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Abstract: The mussels wandering optimization (MWO) is a recent population-based metaheuristic optimi-
zation algorithm inspired ecologically by mussels’ movement behavior. The MWO has been used success-
fully for solving several optimization problems. This paper proposes an enhanced version of MWO, known as
the enhanced-mussels wandering optimization (E-MWO) algorithm. The E-MWO aims to overcome the MWO
shortcomings, such as lack in explorative ability and the possibility to fall in premature convergence. In addi-
tion, the E-MWO incorporates the self-adaptive feature for setting the value of a sensitive algorithm param-
eter. Then, it is adapted for supervised training of artificial neural networks, whereas pattern classification of
real-world problems is considered. The obtained results indicate that the proposed method is a competitive
alternative in terms of classification accuracy and achieve superior results in training time.

Keywords: Mussels wandering optimization, self-adaptive, metaheuristic, neural networks, pattern
classification.

1 Introduction

The artificial neural network (ANN) is an interconnected set of nodes (artificial neurons) via a series of
adjusted weights. These neurons use a mathematical model for information processing to accomplish a
variety of tasks such as identification of objects and patterns, making decisions based on prior knowledge,
and prediction of future events based on past experience [9, 15, 37].

The ANN can be applied to determine a nonlinear relationship between a set of features by iterative
training of neurons using the obtained data from the environment [4, 25]. The training process of the ANN
deals with adjusting the connection weights and/or structure of the network depending on a specific training
algorithm [12]. The search space of the ANN connection weights is considered as a continuous optimization
problem because it is high dimensional and multimodal; also, it could be corrupted by noises or missing data
[22, 28].

The supervised training of the ANN has been tackled by two main paradigms: gradient descent (GD) and
population-based metaheuristic (P-Metaheuristic) algorithms. The GD paradigm uses the error gradient to
descend the error surface, such as the back-propagation (BP) and Levenberg—Marquardt (LM) algorithms.
The derivative of the error function is computed in order to adjust the network weights. The GD suffers from
convergence slowness and high possibility to fall into local minima [24, 45]. On the other hand, the algo-
rithms in the P-Metaheuristic can work on different and multiple regions of the solution space for the same
problem simultaneously via a set of individuals [13]. The P-Metaheuristic might be more efficient by concern-
ing the exploration ability of the whole search space and obtaining an acceptable solution [19, 39]. However,

*Corresponding author: Ahmed A. Abusnaina, Department of Computer Science, Faculty of Engineering and Technology, Birzeit
University, Birzeit, Ramallah, Palestine, e-mail: aabusnaina@birzeit.edu

Rosni Abdullah: School of Computer Sciences, Universiti Sains Malaysia, 11800, Penang, Malaysia

Ali Kattan: IT Department, Ishik University, Qazi Muhammad, Erbil, Iraq

8 Open Access. © 2020 Walter de Gruyter GmbH, Berlin/Boston. [ IS This work is licensed under the Creative Commons Attribution
4.0 Public License.


mailto:aabusnaina@birzeit.edu

346 —— A.A.Abusnaina et al.: Self-Adaptive Mussels Wandering Optimization Algorithm DE GRUYTER

the P-Metaheuristic algorithms might have higher computational cost and more complex structures [19, 47],
whereas the performance often depends on the algorithm settings and the problem characteristics [31].

The mussels wandering optimization (MWO) algorithm is a recent and novel P-Metaheuristic algorithm,
inspired ecologically for global optimizations by An et al. [6]. The MWO models the mussels’ movement
behavior when they form a bed pattern in their surrounding habitat to solve complex optimization problems.
The MWO depends on the stochastic decision and Levy walk in order to find the optimal solution. The Levy
walk is efficient, provides faster diffusion, and prevents revisiting the same sites [14]. The MWO maintains
information about the previous useful solutions, unlike other algorithms [e.g. the genetic algorithm (GA)] that
destroys the previous knowledge of the solution [53]. Also, the MWO uses primitive mathematics, and it does
not have a special kind of operators (e.g. mutation and crossover). In addition, the MWO has the advantage
of working in parallel on a multiple set of solutions, as this feature is common for the P-Metaheuristic algo-
rithms. It also inspires the cooperation, competition, and information sharing among the mussel population,
which enhance the ability of searching for the global optimal solution.

In this paper, the MWO is analyzed, and its pros and cons are discussed. An enhanced version of the
MWO (specifically the E-MWO algorithm) is proposed to overcome the MWO shortcomings. The E-MWO is then
adapted for supervised training of the ANN to perform pattern classification. The proposed method aims to
minimize the ANN training time and achieve better classification accuracy. These objectives are validated by
making use of several real-world benchmark classification problems.

The rest of this paper is organized as follows: Section 2 presents the related work on the ANN train-
ing methods. Section 3 describes the MWO algorithm. Section 4 presents the proposed E-MWO algorithm.
In Section 5, the adaptation of the MWO-based algorithms for training the ANN is demonstrated. Section 6
presents the experimental setup, and Section 7 discusses the obtained results. Finally, Section 8 concludes
the paper.

2 Related Work

The P-Metaheuristic algorithms are inspired from various aspects in the real world. Many of these algorithms
are inspired from the biological processes in the living creatures or from social interactions among animals.
Several P-Metaheuristic algorithms have been employed for supervised training of the ANN; however, this
section will focus on the rival methods.

The GA has been used for training the ANN in three different approaches. The first one involves optimiz-
ing the weights of the ANN with a fixed structure [16, 18, 42, 43]. Some of these methods were evaluated based
on using simple logic problems such as XOR, encode—-decode, and parity problem. The second approach is
using the GA for constructing a suitable ANN structure [44]. The last approach is employing the GA by evolv-
ing both structure and weights of the ANN [12, 38].

The harmony search algorithm (HSA), inspired from the improvisation process of musicians, was
adapted for training the ANN by Kattan and Abdullah [31], where both the sum squared error (SSE) and
classification error percentage (CEP) error calculation methods are used as fitness function. The training
process was terminated by reaching the maximum number of improvisations (i.e. iterations), and only four
datasets are considered in their study. A new variant of HSA that has the property of adaptive setting for a
sensitive HSA parameter by utilizing the ratio of best-to-worst harmony (HS-BtW algorithm) was proposed
by Kattan et al. [30, 32]. The HS-BtW was adapted for training the ANN, whereas the termination criterion
depends mainly on the quality measure of the solutions and number of improvisations. Different variations
of the HSA were also used for training the ANN such as the HSA, self-adaptive global best HS, and impro-
vised harmony search (IHS) by Kulluk et al. [34, 35].

Both the ANN weights and structure were evolved by an approach called ESPNet [53]. ESPNet employed
the standard particle swarm optimization (PSO) and discrete PSO (DPSO). The network structure dimension
is represented by bits and manipulated by the DPSO, while the connection weight dimension is represented
by real values and manipulated by the PSO, whereas individuals are represented by a matrix-hierarchy
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structure. Only two datasets were used for evaluation, and they were not compared against other training
methods. The ESPNet results were good in generalization ability; however, additional cost in terms of com-
putational time was incurred. The Multi-dimensional PSO (MDPSO) was used for training the ANN by evolv-
ing its structure rather than weights [33]. The mean squared error (MSE) was used as a fitness function,
whereas the 10-bit parity and another three classification problems were used for evaluation. The results of
the MDPSO were compared against other variants of the PSO, GA, and BP. The MDPSO results were argued
to be superior in terms of generalization ability; however, further improvements were suggested in terms of
speed and accuracy. Different topologies of the PSO individuals are used for the purpose of training the ANN,
which are proposed in Refs. [41] and [49].

Other P-Metaheuristic algorithms are still employed for ANN training, such as the artificial bee colony
(ABC) [11, 28], ant colony optimization (ACO) [10, 40, 46, 50], and group search optimizer (GSO) [22, 23].
Paradigms other than the GD and P-Metaheuristic exist in literature with the aim of training the ANN. Hybrid
methods that combine the GD and P-Metaheuristic have been proposed to improve upon the GD algorithms,
such as the GA with BP [5] and PSO with BP [51]. However, the advantages of those methods are arguable [11].
Algorithms that are based on single-solution metaheuristic are also used, such as simulated annealing [36].

The P-Metaheuristic algorithms are employed for supervised training of the ANN, to overcome the draw-
backs of the GD learning algorithms such as slowness, local minima, necessity of using differentiable activa-
tion function, and training oscillation [28, 30]. However, the P-Metaheuristic algorithms still suffer from high
computational cost, complex structures, and sensitivity to parameter settings, which might lead to different
performance measurements.

3 Mussels Wandering Optimization Algorithm

The MWO is essentially an algorithm that applies an optimization, stochastic, and metaheuristic process
seeking to find the best solution for a given problem [6]. Starting by a randomized population of candidate
solutions, an iterative process is conducted until a certain measure is reached.

Through the MWO algorithm, the population of mussels consists of N individuals. These individuals are
in a certain spatial region of marine bed called the habitat. The habitat is mapped to a d-dimensional space
S? of the problem to be optimized, where the objective function value f(s) at each point s e S? represents the
nutrition provided by the habitat. Each mussel has a position x,:=(x,, ..., x,); i € N, which therefore forms a
specified spatial bed pattern.

The MWO algorithm is initialized with a population of random candidate solutions. Each mussel is
assigned a randomized position. Then, it iteratively moves through the solution space. The mussel popu-
lation is attracted toward the location of the global-best mussel (the global-best mussel is the mussel that
has the best fitness value) achieved so far across the whole population. The MWO algorithm is composed
of six main steps, which are as follows: (1) Initialize the mussel population and the algorithm parameters.
(2) Calculate the Euclidean distance (Di).), range references (r_ and r), and range densities (¢ and ¢ for each
mussel. (3) Determine the movement probability (P) for each mussel. (4) Update the position of the mussels.
(5) Evaluate the fitness of each mussel after position updating and perform the global-best selection scheme.
(6) Examine the termination criteria; if it is not satisfied, then go back to step 2. Figure 1 shows the flowchart
of the MWO, where the detailed MWO is given in Algorithm 1. The set of equations that is used by the MWO is
demonstrated in Table 1.

The MWO algorithm has been used to solve nonlinear unimodal and multimodal benchmark functions
[6]. Most of the multimodal functions have many local optima, and these optima exponentially increase
with the dimension space. A new clustering algorithm by combining the K-means clustering method and
the MWO is currently proposed by Yan et al. [52]. Tests on six standard datasets are performed, whereas the
results demonstrate the validity and superiority of their proposed method over some representative cluster-
ing ones. Also, the K-MWO is used for clustering the time-sharing characteristic of the household energy
consumption [7].

i’
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Figure 1: MWO Flowchart.

The MWO algorithm showed the ability of training the ANN in considerably low convergence time, while
the classification accuracy was mostly at par with other rival training methods. However, it was noticed that
the MWO has some shortcomings that limit its performance [1-3]. The MWO might terminate prematurely
due to the high selective pressure on the global-best mussel. The coefficients and parameters of the MWO
must be determined statically before the run time. However, some of these parameters are sensitive to the
optimization problem, and they highly affect the algorithm performance, especially the shape parameter (u)
(see Refs. [2] and [6]). The MWO depends on the single-step approach to update the mussel position during
the searching process for the best place. The use of this single-step approach shows the lack in the explora-
tive ability of the MWO. The MWO depends on the number of iterations as a termination condition. Using
this condition, even if the candidate solutions are not good enough, the MWO will continue its run until it
reaches the whole number of iterations. This behavior might incur unnecessary iterations that will not lead
to a better solution. An initial idea for enhancing the MWO was proposed by Abusnaina et al. [2] to achieve
better performance.



DE GRUYTER A.A. Abusnaina et al.: Self-Adaptive Mussels Wandering Optimization Algorithm =— 349

Algorithm 1: The MWO Algorithm.

1: Initialization:

2:Sett=0;

3: For (musselm, i=1to N) do

4:  Uniformly randomize the initial position x, (0) for each mussel m, from the range [x ., x ]
5: Calculate the initial fitness value of the mussel f{x,(0))

6: end for

7: Find the global-best mussel m, and record its position as X,

8: Iteration:

9

: while (t< Maxiterations) do
10: for (musselm,i=1to N) do

11: Calculate the distances D, from m; to all other mussels by Eq. (A.1);

12: Calculate short-range reference r () and long-range reference r, by Eq. (A.2);

13: Calculate short-range density _and long-range density £, by Eq. (A.3) and Eq. (A.4);
14: Compute the moving probability p () according to Eq. (A.5);

15: If (P()=1) then

16: Generate step length /(f) by Eq. (A.6)

17: else

18: 0(H=0

19: end if

20: Update the mussel position coordinate () using Eq. (A.7) according to mussel m,
21: Calculate the new fitness value after the mussel update its position coordinate f{x(f)
22: end for

N
w

Rank all mussels by their fitness and Find the global-best mussel (mg) and update the best position X,
24: Sett=t+1;

25: end while

26: Output the optimized results and end the algorithm

Table 1: List of Equations Used in MWO Algorithm [6].

1

Eq. (A.1): Dy spatial distance between mussels m, and m; in 59

o— — — d — 2 2
b, =11x; Xi”_[zk:l(x"k Xik)] N: number of mussels. i, je N

ijeN

r(t)=B.max, ., {D,(t)}/ 6 B are positive coefficients with a <B. max, _ {D (0}

Eq. (A.2): {rs(t) =a.max,, {D,(t)}/6 r.: short-range reference. r;: long-range reference. ,
o is the maximum distance among all mussels at
iteration t. d: scale factor of space

Eq. (A.3): g, =#D,<r)/(r,N) ¢ short-range density, {: long-range density,

Eq. (A.4): g, =#D,<r)/(rN) where #(A<b) is used to compute the countin set A
satisfying a<b; ae A. D, is the distance matrix from
mussel m, to other mussels

Eq. (A.5): _ 1 ifa-b Cs,. +cg, >z a, b, and c are positive constant coefficients. z:

|0 otherwise is a value randomly sampled from the uniform
distribution [0,1]

Eq. (A.6): (,=y[1 -randQ]/¢? /: step length, u: is the shape parameter, which is
known as the Levy exponent; 1 <u <3.y: the walk
scale factor

Eq. (A.7): . {X, +LA, ifR=1 X: the new mussel-position coordinate. x: the

“x ifP=0 current mussel-position coordinate.xg: the position
coordinate of the global-best mussel (mg). A=X-X,

4 Enhanced-Mussels Wandering Optimization Algorithm

The E-MWO algorithm is proposed to overcome the shortcomings of the MWO in order to solve the optimiza-
tion problems more efficiently, especially improving the classification accuracy of the ANN. A new hybrid-
selection scheme is introduced to cope with the premature convergence problem. The value of the sensitive
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parameter u is set dynamically and adaptively depending on the quality of the candidate solutions. The
multi-step length approach is used in order to make the algorithm more explorative to the solution space.
Another improvement lies in terminating the E-MWO algorithm depending on the dynamic quality of the
solutions instead of the iteration number only.

4.1 Hybrid-Selection Scheme

The original MWO algorithm uses the global-best mussel as guidance to update the position of all other
mussels [see Eq. (A.7) in Table 1]; however, this selection scheme is good at the early iterations of the opti-
mization process. Typically, the fitness of the global-best mussel (mg) becomes steady for a large number
of iterations at the late stage of the optimization process. The SteadyState means the fitness value of the
global-best mussel (f, ) does not change; the mussel is stuck at the same position, and no further improve-
ment to the solution could be produced. This phenomenon can be referred to as the problem of premature
convergence [17].

This problem is solved by the E-MWO by hybridizing two selection schemes simultaneously: the global-
best and random selection schemes. At any iteration ¢, the mussel population will follow the global-best
mussel (mg) in updating their positions as long as the SteadyState is not detected. However, if the SteadyState
is detected as demonstrated in Eq. (2), the fitness value of the global-best mussel does not improve for the
last T of iterations. Another mussel is selected randomly from the best-M of mussels. The randomly selected
mussel will be used as a guidance mussel. Through the E-MWO, the guidance selected mussel (m ), which
is followed by other mussels during the position update, is either the global-best mussel or the randomly
selected mussel; thus, new regions of solution space could be explored.

1 f (O=f (t-1)
(t)_{o Otherwise M
StdState:{l (2; w(t))zT @)
0 Otherwise

where the steady state is detected if stdState=1, f (t) is the fitness value of the global-best mussel at itera-
tion ¢, T is the number of iterations to detect the StegadyState, and £ is the current iteration number.

The best-M of the mussels is a subset from the whole mussel population; the best-M — mussels popula-
tion. In order to determine the best-M of the mussels, sorting the mussel population is performed based on
their fitness values. Appendix A illustrates an example of how the best-M is determined. The following line
numbers in Algorithm 2 includes the proposed hybrid-selection scheme: 3, 8, 18, 27, 28, 29, 30, and 31. The
formula of updating the mussel position [i.e. Eq. (A.7) in Table 1] used by the MWO is rewritten in Eq. (3) and
is used by the E-MWO in order to adapt the new modifications that are made to the selection scheme.

(3)

. X+, A, P(H)=1
X =
Colx, P(t)=0

where X, is the new mussel-position coordinate, x, is the current mussel-position coordinate, and x_ is the posi-
tion coordinate of the selected-mussel (m). A =x,-x..

4.2 Self-Adaptive Setting of Shape Parameter (i)

Achieving the best performance for the MWO depends on choosing the proper value of u [1, 2, 6]. However,
finding this proper value needs conducting many empirical experiments by trail-and-error. The u value is
important for the MWO as it is used to determine the extent of mussel movement, as the mussel move from its
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Algorithm 2: The E-MWO Algorithm.

1: Initialization:

2:Sett=0;

3: Define SteadyState =the fitness value of the global-best mussel (f(m ]) is the same for the last Titerations
4: for (mussel m, i=1to N) do ’

5: Uniformly randomize the initial position x,(0) for each mussel m, from the range [x ., x 1
6: Calculate the initial fitness value of the mussel f{m,(0))

7: end for

8: Find the global-best mussel (mg), record its position, and set it as selected mussel m_

9: Iteration:

10: while (t< Maxiterations AND U (f)> ¢, AND S, (f)<¢,) do

11: for(musselm,i=1toN)do

12: Calculate the distances D, from m; to all other mussels by Eq. (A.1);

13: Calculate short-range reference r (f) and long-range reference r(f) by Eq. (A.2);

14: Calculate short-range density {_and long-range density £, by Eq. (A.3) and Eq. (A.4);
15: Compute the moving probability P(f) according to Eq. (A.5);

16: if (P(f)=1) then

17: Generate all steps length 7, () to 7,(f) by Eq. (A.6)

18: Update the mussel position coordinate x(t) using Eq. (3) according to m,

19: Calculate the new fitness value after the mussel update its position coordinate f{x(f)
20: else

21: Set all steps length 7, (f) to 7, () to O

22: end if

23: end for

24: Calculate the iS (f) by Eq. (5) and S,(f) by Eq. (6)

25:  Calculate the U (f) by Eq. (8)

26: Calculate the new value of shape parameter u(f) by Eq. (9)

27: Rankall mussels by their fitness and Find the global-best mussel and set it as selected mussel m_
28: Checkthe SteadyState

29: if (SteadyState is detected) then

30: select a mussel randomly from the best-M of the mussels population and set it as selected mussel m_
31: endif

32: Sett=t+1;

33: end while

34: Output the optimized results and end the algorithm

current position to another toward the global-best mussel [see Eq. (A.6) in Table 1]. Adding the self-adaptive
feature to the E-MWO will allow setting the value of u dynamically and adaptively depending on newly intro-
duced quality measurements: the similarity ratio (S,) and update ratio (U,), as shown in Algorithm 2 through
Lines 24, 25, and 26.

The instantaneous similarity ratio (iS,) is calculated at each iteration. It is the ratio of the number of
mussels that have the same fitness value at a certain iteration t divided by the population size of the mussels.
The iS, has a fluctuation value, and it does not provide sufficient information on how much the solution has
converged. More discussion will be provided in the Results section. Therefore, a more accurate and stable
measure is desired. The overall similarity ratio (SR) is used, which returns the accumulative average of the iS,
over the number of iterations consumed to reach the current solution; the iS, and the S, are given in Egs. (5)
and (6), respectively. Appendix B illustrates a numerical example for calculating the iS, and the S,.

~ |1 flm)=f(m) i#j
p(i)= { !

4
0 Otherwise @)

iS, ()= Z&‘DO) ®)



352 —— A.A.Abusnaina et al.: Self-Adaptive Mussels Wandering Optimization Algorithm DE GRUYTER

“is
S ()= zt—th (6)
where f(mi) is the fitness value of the mussel m, at iteration ¢, N is the mussel population size, and t is the
current iteration number.

The U, provides information about the dynamicity of the population. It returns the ratio of the number of
mussels that update their positions and move to a new place at a certain iteration ¢ over the mussel popula-
tion size. The U, formula is given in Eq. (8).

When u is small, i.e. 1.0 <u <14, or u is large, i.e. 2.0 <u < 3.0, the performance of the MWO is weak, e.g.
the trained ANN has poor classification accuracy. In addition, it is founded empirically that the U, becomes
very small and the S, becomes very high in these ranges of u [2]. A low value of U, and a high value of S,
means that the mussel population is stuck almost at the same place. In other words, the diversity of the
population is very low, and the MWO algorithm seems to fall in the premature convergence. The property of
setting the value of u adaptively and dynamically is necessary, therefore, keeping the U, as high as possible
and the S, as small as possible. Also, setting the u adaptively is vital to avoid performing tedious experiments
for finding the proper value of 4. Equation (9) demonstrates the calculation of the dynamic and self-adaptive
u value at any iteration t.

.~ |1 if m update its position
¢(l)_{0 Otherwise @
U (0) =2f}§f”(” ®)
ut)=p, +A, S()+4, U(t) ©)

where N is the mussel population size, u_is the shape parameter constant, and 4, and 4, are coefficients.

4.3 Multi-Step Length Approach

The step length (/) is used in the MWO to update the mussel position [see Egs. (A.6) and (A.7) in Table 1]. The
original MWO uses a one-step length to update the mussel-position coordinate, i.e. all coordinates changed
with the same length extent. Using a single-step length might cause a lack in the explorative ability of the
MWO. The E-MWO uses a multi-step length rather than once. Each category of the mussel-position coordinate
is assigned a separate step length.

Utilizing the multi-step length approach will improve the explorative ability of the mussel population to
the solution space using sufficient randomness into the step length extent. The increase in the explorative
ability will enhance the diversity of the mussel population [54]. However, maintaining the population in a
balanced degree of diversity is essential to ensure that the solution space is adequately searched [21]. The
multi-step length approach is proposed in Algorithm 2, in Lines 17, 18, and 21.

For instance, if the E-MWO is used to train a four-layer ANN, then each mussel (mi) will use a three-step
length; the number of steps is equal to the number of ANN layers minus one as follows: 7 : Input — Hidden,,
{,: Hidden, - Hidden,, /: Hidden, - Output.

4.4 Dynamic Termination Criterion

The termination criterion for the E-MWO depends mainly on the dynamic quality measurements of the can-
didate solutions. The calculation of these measures is performed repetitively at each iteration. The quality
measure includes two newly introduced measurements: the U, and the S,. These two measures are utilized
to guide the E-MWO as to when to terminate its process. The S, and the U, are the same variables used in
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setting the proper value of u, which were given earlier in Egs. (6) and (8), respectively. At any iteration ¢, the
U,(t) should not be less than ¢, while the S (f) should not exceed e,. As the inequality relations shown below
are preserved as the candidate solutions are properly converged to the optimal solution, accordingly, better
performance is supposed to be achieved (Algorithm 2 at Line 10).

U ()>¢ AND S, (t)<e,,

where ¢ and ¢, are constant values determined experimentally.

However, the Maxlterations is still used as an auxiliary condition to stop the E-MWO in order to limit the
number of iterations if the quality measures are unable to trigger the termination of the algorithm. Further-
more, using the MaxIterations condition will guarantee that the best solution will be produced at a reason-
able amount of time.

The aforementioned new parts and the proper modifications made over the original MWO is combined
and form the E-MWO algorithm as shown by Algorithm 2. Equations (A.1) and (A.6) used by the E-MWO are
the same equations used by the original MWO, which are presented in Table 1, while the other equations are
already defined and explained earlier throughout this section.

It is worth mentioning that the update of the mussel position and the calculation of the new fitness are
performed only if the movement probability is P, (t)=1, through Lines 18 and 19 in Algorithm 2. While the
MWO always performs these operations regardless of the value of P, (f) (Lines 20 and 21 in Algorithm 1), this
would incur unnecessary calculations for these operations if P, (t)=0. Definitely, the transfer of perform-
ing the position update and fitness calculation from Lines 20 and 21 in Algorithm 1 to inside the IF state-
ment through Lines 18 and 19 in Algorithm 2 would lessen the computational time and avoid unnecessary
calculations.

5 Adaptation of the E-MWO Algorithm for ANN Training

The adaptation process of the E-MWO for training the ANN has the following aspects that will be addressed
and discussed: How can the neural network be represented? How is the quality of the candidate solutions
(fitness) during the training process measured? When should the training process be stopped? The E-MWO
is an optimization algorithm, which will be employed for finding and adjusting a set of suitable weights and
biases for a fixed structure of the ANN.

5.1 ANN Representation

In this research, a three-layer architecture of the feed-forward ANN is considered. Such architecture is
shown in Figure 2, where every neuron in layer k is fully connected to all the neurons in the next (forward)

Figure 2: Feed-Forward ANN.
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layer k + 1. The bipolar-sigmoid activation function is used to represent the neurons because it is smooth and
binds the output between [-1, 1] [29].

The vector scheme is utilized in this work to represent the feed-forward ANN because it seems more suit-
able and occupies less memory. Accordingly, each ANN is represented by a vector of connection weights and
biases (w). The network shown in Figure 2 is represented by a weights vector w as follows:

w b .,b ,b_ ,w

w=[w w x2h2° "x2h3° Pn1® Ph2* Ph3? Vi

x1h2? Wx1h3’ szhl’ w

Wh1vz’ Wh2v1’ Wh2v2’ Wh3v1’ w bvl’ bvz]'

x1h1? h3v2?

Each member in the mussel population represents a complete ANN as demonstrated in Eq. (10). The total
number (d) of weights and biases of the network is mapped to the d-dimensional space of the mussel position.

m =w,=[W_,, Bias,, W,_,, Bias,] (10)

i H-0?

5.2 Fitness Measure

The fitness measure is the objective function that quantifies the optimality of the candidate solution (mussel)
and evaluates the mussel efficiency. The SSE described in Eq. (11) is used as the mussel fitness value. The SSE
measures the difference between the actual output of the network and the desired output of the network. The
E-MWO is used as a minimization problem solver; thus, the mussel that has lower SSE value (higher fitness)
is the dominant mussel.

NP NO

f(m)=SSE=Y.Y (d'-y")’ (11

p=1 n=1

where f(m) is the fitness value of the mussel m, NP is the number of patterns in the training set, NO is the
number of output neurons at the output layer, d; is the desired n™ output of the p™ pattern, y; is the actual
n" output of the p* pattern, and m, is the mussel individual, i.e. the represented ANN network.

5.3 Termination Condition

Several termination conditions could be used to trigger the training method when to stop its process. Such
termination conditions that could be used in adapting the original MWO are (1) accomplishing the maximum
number of iterations, (2) the best-mussel fitness satisfies a predefined precision value [e.g. ﬂmg) =25],(3) a
combination from the previous conditions, e.g. the training stops either when the maximum number of itera-
tions is accomplished or a predefined precision is satisfied. In this research, accomplishing the maximum
number of iterations (MaxIterations) is used as a termination condition for the MWO because it is more suit-
able, and it is commonly used in training methods. However, the E-MWO uses the proposed dynamic termina-
tion condition, which is demonstrated earlier in Section 4.

6 Settings and Experimental Setup

6.1 Evaluation Method

The merits of the proposed method are demonstrated and validated empirically using a set of benchmarking
problems, and many comparisons are conducted against other recent and common rival training methods.
The selected methods are the BP from the category of the GD paradigm, GA that was proposed by Dorsey
et al. [16], recent algorithms HS-BtW by Kattan et al. [30-32], and PSO [20, 53] from the category of the
P-Metaheuristic paradigm.
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Two criteria are considered in the performance evaluation: classification accuracy and overall
training convergence time. The classification accuracy illustrated in Eq. (12) is considered as the main
criterion because of its importance. The classification accuracy is calculated over the testing set, while
the training convergence time is reported for the training set. Each training method is evaluated against
each benchmarking problem 20 times in order to avoid the randomness factor. Then, the mean value is
calculated, and the best out of 20 values is reported for each training method. This method of reporting
the results is more fair than reporting the best value only; also, this method is used in the literature such
as [20, 26]

Correctly classified patterns

%1009 12
Total no. of patterns & (12)

Accuracy =

The statistical two-tailed ¢-test with null hypothesis is used to determine if the results of the proposed
method is significantly different from the rival training methods. The ¢-test is the commonly used statistical
test to determine the significant differences between the learning algorithms [12, 48]. The null hypothesis is
rejected if the P value of the t-test is smaller than « (i.e. P<«), whereas « is set to 0.05. As the P value becomes
smaller, the difference is more significant.

The Java programming language is used in this work to implement all of the ANN modules and all of the
proposed and rival training methods. All experimental sessions are conducted independently on the same
computer with a 2.2-GHz Intel Core 2 Duo processor and 2 GB of main memory under Microsoft Windows 7
operating system environment.

6.2 The E-MWO Parameters

Different selection of values for the set of the MWO/E-MWO parameters would affect its performance. These
parameters and coefficients (N, ¢, 8, 9, a, b, ¢, and y) are set as proposed by Ref. [22] and used in Refs. [1] and
[2], and they are the same for all datasets as given in Table 2. The setting of the MaxIterations, U, /11, /12, € €
T, and M, are based on empirical experiments conducted to select the proper values, which are summarized
also in Table 2.

Table 2: Parameter Setting of the E-MWO Algorithm.

Parameter Symbol Value
Number of mussels (population size) N 50
Short-range reference coefficient a 1.1
Long-range reference coefficient B 7.5
Space-scale factor 0 25.5
Moving coefficients a 0.95

b 1.26

c 1.05
Walk-scale factor y 0.1
Shape parameter constant u, 1.1
Similarity ratio coefficient A -0.3
Update ratio coefficient A, 0.5
Update ratio threshold 3 0.2
Similarity ratio threshold €, 0.35
Number of iterations to detect the SteadyState T 4
Random selection range M 70%
Number of iterations Maxlterations 1000
Random initialization range of positions (X X0 [-0.77,0.77]
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Table 3: Benchmark Classification Problems.

Problem No. of patterns ANN structure Dimension (size of w) No. of features No. of classes

Training Testing

Haberman 244 62 3-4-2 26 3 2
Iris 120 30 4-5-3 43 4 3
Magic 7608 1902 10-4-2 54 10 2
Diabetes 614 154 8-7-2 79 8 2
Cancer 546 137 9-8-2 98 9 2
lonosphere 281 70 33-4-2 146 33 2
Glass 171 43 9-12-6 198 9 6
Thyroid 5760 1440 21-15-3 378 21 3

6.3 Benchmark Problems

The proposed method of the ANN training is validated by making use of widely used benchmark classifica-
tion problems. The datasets are obtained from the UCI Machine Learning Repository [8]. The selection of the
dataset was based on using different datasets from various fields that have different complexities without
focusing on a particular type of data in order to prove the generality of the proposed method. The input
features of the patterns are normalized to the range [-1, 1] using the Min-Max normalization, so that the bipo-
lar-sigmoid activation function can be effectively applied. In addition, the Min-Max normalization has the
advantage of preserving exactly all the relationships among the inputs in the data [27]. After data normaliza-
tion, each dataset is partitioned into two sets by 80:20. Whereas 80% of the patterns are used for training the
network, the remaining 20% out of the patterns are used for testing the generalization ability of the trained
network. The detailed specifications of the used benchmark classification problems are given in Table 3.

7 Results

7.1 The E-MWO Dynamics

The E-MWO sets the value of u adaptively depending on the dynamic quality of the candidate solutions to
maintain the U, as large as possible to ensure the exploration behavior of the algorithm, as can be clearly
seen in Figure 3. In addition, the value of « is changed to reflect the changes in the accumulative S,, in order
to keep the S, at a suitable range. Because the value of iS, change irregularly and to avoid the catastrophic
change in the u value, the accumulative S, is used rather than the instantaneous iS,. The S, gives a picture
about how much the candidate solutions are close to each other. A high value of S, means that the algorithm
tends to exploit the already visited positions of the global-best mussel rather than explore new positions.
The adaptability of u successfully ensures that the E-MWO makes a balance between the exploration and
exploitation behaviors. However, at the late iterations, the E-MWO is unable to make such balance, and the
termination condition is satisfied.

The standard MWO uses the global-best scheme to guide other mussels. This scheme increases the selec-
tive pressure on the global best. Also, the balance between the exploitation and exploration might be avoided,
and the problem of premature convergence may occur. The proposed hybrid-selection scheme is used in the
E-MWO to overcome the previous drawback. This modification can be seen in the fitness-convergence graph
of the guidance-selected mussel (m ) in Figure 4. Note that the fitness-convergence graph is plotted for each
benchmarking problem; this graph is selected for one session randomly out of the 20 sessions. At the early
stage of iterations, the E-MWO uses the global-best scheme. If the steady state is detected, a random mussel
is selected. The effect of the random selection scheme can be seen from the abrupt and sharp increase in
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the fitness-convergence graphs. The fitness in Haberman and Thyroid was enhanced slightly after each time
the random selection is performed. These problems represent the smallest and largest problem size, i.e. the
weight vector w size, respectively. The fitness in Iris, Magic, and Diabetes takes more number of iterations
to enhance the fitness value after each time the random selection is performed. The fitness convergence in
Cancer is unstable; sometime, it takes the benefit of the random selection and the fitness enhanced slightly,
and sometimes the fitness becomes far from the optimal.
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The fitness in Ionosphere and Glass does not enhance if the random selection is performed. These classi-
fication problems are characterized by a large number of features (i.e. lonosphere has 33 input features) or by
multi-class (large number of outputs; i.e. Glass has six classes). Usually, the frequency in using the random
selection in these problems is less than the others, as it was used just twice, whereas it was used three times
or more in other problems (e.g. Cancer and Diabetes).

A remark should be highlighted: even using the hybrid-selection scheme in the E-MWO does not guaran-
tee that a small value of fitness (SSE) is achieved, but it still produces a very-well trained ANN that is able to
gain the best (or an acceptable) classification accuracy. It can be noticed from the resutls, achieving less SSE
does not always guarantee gaining best classification accuracy.

7.2 Comparison of the E-MWO with the Rival Training Methods

The performance of the E-MWO is compared against the original MWO and the other rival training algo-
rithms, HS-BtW, GA, PSO, and BP. All experiments are conducted using the same configurations explained
in Section 6. The results show that the classification accuracy of the ANN achieved by the E-MWO training
method is either better or close to the other training methods. However, the training time is considerably less
in almost all classification problems. The E-MWO scores the best in terms of classification accuracy in three
problems: Haberman, Magic, and Diabetes. In addition, the E-MWO scores the second rank (and very close
to the first rank) for other two problems: Iris and Glass. It is known that the difference between the achieved
accuracy by the E-MWO and the other training methods is significant, based on the P value of the t-test for
these problems (i.e. Haberman, Magic, Diabetes).

The E-MWO fails to be in the first two ranks in the Cancer and Ionosphere problems; however, the best-
accuracy out of 20 runs is higher than all the other training methods. Also, the P value of the t-test is larger

Table 4: The PValue of the t-test of Each Pair of E-MWO and the Other Training Methods for the Classification Accuracy.

Problem (E-MWO, MWO) (E-MWO, HS-BtW) (E-MWO, GA) (E-MWO, PSO) (E-MWO, BP) Firstrank Second rank

Haberman 0.135 1.974E-5 4.017E-6 2.448E-9 1.211E-9 E-MwWO MWO
Iris 1.926E-6 0.0156 1.714E-4 3.042E-3 0.119~ BP E-MwWO
Magic 8.954E-5 8.109E-4 5.747E-4 0.422 0.2168 E-MWO PSO
Diabetes 4.702E-6 5.576E-6 1.856E-7 2.148E-6 1.508E-5 E-MwWO BP
Cancer 0.329 3.333E-6 0.047 0.211 0.0197 HS-BtW GA
lonosphere  1.05E-6 0.259% 8.6E-4 0.068 8.811E-4 BP HS-BtW
Glass 2.1E-8 9.161E-7 1.850E-10 0.059~ 1.960E-4 PSO E-MwWO
Thyroid 0.040 0.035 0.063 1.814E-4 1.269E-30 BP PSO

The first rank and second rank columns denote the method that ranked first and second based on the calculated mean values of
accuracies.

Table 5: The PValue of the t-test of Each Pair of E-MWO and the Other Training Methods for the Training Time.

Problem (E-MWO, MWO)  (E-MWO, HS-BtW) (E-MWO, GA) (E-MWO, PSO) (E-MWO, BP) Firstrank Second rank

Haberman 2.32E-21 0.01111 0.0282 1.400E-13 2.234E-7 E-MwO GA

Iris 3.74E-12 0.00439 0.0013 7.436E-16 3.856E-36 E-MWO GA
Magic 0.398* 0.46370 5.964E-8 1.473E-7 5.941E-17 MWO E-MWO
Diabetes 2.89E-12 5.334E-6 1.566E-6 2.791E-7 4.722E-14 E-MwWO MwWO
Cancer 8.25E-12 1.422E-8 1.611E-36 6.977E-14 8.643E-16 E-MWO MWO
lonosphere  3.58E-11 5.35E-12 5.814E-19 5.021E-7 3.736E-23 E-MWO MWO
Glass 2.762E-8 9.01E-12 3.489E-15 3.865E-13 1.32E-4 E-MWO MWO
Thyroid 0.2161 8.602E-6 0.4344 2.604E-18 1.170E-29 HS-BtW E-MWO

The first rank and second rank columns denote the method that ranked first and second based on the calculated mean values of
training time.
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Table 6: Benchmark Classification Problems’ Results for 20 run.

Algorithm Iter. SSE Tr. time Acc.%  Algorithm Iter. SSE Tr.time Acc.%
Haberman classification problem Iris classification problem
E-MWO Best 156 524.0 4.0 83.87 E-MWO Best 380.0 232.0 7.0 100.0
Mean 148.5 502.2 4.05 78.06 Mean 176.7 207.0 3.3 95.5
MWO Best 1000 356.9 16.0 79.03 MWO Best 1000 41.3 12.0 96.67
Mean 1000 352.4 16.2 77.1 Mean 1000 83.4 14.5 87.83
HS-BtW  Best 1181 400.8 8.0 75.81 HS-BtW  Best 20,000 9.5 91.0 100.0
Mean 4169 384.1 27.35 69.354 Mean 3417 31.4 15.7  90.99
GA Best 200 456.0 10.0 77.42  GA Best 295 48.0 10.0 96.67
Mean 123 511.2 6.5 74.11 Mean 235 87.0 8.0 84.66
PSO Best 1500 420.0 29.0 77.42 PSO Best 1500 24.0 38.0 96.67
Mean 1500 303.8 17.1 71.21 Mean 1500 8.1 26.0 92.17
BP Best 1001 321.0 1285.0 74.19 BP Best 1225 7.8 1132.0 96.67
Mean 1225 304.9 1621.7 71.85 Mean 1037 7.8 826.4  96.67
Magic classification problem Diabetes classification problem
E-MWO Best 249.0 22,476.0 263.0 93.01 E-MWO Best 84.0 1484.0 10.0 89.61
Mean 290.5 16,934.6 340.5 83.68 Mean 219.2  1481.0 28.75 81.01
MWO Best 1000 8929.5 193.0 80.18 MWO Best 1000 806.8 69.0 78.57
Mean 1000 9968.9 202.45 77.99 Mean 1000 832.0 69.0 75.1
HS-BtW  Best 4272 10,448.3 295.0 80.86 HS-BtW  Best 2489 890.6 25.0 78.57
Mean 4693 10,807.2 350.7 79.19 Mean 11,308 842.1 113.9 75.25
GA Best 2392 11,200.0 2847.0 80.81 GA Best 1317 992.0 175.0 79.22
Mean 2445 12,179.0 1997.3 79.02 Mean 2961 1025.4 392.3  73.89
PSO Best 1500 6757.3 502.0 85.65 PSO Best 1500 647.4 81.0 76.62
Mean 1500 7622.0 761.8 83.41 Mean 1500 762.4 124.5 75.03
BP Best 842 6137.3  42,542.0 84.02 BP Best 4962 407.9 16,311.0 79.22
Mean 756 6264.0 31,815.0 82.60 Mean 4200 482.4  14,112.2  75.42
Cancer classification problem lonosphere classification problem
E-MWO Best 150.0 412.0 19.0 98.54 E-MWO Best 184.0 668.0 8.0 95.77
Mean 169.8 307.2 22.15 96.86 Mean 216.8 505.8 10.45 89.65
MWO Best 1000 146.5 44.0 98.54 MWO Best 1000 248.6 22.0 92.96
Mean 1000 134.1 45.35 96.72 Mean 1000 283.9 22.75 83.8
HS-BtW  Best 8355 97.5 125.0 99.29 HS-BtW  Best 6842 77.6 69.0 94.37
Mean 8804 98.2 129.6 98.42 Mean 14,505 76.1 117.3  90.28
GA Best 1000 128 1355.0 99.29 GA Best 2880 224.0 281.0 92.96
Mean 9807 176.5 1329.4 97.46 Mean 9005 228.4 878.5 86.55
PSO Best 1500 88.0 135.0 97.81 PSO Best 1500 300.0 71.0 94.37
Mean 1500 67.9 148.9 96.61 Mean 1500 149.6 61.9 87.75
BP Best 1103 24.61 3909.0 97.86 BP Best 699 8.4 1295.0 95.77
Mean 1348 23.42 4097.3 96.17 Mean 913 13.8 1472.0 92.04
Glass classification problem Thyroid classification problem
E-MWO Best 585.0 744.0 50.0 85.71 E-MWO Best 215.0 4644.0 563.0 93.13
Mean 271.9 838.2 20.9 70.6 Mean 354.7 4336.0 1061.2 92.65
MWO Best 1000 386.8 45.0 61.9 MWO Best 1000 3237.1 1236.0 92.57
Mean 1000 447.7 42.9 50.36 Mean 1000 3257.7 1223.4  92.55
HS-BtW  Best 20,000 337.8 134.0 72.09 HS-BtW  Best 480 3225.6 78.0 92.64
Mean 17,369 445.2 114.9 52.44 Mean 413 3244.6 67.4  92.55
GA Best 10,000 543.7 740.0 62.79 GA Best 268 3416.0 828.0 92.57
Mean 8650 595.5 639.7 45.23 Mean 353  3416.0 1103.2 92.57
PSO Best 1500 592.0 143.0 97.62 PSO Best 1500 1972.0 5064.0 99.79
Mean 1500 484.8 114.4 77.38 Mean 1500 2782.2 4766.8  94.77
BP Best 6505 62.4 6104.0 72.09 BP Best 1121 613.7 36,297.0 97.29
Mean 3187 153.7 3003.1 60.11 Mean 980 687.9 32,008.6 96.27

Iter. : Number of iterations, Tr. time: training time in seconds, Acc.: classification accuracy.
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than «, which means that even the E-MWO achieves a lower accuracy, but the difference is not significant
from the other training methods.

The merits of the E-MWO is spread over all types of the benchmark problems; it shows excellent accuracy
in small- and medium-size problems (e.g. Haberman, Iris, Magic, and Diabetes) and acceptable accuracy in
large-size problems (e.g. Glass). Also, the performance of the E-MWO is good in the unbalanced-class prob-
lems (e.g. Haberman and Diabetes), multi-class problems (e.g. Glass and Iris), and problems that have a large
number of patterns (e.g. Magic). Table 4 presents the P value of the t-test that were performed on the E-MWO
and the rival training methods for the classification accuracy. The bold values indicate that the mean value of
the E-MWO is superior and significant, while the values with a cross sign (*) indicate that the mean value of
the E-MWO is slightly lower than the other method, but the difference is not significant.

On the other hand, the E-MWO achieves the lowest mean training time in six out of eight problems due to
the property of fast convergence inherited from the original MWO and also the added or modified parts over
the MWO such as using the dynamic termination criterion. The E-MWO terminates its process when it notices
that the candidate solutions could not improved further. The E-MWO fails to obtain the least training time for
problems that have a large number of patterns (i.e. Magic and Thyroid); however, it ranked second in these
two problems. Table 5 presents the P value of the t-test for the training time, while the detailed results are
given in Table 6.

In a comparing the E-MWO with the original MWO, the E-MWO scores the best in all eight benchmarking
problems in terms of accuracy. This enhancement in accuracy is due to the proposed solutions in the E-MWO
for the shortcomings of the MWO. The training time of the E-MWO is lower than the MWO for seven problems
out of eight. This enhancement in training time is a result of using the dynamic termination criterion, which
incurs less number of iterations. In addition, the enhancement of time is a result of performing the update
position and fitness calculation for the mussels that have a moving probability P, (f)=1 only, instead of
performing these calculations for all mussels regardless of whatever the value of the mussel moving prob-
ability is.

8 Conclusion

In this paper, the enhanced version of the MWO (the E-MWO algorithm) is demonstrated, analyzed, and dis-
cussed. The E-MWO adaptively and dynamically sets the value of the shape parameter u. It has a multi-step
length approach and a new hybrid-selection scheme to update the mussel population positions. The termina-
tion criterion depends on two new dynamic quality measures: S, and U,.

The feed-forward ANN has been trained by adapting the MWO and the E-MWO algorithms. The pattern
classification problem of the different datasets has been tackled in this research to validate and test the
algorithm efficiency. Two criteria are considered during the evaluation process: classification accuracy and
training time.

The results indicated that the E-MWO algorithm scores the best against the other rival training algo-
rithms in terms of classification accuracy in three out of eight problems significantly and at par with the other
methods for the remaining problems. The E-MWO scores the best in terms of training time in six out of eight
problems significantly and very close to other methods for the other two problems.

The increment made to the number of algorithm parameters is considered as a shortcoming for the
E-MWO. This shortcoming could be considered as a future work for this paper. In addition, it would be valu-
able to extend this research by considering other applications of the ANN such as prediction, clustering, and
medical image diagnosis. Some of the training methods that exist in the literature represent a hybrid between
the P-Metaheuristic and GD, such as the GA with BP [5] and PSO with BP [51]. It is interesting to hybridize the
E-MWO with GD algorithms or with local search algorithms such as simulated annealing to increase the fine-
tuning capabilities.
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Appendix A: Determination of the Best-M Subset

Assume that the steady state is detected, the mussel population is N=8, and the random mussel is selected
from the first M=50% of the mussels. The best-M subset size is Nx M=8x 0.5=4 mussels. Note that the
global-best mussel is m ¢ best-M if the steady state is detected as illustrated in Table 7.

Appendix B: Calculations of the iS_,and the S,

Table 8 illustrates how the iS, and the S, are calculated for a sample of three iterations, assuming that the
mussel population size is N=5.

Table 7: Example for Determination of the best-M Subset.

Mussel rank Fitness (m) m.e best-M
1 4.6 No
2 5.6 Yes
3 7.1 Yes
4 10.2 Yes
5 11.9 Yes
6 13.6 No
7 15.1 No
8 27.2 No

Table 8: Sample Calculations of the iS,and the S,.

Iteration (f) Mussel no. Fitness (m) iS S
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