Look angle   3° Variation   3
Look angle + scale   Scale factor induced between fixed image If and moving image Im  

  Scale factor = 0.5; If scale down 0.9; Im scale up 1.8  
  Scale factor = 2; If scale up: 1.8; Im scale down to 0.9  
  Scale factor = 2.5; If scale up 1.8; Im scale down to 0.7  
  Scale factor = 3; If scale up 1.8; Im scale down to 0.6  
  Scale factor = 3.5; If scale up 1.8; Im scale down to 0.51  
  Scale factor = 4.5; If scale up 1.8; Im scale down to 0.4   6

Look angle + rotation  Angle of rotation between If and Im varied from 10° to 350°, with 10° intervals   35
Look angle + speckle 
noise

  Induced speckle noise of variance v = 0.04, 0.05, 0.12, 0.16, 0.2, 0.24, 0.25, 
0.32, 0.36, 0.4

  10



372      B. Sirisha et al.: Framework for Image Alignment of TerraSAR-X Images

Selection of suitable first-order derivative filter
Sobel, Robert, and Prewitt are the three classical first-order derivative filters employed to convolve with frac-
tional order derivative filter. The cornerness image generated using this fractional order detector highlights 
high-frequency responses and preserves low-frequency components; hence, the quality of the TerraSAR-X 
image improves by reducing the effect of speckle noise. The performance is measured with the help of peak 
signal-to-noise ratio (PSNR) and mean square error (MSE). These two measures give the estimate of quality 
between the original image and the deformed image. Table 2 shows the PSNR and MSE obtained when the 
Sobel, Robert, and Prewitt operators convolved with the fractional derivative operator for varied orders k = 0.1, 
0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, and 0.9. It is observed from Table 2 that when the Sobel operator convolved with 
the fractional order derivative k = 0.8, the value of PSNR is high and the MSE is low compared to the Robert 
and Prewitt combination. Hence, convolving a Sobel mask with a fractional derivative mask of order k = 0.8 
reduces the effect of speckle noise and gives better feature extraction compared with the fused Robert and 
Prewitt mask.

Selection of suitable fractional order-k
The fractional order differential operator not only preserves the low-frequency contour information in the 
smooth area, but also highlights the high-frequency edge and texture part of the images to aid in better 
feature extraction. However, the optimal selection of the fractional differential order is a crucial problem. 
Repeatability is a measure used to evaluate feature detector performance, which is used to select the optimal 
and suitable fractional order. Repeatability is defined as the ratio of the number of matched points to the 
total number of key points extracted from both images. Figure 6 shows the repeatability values obtained from 
fractional orders k = 0.2, 0.4, 0.6, and 0.8 on a pair of TerraSAR-X images deformed by induced speckle noise 

Table 2: MSE and PSNR of Prewitt with Fractional Operator (P + F), Robert with Fractional Operator (R + F), and Sobel with 
Fractional Operator (S + F) for Fractional Orders k = 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, and 0.9.

k   MSE (P + F)   PSNR (P + F)   MSE (R + F)   PSNR (R + F)   MSE (S + F)   PSNR (S + F)

k = 0.1   1.4096   8.3931   1.2211   9.1561   1.4779   8.1165
k = 0.2   1.4326   8.3012   1.216   9.1778   1.4508   8.2213
k = 0.3   1.3886   8.444   1.2135   9.1883   1.4367   8.2762
k = 0.4   1.4366   8.2756   1.2226   9.1495   1.4859   8.0858
k = 0.5   1.5066   7.9947   1.2401   9.0751   1.5691   7.7721
k = 0.6   1.3924   8.4508   1.2132   9.2898   1.4347   8.2813
k = 0.7   1.6666   7.3992   1.3176   8.8611   1.7509   7.1167
k = 0.8   1.3966   8.4623   1.2155   9.3799   1.4481   8.2917
k = 0.9   2.0766   5.7717   1.5024   8.0228   2.3069   6.3502
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Figure 6: Repeatability Measure for Order k = 0.2, 0.4, 0.6, 0.8 Compared with Hessian Affine.
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of variance 0.05–0.5. The proposed detector performance is compared against the affine invariant integer 
order detector Hessian Affine. It is observed that for fractional order k = 0.8, the repeatability value is high 
and consistent across varied variance values.

We have also tested the performance of the fractional order feature detector on the standard optical 
image registration dataset Oxford Affine. Five pairs of graffiti images of size 800 × 640 that vary in view angle 
with induced speckle noise of variance 0.4 are used for evaluation. A fractional order feature detector of order 
k = 0.8, 0.88, 0.92, and 0.94 is compared against four integer order feature detectors like SIFT, SURF, MSER, 
and Hessian Affine.

It is observed from Figure 7 that for fractional order k = 0.8–0.94, the repeatability values are almost the 
same and consistent; hence, fractional order k = 0.8 is optimal and selected for the experiments to detect 
features. The affine invariant feature points detected for k = 0.8 are described using SIFT variant RootSIFT. All 
the features are stored in a vector array and used for matching.

3.2  �Analysis of the AIAVS Approach

The performance of AIAVS is tested on 540 SAR images that vary in look angle, scale, rotation, and speckle 
noise. The approach is compared against ASIFT and standard FIA. Intel i5 CPU @ 2.6 GHz with 8 Gb RAM, 
single core machine is used for computations. The results are analysed in the following ways:

–– Quantitative assessment is done for 540 synthetically generated SAR images.
–– Iteration (tilt) analysis is done deformation wise.
–– Qualitative assessment of the AIAVS framework is done.

Table 3 shows the quantitative assessment of the AIAVS framework tested deformation wise. It is observed 
that out of 540 SAR images, the AIAVS framework could align 502 image pairs, ASIFT could align 320 image 
pairs, and standard FIA (Hessian Affine detector and SIFT descriptor) could align only 197. It is perceived 
from Table 3 that the AIAVS framework is effective in addressing extreme rotation and scale deformation 
images. Figure 8 shows dataset 1 – source SAR image (A); dataset 1–60° rotated target image (B); the number 
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Figure 7: Repeatability Measure for Fractional Order k = 0.8, 0.88, 0.92, 0.94 is Compared Against Four Integer Order Feature 
Detectors Like SIFT, SURF, MSER, and Hessian Affine.

Table 3: Quantitative Assessment of the AIAVS Approach: Total Number of Aligned SAR Images Deformation Wise.

Total images (540) Look angle (30) Rotation (350) Scale (60) Speckle (100) Total aligned images

FIA 30 34 31 100 197
ASIFT 30 150 40 100 320
AIAVS 30 316 56 100 502
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Figure 8: Dataset 1.
(A) Dataset 1 – source SAR image; (B) dataset 1 – 60° rotated target image; (C, E, G) number of correspondences obtained using 
FIA, ASIFT, and AIAVS; and (D, F, H) output aligned images using FIA, ASIFT, and AIAVS.

of correspondences obtained using FIA, ASIFT, and AIAVS (C, E, G); and the aligned or transformed output 
image using FIA, ASIFT, and AIAVS (D, F, H). Figure 9 shows dataset 2 – source SAR image (A); dataset 2 – 
scale deformed target image (B); the number of correspondences obtained using FIA, ASIFT, and AIAVS (C, E, 
G); and the output aligned images using FIA, ASIFT, and AIAVS (D, F, H). It is observed from Figures 8 and 9 
that the AIAVS approach can align TerraSAR image pairs varying by any affine deformation.

Table 4 shows the iteration/tilt wise analysis. It is observed that the look angle and induced speckle noise 
deformed SAR images could be aligned in first tilt. In the case of scale deformation, most of the images below 
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Figure 9: Dataset 2.
(A) Dataset 2 – source SAR image; (B) dataset 2 – scale deformed target image; (C, E, G) number of correspondences obtained 
using FIA, ASIFT, and AIAVS; and (D, F, H) output aligned images using FIA, ASIFT, and AIAVS.
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scale factor 2.5 could be aligned in first iteration. When the scale factor increases above 2.5, images become 
aligned in subsequent iterations. In case of rotation deformation, we observed that for angles between 10–
120° and 250–355°, varied images could align in first tilt. In rotation deformation for angles between 120° and 
245°, images become aligned in higher iterations. Qualitative assessment of the AIAVS approach is done in 
terms of number of inliers, key point error, and time (seconds). It is observed from Table 5 that the number 
of inliers obtained for the AIAVS approach is high and the key point error is low compared to the ASIFT and 
FIA approaches. The ASIFT algorithm generates a lower number of correct inliers and is slower than AIAVS 
because it employs standard NNR matching criteria, which eliminate one to many correspondences, including 
true correspondences.

4  �Conclusion
AIAVS is used to address challenging geometric deformation that can arise between source and target 
images. However, in case of TerraSAR-X images, in addition to geometric deformation, we need to address the 
problems arising due to sturdy speckle noise. It is observed that integer order feature detectors fail to detect 
more numbers of feature points; hence, we have developed a fractional derivative-based feature detector to 
counter this problem. Incorporating fractional-based affine detector in view synthesis approach improves the 
accuracy of TerraSAR-X image alignment even in the presence of speckle noise.

Table 4: Iteration (Tilt) Analysis: Total Number of Aligned SAR Images Deformation and Iteration/Tilt Wise.

Deformation Iter-1 Iter-2 Iter-3 Iter-4 Iter-5 Iter-6 Not aligned

Look angle (30) 30 0 0 0 0 0 0
Rotation (350) 179 70 41 12 10 4 32
Scale (60) 37 13 3 3 0 0 4
Speckle (100) 100 0 0 0 0 0 0

Total aligned 346 83 44 15 10 4 36

Table 5: Qualitative Assessment of Number of Inliers (I), Key Point Error (KPE), and Time (Seconds) among the FIA, ASIFT, and 
Proposed AIAVS Approaches.

I-FIA I-ASIFT I-AIAVS KPE-FIA KPE-ASIFT KPE-AIAVS Time-FIA Time-ASIFT Time-AIAVS

Look angle deformation
1.2° 280 708 1213 5.98 4.44 0.88 25.8 192 45
1.4° 282 649 1010 6.10 4.65 0.918 26 180 32.5
1.6° 795 2821 3295 2.66 2.24 0.35 38.2 200 52
Rotation deformation
60° 6 22 382 13.32 6.43 4.089 5.5 120 60
130° 8 20 352 10.23 6.95 3.963 8 132 72
240° 7 15 385 14.11 7.258 4.625 6.9 125 69
Scale deformation
2 299 27 1176 5.81 9.203 3.27 30 138 54
3 46 68 899 3.88 1.44 2.30 12.3 131 60
4.5 35 206 200 2.90 1.246 1.65 11.8 250 72
Speckle deformation
v = 0.2 266 389 1052 6.86 4.69 0.56 24.2 160 43
v = 0.32 263 547 1100 7.27 4.78 0.59 24 195 38
v = 0.4 234 573 1142 6.922 4.62 0.63 21.9 189 54



B. Sirisha et al.: Framework for Image Alignment of TerraSAR-X Images      377

Bibliography
[1]	 R. Arandjelovic, Three things everyone should know to improve object retrieval, in: Proceedings of the 2012 IEEE Conference 

on Computer Vision and Pattern Recognition (CVPR), CVPR ’12, pp. 2911–2918, IEEE Computer Society, Washington, DC, 
USA, 2012.

[2]	 L. G. Brown, A survey of image registration techniques, ACM Comput. Surv. 24 (1992), 325–376.
[3]	 K. Diethelm and N. J. Ford, Analysis of Fractional Differential Equations, Springer, Berlin, Germany, 1999.
[4]	 M. A. Fischler and R. C. Bolles, Random sample consensus: a paradigm for model fitting with applications to image 

analysis and automated cartography, Commun. ACM 24 (1981), 381–395.
[5]	 S. Kempfle, I. Schäfer and H. Beyer, Fractional calculus via functional calculus: theory and applications, Nonl. Dynam. 29 

(2002), 99–127.
[6]	 B. T. Krishna, Studies on fractional order differentiators and integrators: a survey, Signal Process. 91 (2011), 386–426.
[7]	 V. Lepetit and P. Fua, Keypoint recognition using randomized trees, IEEE Trans. Pattern Anal. Mach. Intell. 28 (2006), 

1465–1479.
[8]	 D. G. Lowe, Distinctive image features from scale-invariant keypoints, Int. J. Comput. Vision 60 (2004), 91–110.
[9]	 J. Matas, O. Chum, M. Urban and T. Pajdla, Robust wide baseline stereo from maximally stable extremal regions, in: P. L. 

Rosin and A. D. Marshall, eds., BMVC, British Machine Vision Association, Durham, UK, 2002.
[10]	 K. Mikolajczyk and C. Schmid, Scale & affine invariant interest point detectors, Int. J. Comput. Vision 60 (2004), 63–86.
[11]	 K. Mikolajczyk, T. Tuytelaars, C. Schmid, A. Zisserman, J. Matas, F. Schaffalitzky, T. Kadir and L. Van Gool, A comparison of 

affine region detectors, Int. J. Comput. Vision 65 (2005), 43–72.
[12]	 D. Mishkin, J. Matas and M. Perdoch, MODS: fast and robust method for two-view matching, Comput. Vis. Image Under-

stand. 141 (2015), 81–93.
[13]	 J. -M. Morel and G. Yu, ASIFT: a new framework for fully affine invariant image comparison, SIAM J. Imaging Sci. 2 (2009), 

438–469.
[14]	 R. Scherer, S. L. Kalla, Y. Tang and J. Huang, The Grünwald-Letnikov method for fractional differential equations, Comput. 

Math. Appl. 62 (2011), 902–917.
[15]	 B. Zitová and J. Flusser, Image registration methods: a survey, Image Vis. Comput. 21 (2003), 977–1000.


