
J. Intell. Syst. 2020; 29(1): 84–99

Abdelfetah Hentout*, Abderraouf Maoudj, Nesrine Kaid-youcef, Djamila Hebib 
and Brahim Bouzouia
Distributed Multi-agent Bidding-Based Approach for the 
Collaborative Mapping of Unknown Indoor Environments 
by a Homogeneous Mobile Robot Team
https://doi.org/10.1515/jisys-2017-0255
Received May 29, 2017; previously published online December 6, 2017.

Abstract: This paper deals with the problem of the collaborative mapping of unknown indoor environments 
by a homogeneous mobile robot team. For this aim, a distributed multi-agent coordination approach is pro-
posed for the mapping process to offer a global view of the entire environment. First, the scheme starts by 
assigning the most suitable robots to the different zones of the environment to be mapped based on a bidding 
strategy. Then, while a Robot agent of the group explores its local surroundings and collects information 
about its neighborhood, it sends mapping data to the Human/Machine Interface agent to integrate them into 
a single global map. Furthermore, a geometric map representation and an algorithm based on obstacles and 
environment limits detection are used to provide an explicitly geometric representation of the workspace. 
For validation purposes, Player/Stage simulator is used to show the effectiveness of the proposed distributed 
approach and algorithms without needing a real multi-robot system and environment. Finally, various sce-
narios have been carried out and results are compared in terms of (i) required mapping time, (ii) accuracy of 
the global generated map, and (iii) number of exchanged messages between the agents.

Keywords: Distributed multi-agent architecture, collaborative mapping, geometric map, mobile robot team, 
Player/Stage simulator.
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1  �Introduction
The exploration and mapping of unknown environments are fundamental research problems in mobile 
robotics. They consist, in most difficult cases, of discovering unknown or changed environments to build an 
accurate representation. The exploration can be defined as an iterative process determining a new goal for 
the robot and its navigation toward the goal. The process is terminated whensoever a complete map of the 
unknown environment is created [9]. The resulting maps are often used by the robots to perform complex 
tasks. They are also essential for humans to recognize remote, inaccessible, or hostile environments. 
Researches in this area were initially concentrated on single robot systems; thereafter, the miniaturization 
of robotic devices and costs decreasing enabled to deploy multi-robot systems (i.e. mobile robot team) [5, 19].

The global goal of multi-robot exploration is to build a map of unknown environments by exploiting 
several robots equipped with sensors. The obvious underlying assumption is that the explored area is larger 
than the sensing range of each robot. All the numerous methods proposed in the literature are based on 
some sort of incremental integration: a newly acquired partial map is integrated with the old maps [2]. Most 
approaches proceed as follows [23]. First, a set of potential target zones is determined. Such targets are often 
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located close to unknown areas to allow the robots to observe the unknown spaces. Then, each target loca-
tion is assigned to a robot. Finally, the robots move toward those target zones and include their observations 
obtained along the paths into a global map. This process is repeated until the whole workspace has com-
pletely been explored. However, the utilization of such systems to collaboratively map environments remains 
until now a difficult problem [9]. To create a coherent model for any environment, a full exploration should 
be done. In addition, data should be integrated into one global map. This involves solving three main sub-
problems: (i) deployment strategy, (ii) coordination architecture, and (iii) collaborative mapping.

Deployment strategy answers the following question: Given what the team know about the world, where 
should it move to gain as much new information as possible? [25]. For a good mapping minimizing imposed 
constraints (time, energy, etc.), it is important to keep the robots well deployed and distributed to cover the 
whole workspace. The different areas to be explored may be assigned in various ways to robots. Thus, several 
deployment methods have been proposed such as the frontier-based approach [6, 25], Hungarian method [7, 
9], and trade-based approach [26].

Coordination architecture deals with the definition and organization of interrelations between the 
robots and the decision system (control unit). It is thus possible to distinguish two classes [8]. (i) In central-
ized architectures, a single robot (central unit) acts as the coordinator that monitors the movement of the 
robots; hence, the goal accomplishment is centered on this coordinator. In addition, this robot is respon-
sible for the global information on environment and robots [18]. In this type, the control unit has a global 
view of the world where the robots evolve; this allows the control unit to optimally take decisions. However, 
its disadvantage is that it is effective for a small number of robots, and if the central control unit fails, the 
whole system fails too [27]. (ii) In distributed architectures, there is no single coordinator in the environ-
ment; the whole system control and decision-making are distributed on the architecture units, and tasks 
execution is distributed on the system components. Furthermore, each robot coordinates its own movement 
and ensures that it does not collide with any other robot during goal accomplishment [8]. This type allows 
to easily expand the robots number and it is demonstrated that these architectures are fault-tolerant and 
robust to robot failures [21].

Collaborative mapping is the phase of building a map that reflects the environment structure by accu-
rately integrating all data collected by the robots during exploration. Building a map requires choosing 
the representation nature among the three following models. (i) The metric model is a detailed geometric 
representation of the world. Its main advantages is that it is easily interpreted by humans and provides 
well-defined relationship with real world; its weakness is that it requires more storage capacities and it 
is sensitive to measurement errors [11]. (ii) The topological model represents the environment as a graph; 
the nodes correspond to regions and arrows connecting these nodes mark the possibility to directly move 
from one region to another. This model can provide a compact representation of the environment while 
still retaining all key locations and connectivity between these locations, which makes it easy to under-
stand by humans [15]. However, its main shortcoming is that recognizing environment places can be diffi-
cult [4]. (iii) The hybrid model is the hybridization between metric and topological models (i.e. topological 
maps containing metric information). These maps simultaneously benefit from the advantages of using 
these representation types but also suffer from both limits [28]. Moreover, few works apply these two 
models at the same time. As both metric and topological maps are complementary representations, there 
seems to be a recent tendency to merge these representations for an improved robot localization and 
navigation [20].

This paper proposes and implements a distributed multi-agent bidding-based approach to allocate zones 
to robots for environment mapping. The team evolves inside indoor environments with known original struc-
ture but whose actual structure has been modified [20]. For this purpose, we opted for the following: (i) a 
distributed multi-agent coordination architecture, (ii) an autonomous bidding-based deployment approach 
that seeks to assign robots to the different areas of the world, and (iii) a metric model to explicitly represent 
the environment geometry. An agent (human/machine interface agent or HMIA) offers a zone and the other 
agents (robot agents or RAs) interact with each other by exchanging their bids. Thereafter, the agent bidding 
with the best price than all the others will hold (explore and map) the zone.
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In addition to the analysis of the related research works on the exploration and mapping of unknown 
environments, the principal contributions of this paper are summarized as follows. First, our approach works 
in unknown indoor environments with a high number of mobile robots. Second, it is generic in the sense 
that we just need to associate the required number of RAs to adapt the proposed approach to another team 
of mobile robots. Third, the RAs are autonomous and independent and use local information by exploring 
a distributed approach through no master/slave relationship between these agents. Fourth, this approach 
combines three parameters (necessary time to move toward the target, number of allocated zones, and accu-
racy of the robot sensor) that allow obtaining a good balance between final mapping times and the quality of 
obtained maps. Finally, the accuracy of the generated global map is very acceptable while only needing short 
calculation time for robots assignment, environment exploring, and mapping.

The rest of the paper is organized into five sections. Section 2 states the problem. Section 3 describes the 
proposed distributed multi-agent control architecture, resolution approach, and interactions between the 
control system agents. Section 4 presents our own-established validation scenarios and discusses the main 
obtained simulation results. Section 5 concludes the paper and presents some future works.

2  �Problem Statement
The problem to be solved by the proposed approach is how to choose the appropriate target zones for the 
individual robots so that they simultaneously explore different regions of an unknown environment while 
minimizing the imposed constraints (time, energy, etc.). Each robot is equipped with proximity sensors with 
limited range and field of vision, localization capability, and limited-range communication capacity. The 
indoor environments considered in this work are generally structured; they consist of one-level space having 
a main corridor, many disjoint rooms, and stairs. These characteristics guarantee, on the one hand, a unique 
and sequential access to environment. On the other hand, the well-defined regions of the environment can 
be explored simultaneously [20].

2.1  �Formulation of the Problem

The problem of multi-robot exploration is a kind of multi-robot task allocation [10], where tasks are new best 
goal locations toward which the mobile robots have to navigate [9]. The problem is to find the best assign-
ment of n goal zones to m identical robots that minimizes the predefined constraints [2] while exploring and 
building a map M of the unknown indoor environment. Therefore, this problem has been formulated as an 
optimization problem [16] of best assignment of n tasks on m machines studied in operational research [9]: 
tasks are assimilated to zones and machines to robots (i.e. n zones and m robots). The goals are assigned to 
robots using the exploration strategy that can be formalized as follows.

Let us consider a set of m homogeneous mobile robots R = {r1, …, rm} at their current positions C = {c1, 
…, cm}, mapping an environment of dimension L × W (length and width) composed of a set of n zones Z = {z1, 
…, zn} located at positions G = {g1, …, gn}. The problem is to determine a goal gj ∈ G for each robot ri ∈ R that 
minimizes the imposed constraints while exploring and mapping the whole environment. We assume that

–– M represents the global map generated by all the active robots of the system.
–– ci(xi, yi, θi) is the current position coordinates and orientation angle of the robot ri in the global frame RA.
–– Aij is a binary variable assigning robot ri (i = 1, …, m) to zone zj (j = 1, …, n). Aij = 1 means that ri is assigned 

to map zj; otherwise, Aij = 0.
–– Pij corresponds to the mapping time of zone zj by robot ri. It is calculated using the Euclidean distance 

(based on the robot velocity) between ci (the current position of robot ri) and gj (the coordinates of zone zj.
–– tj corresponds to the mapping start time of zone zj.
–– TMax is the objective function to be optimized for the overall mapping process (all the zones).
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The mathematical formulation of the considered problem is illustrated as follows:
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Equation (1) is the objective function; it must be minimized. Constraint (2) calculates the objective func-
tion value. Constraint (3) assures that a specific zone zj ∈ Z is mapped by one robot ri ∈ R only. Constraints (4) 
and (5) define the decision variables.

Various objective functions have been proposed in the literature such as distance traveled, time taken, or 
energy expended; some of them basically combine both information gain/loss or expected benefits [24] with 
the required traveling distance to the goal [3, 9]. In this paper, each robot ri ∈ R calculates a combination of 
three parameters: (i) the necessary time to move toward the goal zone zj (function of the distance traveled by 
the robot to reach the target zone and its velocity), (ii) the number of its allocated zones, and (iii) the accuracy 
of its proximity sensor. In our assignment approach, for each exploration target in the environment (i.e. zone), 
we define a Costij to evaluate the robot ri cost for mapping such a zone zj. This cost function is used to guide 
the decision-making process of all the agents and to select the best robot with minimum cost for each zone.

Let us consider Ei as the accuracy of the proximity sensor equipping the robot ri ∈ R: Ei = 1, meaning that 
data delivered by the sensor are very precise (i.e. accuracy = 100%); Ei = 0 means that these data are very 
inaccurate.

The cost of robot ri ∈ R (i = 1, …, m) to map zone zj ∈ Z (j = 1, …, n) is Costij; it is calculated by Equation (6) 
as follows:
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where α, β, and γ are constant weights; α + β + γ = 1.

2.2  �Detection of Obstacles and Environment Limits

The proposed algorithm is based on the detection of obstacles and environment limits. We point out that each 
mobile robot is equipped with one proximity sensor (e.g. laser range finder) as shown in Figure 1:

–– ri corresponds to the robot that has detected the current point (obstacle or environment limit).
–– robotTeam represents the list of all the active mobile robots of the team.
–– proximitySensori is the proximity sensor equipping the robot ri.
–– rangei is the maximum detection range of the proximity sensor of robot ri.
–– fovi corresponds to the field of vision of the proximity sensor of robot ri.
–– Ni is the maximum number of data provided by the proximity sensor of robot ri.
–– radiusi contains the measurements delivered by the proximity sensor of ri.
–– ϕik is the offset of the kth proximity sensor data from the orientation angle of robot ri.
–– (xk, yk) represent the actual position of the kth detected obstacle/environment limit in the global frame RA. 

They can be obtained by Equations (7) and (8):
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	 cos( )k ik i ik ix radius xθ ϕ= × + + � (7)

	 sin( )k ik i ik iy radius yθ ϕ= × + + � (8)

–– listDatai represents the coordinates list of obstacles or environment limits detected by robot ri.

3  �Proposed Multi-agent Resolution Approach
Distinct agents are solicited to ensure a modular and robust control scheme. The interactions among these 
entities provide the robots with required behaviors to accomplish tasks [12]. The proposed control system 
distributes the computational process among its agents. Each only completes a part of the computational 
tasks with lack of a full global view. For solving the problem, all agents interact and collaborate to satisfy the 
global objective.

3.1  �Distributed Multi-agent Control Architecture

The multi-agent architecture for mobile robot team control is based on that previously proposed in Ref. [17]. 
As shown in Figure 2, it distinguishes two kinds of agents:

–– Human/Machine Interface Agent (HMIA): HMIA is not involved in the decision-making process; it only 
consists of an interface between the control system and the robot team. HMIA communicates with Robot 
Agents by sending requests and receiving data on tasks/operations execution (mapping information, etc.).

–– Robot Agents (RAs): An RA controls the physical robot, makes decisions, and carries out operations. 
These agents also assign the most suitable robot to map a given zone through coordination and negotia-
tion. RAs communicate with HMIA by sending data/reports and receiving requests.

3.2  �Proposed Strategy for Zone Allocation

Among the important advantages of multi-agent approaches is to allow one agent to locally solve subproblems 
and to propose a global solution as a result of interactions between the different agents [14]. Consequently, 
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Figure 1: Obstacles and Environment Limits Detection and Calculation of their (xk, yk) Position Coordinates using the Proximity 
Sensor of Robot ri.
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the proposed multi-agent approach distributes the mapping tasks of unknown environments on the RAs; all 
these agents interact and collaborate to satisfy the global objective.

The proposed and implemented mapping algorithm is split up into two parallel running parts. The first 
is carried out by HMIA; the second part is executed by RAs.

3.2.1  �Human/Machine Interface Agent (HMIA)

Figure 3 describes the overall behavior of HMIA. The task starts by receiving a request (REQUEST message) 
from the operator to map an unknown indoor environment. In addition, the deployment approach, number 
of active mobile robots (m), number of zones constituting the environment (n) and their parameters are sent 
within an INFORM message. Then, HMIA creates the required number of RAs, sends them an INITIALIZE 
message (with their respective initial positions), and waits for their responses. When HMIA receives 
INITIALIZED messages from all the active RAs, two cases could be distinguished depending on the deploy-
ment approach the operator adopted at the beginning:

–– Random deployment: HMIA replies by sending the deployment positions gj ∈ G (j = 1, …, n) of the robots 
within an INFORM message.

–– Autonomous deployment: HMIA replies by sending a CFP message for each zone zj ∈ Z (j = 1, …, n) one by 
one while respecting their rank, that is, starting by z1, then z2, …, until arriving to zn. RAs will proceed in 
parallel to assign each zone to the most appropriate robot as detailed in the next subsection.

In both cases, HMIA sends MAP message to all RAs. Then, each time that HMIA receives MAPPED message 
with the current coordinates of an obstacle or environment limit, this agent adds these data to the global 
map (with the corresponding color of the specified robot). This procedure continues until mapping the entire 
world or the operator decides to terminate the process.

3.2.2  �Robot Agents (RAs)

Figure 4 explains the global behavior of RA. After receiving INITIALIZE message from HMIA, each RA will 
create its proximity sensor and initialize its parameters [ci(xi, yi, θi), fovi, rangei, …](i = 1, …, m). Once done, 
RA sends INITIALIZED message to HMIA to inform it about the success of these actions. Subsequently, HMIA 
distinguishes two possibilities:

–– Random deployment: Each RA gets its target position gj ∈ G, which has been introduced by the human 
operator within the INFORM message.

Figure 2: Overview of the Proposed Distributed Multi-agent Architecture for Mobile Robot Team Control.
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–– Autonomous deployment: In this case, the robots’ deployment positions are the result of interactions 
between all RAs. The zone allocation process is done as follows. When a robot ri ∈ R receives a zone zj ∈ Z 
to be allocated from HMIA within the CFP message, this RA calculates its local cost Costij [as shown by 
Equation (6)]; then, it broadcasts this cost to the other RAs. After receiving all the costs from the other 
RAs, this RA compares them to its local cost. The agent holding the best proposition will be assigned to 
map this zone. If two agents or more proposed the same cost, the agent having the smallest rank inside 
the team will be assigned to map that zone. Next, this agent will inform HMIA by sending ALLOCATED 
message.

In both cases, HMIA continues by sending MAP message to all the active RAs of the control system. There
after, each RA moves toward its calculated/imposed deployment position. During the motion, RA calculates 
the current position of the detected obstacle/environment limit [as shown by Equations (7) and (8)] and sends 
data (MAPPED message) to HMIA to build the global map. This procedure continues until receiving END 
message from HMIA.

3.3  �Interaction Between the Agents of the Control System

A key component to a multi-agent system is the mechanism that allows agents to interact [1]. This interaction 
is implemented through messages exchange protocol. Figure 5 gives an overview of the whole interactions 
between HMIA, RAs, and the human operator:

Figure 3: Behavior Diagram of the Human/Machine Interface Agent (HMIA).
create(Agent) creates an Agent to locally control a robot. integrate(Agent, Team) integrates a new Agent into Team. send(Agent, 
Message) sends Message to Agent. get(Data) receives Data from the operator, another agent, a proximity sensor, or from the 
knowledge database. select(Zone) selects Zone to be allocated. draw(map, listData/Robot, r) draws listData/Robot onto map 
with color r. showMessage(Message) displays Message on the screen of the operator.
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–– REQUEST: This message is sent by the operator to HMIA to execute a task (i.e. indoor environment 
mapping).

–– INFORM: This message allows exchanging useful information between the agents of the control system.
–– INITIALIZE: HMIA sends this message to all RAs to create the required mapping sensors and initialize 

their different parameters.
–– INITIALIZED: After receiving the previous message and initializing its parameters, each RA replies by 

sending INITIALIZED message to HMIA.
–– CFP: In case of autonomous deployment strategy, HMIA broadcasts the different zones of the environ-

ment on the active RAs through a CFP message.
–– PROPOSE: Just after receiving CFP message, each RA sends its local proposition on the current zone to 

the other RAs within a PROPOSE message.
–– ALLOCATED: Once the allocation of a zone is achieved, the corresponding RA informs HMIA by sending 

ALLOCATED message.
–– MAP: Once all the RAs sent INITIALIZED messages (random deployment) or when all the zones have 

been allocated to robots (autonomous deployment), HMIA begins the mapping process by sending MAP 
message to all the active RAs.

Figure 4: Behavior Diagram of Robot Agent.
initialize(field1, …, fieldn) initializes field1, …, fieldn. create(sensor) creates a proximity sensor to equip the robot. 
evaluate(Zone) evaluates the local cost of RA relative to Zone; it is sent to the other RAs. best(cost1, …, costi− 1, localCost, costi+1, 
…, costm) selects minimum value between RA propositions. moveRobot(Zone) moves the robot to Zone while avoiding obstacles. 
localizeRobot() returns the current position ci(xi, yi, θi) of the robot ri inside its workspace. add(v1, …, vn, listData) adds v1, …, vn 
to listData.
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–– MAPPED: Following the mapping of a part of the surrounding environment of a robot, RA sends this 
message to HMIA within the calculated position of the detected obstacle/environment limit to be inte-
grated into the global generated map.

–– END: HMIA sends this message to all the active RAs to stop the mapping process.

4  �Simulation Results
For validation purposes, Player/Stage simulator has been used to implement the proposed distributed 
mapping approach. Player/Stage is a 2D simulator developed at the South California University [22] to allow 
simulating a robot population. It simulates a large number of equipment including cameras, lasers, grippers, 
etc. In this work, Player-3.0.2 and Stage-3.2.2 [https://sourceforge.net/projects/playerstage/] have been used.

Several validation scenarios for the random and autonomous deployment approaches have been per-
formed. The main results are compared in terms of (i) required mapping time, (ii) global map accuracy, and 
(iii) number of messages exchanged between the agents. For the last comparison parameter, communication 
between the agents is assumed to be unlimited for the whole control system.

The mapping time tMapping is calculated by Equation (9); the accuracy of the global generated map is 
calculated by Equation (10), where:

–– tStart and tEnd represent the start time and end time of mapping, respectively.
–– ξ is the size of fictive obstacles/environment limits perceived by the robots.

Figure 5: Sequence Diagram for the Whole System.

https://sourceforge.net/projects/playerstage/]
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–– σ is the size of real obstacles and environment limits detected by the team.

	 Mapping End Startt t t= − � (9)

	
1 100Accuracy ξ

σ

 
= − ×   �

(10)

Positions are given in meters (m), time in seconds (s), and accuracy in percentage (%).

4.1  �Validation Workspace

It is necessary to create a simulation workspace; thus, the ground floor of the DPR of CDTA is considered. As 
shown in Figure 6 [13], this environment of about L × W = 32 × 22 m2 is large enough to show the performances 
of the proposed collaborative mapping approach using many robots. Also, the environment has seven work-
rooms with a long shared corridor (i.e. Z = {z1, …, z8}). It should be noted that Z only contains zones that are 
reachable by at least one robot.

The number of robots is an important aspect to consider when designing a team. If this number increases, 
the difficulty to coordinate them increases too. As stated in Ref. [20], the team for collaborative exploration 
consists of about 2–5 robots. Therefore, a robot team composed of several Pioneer 2DX mobile robots is con-
sidered to collaboratively map this workspace (i) R = {r1, r2}, (ii) R = {r1, …, r3}, (iii) R = {r1, …, r4}, and (iv) R = {r1, 
…, r5}. Each robot can localize itself based on data delivered by its odometry sensors.

Figure 7 describes the developed control interface for indoor environment mapping by a team. Each robot 
maps the area that it has explored; for example, green area was mapped by green robot, red area by red robot, etc.

4.2  �Validation Scenarios

To provide a better comparison support for the proposed distributed multi-agent approach, all the para-
meters of the utilized robots and the considered indoor environments have to be identical. Unfortunately, the 
absence of this information in the literature (environments, parameters, and initial conditions of the robots) 
has led us to establish our own validation scenarios.

Using Player/Stage, a series of simulations was performed with different numbers of robots. In addition, 
as the work is done in simulation, the accuracy of the proximity sensors is considered to be equal to 100%. 
Finally, each robot is equipped with a laser sensor having the following characteristics (Table 1):

Figure 6: Ground Floor of the DPR of the CDTA Research Center.
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For each scenario, two different cases are considered (i) random deployment and (ii) autonomous deploy-
ment. For both cases, the current positions of the robots C = {c1, …, c5} and the coordinates of the different 
zones G = {g1, …, g8} are supposed to be as follows (Table 2).

4.2.1  �First Scenario

The first scenario consists of using two mobile robots R = {r1, r2} to map Z = {z1, …, z8}. Table 3 gives the assigned 
zones to RAs for random and autonomous deployment approaches. Figure 8A and B illustrates the obtained 
global maps for both modes, respectively.

Figure 7: Developed Interface for the Collaborative Mapping of Indoor Environments.

Table 1: Characteristics of the Proximity Sensor Equipping all the Robots.

Range   FOV  Ei  Ni  α = β = γ

8 m   180°  1  360 
1
3

Table 2: Parameters of the Considered Validation Scenarios.

Current positions of the robots   r1   c1(6, −9)
  r2   c2(7, −9)
  r3   c3(8, −9)
  r4   c4(9, −9)
  r5   c5(10, −9)

Coordinates of the environment zones   z1   g1(10.5, 8.1)
  z2   g2(2, 8.1)
  z3   g3(−5, 8.1)
  z4   g4(−12.5, 8.1)
  z5   g5(13, −8.1)
  z6   g6(0.5, −5.5)
  z7   g7(−8.1, −5.5)
  z8   g8(0, 2)
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4.2.2  �Second Scenario

This scenario considers three mobile robots R = {r1, …, r3} to map Z = {z1, …, z8}. Table 4 gives the obtained 
results for both modes.

4.2.3  �Third Scenario

In this scenario, a team composed of four mobile robots R = {r1, …, r4} is considered to parallel map the 
whole environment Z = {z1, …, z8}. Table 5 gives the zones assigned to the robots for both deployment modes. 
Figure 9A and B gives the obtained results for the first and second cases, respectively.

4.2.4  �Fourth Scenario

In this last scenario, five robots R = {r1, …, r5} are used for exploring and mapping the workspace Z = {z1, …, z8}. 
Table 6 gives the zones assigned to the robots for both random and autonomous deployment modes.

Table 3: Assigned Areas for the Scenario with Two Robots.

Deployment approach Robot Assigned zones

Random Robot 1 Z2→Z8→Z1→Z6→Z5

Robot 2 Z7→Z3→Z4

Autonomous Robot 1 Z6→Z8→Z2→Z1

Robot 2 Z5→Z7→Z3→Z4

Figure 8: Generated Global Maps for the Scenario with Two Mobile Robots: (A) Generated Map for the Random Approach and (B) 
Generated Map for the Autonomous Approach.

Table 4: Assigned Areas for the Scenario with Three Robots.

Deployment approach Robot Assigned zones

Random Robot 1 Z2→Z8→Z1

Robot 2 Z7→Z3→Z4

Robot 3 Z6→Z6

Autonomous Robot 1 Z6→Z8→Z2

Robot 2 Z7→Z3→Z4

Robot 3 Z5→Z1
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4.3  �Discussion of Obtained Results

Different simulation scenarios have been carried out for the problem of the collaborative mapping of an 
unknown indoor environment (the ground floor of DPR of CDTA) by a homogeneous mobile robot team. The 
proposed distributed multi-agent coordination approach assigned the most suitable robot to explore and 
map a specific zone based on the implemented bidding strategy.

Table 7 and Figure 10 summarize the average of the accuracy of the generated global maps, the necessary 
mapping times, and the number of exchanged messages between the control agents for 20 trials of the previ-
ous scenarios. In addition, other mapping results using one robot (R = {r1}) are added to have an idea about 
the advantages of using a robot team compared to a single robot (especially mapping time).

Table 5: Assigned Areas for the Scenario with Four Robots.

Deployment approach Robot Assigned zones

Random Robot 1 Z1→Z2

Robot 2 Z4→Z8

Robot 3 Z5→Z6

Robot 4 Z7→Z3

Autonomous Robot 1 Z6→Z8

Robot 2 Z7→Z3

Robot 3 Z1→Z2

Robot 4 Z5→Z4

Figure 9: Generated Global Maps for the Scenario with Four Robots: (A) Generated Map for the Random Approach and (B) Gener-
ated Map for the Autonomous Approach.

Table 6: Assigned Areas for the Scenario with Five Mobile Robots.

Deployment approach Robot Assigned zones

Random Robot 1 Z1→Z2

Robot 2 Z8→Z5

Robot 3 Z6

Robot 4 Z3→Z7

Robot 5 Z4

Autonomous Robot 1 Z6→Z8

Robot 2 Z7→Z4

Robot 3 Z2→Z3

Robot 4 Z1

Robot 5 Z5
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The proposed approach has been tested on different simulations using one, two, three, four, and five 
mobile robots evolving in indoor workspaces. The presented collaborative mapping results indicate that the 
proposed autonomous deployment method provides more efficient zone allocation to the team. The main 
advantages of such an approach can be outlined as follows:

–– The proposed approach is generic. Indeed, if the number of mobile robots changes, all we have to do is to 
configure the needed number of RAs with their respective parameters.

–– Using a robot team allows mapping in parallel the entire environment obtaining consequently a shortest 
mapping time, whereas a single robot must sequentially map all the world parts and needs thus more 
time.

–– The use of the proposed efficient deployment bidding-based strategy for mobile robot team (i.e. assigning 
the robots to separate workspace areas) allows to quickly mapping the environment, minimizes the total 
mapping time, and maximizes the accuracy of the global map eventually.

Table 7: Average for 20 Trials of the Previous Scenarios: Accuracy of the Global Generated Maps, Time of Mapping, and Number 
of Exchanged Messages.

Robot Random deployment Autonomous deployment

Accuracy (%) Time (s) Message Accuracy (%) Time (s) Message

01 100 258 286 100 230 254
02 95.37 179 396 98.79 168 371
03 85.85 132 424 93.96 126 330
04 81.09 99 438 91.55 71 309
05 73.15 95 507 87.52 70 347
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98      A. Hentout et al.: Distributed Multi-agent Bidding-based Collaborative Mapping Approach

–– It is easy to verify that the proposed scheme becomes fault tolerant to unexpected failures (such as robot 
breakdown, etc.) [5] without adding any specific treatment. For example, if an RA breaks down, the 
system may provide a good alternative solution. In such a case, the other RAs that are still functional will 
proceed as shown in Section 3.2 to reallocate the set of zones initially assigned to the broken RA.

The main drawback of the proposed multi-agent approach is that the mutual detection of mobile robots has 
considerably diminished the quality of the final maps; it also created fictitious obstacles that do not exist in 
the real worlds.

5  �Conclusions and Future Works
This paper described a distributed multi-agent collaborative approach for indoor environments mapping by 
a homogeneous mobile robot team. The proposed scheme begins by assigning the most suitable RA to map a 
different area of the environment based on a bidding strategy. Thereafter, the robot team communicates the 
mapping data to the HMIA to build the global map. We also opted for the metric model (geometric map) and 
an algorithm based on obstacles and environment limits detection (walls, etc.). The implementation of the 
proposed approach was done using Player/Stage simulator. Finally, performances have been evaluated in 
simulation through various scenarios (using 1, 2, 3, 4, and 5 robots) in terms of (i) required mapping time, (ii) 
accuracy of the global generated map, and (iii) number of exchanged messages between the agents.

The extension of this algorithm to dynamic workspaces should significantly improve its performances. 
During mapping, it is necessary to distinguish static from dynamic objects (robots, etc.) so as to not incor-
porate them in the global map (to avoid creating misrepresentations). This issue can easily be overcome by 
equipping the robots with RFID tags/readers or by sharing information about their current positions. Finally, 
other extension would be to consider large numbers of robots to test the performances of the proposed 
approach in such cases.
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