
J. Intell. Syst. 2020; 29(1): 345–363

Ahmed A. Abusnaina*, Rosni Abdullah and Ali Kattan

Self-Adaptive Mussels Wandering
Optimization Algorithm with Application for
Artificial Neural Network Training
https://doi.org/10.1515/jisys-2017-0292
Received June 17, 2017; previously published online February 21, 2018.

Abstract: The mussels wandering optimization (MWO) is a recent population-based metaheuristic optimi-
zation algorithm inspired ecologically by mussels’ movement behavior. The MWO has been used success-
fully for solving several optimization problems. This paper proposes an enhanced version of MWO, known as
the enhanced-mussels wandering optimization (E-MWO) algorithm. The E-MWO aims to overcome the MWO
shortcomings, such as lack in explorative ability and the possibility to fall in premature convergence. In addi-
tion, the E-MWO incorporates the self-adaptive feature for setting the value of a sensitive algorithm param-
eter. Then, it is adapted for supervised training of artificial neural networks, whereas pattern classification of
real-world problems is considered. The obtained results indicate that the proposed method is a competitive
alternative in terms of classification accuracy and achieve superior results in training time.

Keywords: Mussels wandering optimization, self-adaptive, metaheuristic, neural networks, pattern
classification.

1 �Introduction
The artificial neural network (ANN) is an interconnected set of nodes (artificial neurons) via a series of
adjusted weights. These neurons use a mathematical model for information processing to accomplish a
variety of tasks such as identification of objects and patterns, making decisions based on prior knowledge,
and prediction of future events based on past experience [9, 15, 37].

The ANN can be applied to determine a nonlinear relationship between a set of features by iterative
training of neurons using the obtained data from the environment [4, 25]. The training process of the ANN
deals with adjusting the connection weights and/or structure of the network depending on a specific training
algorithm [12]. The search space of the ANN connection weights is considered as a continuous optimization
problem because it is high dimensional and multimodal; also, it could be corrupted by noises or missing data
[22, 28].

The supervised training of the ANN has been tackled by two main paradigms: gradient descent (GD) and
population-based metaheuristic (P-Metaheuristic) algorithms. The GD paradigm uses the error gradient to
descend the error surface, such as the back-propagation (BP) and Levenberg–Marquardt (LM) algorithms.
The derivative of the error function is computed in order to adjust the network weights. The GD suffers from
convergence slowness and high possibility to fall into local minima [24, 45]. On the other hand, the algo-
rithms in the P-Metaheuristic can work on different and multiple regions of the solution space for the same
problem simultaneously via a set of individuals [13]. The P-Metaheuristic might be more efficient by concern-
ing the exploration ability of the whole search space and obtaining an acceptable solution [19, 39]. However,

*Corresponding author: Ahmed A. Abusnaina, Department of Computer Science, Faculty of Engineering and Technology, Birzeit
University, Birzeit, Ramallah, Palestine, e-mail: aabusnaina@birzeit.edu
Rosni Abdullah: School of Computer Sciences, Universiti Sains Malaysia, 11800, Penang, Malaysia
Ali Kattan: IT Department, Ishik University, Qazi Muhammad, Erbil, Iraq

 Open Access. © 2020 Walter de Gruyter GmbH, Berlin/Boston. This work is licensed under the Creative Commons Attribution
4.0 Public License.

mailto:aabusnaina@birzeit.edu

346      A.A. Abusnaina et al.: Self-Adaptive Mussels Wandering Optimization Algorithm

the P-Metaheuristic algorithms might have higher computational cost and more complex structures [19, 47],
whereas the performance often depends on the algorithm settings and the problem characteristics [31].

The mussels wandering optimization (MWO) algorithm is a recent and novel P-Metaheuristic algorithm,
inspired ecologically for global optimizations by An et al. [6]. The MWO models the mussels’ movement
behavior when they form a bed pattern in their surrounding habitat to solve complex optimization problems.
The MWO depends on the stochastic decision and Levy walk in order to find the optimal solution. The Levy
walk is efficient, provides faster diffusion, and prevents revisiting the same sites [14]. The MWO maintains
information about the previous useful solutions, unlike other algorithms [e.g. the genetic algorithm (GA)] that
destroys the previous knowledge of the solution [53]. Also, the MWO uses primitive mathematics, and it does
not have a special kind of operators (e.g. mutation and crossover). In addition, the MWO has the advantage
of working in parallel on a multiple set of solutions, as this feature is common for the P-Metaheuristic algo-
rithms. It also inspires the cooperation, competition, and information sharing among the mussel population,
which enhance the ability of searching for the global optimal solution.

In this paper, the MWO is analyzed, and its pros and cons are discussed. An enhanced version of the
MWO (specifically the E-MWO algorithm) is proposed to overcome the MWO shortcomings. The E-MWO is then
adapted for supervised training of the ANN to perform pattern classification. The proposed method aims to
minimize the ANN training time and achieve better classification accuracy. These objectives are validated by
making use of several real-world benchmark classification problems.

The rest of this paper is organized as follows: Section 2 presents the related work on the ANN train-
ing methods. Section 3 describes the MWO algorithm. Section 4 presents the proposed E-MWO algorithm.
In Section 5, the adaptation of the MWO-based algorithms for training the ANN is demonstrated. Section 6
presents the experimental setup, and Section 7 discusses the obtained results. Finally, Section 8 concludes
the paper.

2 �Related Work
The P-Metaheuristic algorithms are inspired from various aspects in the real world. Many of these algorithms
are inspired from the biological processes in the living creatures or from social interactions among animals.
Several P-Metaheuristic algorithms have been employed for supervised training of the ANN; however, this
section will focus on the rival methods.

The GA has been used for training the ANN in three different approaches. The first one involves optimiz-
ing the weights of the ANN with a fixed structure [16, 18, 42, 43]. Some of these methods were evaluated based
on using simple logic problems such as XOR, encode–decode, and parity problem. The second approach is
using the GA for constructing a suitable ANN structure [44]. The last approach is employing the GA by evolv-
ing both structure and weights of the ANN [12, 38].

The harmony search algorithm (HSA), inspired from the improvisation process of musicians, was
adapted for training the ANN by Kattan and Abdullah [31], where both the sum squared error (SSE) and
classification error percentage (CEP) error calculation methods are used as fitness function. The training
process was terminated by reaching the maximum number of improvisations (i.e. iterations), and only four
datasets are considered in their study. A new variant of HSA that has the property of adaptive setting for a
sensitive HSA parameter by utilizing the ratio of best-to-worst harmony (HS-BtW algorithm) was proposed
by Kattan et al. [30, 32]. The HS-BtW was adapted for training the ANN, whereas the termination criterion
depends mainly on the quality measure of the solutions and number of improvisations. Different variations
of the HSA were also used for training the ANN such as the HSA, self-adaptive global best HS, and impro-
vised harmony search (IHS) by Kulluk et al. [34, 35].

Both the ANN weights and structure were evolved by an approach called ESPNet [53]. ESPNet employed
the standard particle swarm optimization (PSO) and discrete PSO (DPSO). The network structure dimension
is represented by bits and manipulated by the DPSO, while the connection weight dimension is represented
by real values and manipulated by the PSO, whereas individuals are represented by a matrix–hierarchy

A.A. Abusnaina et al.: Self-Adaptive Mussels Wandering Optimization Algorithm      347

structure. Only two datasets were used for evaluation, and they were not compared against other training
methods. The ESPNet results were good in generalization ability; however, additional cost in terms of com-
putational time was incurred. The Multi-dimensional PSO (MDPSO) was used for training the ANN by evolv-
ing its structure rather than weights [33]. The mean squared error (MSE) was used as a fitness function,
whereas the 10-bit parity and another three classification problems were used for evaluation. The results of
the MDPSO were compared against other variants of the PSO, GA, and BP. The MDPSO results were argued
to be superior in terms of generalization ability; however, further improvements were suggested in terms of
speed and accuracy. Different topologies of the PSO individuals are used for the purpose of training the ANN,
which are proposed in Refs. [41] and [49].

Other P-Metaheuristic algorithms are still employed for ANN training, such as the artificial bee colony
(ABC) [11, 28], ant colony optimization (ACO) [10, 40, 46, 50], and group search optimizer (GSO) [22, 23].
Paradigms other than the GD and P-Metaheuristic exist in literature with the aim of training the ANN. Hybrid
methods that combine the GD and P-Metaheuristic have been proposed to improve upon the GD algorithms,
such as the GA with BP [5] and PSO with BP [51]. However, the advantages of those methods are arguable [11].
Algorithms that are based on single-solution metaheuristic are also used, such as simulated annealing [36].

The P-Metaheuristic algorithms are employed for supervised training of the ANN, to overcome the draw-
backs of the GD learning algorithms such as slowness, local minima, necessity of using differentiable activa-
tion function, and training oscillation [28, 30]. However, the P-Metaheuristic algorithms still suffer from high
computational cost, complex structures, and sensitivity to parameter settings, which might lead to different
performance measurements.

3 �Mussels Wandering Optimization Algorithm
The MWO is essentially an algorithm that applies an optimization, stochastic, and metaheuristic process
seeking to find the best solution for a given problem [6]. Starting by a randomized population of candidate
solutions, an iterative process is conducted until a certain measure is reached.

Through the MWO algorithm, the population of mussels consists of N individuals. These individuals are
in a certain spatial region of marine bed called the habitat. The habitat is mapped to a d-dimensional space
Sd of the problem to be optimized, where the objective function value f(s) at each point s ∈ Sd represents the
nutrition provided by the habitat. Each mussel has a position xi := (xi1, …, xid); i ∈ N, which therefore forms a
specified spatial bed pattern.

The MWO algorithm is initialized with a population of random candidate solutions. Each mussel is
assigned a randomized position. Then, it iteratively moves through the solution space. The mussel popu-
lation is attracted toward the location of the global-best mussel (the global-best mussel is the mussel that
has the best fitness value) achieved so far across the whole population. The MWO algorithm is composed
of six main steps, which are as follows: (1) Initialize the mussel population and the algorithm parameters.
(2) Calculate the Euclidean distance (Dij), range references (rs and rl), and range densities (ζs and ζl) for each
mussel. (3) Determine the movement probability (Pi) for each mussel. (4) Update the position of the mussels.
(5) Evaluate the fitness of each mussel after position updating and perform the global-best selection scheme.
(6) Examine the termination criteria; if it is not satisfied, then go back to step 2. Figure 1 shows the flowchart
of the MWO, where the detailed MWO is given in Algorithm 1. The set of equations that is used by the MWO is
demonstrated in Table 1.

The MWO algorithm has been used to solve nonlinear unimodal and multimodal benchmark functions
[6]. Most of the multimodal functions have many local optima, and these optima exponentially increase
with the dimension space. A new clustering algorithm by combining the K-means clustering method and
the MWO is currently proposed by Yan et al. [52]. Tests on six standard datasets are performed, whereas the
results demonstrate the validity and superiority of their proposed method over some representative cluster-
ing ones. Also, the K-MWO is used for clustering the time-sharing characteristic of the household energy
consumption [7].

348      A.A. Abusnaina et al.: Self-Adaptive Mussels Wandering Optimization Algorithm

Calculate distances and densities of mi

Initialize mussels population and
set the MWO parameters

Determine movement probability of mi

Update the position
of mussel mi

Output the optimized results

Move?

Stop?

Yes

No

No

Yes

Selection scheme
(Find the global -best mussel mg)

Mussels
finished?

No

Yes

i = 0

Calculate the fitness of mussel mi
i = i+1

Start

End

Figure 1: MWO Flowchart.

The MWO algorithm showed the ability of training the ANN in considerably low convergence time, while
the classification accuracy was mostly at par with other rival training methods. However, it was noticed that
the MWO has some shortcomings that limit its performance [1–3]. The MWO might terminate prematurely
due to the high selective pressure on the global-best mussel. The coefficients and parameters of the MWO
must be determined statically before the run time. However, some of these parameters are sensitive to the
optimization problem, and they highly affect the algorithm performance, especially the shape parameter (μ)
(see Refs. [2] and [6]). The MWO depends on the single-step approach to update the mussel position during
the searching process for the best place. The use of this single-step approach shows the lack in the explora-
tive ability of the MWO. The MWO depends on the number of iterations as a termination condition. Using
this condition, even if the candidate solutions are not good enough, the MWO will continue its run until it
reaches the whole number of iterations. This behavior might incur unnecessary iterations that will not lead
to a better solution. An initial idea for enhancing the MWO was proposed by Abusnaina et al. [2] to achieve
better performance.

A.A. Abusnaina et al.: Self-Adaptive Mussels Wandering Optimization Algorithm      349

Table 1: List of Equations Used in MWO Algorithm [6].

Eq. (A.1):   1
22

1
: || || ()d

ij i j ik jkk
D x x x x

=
 = − = −  ∑

  Dij: spatial distance between mussels mi and mj in Sd

N: number of mussels. i, j ∈N

Eq. (A.2):   ,

,

() : . { ()}/
() : . { ()}/
s i j N ij

l i j N ij

r t max D t
r t max D t

α δ

β δ
∈

∈

 =
 =

  rs: short-range reference. rl: long-range reference. α,
β are positive coefficients with α < β. maxi,j∈N{Dij(t)}:
is the maximum distance among all mussels at
iteration t. δ: scale factor of space

Eq. (A.3):
Eq. (A.4):

  ζsi = #(Di < rs)/(rsN)
ζli = #(Di < rl)/(rlN)

  ζsi: short-range density, ζli: long-range density,
where #(A < b) is used to compute the count in set A
satisfying a < b; a ∈ A. Di is the distance matrix from
mussel mi to other mussels

Eq. (A.5):   1 if
:

0 otherwise
si li

i

a b c z
P

ζ ζ − + >= 


  a, b, and c are positive constant coefficients. z:
is a value randomly sampled from the uniform
distribution [0,1]

Eq. (A.6):   ℓi = γ[1 − rand()]−1/(μ−1)   ℓi: step length, μ: is the shape parameter, which is
known as the Levy exponent; 1 < μ < 3. γ: the walk
scale factor

Eq. (A.7):   if 1
` :

if 0
i i g i

i
i i

x P
x

x P
 + ∆ ==  =

�   x̀i: the new mussel-position coordinate. xi: the
current mussel-position coordinate. xg: the position
coordinate of the global-best mussel (mg). Δg = xi − xg

Algorithm 1: The MWO Algorithm.

1: Initialization:
2: Set t = 0;
3: For (mussel mi, i = 1 to N) do
4:  Uniformly randomize the initial position xi (0) for each mussel mi from the range [xmin, xmax]
5:  Calculate the initial fitness value of the mussel f(xi(0))
6: end for
7: Find the global-best mussel mg and record its position as xg

8: Iteration:
9: while (t ≤ MaxIterations) do
10:  for (mussel mi, i = 1 to N) do
11:   Calculate the distances Dij from mi to all other mussels by Eq. (A.1);
12:   Calculate short-range reference rs(t) and long-range reference rl by Eq. (A.2);
13:   Calculate short-range density ζs and long-range density ζl by Eq. (A.3) and Eq. (A.4);
14:   Compute the moving probability pi(t) according to Eq. (A.5);
15:   If (Pi(t) = 1) then
16:    Generate step length ℓi(t) by Eq. (A.6)
17:   else
18:    ℓi(t) = 0
19:   end if
20:   Update the mussel position coordinate x̀i(t) using Eq. (A.7) according to mussel mg

21:   Calculate the new fitness value after the mussel update its position coordinate f(x̀i(t))
22:  end for
23:   Rank all mussels by their fitness and Find the global-best mussel (mg) and update the best position xg

24:   Set t = t + 1;
25: end while
26: Output the optimized results and end the algorithm

4 �Enhanced-Mussels Wandering Optimization Algorithm
The E-MWO algorithm is proposed to overcome the shortcomings of the MWO in order to solve the optimiza-
tion problems more efficiently, especially improving the classification accuracy of the ANN. A new hybrid-
selection scheme is introduced to cope with the premature convergence problem. The value of the sensitive

350      A.A. Abusnaina et al.: Self-Adaptive Mussels Wandering Optimization Algorithm

parameter μ is set dynamically and adaptively depending on the quality of the candidate solutions. The
multi-step length approach is used in order to make the algorithm more explorative to the solution space.
Another improvement lies in terminating the E-MWO algorithm depending on the dynamic quality of the
solutions instead of the iteration number only.

4.1 �Hybrid-Selection Scheme

The original MWO algorithm uses the global-best mussel as guidance to update the position of all other
mussels [see Eq. (A.7) in Table 1]; however, this selection scheme is good at the early iterations of the opti-
mization process. Typically, the fitness of the global-best mussel (mg) becomes steady for a large number
of iterations at the late stage of the optimization process. The SteadyState means the fitness value of the
global-best mussel ()

gm
f does not change; the mussel is stuck at the same position, and no further improve-

ment to the solution could be produced. This phenomenon can be referred to as the problem of premature
convergence [17].

This problem is solved by the E-MWO by hybridizing two selection schemes simultaneously: the global-
best and random selection schemes. At any iteration t, the mussel population will follow the global-best
mussel (mg) in updating their positions as long as the SteadyState is not detected. However, if the SteadyState
is detected as demonstrated in Eq. (2), the fitness value of the global-best mussel does not improve for the
last T of iterations. Another mussel is selected randomly from the best-M of mussels. The randomly selected
mussel will be used as a guidance mussel. Through the E-MWO, the guidance selected mussel (ms), which
is followed by other mussels during the position update, is either the global-best mussel or the randomly
selected mussel; thus, new regions of solution space could be explored.

	
ψ

 = −= 


1 () (1)
()

0 Otherwise
g gm mf t f t

t
�

(1)

	

()ψ
= −

=
 == 


∑ `

`1 ()
0 Otherwise

t t T

t t
t TStdState

�
(2)

where the steady state is detected if stdState = 1, ()
gm

f t is the fitness value of the global-best mussel at itera-
tion t, T is the number of iterations to detect the SteadyState, and t̀ is the current iteration number.

The best-M of the mussels is a subset from the whole mussel population; the best-M ⊂ mussels popula-
tion. In order to determine the best-M of the mussels, sorting the mussel population is performed based on
their fitness values. Appendix A illustrates an example of how the best-M is determined. The following line
numbers in Algorithm 2 includes the proposed hybrid-selection scheme: 3, 8, 18, 27, 28, 29, 30, and 31. The
formula of updating the mussel position [i.e. Eq. (A.7) in Table 1] used by the MWO is rewritten in Eq. (3) and
is used by the E-MWO in order to adapt the new modifications that are made to the selection scheme.

	

∆ + ==  =

� () 1
`

() 0
i ik s i

i
i i

x P t
x

x P t
�

(3)

where x̀i is the new mussel-position coordinate, xi is the current mussel-position coordinate, and xs is the posi-
tion coordinate of the selected-mussel (ms). Δs = xi − xs.

4.2 �Self-Adaptive Setting of Shape Parameter (μ)

Achieving the best performance for the MWO depends on choosing the proper value of μ [1, 2, 6]. However,
finding this proper value needs conducting many empirical experiments by trail-and-error. The μ value is
important for the MWO as it is used to determine the extent of mussel movement, as the mussel move from its

A.A. Abusnaina et al.: Self-Adaptive Mussels Wandering Optimization Algorithm      351

current position to another toward the global-best mussel [see Eq. (A.6) in Table 1]. Adding the self-adaptive
feature to the E-MWO will allow setting the value of μ dynamically and adaptively depending on newly intro-
duced quality measurements: the similarity ratio (SR) and update ratio (UR), as shown in Algorithm 2 through
Lines 24, 25, and 26.

The instantaneous similarity ratio (iSR) is calculated at each iteration. It is the ratio of the number of
mussels that have the same fitness value at a certain iteration t divided by the population size of the mussels.
The iSR has a fluctuation value, and it does not provide sufficient information on how much the solution has
converged. More discussion will be provided in the Results section. Therefore, a more accurate and stable
measure is desired. The overall similarity ratio (SR) is used, which returns the accumulative average of the iSR
over the number of iterations consumed to reach the current solution; the iSR and the SR are given in Eqs. (5)
and (6), respectively. Appendix B illustrates a numerical example for calculating the iSR and the SR.

	
ϕ

 = ≠= 


1 () ()
()

0 Otherwise
i jf m f m i j

i
�

(4)

	

ϕ
== ∑ 1

()
()

N

i
R

i
iS t

N �
(5)

Algorithm 2: The E-MWO Algorithm.

1: Initialization:
2: Set t = 0;
3: Define SteadyState = the fitness value of the global-best mussel ()()

gmf is the same for the last T iterations
4: for (mussel mi, i = 1 to N) do
5:  Uniformly randomize the initial position xi(0) for each mussel mi from the range [xmin, xmax]
6:  Calculate the initial fitness value of the mussel f(mi(0))
7: end for
8: Find the global-best mussel (mg), record its position, and set it as selected mussel ms

9: Iteration:
10: while (t ≤  MaxIterations AND UR(t) ≥ ε1 AND SR(t) ≤ ε2) do
11:  for (mussel mi, i = 1 to N) do
12:   Calculate the distances Dij from mi to all other mussels by Eq. (A.1);
13:   Calculate short-range reference rs(t) and long-range reference rl(t) by Eq. (A.2);
14:   Calculate short-range density ζs and long-range density ζl by Eq. (A.3) and Eq. (A.4);
15:   Compute the moving probability Pi(t) according to Eq. (A.5);
16:   if (Pi(t) = 1) then
17:    Generate all steps length ℓi0(t) to ℓik(t) by Eq. (A.6)
18:    Update the mussel position coordinate x̀i(t) using Eq. (3) according to ms

19:    Calculate the new fitness value after the mussel update its position coordinate f(x̀i(t))
20:   else
21:    Set all steps length ℓi0(t) to ℓik(t) to 0
22:   end if
23:  end for
24:  Calculate the iSR(t) by Eq. (5) and SR(t) by Eq. (6)
25:  Calculate the UR(t) by Eq. (8)
26:  Calculate the new value of shape parameter μ(t) by Eq. (9)
27:  Rank all mussels by their fitness and Find the global-best mussel and set it as selected mussel ms

28:  Check the SteadyState
29:  if (SteadyState is detected) then
30:   select a mussel randomly from the best-M of the mussels population and set it as selected mussel ms

31:  end if
32:  Set t = t + 1;
33: end while
34: Output the optimized results and end the algorithm

352      A.A. Abusnaina et al.: Self-Adaptive Mussels Wandering Optimization Algorithm

	

=

== ∑ `

1()
t t

Rt
R

iS
S t

t �
(6)

where f(mi) is the fitness value of the mussel mi at iteration t, N is the mussel population size, and t̀ is the
current iteration number.

The UR provides information about the dynamicity of the population. It returns the ratio of the number of
mussels that update their positions and move to a new place at a certain iteration t over the mussel popula-
tion size. The UR formula is given in Eq. (8).

When μ is small, i.e. 1.0 < μ ≤ 1.4, or μ is large, i.e. 2.0 ≤ μ < 3.0, the performance of the MWO is weak, e.g.
the trained ANN has poor classification accuracy. In addition, it is founded empirically that the UR becomes
very small and the SR becomes very high in these ranges of μ [2]. A low value of UR and a high value of SR
means that the mussel population is stuck almost at the same place. In other words, the diversity of the
population is very low, and the MWO algorithm seems to fall in the premature convergence. The property of
setting the value of μ adaptively and dynamically is necessary, therefore, keeping the UR as high as possible
and the SR as small as possible. Also, setting the μ adaptively is vital to avoid performing tedious experiments
for finding the proper value of μ. Equation (9) demonstrates the calculation of the dynamic and self-adaptive
μ value at any iteration t.

	
φ

= 


1 if update its position
()

0 Otherwise
imi

�
(7)

	

φ
== ∑ 1

()
()

N

i
R

i
U t

N �
(8)

	 µ µ λ λ= + +1 2() () ()c R Rt S t U t � (9)

where N is the mussel population size, μc is the shape parameter constant, and λ1 and λ2 are coefficients.

4.3 �Multi-Step Length Approach

The step length (ℓ) is used in the MWO to update the mussel position [see Eqs. (A.6) and (A.7) in Table 1]. The
original MWO uses a one-step length to update the mussel-position coordinate, i.e. all coordinates changed
with the same length extent. Using a single-step length might cause a lack in the explorative ability of the
MWO. The E-MWO uses a multi-step length rather than once. Each category of the mussel-position coordinate
is assigned a separate step length.

Utilizing the multi-step length approach will improve the explorative ability of the mussel population to
the solution space using sufficient randomness into the step length extent. The increase in the explorative
ability will enhance the diversity of the mussel population [54]. However, maintaining the population in a
balanced degree of diversity is essential to ensure that the solution space is adequately searched [21]. The
multi-step length approach is proposed in Algorithm 2, in Lines 17, 18, and 21.

For instance, if the E-MWO is used to train a four-layer ANN, then each mussel (mi) will use a three-step
length; the number of steps is equal to the number of ANN layers minus one as follows: ℓi1: Input  −  Hidden1,
ℓi2: Hidden1  −  Hidden2, ℓi3: Hidden2  −  Output.

4.4 �Dynamic Termination Criterion

The termination criterion for the E-MWO depends mainly on the dynamic quality measurements of the can-
didate solutions. The calculation of these measures is performed repetitively at each iteration. The quality
measure includes two newly introduced measurements: the UR and the SR. These two measures are utilized
to guide the E-MWO as to when to terminate its process. The SR and the UR are the same variables used in

A.A. Abusnaina et al.: Self-Adaptive Mussels Wandering Optimization Algorithm      353

setting the proper value of μ, which were given earlier in Eqs. (6) and (8), respectively. At any iteration t, the
UR(t) should not be less than ε1, while the SR(t) should not exceed ε2. As the inequality relations shown below
are preserved as the candidate solutions are properly converged to the optimal solution, accordingly, better
performance is supposed to be achieved (Algorithm 2 at Line 10).

UR(t) ≥ ε1 AND SR(t) ≤ ε2,

where ε1 and ε2 are constant values determined experimentally.
However, the MaxIterations is still used as an auxiliary condition to stop the E-MWO in order to limit the

number of iterations if the quality measures are unable to trigger the termination of the algorithm. Further-
more, using the MaxIterations condition will guarantee that the best solution will be produced at a reason-
able amount of time.

The aforementioned new parts and the proper modifications made over the original MWO is combined
and form the E-MWO algorithm as shown by Algorithm 2. Equations (A.1) and (A.6) used by the E-MWO are
the same equations used by the original MWO, which are presented in Table 1, while the other equations are
already defined and explained earlier throughout this section.

It is worth mentioning that the update of the mussel position and the calculation of the new fitness are
performed only if the movement probability is Pi (t) = 1, through Lines 18 and 19 in Algorithm 2. While the
MWO always performs these operations regardless of the value of Pi (t) (Lines 20 and 21 in Algorithm 1), this
would incur unnecessary calculations for these operations if Pi (t) = 0. Definitely, the transfer of perform-
ing the position update and fitness calculation from Lines 20 and 21 in Algorithm 1 to inside the IF state-
ment through Lines 18 and 19 in Algorithm 2 would lessen the computational time and avoid unnecessary
calculations.

5 �Adaptation of the E-MWO Algorithm for ANN Training
The adaptation process of the E-MWO for training the ANN has the following aspects that will be addressed
and discussed: How can the neural network be represented? How is the quality of the candidate solutions
(fitness) during the training process measured? When should the training process be stopped? The E-MWO
is an optimization algorithm, which will be employed for finding and adjusting a set of suitable weights and
biases for a fixed structure of the ANN.

5.1 �ANN Representation

In this research, a three-layer architecture of the feed-forward ANN is considered. Such architecture is
shown in Figure 2, where every neuron in layer k is fully connected to all the neurons in the next (forward)

x1

x2

h1

y1

y2

w x2
:h

1

wx1:h1 w
h1:y2

w
h1:y1

h2

w
x1:h2

w x2:h2

w
h2:y2

w h2:y1

h3

bh1

bh2

bh3

by1

by2

w
x1:h3

w
x2:h3 wh3:y2w h3

: y
1

Figure 2: Feed-Forward ANN.

354      A.A. Abusnaina et al.: Self-Adaptive Mussels Wandering Optimization Algorithm

layer k + 1. The bipolar-sigmoid activation function is used to represent the neurons because it is smooth and
binds the output between [−1, 1] [29].

The vector scheme is utilized in this work to represent the feed-forward ANN because it seems more suit-
able and occupies less memory. Accordingly, each ANN is represented by a vector of connection weights and
biases �()w . The network shown in Figure 2 is represented by a weights vector �w as follows:

=
�

1 1 1 2 1 3 2 1 2 2 2 3 1 2 3 1 1 1 2 2 1 2 2 3 1 3 2 1 2[, , , , , , , , , , , , , , , ,].x h x h x h x h x h x h h h h h y h y h y h y h y h y y yw w w w w w w b b b w w w w w w b b

Each member in the mussel population represents a complete ANN as demonstrated in Eq. (10). The total
number (d) of weights and biases of the network is mapped to the d-dimensional space of the mussel position.

	
− −= =

� [, , ,]i i I H H H O Om w W Bias W Bias � (10)

5.2 �Fitness Measure

The fitness measure is the objective function that quantifies the optimality of the candidate solution (mussel)
and evaluates the mussel efficiency. The SSE described in Eq. (11) is used as the mussel fitness value. The SSE
measures the difference between the actual output of the network and the desired output of the network. The
E-MWO is used as a minimization problem solver; thus, the mussel that has lower SSE value (higher fitness)
is the dominant mussel.

	 = =

= = −∑∑ 2

1 1
() SSE ()

NP NO
n n

i p p
p n

f m d y
�

(11)

where f(mi) is the fitness value of the mussel mi, NP is the number of patterns in the training set, NO is the
number of output neurons at the output layer, n

pd is the desired nth output of the pth pattern, n
py is the actual

nth output of the pth pattern, and mi is the mussel individual, i.e. the represented ANN network.

5.3 �Termination Condition

Several termination conditions could be used to trigger the training method when to stop its process. Such
termination conditions that could be used in adapting the original MWO are (1) accomplishing the maximum
number of iterations, (2) the best-mussel fitness satisfies a predefined precision value [e.g. f(mg) = 25], (3) a
combination from the previous conditions, e.g. the training stops either when the maximum number of itera-
tions is accomplished or a predefined precision is satisfied. In this research, accomplishing the maximum
number of iterations (MaxIterations) is used as a termination condition for the MWO because it is more suit-
able, and it is commonly used in training methods. However, the E-MWO uses the proposed dynamic termina-
tion condition, which is demonstrated earlier in Section 4.

6 �Settings and Experimental Setup

6.1 �Evaluation Method

The merits of the proposed method are demonstrated and validated empirically using a set of benchmarking
problems, and many comparisons are conducted against other recent and common rival training methods.
The selected methods are the BP from the category of the GD paradigm, GA that was proposed by Dorsey
et al. [16], recent algorithms HS-BtW by Kattan et al. [30–32], and PSO [20, 53] from the category of the
P-Metaheuristic paradigm.

A.A. Abusnaina et al.: Self-Adaptive Mussels Wandering Optimization Algorithm      355

Two criteria are considered in the performance evaluation: classification accuracy and overall
training convergence time. The classification accuracy illustrated in Eq. (12) is considered as the main
criterion because of its importance. The classification accuracy is calculated over the testing set, while
the training convergence time is reported for the training set. Each training method is evaluated against
each benchmarking problem 20 times in order to avoid the randomness factor. Then, the mean value is
calculated, and the best out of 20 values is reported for each training method. This method of reporting
the results is more fair than reporting the best value only; also, this method is used in the literature such
as [20, 26]

	
= ×Correctly classified patternsAccuracy 100%

Total no. of patterns �
(12)

The statistical two-tailed t-test with null hypothesis is used to determine if the results of the proposed
method is significantly different from the rival training methods. The t-test is the commonly used statistical
test to determine the significant differences between the learning algorithms [12, 48]. The null hypothesis is
rejected if the P value of the t-test is smaller than α (i.e. P ≤ α), whereas α is set to 0.05. As the P value becomes
smaller, the difference is more significant.

The Java programming language is used in this work to implement all of the ANN modules and all of the
proposed and rival training methods. All experimental sessions are conducted independently on the same
computer with a 2.2-GHz Intel Core 2 Duo processor and 2 GB of main memory under Microsoft Windows 7
operating system environment.

6.2 �The E-MWO Parameters

Different selection of values for the set of the MWO/E-MWO parameters would affect its performance. These
parameters and coefficients (N, α, β, δ, a, b, c, and γ) are set as proposed by Ref. [22] and used in Refs. [1] and
[2], and they are the same for all datasets as given in Table 2. The setting of the MaxIterations, μc, λ1, λ2, ε1, ε2,
T, and M, are based on empirical experiments conducted to select the proper values, which are summarized
also in Table 2.

Table 2: Parameter Setting of the E-MWO Algorithm.

Parameter Symbol Value

Number of mussels (population size) N 50
Short-range reference coefficient α 1.1
Long-range reference coefficient β 7.5
Space-scale factor δ 25.5
Moving coefficients a 0.95

b 1.26
c 1.05

Walk-scale factor γ 0.1
Shape parameter constant μc 1.1
Similarity ratio coefficient λ1 −0.3
Update ratio coefficient λ2 0.5
Update ratio threshold ε1 0.2
Similarity ratio threshold ε2 0.35
Number of iterations to detect the SteadyState T 4
Random selection range M 70%
Number of iterations MaxIterations 1000
Random initialization range of positions [xmin, xmax] [−0.77, 0.77]

356      A.A. Abusnaina et al.: Self-Adaptive Mussels Wandering Optimization Algorithm

6.3 �Benchmark Problems

The proposed method of the ANN training is validated by making use of widely used benchmark classifica-
tion problems. The datasets are obtained from the UCI Machine Learning Repository [8]. The selection of the
dataset was based on using different datasets from various fields that have different complexities without
focusing on a particular type of data in order to prove the generality of the proposed method. The input
features of the patterns are normalized to the range [−1, 1] using the Min-Max normalization, so that the bipo-
lar-sigmoid activation function can be effectively applied. In addition, the Min-Max normalization has the
advantage of preserving exactly all the relationships among the inputs in the data [27]. After data normaliza-
tion, each dataset is partitioned into two sets by 80:20. Whereas 80% of the patterns are used for training the
network, the remaining 20% out of the patterns are used for testing the generalization ability of the trained
network. The detailed specifications of the used benchmark classification problems are given in Table 3.

7 �Results

7.1 �The E-MWO Dynamics

The E-MWO sets the value of μ adaptively depending on the dynamic quality of the candidate solutions to
maintain the UR as large as possible to ensure the exploration behavior of the algorithm, as can be clearly
seen in Figure 3. In addition, the value of μ is changed to reflect the changes in the accumulative SR, in order
to keep the SR at a suitable range. Because the value of iSR change irregularly and to avoid the catastrophic
change in the μ value, the accumulative SR is used rather than the instantaneous iSR. The SR gives a picture
about how much the candidate solutions are close to each other. A high value of SR means that the algorithm
tends to exploit the already visited positions of the global-best mussel rather than explore new positions.
The adaptability of μ successfully ensures that the E-MWO makes a balance between the exploration and
exploitation behaviors. However, at the late iterations, the E-MWO is unable to make such balance, and the
termination condition is satisfied.

The standard MWO uses the global-best scheme to guide other mussels. This scheme increases the selec-
tive pressure on the global best. Also, the balance between the exploitation and exploration might be avoided,
and the problem of premature convergence may occur. The proposed hybrid-selection scheme is used in the
E-MWO to overcome the previous drawback. This modification can be seen in the fitness-convergence graph
of the guidance-selected mussel (ms) in Figure 4. Note that the fitness-convergence graph is plotted for each
benchmarking problem; this graph is selected for one session randomly out of the 20 sessions. At the early
stage of iterations, the E-MWO uses the global-best scheme. If the steady state is detected, a random mussel
is selected. The effect of the random selection scheme can be seen from the abrupt and sharp increase in

Table 3: Benchmark Classification Problems.

Problem No. of patterns ANN structure Dimension (size of �w) No. of features No. of classes

Training Testing

Haberman 244 62 3-4-2 26 3 2
Iris 120 30 4-5-3 43 4 3
Magic 7608 1902 10-4-2 54 10 2
Diabetes 614 154 8-7-2 79 8 2
Cancer 546 137 9-8-2 98 9 2
Ionosphere 281 70 33-4-2 146 33 2
Glass 171 43 9-12-6 198 9 6
Thyroid 5760 1440 21-15-3 378 21 3

A.A. Abusnaina et al.: Self-Adaptive Mussels Wandering Optimization Algorithm      357

the fitness-convergence graphs. The fitness in Haberman and Thyroid was enhanced slightly after each time
the random selection is performed. These problems represent the smallest and largest problem size, i.e. the
weight vector �w size, respectively. The fitness in Iris, Magic, and Diabetes takes more number of iterations
to enhance the fitness value after each time the random selection is performed. The fitness convergence in
Cancer is unstable; sometime, it takes the benefit of the random selection and the fitness enhanced slightly,
and sometimes the fitness becomes far from the optimal.

0 20 40 60 80 100

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

Iteration

µ

iSR

SR

UR

Figure 3: The Graph of μ with iSR, SR, and UR.

0 20 40 60 80 100 120

400

600

800 Haberman

f (
m

s)

0 50 100 150 200 250 3000

200
400
600

800 Iris
f (

m
s)

0 20 40 60 80
1

1.2

1.4 Magic

f (
m

s)

0 50 100 150 200 250500

1000

1500

2000

2500 Diabetes

f (
m

s)

0 50 100 140
0

500

1000

1500

2000
Cancer

f (
m

s)

0 100 200 300 400

500

1000 Ionosphere

f (
m

s)

0 50 100 150

500

1000

1500

2000
Glass

Iteration Iteration

Iteration Iteration

Iteration Iteration

Iteration Iteration

f (
m

s)

0 20 40 60 80 100 120
0
1
2
3
4

×104

Thyroid

f (
m

s)

×104

Figure 4: The Fitness Convergence of the Selected Mussel (ms).

358      A.A. Abusnaina et al.: Self-Adaptive Mussels Wandering Optimization Algorithm

The fitness in Ionosphere and Glass does not enhance if the random selection is performed. These classi-
fication problems are characterized by a large number of features (i.e. Ionosphere has 33 input features) or by
multi-class (large number of outputs; i.e. Glass has six classes). Usually, the frequency in using the random
selection in these problems is less than the others, as it was used just twice, whereas it was used three times
or more in other problems (e.g. Cancer and Diabetes).

A remark should be highlighted: even using the hybrid-selection scheme in the E-MWO does not guaran-
tee that a small value of fitness (SSE) is achieved, but it still produces a very-well trained ANN that is able to
gain the best (or an acceptable) classification accuracy. It can be noticed from the resutls, achieving less SSE
does not always guarantee gaining best classification accuracy.

7.2 �Comparison of the E-MWO with the Rival Training Methods

The performance of the E-MWO is compared against the original MWO and the other rival training algo-
rithms, HS-BtW, GA, PSO, and BP. All experiments are conducted using the same configurations explained
in Section 6. The results show that the classification accuracy of the ANN achieved by the E-MWO training
method is either better or close to the other training methods. However, the training time is considerably less
in almost all classification problems. The E-MWO scores the best in terms of classification accuracy in three
problems: Haberman, Magic, and Diabetes. In addition, the E-MWO scores the second rank (and very close
to the first rank) for other two problems: Iris and Glass. It is known that the difference between the achieved
accuracy by the E-MWO and the other training methods is significant, based on the P value of the t-test for
these problems (i.e. Haberman, Magic, Diabetes).

The E-MWO fails to be in the first two ranks in the Cancer and Ionosphere problems; however, the best-
accuracy out of 20 runs is higher than all the other training methods. Also, the P value of the t-test is larger

Table 4: The P Value of the t-test of Each Pair of E-MWO and the Other Training Methods for the Classification Accuracy.

Problem   (E-MWO, MWO)  (E-MWO, HS-BtW)   (E-MWO, GA)  (E-MWO, PSO)  (E-MWO, BP)   First rank  Second rank

Haberman   0.135   1.974E–5   4.017E–6   2.448E–9   1.211E–9   E-MWO   MWO
Iris   1.926E–6   0.0156   1.714E–4   3.042E–3   0.119×   BP   E-MWO
Magic   8.954E–5   8.109E–4   5.747E–4   0.422   0.2168   E-MWO   PSO
Diabetes   4.702E–6   5.576E–6   1.856E–7   2.148E–6   1.508E–5   E-MWO   BP
Cancer   0.329   3.333E–6   0.047   0.211   0.0197   HS-BtW   GA
Ionosphere   1.05E–6   0.259×   8.6E–4   0.068   8.811E–4   BP   HS-BtW
Glass   2.1E–8   9.161E–7   1.850E–10   0.059×   1.960E–4   PSO   E-MWO
Thyroid   0.040   0.035   0.063   1.814E–4   1.269E–30   BP   PSO

The first rank and second rank columns denote the method that ranked first and second based on the calculated mean values of
accuracies.

Table 5: The P Value of the t-test of Each Pair of E-MWO and the Other Training Methods for the Training Time.

Problem   (E-MWO, MWO)  (E-MWO, HS-BtW)   (E-MWO, GA)  (E-MWO, PSO)  (E-MWO, BP)  First rank  Second rank

Haberman   2.32E–21   0.01111   0.0282   1.400E–13   2.234E–7   E-MWO   GA
Iris   3.74E–12   0.00439   0.0013   7.436E–16   3.856E–36   E-MWO   GA
Magic   0.398×   0.46370   5.964E–8   1.473E–7   5.941E–17   MWO   E-MWO
Diabetes   2.89E–12   5.334E–6   1.566E–6   2.791E–7   4.722E–14   E-MWO   MWO
Cancer   8.25E–12   1.422E–8   1.611E–36   6.977E–14   8.643E–16   E-MWO   MWO
Ionosphere   3.58E–11   5.35E–12   5.814E–19   5.021E–7   3.736E–23   E-MWO   MWO
Glass   2.762E–8   9.01E–12   3.489E–15   3.865E–13   1.32E–4   E-MWO   MWO
Thyroid   0.2161   8.602E–6   0.4344   2.604E–18   1.170E–29   HS-BtW   E-MWO

The first rank and second rank columns denote the method that ranked first and second based on the calculated mean values of
training time.

A.A. Abusnaina et al.: Self-Adaptive Mussels Wandering Optimization Algorithm      359

Table 6: Benchmark Classification Problems’ Results for 20 run.

Algorithm   Iter.   SSE   Tr. time   Acc.% 
 

Algorithm   Iter.   SSE   Tr. time   Acc.%

Haberman classification problem Iris classification problem

E-MWO   Best   156   524.0   4.0   83.87  E-MWO   Best   380.0   232.0   7.0   100.0
  Mean   148.5   502.2   4.05   78.06    Mean   176.7   207.0   3.3   95.5

MWO   Best   1000   356.9   16.0   79.03  MWO   Best   1000   41.3   12.0   96.67
  Mean   1000   352.4   16.2   77.1    Mean   1000   83.4   14.5   87.83

HS-BtW  Best   1181   400.8   8.0   75.81  HS-BtW  Best   20,000   9.5   91.0   100.0
  Mean   4169   384.1   27.35   69.354    Mean   3417   31.4   15.7   90.99

GA   Best   200   456.0   10.0   77.42  GA   Best   295   48.0   10.0   96.67
  Mean   123   511.2   6.5   74.11    Mean   235   87.0   8.0   84.66

PSO   Best   1500   420.0   29.0   77.42  PSO   Best   1500   24.0   38.0   96.67
  Mean   1500   303.8   17.1   71.21    Mean   1500   8.1   26.0   92.17

BP   Best   1001   321.0   1285.0   74.19  BP   Best   1225   7.8   1132.0   96.67
  Mean   1225   304.9   1621.7   71.85    Mean   1037   7.8   826.4   96.67

Magic classification problem   Diabetes classification problem

E-MWO   Best   249.0   22,476.0   263.0   93.01  E-MWO   Best   84.0   1484.0   10.0   89.61
  Mean   290.5   16,934.6   340.5   83.68    Mean   219.2   1481.0   28.75   81.01

MWO   Best   1000   8929.5   193.0   80.18  MWO   Best   1000   806.8   69.0   78.57
  Mean   1000   9968.9   202.45   77.99    Mean   1000   832.0   69.0   75.1

HS-BtW  Best   4272   10,448.3   295.0   80.86  HS-BtW  Best   2489   890.6   25.0   78.57
  Mean   4693   10,807.2   350.7   79.19    Mean   11,308   842.1   113.9   75.25

GA   Best   2392   11,200.0   2847.0   80.81  GA   Best   1317   992.0   175.0   79.22
  Mean   2445   12,179.0   1997.3   79.02    Mean   2961   1025.4   392.3   73.89

PSO   Best   1500   6757.3   502.0   85.65  PSO   Best   1500   647.4   81.0   76.62
  Mean   1500   7622.0   761.8   83.41    Mean   1500   762.4   124.5   75.03

BP   Best   842   6137.3   42,542.0   84.02  BP   Best   4962   407.9   16,311.0   79.22
  Mean   756   6264.0   31,815.0   82.60    Mean   4200   482.4   14,112.2   75.42

Cancer classification problem   Ionosphere classification problem

E-MWO   Best   150.0   412.0   19.0   98.54  E-MWO   Best   184.0   668.0   8.0   95.77
  Mean   169.8   307.2   22.15   96.86    Mean   216.8   505.8   10.45   89.65

MWO   Best   1000   146.5   44.0   98.54  MWO   Best   1000   248.6   22.0   92.96
  Mean   1000   134.1   45.35   96.72    Mean   1000   283.9   22.75   83.8

HS-BtW  Best   8355   97.5   125.0   99.29  HS-BtW  Best   6842   77.6   69.0   94.37
  Mean   8804   98.2   129.6   98.42    Mean   14,505   76.1   117.3   90.28

GA   Best   1000   128   1355.0   99.29  GA   Best   2880   224.0   281.0   92.96
  Mean   9807   176.5   1329.4   97.46    Mean   9005   228.4   878.5   86.55

PSO   Best   1500   88.0   135.0   97.81  PSO   Best   1500   300.0   71.0   94.37
  Mean   1500   67.9   148.9   96.61    Mean   1500   149.6   61.9   87.75

BP   Best   1103   24.61   3909.0   97.86  BP   Best   699   8.4   1295.0   95.77
  Mean   1348   23.42   4097.3   96.17    Mean   913   13.8   1472.0   92.04

Glass classification problem   Thyroid classification problem

E-MWO   Best   585.0   744.0   50.0   85.71  E-MWO   Best   215.0   4644.0   563.0   93.13
  Mean   271.9   838.2   20.9   70.6    Mean   354.7   4336.0   1061.2   92.65

MWO   Best   1000   386.8   45.0   61.9  MWO   Best   1000   3237.1   1236.0   92.57
  Mean   1000   447.7   42.9   50.36    Mean   1000   3257.7   1223.4   92.55

HS-BtW  Best   20,000   337.8   134.0   72.09  HS-BtW  Best   480   3225.6   78.0   92.64
  Mean   17,369   445.2   114.9   52.44    Mean   413   3244.6   67.4   92.55

GA   Best   10,000   543.7   740.0   62.79  GA   Best   268   3416.0   828.0   92.57
  Mean   8650   595.5   639.7   45.23    Mean   353   3416.0   1103.2   92.57

PSO   Best   1500   592.0   143.0   97.62  PSO   Best   1500   1972.0   5064.0   99.79
  Mean   1500   484.8   114.4   77.38    Mean   1500   2782.2   4766.8   94.77

BP   Best   6505   62.4   6104.0   72.09  BP   Best   1121   613.7   36,297.0   97.29
  Mean   3187   153.7   3003.1   60.11    Mean   980   687.9   32,008.6   96.27

Iter. : Number of iterations, Tr. time: training time in seconds, Acc.: classification accuracy.

360      A.A. Abusnaina et al.: Self-Adaptive Mussels Wandering Optimization Algorithm

than α, which means that even the E-MWO achieves a lower accuracy, but the difference is not significant
from the other training methods.

The merits of the E-MWO is spread over all types of the benchmark problems; it shows excellent accuracy
in small- and medium-size problems (e.g. Haberman, Iris, Magic, and Diabetes) and acceptable accuracy in
large-size problems (e.g. Glass). Also, the performance of the E-MWO is good in the unbalanced-class prob-
lems (e.g. Haberman and Diabetes), multi-class problems (e.g. Glass and Iris), and problems that have a large
number of patterns (e.g. Magic). Table 4 presents the P value of the t-test that were performed on the E-MWO
and the rival training methods for the classification accuracy. The bold values indicate that the mean value of
the E-MWO is superior and significant, while the values with a cross sign (×) indicate that the mean value of
the E-MWO is slightly lower than the other method, but the difference is not significant.

On the other hand, the E-MWO achieves the lowest mean training time in six out of eight problems due to
the property of fast convergence inherited from the original MWO and also the added or modified parts over
the MWO such as using the dynamic termination criterion. The E-MWO terminates its process when it notices
that the candidate solutions could not improved further. The E-MWO fails to obtain the least training time for
problems that have a large number of patterns (i.e. Magic and Thyroid); however, it ranked second in these
two problems. Table 5 presents the P value of the t-test for the training time, while the detailed results are
given in Table 6.

In a comparing the E-MWO with the original MWO, the E-MWO scores the best in all eight benchmarking
problems in terms of accuracy. This enhancement in accuracy is due to the proposed solutions in the E-MWO
for the shortcomings of the MWO. The training time of the E-MWO is lower than the MWO for seven problems
out of eight. This enhancement in training time is a result of using the dynamic termination criterion, which
incurs less number of iterations. In addition, the enhancement of time is a result of performing the update
position and fitness calculation for the mussels that have a moving probability Pi (t) = 1 only, instead of
performing these calculations for all mussels regardless of whatever the value of the mussel moving prob-
ability is.

8 �Conclusion
In this paper, the enhanced version of the MWO (the E-MWO algorithm) is demonstrated, analyzed, and dis-
cussed. The E-MWO adaptively and dynamically sets the value of the shape parameter μ. It has a multi-step
length approach and a new hybrid-selection scheme to update the mussel population positions. The termina-
tion criterion depends on two new dynamic quality measures: SR and UR.

The feed-forward ANN has been trained by adapting the MWO and the E-MWO algorithms. The pattern
classification problem of the different datasets has been tackled in this research to validate and test the
algorithm efficiency. Two criteria are considered during the evaluation process: classification accuracy and
training time.

The results indicated that the E-MWO algorithm scores the best against the other rival training algo-
rithms in terms of classification accuracy in three out of eight problems significantly and at par with the other
methods for the remaining problems. The E-MWO scores the best in terms of training time in six out of eight
problems significantly and very close to other methods for the other two problems.

The increment made to the number of algorithm parameters is considered as a shortcoming for the
E-MWO. This shortcoming could be considered as a future work for this paper. In addition, it would be valu-
able to extend this research by considering other applications of the ANN such as prediction, clustering, and
medical image diagnosis. Some of the training methods that exist in the literature represent a hybrid between
the P-Metaheuristic and GD, such as the GA with BP [5] and PSO with BP [51]. It is interesting to hybridize the
E-MWO with GD algorithms or with local search algorithms such as simulated annealing to increase the fine-
tuning capabilities.

A.A. Abusnaina et al.: Self-Adaptive Mussels Wandering Optimization Algorithm      361

Table 7: Example for Determination of the best-M Subset.

Mussel rank  Fitness (mi)  mi ∈ best-M

1   4.6  No
2   5.6  Yes
3   7.1  Yes
4   10.2  Yes
5   11.9  Yes
6   13.6  No
7   15.1  No
8   27.2  No

Acknowledgment: The authors would like to thank Dr. Moh’d Khaled Shambour and Mr. Basem O. Alijla for
the valuable comments they provided. This research is supported by UNIVERSITI SAINS MALAYSIA and has
been funded by the Research University Cluster (RUC) grant titled by “Reconstruction of the Neural Microcir-
cuitry of Reward-Controlled Learning in the Rat Hippocampus” (1001/PSKOM/8630022).

Appendix A: Determination of the Best-M Subset
Assume that the steady state is detected, the mussel population is N = 8, and the random mussel is selected
from the first M = 50% of the mussels. The best-M subset size is N × M = 8 × 0.5 = 4 mussels. Note that the
global-best mussel is mg ∉ best-M if the steady state is detected as illustrated in Table 7.

Appendix B: Calculations of the iSR and the SR

Table 8 illustrates how the iSR and the SR are calculated for a sample of three iterations, assuming that the
mussel population size is N = 5.

Table 8: Sample Calculations of the iSR and the SR.

Iteration (t)  Mussel no.   Fitness (mi)   iSR   SR

1   1   4.6   2 0.4
5

=   0.4 0.4
1

=
  2   4.6
  3   5.1
  4   7.2
  5   11.9

2   1   3.2   0 0.0
5

=   0.4 0.0 0.2
2
+ =

  2   5.8
  3   7.4
  4   9.8
  5   11.1

3   1   2.4   4 0.8
5

=   0.4 0.0 0.8 0.4
3

+ + =
  2   2.4
  3   3.8
  4   5.1
  5   5.1

362      A.A. Abusnaina et al.: Self-Adaptive Mussels Wandering Optimization Algorithm

Bibliography
[1]	 A. A. Abusnaina and R. Abdullah, Mussels wandering optimization algorithm based training of artificial neural networks

for pattern classification, in: Proceedings of the 4th International Conference on Computing and Informatics, pp. 78–85,
Malaysia, 2013.

[2]	 A. A. Abusnaina, R. Abdullah and A. Kattan, Enhanced MWO training algorithm to improve classification accuracy of
artificial neural networks, in: Recent Advances on Soft Computing and Data Mining, pp. 183–194, Springer International
Publishing, Cham, Malaysia, 2014.

[3]	 A. A. Abusnaina, R. Abdullah and A. Kattan, The application of mussels wandering optimization algorithm for spiking neu-
ral networks training, in: International Engineering Conference (IEC2014) on Developments in Civil and Computer Engineer-
ing Applications, pp. 197–204, Iraq, 2014.

[4]	 S. Agatonovic-Kustrin and R. Beresford, Basic concepts of artificial neural network (ANN) modeling and its application in
pharmaceutical research, Pharm. Biomed. Anal. 22 (2000), 717–727.

[5]	 E. Alba and J. F. Chicano, Training neural networks with GA hybrid algorithms, in: Genetic and Evolutionary Computation
GECCO, pp. 852–863, Springer, Berlin Heidelberg, 2004.

[6]	 J. An, Q. Kang, L. Wang and Q. Wu, Mussels wandering optimization: an ecologically inspired algorithm for global optimiza-
tion, Cognit. Comput. 5 (2013), 188–199.

[7]	 J. An, S. Liu, Q. Kang and W. Yan, Time-sharing characteristic clustering analysis of household energy consumption via
K-mussels wandering optimization, Sens. Lett. 12 (2014), 270–274.

[8]	 K. Bache and M. Lichman, UCI Machine Learning Repository [online], (accessed on February, 2013). University of California,
Irvine, School of Information and Computer Sciences, Available: http://archive.ics.uci.edu/ml.

[9]	 C. Bennett, R. A. Stewart and C. D. Beal, ANN-based residential water end-use demand forecasting model, Expert Syst.
Appl. 40 (2013), 1014–1023.

[10]	 C. Blum and K. Socha, Training feed-forward neural networks with ant colony optimization: an application to pattern clas-
sification, in: Fifth International Conference on Hybrid Intelligent Systems (HIS’05), IEEE, Brazil, 2005.

[11]	 J. A. Bullinaria and K. AlYahya, Artificial Bee Colony training of neural networks, in: Nature Inspired Cooperative Strategies
for Optimization (NICSO 2013), pp. 191–201, Springer International Publishing, Cham, UK, 2014.

[12]	 E. Cantu-Paz and C. Kamath, An empirical comparison of combinations of evolutionary algorithms and neural networks for
classification problems, IEEE Trans. Syst. Man Cybern. B Cybern. 35 (2005), 915–927.

[13]	 T. G. Crainic and M. Toulouse, Parallel meta-heuristics, in: Handbook of Metaheuristics, pp. 497–541, Springer, US, 2010.
[14]	 M. De Jager, F. Bartumeus, A. Klzsch, F. J. Weissing, G. M. Hengeveld, B. A. Nolet and J. van de Koppel, How superdiffusion

gets arrested: ecological encounters explain shift from Lvy to Brownian movement, Proc. R. Soc. B Biol. Sci. 281 (2014),
2013–2605.

[15]	 V. K. Dhar, A. K. Tickoo, R. Koul and B. P. Dubey, Comparative performance of some popular artificial neural network algo-
rithms on benchmark and function approximation problems, PRAMANA J. Phys. Ind. Acad. Sci. 74 (2010), 307–324.

[16]	 R. E. Dorsey, J. D. Johnson and W. J. Mayer, A genetic algorithm for the training of feedforward neural networks, Adv. Artif.
Intell. Econ. Finance Manag. 1 (1994), 93–111.

[17]	 G. I. Evers and M. Ben Ghalia, Regrouping particle swarm optimization: a new global optimization algorithm with improved
performance consistency across benchmarks, in: IEEE International Conference on Systems, Man and Cybernetics, SMC
2009, pp. 3901–3908, IEEE, USA, 2009.

[18]	 Q. Gao, K. Q. Y. Lei and Z. He, An improved genetic algorithm and its application in artificial neural network, in: Fifth Inter-
national Conference on Information, Communications and Signal Processing, pp. 357–360, IEEE, Thailand, 2005.

[19]	 M. Gilli and P. Winker, A review of heuristic optimization methods in econometrics, Swiss Finance Institute Research Paper,
pp. 8–12, Switzerland, 2008. Available at SSRN: http://ssrn.com/abstract=1140655.

[20]	 R. C. Green II, L. Wang and M. Alam, Training neural networks using central force optimization and particle swarm optimiza-
tion: insights and comparisons, Expert Syst. Appl. 39 (2012), 555–563.

[21]	 D. Gupta and S. Ghafir, An overview of methods maintaining diversity in genetic algorithms, Int. J. Emerg. Technol. Adv.
Eng. 2 (2012), 56–60.

[22]	 S. He, Q. H. Wu and J. R. Saunders, Group search optimizer: an optimization algorithm inspired by animal searching behav-
ior, IEEE Trans. Evol. Comput. 13 (2009), 973–990.

[23]	 S. He, Q. H. Wu and J. R. Saunders, Breast cancer diagnosis using an artificial neural network trained by group search opti-
mizer, Trans. Inst. Meas. Control 31 (2009), 517–531.

[24]	 G. B. Huang, Q. Y. Zhu and C. K. Siew, Extreme learning machine: a new learning scheme of feedforward neural networks,
in: Proceedings of IEEE International Conference on Neural Networks 2, pp. 985–990, IEEE, Hungary, 2004.

[25]	 S. Ibric, M. Jovanovi, Z. Djuri, J. Paroji, S. D. Petrovi, L. Solomun and B. Stupar, Artificial neural networks in the modeling
and optimization of aspirin extended release tablets with Eudragit L 100 as matrix substance, AAPS PharmSciTech. 4
(2003), 62–70.

[26]	 T. Ince, S. Kiranyaz, J. Pulkkinen and M. Gabbouj, Evaluation of global and local training techniques over feed-forward
neural network architecture spaces for computer-aided medical diagnosis, Expert Syst. Appl. 37 (2010), 8450–8461.

http://archive.ics.uci.edu/ml
http://ssrn.com/abstract=1140655

A.A. Abusnaina et al.: Self-Adaptive Mussels Wandering Optimization Algorithm      363

[27]	 T. Jayalakshmi and A. Santhakumaran, Statistical normalization and back propagation for classification, Int. J. Comput.
Theory Eng. 3 (2011), 1793–8201.

[28]	 D. Karaboga, B. Akay and C. Ozturk, Articial bee colony (ABC) optimization algorithm for training feed-forward neural
networks, in: 4th International Conference on Modeling Decisions for Artificial Intelligence MDAI, pp. 318–329, Springer-
Verlag, Berlin, Heidelberg, 2007.

[29]	 N. K. Kasabov, Foundations of neural networks, fuzzy systems, and knowledge Engineering, Second printing, A Bradford
Book, The MIT Press, Cambridge, MA, London, England, 1998.

[30]	 A. Kattan and R. Abdullah, Training of feed-forward neural networks for pattern-classification applications using music
inspired algorithm, Int. J. Comput. Sci. Inf. Secur. 9 (2011), Malaysia, 44–57.

[31]	 A. Kattan and R. Abdullah, Training feed-forward artificial neural networks For pattern-classification using the harmony
search algorithm, in: The Second International Conference on Digital Enterprise and Information Systems, pp. 84–97,
Malaysia, 2013.

[32]	 A. Kattan, R. Abdullah and R. A. Salam, Harmony search based supervised training of artificial neural networks, in: IEEE
International Conference on Intelligent Systems, Modelling and Simulation (ISMS), pp. 105–110, IEEE, UK, 2010.

[33]	 S. Kiranyaz, T. Ince, A. Yildirim and M. Gabbouj, Evolutionary artificial neural networks by multi-dimensional particle swarm
optimization, Neural Netw. 22 (2009), 1448–1462.

[34]	 S. Kulluk, L. Ozbakir and A. Baykasoglu, Self-adaptive global best harmony search algorithm for training neural networks,
Procedia Comput. Sci. 3 (2011), 282–286.

[35]	 S. Kulluk, L. Ozbakir and A. Baykasoglu, Training neural networks with harmony search algorithms for classification prob-
lems, Eng. Appl. Artif. Intell. 25 (2012), 11–19.

[36]	 F. Liang, Annealing stochastic approximation Monte Carlo algorithm for neural network training, Mach. Learn. 68 (2007),
201–233.

[37]	 C. S. Lin, Toward a new three layer neural network with dynamical optimal training performance. in: Proceedings IEEE Inter-
national Conference on Systems, Man and Cybernetics, pp. 3101–3106, Montreal, Quebec, Canada, 2007.

[38]	 Y. Liu and X. Yao, A population-based learning algorithm which learns both architectures and weights of neural networks,
Chin. J. Adv. Softw. Res. 3 (1996), 54–65.

[39]	 D. Manjarres, I. Landa-Torres, S. Gil-Lopez, J. Del Ser, M. N. Bilbao, S. Salcedo-Sanz and Z. W. Geem, A survey on applica-
tions of the harmony search algorithm, Eng. Appl. Artif. Intell. 26 (2013), 1818–1831.

[40]	 M. Mavrovouniotis and S. Yang, Training neural networks with ant colony optimization algorithms for pattern classification,
Soft Comput. 19 (2014), 1–12.

[41]	 R. Mendes, P. Cortez, M. Rocha and J. Neves, Particle swarms for feedforward neural network training, in: Proceedings of
the IEEE International Joint Conference on Neural Networks, IJCNN’02, pp. 1895–1899, IEEE, USA, 2002.

[42]	 D. J. Montana and L. Davis, Training feedforward neural networks using genetic algorithms, IJCAI 89 (1989), 762–767.
[43]	 P. C. Pendharkar and J. A. Rodger, An empirical study of impact of crossover operators on the performance of non-binary

genetic algorithm based neural approaches for classification, Comput. Oper. Res. 31 (2004), 481–498.
[44]	 W. Schiffmann, M. Joost and R. Werner, Application of genetic algorithms to the construction of topologies for multilayer

perceptrons, in: Artificial Neural Nets and Genetic Algorithms, pp. 675–682, Springer, Vienna, 1993.
[45]	 D. Silva, L. Pacifico and T. Ludermir, An evolutionary extreme learning machine based on group search optimization, in:

IEEE Congress of Evolutionary Computation, pp. 574–580, USA, 2011.
[46]	 K. Socha and C. Blum, An ant colony optimization algorithm for continuous optimization: application to feed-forward neu-

ral network training, Neural Comput. Appl. 16 (2007), 235–247.
[47]	 Z. Song, B. Murray, B. Sammakia and S. Lu, Multi-objective optimization of temperature distributions using artificial neural

networks, in: 13th IEEE Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems (ITh-
erm), pp. 1209–1218, USA, 2012.

[48]	 B. Trawinski, M. Smtek, Z. Telec and T. Lasota, Nonparametric statistical analysis for multiple comparison of machine learn-
ing regression algorithms, Int. J. Appl. Math. Comput. Sci. 22 (2012), 867–881.

[49]	 A. B. Van Wyk and A. P. Engelbrecht, Overfitting by PSO trained feedforward neural networks, in: IEEE Congress on Evolu-
tionary Computation (CEC), pp. 1–8, Spain, 2010.

[50]	 G. Wei, Study on evolutionary neural network based on ant colony optimization, in: International Conference on Interna-
tional Conference on Computational Intelligence and Security Workshops, pp. 3–6, China, 2007.

[51]	 M. Yaghini, M. M. Khoshraftar and M. Fallahi, A hybrid algorithm for artificial neural network training, Eng. Appl. Artif.
Intell. 26 (2013), 293–301.

[52]	 P. Yan, S. Liu, Q. Kang, B. Huang and M. Zhou, A data clustering algorithm based on mussels wandering optimization, in:
IEEE 11th International Conference on Networking, Sensing and Control (ICNSC), pp. 713–718, USA, 2014.

[53]	 J. Yu, S. Wang and L. Xi, Evolving artificial neural networks using an improved PSO and DPSO, Neurocomputing 71 (2008),
1054–1060.

[54]	 D. Zaharie, Control of population diversity and adaptation in differential evolution algorithms, in: Mendel 9th International
Conference Soft Computing, pp. 41–46, Czech Republic, 2003.

