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Abstract: Liver segmentation is important to speed up liver disease diagnosis. It is also useful for detec-
tion, recognition, and measurement of objects in liver images. Sufficient work has been carried out until 
now, but common methodology for segmenting liver image from CT scan, MRI scan, PET scan, etc., is not 
available. The proposed methodology is an effort toward developing a general algorithm to segment liver 
image from abdominal computerized tomography (CT) scan and magnetic resonance imaging (MRI) scan 
images. In the proposed algorithm, pixel intensity range of the liver portion is obtained by cropping a 
random section of the liver. Using its histogram, threshold values are calculated. Further, threshold-based 
segmentation is performed, which separates liver from abdominal CT scan image/abdominal MRI scan 
image. Noise in the liver image is reduced using median filter, and the quality of the image is improved by 
sigmoidal function. The image is then converted into binary image. The Chan–Vese (C–V) model demands 
an initial contour, which evolves outward. A novel algorithm is proposed to identify the initial contour 
inside the liver without user intervention. This initial contour propagates outward and continues until 
the boundary of the liver is identified accurately. This process terminates by itself when the entire bound-
ary of the liver is detected. The method has been validated on CT images and MRI images. Results on the 
variety of images are compared with existing algorithms, which reveal its robustness, effectiveness, and 
efficiency.

Keywords: Liver segmentation, Chan–Vese model, histogram-based threshold segmentation, computerized 
tomography, magnetic resonance image.

1  �Introduction
Segmentation is an action by which image is fragmented into meaningful non-overlapping structures, which 
have the same attributes like range, color, texture, size, shape, width, height, and intensity [18]. The liver is 
a largest internal organ as well as a gland, which is responsible for hundreds of chemical actions that the 
human body needs. The liver is an organ, which is affected by diseases rapidly because of its microscopic 
anatomy and rich biochemical environment. Thus, liver segmentation is of high priority to plan a surgery 
or chemotherapy pump placement or disease diagnosis [16]. So extracting the liver from computerized 
tomography (CT) scan image or magnetic resonance imaging (MRI) scan image will be of prime importance. 
Considerable work has been done in extracting the liver from CT or MRI image. The existing segmentation 
algorithms are optimized for categorized images for CT scan, MRI scan and a few on positron emission 
tomography (PET) scan. Hence, authors opine that there is a necessity of developing an algorithm to obtain 
accurate and consistent results for all kinds of images. A reliable and accurate segmentation algorithm is 
not yet achieved due to (a) the neighboring organs of the liver like kidneys, heart, stomach, etc., having the 
same intensity level. (b) There is no definite shape, weight, size, volume, or texture for the liver. All these 
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parameters are subjective. (c) The edges are weak. (d) The presence of artifacts in the MRI images or CT scan 
images.

The liver segmentation algorithm extracts the liver from the scan image, which facilitates the measure-
ment of liver parameters like area and volume, which are crucial parameters in liver transplantation. It also 
helps in virtual surgery simulation, speeding up of the disease diagnosis. Manual extraction of the liver image 
from the abdominal scan highly depends on the skill and proficiency of the technician, which may disrupt 
the result. Meanwhile, manual segmentation is also time consuming.

The liver and its neighboring organs have the same intensity levels, and due to the presence of noise in 
the scanned images, it is difficult to find a threshold value required to separate the liver from its neighboring 
organs. The objectives of the proposed algorithm are (1) to reduce user interaction; (2) to design segmen-
tation algorithm, which provides accurate and consistent results for all kinds of images and all types of 
modalities.

2  �Related Work
Chen et al. [2] designed the liver segmentation algorithm in which the Gaussian function is used to find the 
liver likelihood image from the CT scan images and obtained the liver boundary using the Chan–Vese (C–V) 
model. They used morphological operation to improve the results. Song et al. [19] proposed an automatic 
liver boundary marking method, which is based on an adaptive fast marching method (FMM). The liver 
image is separated from the CT scan by manually fixing the pixel intensity between 50 and 200. The median 
filter is applied to reduce noise, and the liver image is enhanced by sigmoidal function. In this method, 
the image is converted into binary, and FMM is applied to find the liver boundary accurately. Wu et al. [20] 
developed a novel method for the automatic delineation of the liver on CT volume images using super-
voxel-based graph cuts. This method integrates histogram-based adaptive thresholding, simple linear 
iterative clustering (SLIC) and graph cut algorithm. Moghbel et al. [11] proposed the random walker-based 
framework. In this, the liver dome is automatically detected based on the location of the right lung lobe 
and rib caged area. The liver is extracted utilizing the random walker method. Ding et al. [3] introduced 
a multi-atlas segmentation approach with local decision fusion for fast automated liver (with/without 
abnormality) segmentation on computational tomography angiography (CTA). Zheng et al. [22] designed a 
feature-learning-based random walk method for liver segmentation using CT images. Four texture features 
are extracted and then classified to determine the probability corresponding to the test images. In this, seed 
points on the original test image are automatically selected. Peng et al. [13] designed a novel multiregion-
appearance-based approach with graph cuts to delineate the liver surface, and a geodesic distance-based 
appearance selection scheme is introduced to utilize proper appearance constraint for each sub-region. 
Platero et al. [14] proposed a new approach to segment the liver from CT scan, which is a combination of 
low-level operations, an affine probabilistic atlas and a multiatlas-based segmentation. Salman et al. [17] 
presented a novel fully automatic algorithm for 3D liver segmentation in clinical 3D CT images based on 
Mahalanobis distance cost function using an active shape model implemented on MICCAI-SLiver07 achiev-
ing accurate results. Lu et al. [9] developed liver segmentation using the three-dimensional (3D)-convolu-
tional neural network, and accuracy of initial segmentation is increased with graph cut algorithm and the 
previously learned probability map. Li et al. [8] developed a technique to detect the liver surface, which 
includes construction of a statistical shape model using the principal component analysis. The Euclidean 
distance transformation is used to obtain a coarse position in a source image. An accurate detection of the 
liver is obtained using the deformable graph cut method. Zheng et al. [4] designed a tree-like multiphase 
level set algorithm for segmentation, based on the C–V model to detect objects in an image. The algorithm 
is effective for images, which have sub-objects in the region. Pramod Kumar et al. [15] proposed an auto-
matic segmentation algorithm to fragment the lung parenchyma, which is the integration of 2D optimal 
threshold selection and 2D reconstruction. Further segmentation results are enhanced by the improved 
chain code and Bresenham pixel interconnection.
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3  �Basic Chan–Vese Model
All the classical snakes and active contour models depend on the image gradient to stop the curve evolution, 
so these models can detect only the objects with edges defined by a gradient [1, 12, 21]. In biomedical images, 
the edges are fragile, and the image is noisy. Hence, the stopping function is never zero on the edges, and the 
curve evolution may pass through the boundary. Chan and Vese [1] designed a new active contour model for 
image segmentation based on region instead of gradient, which is called the C–V model. In this section, the 
original C–V approach [1] is summarized for reader convenience.

Let I(x) be the brightness function of the input image. The image is defined over a 2D area, denoted by 
ℜ. It is assumed that the image contains objects and background, which have constant brightness, denoted 
by Bo and Bb, respectively. Let C represent the closed curve in the image that separates the objects and back-
ground. In the C–V model [1], the following energy function is minimized:
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where λ, λb, λo, μ are parameters of suitably chosen values and practically set greater than or equal to zero. 
Equation (1) can be minimized by taking the function φ(x), x ∈ ℜ, introduced by a value greater than 0 inside 
the objects, less than 0 outside the objects, and equal to zero on the boundaries. Using the Heaviside function, 
it is defined by
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Using equation (2), we can write equation (1) as
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Keeping φ and minimizing the value of f(Bo, Bb, φ) with respect to the constants Bo, Bb, we can take 
following expression for Bo, Bb
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It can be easily seen that the values of Bo(φ) and Bb(φ) have the meaning of average brightness of the 
original image over the areas that are regarded as objects (φ ≥ 0) and background (φ < 0), respectively, in the 
image segmentation. Keeping Bo and Bb fixed and minimizing f(Bo, Bb, φ) with respect to φ, the associated 
Euler–Langrange equation may be obtained and takes the form of
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For practical computation, the author introduced the regularization version of H and its derivation as 
follows:
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Introducing φ(T, x) by parameterizing the descent direction by time T ≥ 0 and taking φ(0, x) = φ(x) (chosen 
initial contour), a system is obtained for solving φ iteratively that can be written in the form of
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where n�  denotes the exterior normal to the boundary δℜ of ℜ, and n
ϕ∂

∂
�  denotes the normal derivation φ 

at the boundary. φo(x) is a signed distance function, and the initial contour is defined as a curve satisfying 
φo(x) = 0.

4  �Algorithm Used for an Automatic Initialization
The C–V model requires an initialization window. A novel algorithm is developed to design the initialization 
window inside the liver, which develops outward until it reaches the liver periphery. The algorithm steps are 
as follows:

Step 1:	 Find the centroid of the liver as (xcent, ycent), take x̅ = 4, y̅ = 4 and the area of the liver.
Step 2:	 Take the initial contour as (ycent, ycent + y̅; xcent, xcent + x̅).
Step 3:	 Initialize stop = 0.
Step 4:	 Generate a signed distance function (SDF) from the initial contour.
Step 5:	 Get the narrow band of the initial contour and find the interior and exterior mean.
Step 6:	 Find the value of the force using the equation.

	 2 2( ) ( )F P U P V= − + − � (11)

	 here U = the interior mean, V = the exterior mean, and P = the pixel coordinate value.
Step 7:	� If the force is less than 1, then increment the x̅, y̅ value and go to step 4, or else, stop, and take (ycent, 

ycent + y̅; xcent, xcent + x̅) as the initial contour.

5  �Methodology
The proposed algorithm has four steps in liver segmentation: (a) pre-processing; (b) finding the pixel inten-
sity range of the liver, i.e. finding Tmin and Tmax to remove the neighboring organs of the liver like the kidney, 
stomach, spleen, and ribs; (c) design of an initialization contour so that the curve evolution starts; (d) apply-
ing the C–V model to mark a boundary for the liver.

(a) Pre-processing: The abdominal CT/MRI scan image is with a 1019 × 682 DICOM color format. First, 
convert the CT/MRI scan image into a grayscale image of size 512 × 512.

(b) Finding the pixel intensity range in the liver: The liver pixel intensity levels vary from patient to 
patient, as well as they vary throughout the liver area. Cropping the liver image is done to study the behavior 
of the pixel intensity variation. This is done randomly without having prior knowledge of the liver image. 
The pixel intensity also depends upon the disease associated with the liver. Hence, getting the liver pixel 
intensity range is a complicated task. In the proposed algorithm, the liver part is cropped, and a histogram 
is obtained. The pixel intensity within the liver varies from 0 to 255. The exact range for a particular patient’s 
liver is obtained from the histogram of the cropped liver section. From the histogram, the pixel intensity range 
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for a particular patient is computed. In the computed range, the maximum pixel intensity level (Tmax) and 
the minimum pixel intensity level (Tmin) are obtained. Using Tmin and Tmax, a threshold-based segmentation is 
performed.
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This separates the liver from its neighboring organs. The noise in the image is reduced by applying a median 
filter. Enhancement of the image is done by sigmoidal function. Then the image is converted into binary.

(c) Initialization contour: An initialization contour is automatically chosen using the centroid of the liver, 
and a force greater than 1 is obtained.

(d) Chan–Vese model: The initialization contour, binary image, and area of the liver are inputs to the C–V 
model. The initialization contour progresses outward and stops at the periphery of the liver. This model is 
used to find the liver outline accurately for the CT scan and MRI scan images.

The image is cropped to the required size from a reference point identified randomly. The histogram of the 
cropped image is obtained. The minimum and maximum pixel values of the histogram are represented as 
the minimum threshold Tmin and maximum threshold Tmax, respectively. The threshold-based segmentation is 
applied on the scanned image to retain only the liver image and remove the neighboring organs. Further, the 
liver image is converted into a binary image. In the next step, the initialization contour is identified inside the 
liver section without user intervention, which grows outward using the C–V model until the complete bound-
ary of the liver is obtained. The flowchart shown in Figure 1 depicts the complete process of identifying the 
contour of the liver image.

Input image (CT/MRI image)

Crop random section of liver image

Obtain a histogram of cropped liver section

Apply Chan-Vese model to identify liver
boundary accurately

Convert image to binary

Chose initial contour within liver section automatically

Reduce noise by median filter

Perform threshold based segmentation

Tmax Tmin

CT/MRI image with liver boundary

Figure 1: Process of Proposed Method.
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6  �Liver Segmentation Evaluation Metrics
Image segmentation plays an imperative role in a wide range of applications. Evaluating the competence 
of the segmentation algorithm for a given application is obligatory both to allow the proper selection of the 
segmentation algorithm as well as to fine tune their parameters for the finest performance. The experimental 
disagreement method is based on the availability of the reference segmented image, also named the ground 
truth image. The discrepancy between a segmented image and a ground truth image is used to gauge the 
algorithm performance. Both images (ground truth and segmented images) are acquired from the same input 
image [21]. The following error measures are adopted to assess the proposed method:

6.1  �Volumetric Overlap Error (VOE)

The VOE between two sets of voxel SSEG and SGT is given in percent and defined as (1 − Jaccardcoefficient), 
where the Jaccard coefficient is the ratio between the intersection and the union of SSEG and SGT. SGT is the 
ground truth image or reference image obtained by manual segmentation under the supervision of an expert, 
and SSEG is the segmented image. The volumetric overlap error is 0% for perfect segmentation and 100% if the 
segmentation and ground truth image do not overlap [10]. The volumetric overlap error lies between 0% and 
100%. This method is one of the most popular methods to evaluate segmentation accuracy and is selected 
for that reason [5, 10].

6.2  �Relative Volume Difference (RVD)

The RVD between the two sets SSEG and SGT is given in percent and defined as 100(| SSEG − SGT |)/| SGT |, with SSEG 
as the segmented image and SGT as the ground truth image [5, 10]. A value of 0 means that both volumes are 
identical or both images overlap with each other [5].

6.3  �Average Symmetric Surface Distance (ASSD)

The ASSD is given in millimeters and based on the surface voxels of two segmentations of SSEG and SGT. Surface 
voxels are defined by having at least one non-object voxel within their 18 neighborhood [10]. For each surface 
voxel of SSEG, the Euclidean distance to the closest surface voxel of SGT is calculated using the approximate 
nearest neighbor technique and stored [10]. In order to provide the symmetry, the same process is applied 
from the surface voxels of SGT to SSEG. The ASSD is then defined as the average of all stored distances, which is 
zero for perfect segmentation algorithm.

Let S(seg) denote the set of surface voxel of segmentation. The short distance of a voxel to S(seg) is 
defined as:

	
seg (seg)( , (seg)) min (| (seg)|)s Sd V S V S∈= − � (13)

where the  |. |  operation denotes the Euclidean distance. The average symmetric surface is then given by
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6.4  �Maximum Symmetric Surface Distance (MSSD)

The MSSD is given in millimeter and determined similar to the previous metric. It is also called the Haudorff 
distance [10]. The differences between both sets of surface voxels are determined using Euclidean distances, 
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and the maximum value yields the maximum symmetric surface distance. For perfect segmentation, this 
distance is 0.

	
SEGSEG (SEG) SEG ( ) SEGMSSD( , ) max[max ( , (SEG)), max ( , )]
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This metric is sensitive to boundary and returns the true maximum error.

7  �Experimental Results and Discussions
The experimental dataset consists of CT scan images and MRI scan images of 50 patients, which are 
provided by M/S CT scan Centre, Hubli, Karnataka, India. Each slice of CT scan is a 1019 × 682-size color 
image.

The results of the CT scan and MRI scan images are shown in Figures 2 and 3, respectively. The original 
CT scan and MRI scan images are shown in Figures 2A and 3A, respectively. Cropping a random section of 
the liver in the CT scan and MRI scan images are shown in Figures 2B and 3B, respectively. The histograms 
of a cropped liver section in the CT scan and MRI scan images are shown in Figures 2C and 3C, respec-
tively. The results of the histogram-based liver separation from its neighboring organs in CT scan and MRI 
scan images are shown in Figures 2D and 3D, respectively. The liver boundary markings in CT scan and 
MRI scan images are shown in Figures 2E and 3E, respectively. The ground truth images of the CT scan and 
MRI scan images are shown in Figures 2F and 3F, respectively.

The experimental results of three CT scan images and three MRI scan images are shown in Figures 4 
and 5, respectively; column A shows the original CT scan images and MRI scan images, column B shows the 
liver boundary markings in the CT scan images and MRI scan images, and column C shows the ground truth 
images of the CT scan images and MRI scan images.

Figure 2: Illustration of liver extraction from CT scan using proposed method.
(A) Original CT Scan Image. (B) Cropping Random Section of Liver. (C) Histogram of Cropped Liver Section. (D) Result of 
Histogram-Based Segmentation. (E) Liver Boundary in CT Scan. (F) Ground Truth Image.
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Figure 3: Illustration of liver extraction from MRI scan using proposed method.
(A) Original MRI Scan Image. (B) Cropping Random Section of Liver. (C) Histogram of Cropped Liver Section. (D) Result of 
Histogram-Based Segmentation. (E) Liver Boundary in MRI. (F) Ground Truth Image.

Figure 4: Experimental Results of Proposed Method for CT Scan Images.
(A) Original CT scan image; (B) CT scan with liver boundary; (C) ground truth image.
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8  �Comparison with Existing Methods and Discussions
In this section, the performance of the proposed method is compared with the C–V model [1], with specifica-
tions: µ = 0.1, number of iterations = 170, and initial contour position = [330, 310; 340, 330].

The LSE (level set evolution) model [7] demonstrated the segmentation process. The analysis was per-
formed on the CT scan image with the following specifications: μ = 1.0, ε = 1.0, time step = 0.1, ς = 4, initial 
contour position = [160, 220; 190, 240], number of iterations = 10.

The RSF (region-scalable fitting] model [6] demonstrated the segmentation process, and the analysis 
was performed on the CT scan image with the following specifications: ς = 3.0, ε = 1.0, μ = 1.0, time step = 0.1, 
λ1 = 1.0, λ2 = 1.0, number of iterations = 25, initial contour position = [160, 200; 180, 200].

The comparison results of the proposed method and existing methods are shown in Figure 6. The original 
CT scan image and MRI scan image are shown in column A; the results of the original C–V model on the CT 

Figure 5: Experimental Results of Proposed Method for MRI Scan Images.

Figure 6: Comparison Result of Proposed Method with Existing Method.
Column (A) Original CT Scan and MRI Scan. (B) Result of C–V Model on CT Scan and MRI Scan. (C) Result of LSE Model on CT Scan 
and MRI Scan. (D) Result of RSF Model on CT and MRI Scan Image. (E) Result of Proposed Model.
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scan and MRI scan images are shown in column B; the results of the LSE model are shown in column C; the 
results of the RSF model are shown in column D; the results of the proposed model are shown in column E.

The proposed algorithm, the original C–V model, the LSE model, and the RSF model were tested for 
50 images of the CT scan and 50 MRI scan images. The VOE (in %) for the proposed method and existing 
method were calculated for the 50 CT scan images and 50 MRI scan images and are shown in Figures 7 and 
8, respectively. The RVD (in %) for the proposed method and existing method were calculated for the 50 CT 
scan images and 50 MRI scan images and are shown in Figures 9 and 10, respectively. The ASSD (in mm) for 
the proposed method and existing method were calculated for the 50 CT scan images and 50 MRI scan images 
and are shown in Figures 11 and 12, respectively. The MSSD (in mm) for the proposed method and existing 
method were calculated for the 50 CT scan images and 50 MRI scan images and are shown in Figures 13 and 
14, respectively. Tables 1 and 2 represent the average VOE in %, RVD in %, ASSD in mm, and MSSD in mm 
using the CT scan and MRI scan images, respectively.

The liver and its neighboring organs have the same intensity level distribution, due to more noise and 
blurry edges. All three existing algorithms have limitations, resulting in an inaccurate detection of the exact 
liver section. The proposed methodology fully exploits the intensity distribution information by cropping the 
random section of the liver and its segmentation resulting in a successful separation of the liver image from 
its neighboring organs.

In the C–V, LSE, and RSF models, it is necessary to identify the initial contour and number of iterations 
manually. These parameters will affect the segmentation results. In the proposed method, there is no need to 
identify the number of iterations and initial contour. Once the complete liver boundary is detected, the results 
will be displayed on the computer screen. The initial contour is identified without user intervention.
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9  �Conclusions
This paper designs the universal liver segmentation method, which can be implemented on MRI images as 
well as on CT images. The histogram-based threshold segmentation is used to separate the liver from its 
neighboring organs, and the improved C–V model is utilized to find the periphery of the liver. The novel 
approach is designed to detect the initial contour automatically, which evolves outward until it reaches the 
liver boundary. This can be used in finding the area and volume of the liver, which is required for physicians 
for liver disease diagnoses and liver transplantation. This method can be used for other modalities without 
any change as well as to find the outline of other organs.
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