
J. Intell. Syst. 2020; 29(1): 110–126

Jalil Nourmohammadi-Khiarak*, Yashar Zamani-Harghalani
and Mohammad-Reza Feizi-Derakhshi

Combined Multi-Agent Method to Control
Inter-Department Common Events Collision
for University Courses Timetabling
https://doi.org/10.1515/jisys-2017-0249
Received May 26, 2017; previously published online December 21, 2017.

Abstract: University course timetabling is the scheduling of courses at different time slots in a university.
The two important issues in this process are (i) the allocation of all events (professors, courses, and stu-
dents) to resources (time slots daily/weekly and theory/practical classes) in a semester, and (ii) maximizing
the satisfaction of common events (professors, courses, and students) among multiple departments. Accu-
mulating evidences in university course timetabling problems suggest dividing the problem into several
sub-problems. This study attempted to investigate the appropriateness of using the genetic algorithm (GA)
and the imperialist competitive algorithm (ICA). The proposed technique consists of two steps: (i) using the
proposed manipulated GA for solving the timetabling problem of each department, and (ii) eliminating the
interference of common events among multiple departments and satisfying the hard and soft constraints
by using ICA. Finally, a report on the efficiency of the methodology used in this study was obtained from
the University of Tabriz in Iran and University of Udine in Italy. In this paper, the results are revealed in two
ways: (i) reduction in the problems due to shrinking of the database and solving of the problems in parallel
and (ii) solving the different parts of the problem by using various criterion results, increasing the common
events satisfaction in that sub-problem. Eventually, the proposed model provided successful satisfaction of
the hard constraints in <700 iterations with GA and elimination of interference in 40 iterations with ICA in
most of the cases.

Keywords: University course timetabling, imperialist competitive algorithm, genetic algorithm.

1 �Introduction
University course timetabling problems and common events solving among multiple departments are con-
sidered among the major challenges in a university. The timetabling problem for universities concerns pro-
fessors, students, courses, classrooms, and time slots/class schedules, such that professors and students
meet during one or more time slots during the week in certain classrooms for their courses [23]. In this
work, we tried to resolve these issues based on the priorities and demands of common events with respect
to the allocation of free resources among multiple departments. Common events among multiple depart-
ments are a problem that needs to be resolved. Therefore, there needs to exist a solution to make smooth
timetabling of university courses and common events in order to avoid collision of common events among
multiple departments and also to maintain the non-collision of events associated with allocations with
maximum satisfaction. This satisfaction in the allocation of common resources to common events should be
maintained. However, resolving the timetabling of common events among multiple departments gives rise

*Corresponding author: Jalil Nourmohammadi-Khiarak, Faculty of Electrical and Computer Engineering, University of Tabriz,
Tabriz, Iran, e-mail: J.nourmohammadi92@ms.tabrizu.ac.ir
Yashar Zamani-Harghalani and Mohammad-Reza Feizi-Derakhshi: Faculty of Electrical and Computer Engineering, University
of Tabriz, Tabriz, Iran

 Open Access. © 2020 Walter de Gruyter GmbH, Berlin/Boston. This work is licensed under the Creative Commons Attribution
4.0 Public License.

https://doi.org/10.1515/jisys-2017-0249
mailto:J.nourmohammadi92@ms.tabrizu.ac.ir

J. Nourmohammadi-Khiarak et al.: Combined Multi-Agent Method for University Course Timetabling      111

to a developed and scalable timetabling process that increases either the magnitude of the problem or the
volume of data.

The problem of university course timetabling in all states belongs to the NP-complete class in terms of
complex computation, as was completely proved in Refs. [7, 8]; thus, there is no algorithm with time complex-
ity of polynomial order to solve this problem. Precision algorithms and approximation algorithms can be used
to solve scheduling problems. Precision algorithms are unessential for solving such problems, as the execu-
tion time of this set of algorithms exponentially increases with the size of the problem [20]; therefore, approx-
imation algorithms are used, such as heuristic and meta-heuristic algorithms. Among these algorithms are
the genetic algorithm (GA) [39], tabu search [25], and honey bee algorithm [33].

In this research, the approach considered was a “divide and conquer method,” in which dividing prob-
lems into sub-problems can reduce the amount of data descriptors. Every department independently and
in parallel manner resolves the problems with other departments. Every department, after resolving its
own timetabling problems according to its criteria, sends some typical possible timetables to an inter-
face agent. Agents of each department do not need to send extra information to the interface agent to
allocate common resources to common events. An interface agent tries to maintain each department’s
offers, extracts free resources from possible timetables, and allocates common events using the imperialist
competitive algorithm (ICA). Each department is assumed as an agent. These agents try to produce typical
possible timetabling by using GA. The proposed GA has been designed for maximum satisfaction in the
output of timetabling.

Several studies have attempted to solve university course timetabling problems [3, 14, 19, 26, 29, 37, 39].
For solving the problem, we need a distributed environment and interface agent for accommodating various
timetabling agents that cooperate to improve a common comprehensive solution [14]. The primary solution
for a multi-agent system is earned based on usage of a marketplace and an artificial currency. Nandhini
and Kanmani [26] implemented a class timetabling approach with multi-agents by the steepest ascent as
proposed for the hill climbing algorithm. The agents they used included (i) a combination generator, which
generates the maximum possible combinations for inputting in the timetable, and (ii) a minimum finder,
which finds a combination with minimum evaluation function value for successive examinations. Obit et al.
[29] proposed a multi-agent approach using a distributed solution environment in which a mediator agent
coordinates various timetabling agents that cooperate to improve a common global solution.

Many multi-agent methods have been proposed for solving the problem of university course timetabling.
Babkin et al. [4] presented a multi-agent method that uses a mathematical model to solve this problem, and
the basis of the proposed algorithm is the famous multi-agent algorithm MSRAC for scheduling meetings.
In another paper [21], a multi-agent method based on an interface agent that performs coordination among
other agents was designed. Also, a multi-agent system consisting of a combined heuristic that includes graph
coloring heuristics and local search was proposed [29]. In Ref. [27], a multi-agent model named multi-fac-
tor model for university courses timetabling (MATP) was presented. This model was based on agents that
compete together and can process parallel and distributed problems. Nouri and Driss [28] presented this
problem and attempted to examine the diversity of the number of messages in terms of priority of allocation
privilege and the effect of the number of messages per CPU time.

In recent years, hybridization of meta-heuristic approaches has been proven to be effective in solving uni-
versity timetabling problems. According to comprehensive surveys on timetabling problems [2, 15, 22, 31, 34],
“There are many research directions generated by considering the hybridization of meta-heuristic methods
particularly between population-based methods and other approaches.” Blum and Roli [6] summarized that
“population-based methods are better in identifying promising areas in the search space, whereas trajectory
methods excel in exploring promising areas in the search space. Thus, meta-heuristic hybrids in some way
manage to combine the advantages of population-based methods with the strength of trajectory methods.”
As an example, Eley [16] proposed two different versions of ant colony algorithms (MMAS-ET and ANTCOL-
ET) in solving examination timetabling problems. Both approaches involved the hybridization of an ant algo-
rithm and a hill climbing approach. The experimental results demonstrated that ANTCOL-ET outperformed
MMAS-ET. This approach is better in exploring promising search regions and is able to escape from local

112      J. Nourmohammadi-Khiarak et al.: Combined Multi-Agent Method for University Course Timetabling

optima; however, it is poor in fine-tuning the final solution search region. Wangmaeteekul [37] narrowed the
gap between the theoretical and practical aspects of university timetabling. The author used four different
principles for organizing the interaction between the agents: sequential FIFO, interleaved FIFO, round-robin
and sequential, and round-robin and interleaved.

2 �Proposed Method
The issue of research involves several different departments. Each department is associated with one agent
and the research approach will be based on a participatory procedure [30]. Every department accomplishes
timetabling separately and plans the procedure as an autonomous agent. GAs have been used for this work
and have achieved better results compared to others. In this regard, every department satisfies its own hard-
ness and softness constraints. A “surveyor agent” extracts common events among multiple departments
associated with respective constraints and additional available resources. This is done by searching in the
provided timetables by departments. Then, “the interface agent,” which is the imperialist, receives the
extracted information by “the surveyor agent” and uses ICA to move toward the elimination of interferences,
and the common events satisfaction increases [19]. During the ICA process, mapping priorities, constraints,
and common events demand free resources among multiple departments.

The proposed algorithm is shown in Figure 1 and consists of the following four factors:
–– n factors for department timetabling;
–– Resources surveyor agent;
–– Interface agent;
–– Results surveyor agent.

Database central server
all agents access to this

database

Department timetabling agent
(first phase)

Course scheduling for department 2
using GA

Course scheduling for department 1
using GA

Course scheduling for department n
using GA

Results navigator agent
(fourth phase)

Formatting and representing the
obtained scheduling data from

interface agent

Resource surveyor agent
(second phase)

Interface agent
(third phase)

Obtaining common events with free
resources and solving it using

Imperialist competitive algorithm
(ICA) algorithm

Extraction of inter-department
common events with their features for

interface agent

Figure 1: Detailed Steps of the Proposed Algorithm.

J. Nourmohammadi-Khiarak et al.: Combined Multi-Agent Method for University Course Timetabling      113

2.1 �Constraints

Hard constraints:
–– Different courses taught by the same teacher should not be scheduled at the same time.
–– There should be no missing class in the final result.
–– When two courses require the same classroom, those two courses cannot be scheduled at the same time,

such as laboratory classes.
–– Courses that have been scheduled for the same time cannot be assigned to the same classroom.
–– Each teacher must be accessible at all times when the course is scheduled for them.
–– Each course must be exactly scheduled for one time and one classroom.
–– Some courses cannot be repeated more than a limited number of weeks.
–– The teacher with a common event should not have the same course to teach at two separate departments

at the same time.

Soft constraints:
–– The teacher may have a priority for daily/weekly time for class attendance, so satisfaction of this priority

is considered.
–– Teachers can request a special classroom for teaching.
–– Each course should be assigned to a classroom that is near the building of one department or is near the

teacher’s office or location.
–– Events should be uniformly distributed (courses, teachers, etc.) among resources. This will facilitate the

allocation of resources (time and classrooms). Moreover, this distribution maximizes productivity while
reducing waste of resources.

–– Start of classes can be from 8:00 to 16:00 or from 9:00 to 17:00 (this constraint is optional).

Additional optional costs (fines):
–– MINWorkingDay: setting the bottom limit for each teacher.
–– IsolatedLecture: classes that cannot be changed for any condition, such as laboratory classes.
–– RoomStability: all sessions of a course are held in a constant classroom.
–– TravelDistance: if the students are going to attend two courses in two distinct buildings, then this dis-

tance between the buildings should be at a minimum.
–– RoomSuitability: suitability of the room for the course (e.g. some courses require a projector, amplifier,

etc.) should be maximized.
–– DoubleLectures: it may sometimes be necessary to conduct two courses in one class session.

2.2 �n Agents for Department Timetabling

In this section, it is attempted to extract and deliver to the next agent a separate scheduling for each depart-
ment using the GA. We will take the input data for each department at this stage, and we will only send an
optimum output obtained with GA to the resource surveyor agent in order to eliminate inter-department
common events collision.

In a GA [1, 11, 39], the genetic population (community) or the same set of chromosomes, the genetic
operators or the same coupling through integration and mutation, and quantitative parameters such as
population size and mutation rate are considered. In this section, assuming the benefits of a standard
GA in designing timetables, the hypothesis of timetabling is shown in Table 1. The boundary parameters
in Table 1 are obtained through trial and error. In this paper, a permutation approach is used for chromo-
some encoding in which integer numbers represent genes in the chromosomes [39]. For the number of
genes, there are integer numbers in the chromosome. The integration must be such that after combining
two chromosomes, a repeated gene is not produced in offspring. Each gene has been used in a limited

114      J. Nourmohammadi-Khiarak et al.: Combined Multi-Agent Method for University Course Timetabling

range of integer numbers. For example, the number range of 1 to 5 is utilized to represent the days of
the week from Saturday to Wednesday. The pseudo-code used for the GA in the university schedule is as
follows.

NumTi is the number of schedules per department that is considered as the primary population in the
genetics; NumRep is the fraction of the population that is replaced in each repetition; and μ is the mutation
rate.

In many previous works [18, 36], the idea of adapting mutation and crossover was applied for the
improvement of GA production. Schaffer and Morishima [35] proposed a crossover mechanism where the
crossover points were chosen depending on the performance of the generated offspring. Davis [9] proposed
a mechanism of adapting probabilities based on the performance of the operators. To select the parameters
of the proposed GA for scheduling courses in each department, we obtained some experience. Crossover and
mutation are important parameters in GA. For choosing the best values, we repeat the algorithm and set the
best values, as shown in Figure 2.

Crossover operator type: In the proposed crossover, parents for the crossover operation are first
selected. Roulette wheels are used and the chromosomes that had better expenses will have more chances
of being a parent. After the parents have been chosen, 20% of the first parent’s chromosomes are displaced
by another parent’s chromosome regarding the course number gene. This means that copies of both parents
are first produced. Twenty percent of the first chromosome’s courses are randomly chosen (every time the

Table 1: Values of Selected Parameters of the Proposed GA for Scheduling Courses in Each Department.

Parameter name Comment

Population size 100
Chromosome length Number of required courses
Crossover operator probability 0.85%
Mutation operator probability 0.05%
Termination conditions Number of iterations = 2000 or number of hard constraint = 0

Algorithm: GA(NumTi, NumRep, μ).

//Initialize generation 0:
k: = 0;
Pk: = a population of n randomly generated individuals;
//Evaluate Pk:
Compute fitness(i) for each i ∈ Pk;
do
{//Create generation k + 1:
//1. Copy:
Select (1 − NumRep) × NumTi members of Pk and insert into Pk + 1;
//2. Crossover:
Select NumRep × NumTi members of Pk; pair them up; produce offspring; insert the offspring into Pk + 1;
//3. Mutate:
Select μ × NumTi members of Pk + 1; invert a randomly
selected bit in each;
//Evaluate Pk + 1:
Compute fitness(i) for each i ∈ Pk;
//Increment:
k: = k + 1;
}
when fitness of the fittest individual in Pk is not high enough;
return the fittest individual from Pk;

J. Nourmohammadi-Khiarak et al.: Combined Multi-Agent Method for University Course Timetabling      115

database is randomly filtered by one of the courses) and then another chromosome associated with this
course code is filtered. These courses are displaced between the two chromosomes without changing any
other fields. This kind of crossover does not give rise to any repetitive courses or professors at all, which
means that it is regarded as a permutation of the problem.

Mutation operator type: The integer number of the gene is randomly exchanged with the allowed value
of the gene in two or more positions in the table (chromosome). For example, if a gene represents random
changes of a day, the integer number of 1 to 5 is given. In the mutation operation, random changes are dif-
ferent for different chromosomes and each chromosome changes according to its own law. As we are taking
into account some soft constraints in the crossover and mutation operations, any random change should be
checked with regard to whether it violates the restrictions or not. For example, one of the limitations is that
there should not be more than 2 h for a course every day (soft constraint). If the gene associated with informa-
tion about the day of the course is selected for a mutation, the chosen day should be different from the second
day of holding the course, if possible. These kinds of rules in many cases avoid the existence of chromosomes
that violate the soft constraints.

Equation (1) represents the utilized fitness function in this paper:

	

numclass 5 12

1

Fitness() NumSC NumHc ,i i
i

x c
∗ ∗

=

= ∗ +∑
�

(1)

where Fitness(x) is the fitting function for calculating the value of each chromosome, c is a constant factor
for soft constraints, NumSC is the number of violated soft constraints, NumHc is the number of hard violated
constraints, numclass is the number of classes, the number 5 represents the number of days, and the number
12 represents the number of time periods. Our aims are to minimize the amount of the cost function.

The algorithm termination conditions are as follows:
–– There are no violated hard constraints, and violated soft constraints are minimized.
–– A certain number of iterations are done (in our experiments, the repeated time is considered 100).
–– The population converges (in the designed algorithm, the occurrence probability of this condition is

close to zero in large populations). GA is an efficient method in which the positive characteristics of the
random and greedy approaches are embedded.

6

5

4

3

2

1

0
0 0.1 0.2 0.3 0.4 0.5

Cross over and mutation values

Fix the parameters of the genetic algorithm

N
um

be
r

of
 h

ar
d

co
ns

tr
ai

nt
 o

r
so

ft
co

ns
tr

ai
nt

0.6 0.7 0.8 0.9 1

Figure 2: Fixing the Parameters of GA (Crossover and Mutation).

116      J. Nourmohammadi-Khiarak et al.: Combined Multi-Agent Method for University Course Timetabling

2.3 �Resource Surveyor Agent

When using several agents with the genetic optimization algorithm, the scheduling of each department is
conducted and the resource surveyor agent collects all the results, which are delivered in the form of a general
timetable, i.e. interface agent. We have used this agent because the interface agent only has the role of solving
the inter-department common events collision and only reports constraints, and in fact extracts or scans the
scheduling by the resources surveyor agent.

2.4 �Implementation of the Interface Agent (ICA)

The task of the interface agent is resolving the conflicts between the open source and command events. Open
sources are extracted by a scanner and will be available for the interface agent. This agent will try to com-
plete the resulting timetabling of the department’s agents with command events. In the case of conflict in
timetabling, the conflict is resolved and again will return to autonomous agents of departments. The ICA, like
other evolutionary optimization methods, starts with an initial population. In this algorithm, each element
of the population is called the country. Countries are divided into two categories: colony and colonizer. Each
colonizer dominates some colonial countries depending on its strength.

As the ICA is inherently a continuous algorithm, it must be discrete to allow its use in this article. This
was done by Lotfi [17] in his paper, and it is used in this paper for implementation of scheduled common
events. This converted algorithm is shown in Figure 3.

The pseudo-code used for the ICA to resolve inter-department common events collision is as follows:

Start

End

Yes

Termination
conditions

Remove empire

Yes

Is there empires without
timetabling?

Pick the weakest colony from the weakest empires and give it to one of
the powerful empires

Unite similar empires

Compute the total cost of all empires

Yes No

No

No

Elitism

Apply modified revolution operator

Assimilate countries (by using
crossover operator)

NumItration = 0

Create initial empires

Evaluate population and sort the
initial population based on the cost

Create initial population

A common event scheduling problem instance
set algorithm parameters

Is there a colony in an empire which
has lower cost than the imperialist?

Exchange the positions of that colony
and the imperialist

Figure 3: Flowchart of the Process of Applying Discrete ICA on Common Events Solving Among Multiple Departments.

J. Nourmohammadi-Khiarak et al.: Combined Multi-Agent Method for University Course Timetabling      117

In this pseudo-code of Xcountry, there is a scheduler (country) or solution. The cost of each colony is in the

empire, and Costm is the cost of the empire itself. Cn is the total cost of nth empire.
In this paper, the discrete ICA is used to solve scheduling of command events among departments, and

assessing this algorithm will show its efficiency to solve this problem. In the discrete ICA, the assimilation
operator causes colonies to move toward their respective empires. The assimilation process indicates that
colonies are similar to their empires. Empires try to improve their colonies and use the policy of assimilation
to raise their colonies for more colonies in their empire. This operator is in continuity mode in the ICA, and
as our problem is resolving common events among departments and is considered as a discrete problem, this
part of the ICA should be converted to a discrete problem.

The two-point crossover is used to model the policy of assimilation in discrete mode for scheduling of
common courses. By using crossover, some parts of the colonies of the empires are changed between their
colonies. It should be noted that the colonies of the empires are changed together. In the two-point crossover,
both schedulers (colony) will be cut at two arbitrary points and then the values of cut parts will be changed
together to make two new schedulers. In this section, the ICA will be used to resolve the problem of sched-
uling of common events among departments, and the used parameters and the assigned values are clearly
shown in Table 2.

The advantages of the ICA can be summarized as follows:
–– The basic idea of the algorithm is novel.
–– It is the first optimization algorithm based on a social-political process.

Step 1. Select some random timetable on the function and initialize the empires

= = …country 1 2() (, , ,).nFit F X F f f f

Step 2. Move the timetables (colonies) toward their relevant imperialist (assimilation).
Step 3. �If there is a timetable (colony) in an empire that has a lower cost than that of the imperialist, exchange the positions of

the imperialist and the colony:
= −max{cost } cost .i mFitm

Step 4. Compute the total cost of an empire (related to the power of both imperialist and its timetables):
⋅ = +cost(imperialist) mean{Cost(colonies of empire)}.n n nT C

Step 5. �Pick the weakest colony from the weakest empire and give it to the empire that has the most likelihood to possess it
(imperialist competition):

=

=
∑ 1

.
imp

n
N

ii

C
Pn

C

Step 6. Eliminate the powerless empires.
Step 7. If there is just one empire, stop; else, go to step 2.

Table 2: Values of Selected Parameters of the Proposed GA for the Common Events Solving Among Multiple Departments.

Parameter name Value

Population size 300
Number of initial imperialists 30
Number of all colonies 270
Number of decades/iteration count 50
Revolution rate 0.3
Uniting threshold 0.05
Assimilation coefficient 1.25
Assimilation angle coefficient 0.7
Damp ratio 0.80

118      J. Nourmohammadi-Khiarak et al.: Combined Multi-Agent Method for University Course Timetabling

–– Its optimization capabilities are on par or even higher in comparison with various optimization algo-
rithms according to variety of optimization problems.

–– It has appropriate speed to find the optimal solution.

2.5 �Result Surveyor Agent

This agent, in fact, is similar to the resource surveyor agent, with the difference that we have overall out-
comes and timing in the output, and also the output will be our final outcome. However, in the resource
surveyor agent, several departments were the scheduling inputs and the output was an incomplete schedul-
ing, i.e. interfering. In this agent, when a scheduler is received from the interface agent, it checks whether
the possible interactions have been resolved or not. If all the interactions are resolved, the outcome will be
displayed as a complete scheduler at the outlet and sent to all departments.

3 �Data Sets
To test the proposed algorithm, the dataset consists of faculties, departments, time slots weekly/daily, and
classrooms. In this dataset for each course, several professors (up to five), three departments (literature,
humanities, and mathematics), 5 weekly time slots (Saturday, Sunday, Monday, Tuesday, and Wednesday), 12
time slots (four 2-h slots and eight 1-h slots for every day), and 17 classrooms for each department (3 practical
classrooms and 14 theoretical classrooms) are considered.

4 �Experimental Results and Comparison with Other Papers
Now, we pay attention to the operation of the proposed algorithm on the dataset. First, the number of common
events among three departments associated with their features and constraints are extracted by the surveyor
resource (see Figure 4). Later, the ICA will be applied on common events based on their constraints due to
interface agents. Surveyor operations and gathering of excess resources from each of the three departments
by resource surveyor agents is done while the interface agent operates the ICA. In the end, process mapping
and common events among the three departments in excess resources are fulfilled.

The ultimate goals of the interface agent are as follows:
–– Satisfying all the hard constraints;
–– Respecting the priorities and aspirations of the common events;
–– Minimizing the waste of surplus resources among departments;
–– Equitably distributing the common events among free resources.

In the following, we consider the timetabling of each department. Each of the department agents finds
several responses for the departments and sends these responses to the ICA. The goal is that the produced
populations should have many features to achieve satisfaction of the common events. If we use just one time-
table, we would be confined to one response, and in extracting the optimum response, we would be limited
to a certain band of response. However, by using several responses, we consider an exploration problem,
which means that this leads to concentrating on a response band [38]. The response obtained from GA leads
to extraction of several timetables that satisfy either hard constraints or soft constraints associated with the
departments. Figure 5 represents the portion of the timetable associated with department 1, class 1, and time-
table 1. In Figure 4, everything is almost specified clearly and the only things that may bring questions to
mind are time 1 and time 2. This innovation is utilized as online in order to satisfy some of the constraints. We

J. Nourmohammadi-Khiarak et al.: Combined Multi-Agent Method for University Course Timetabling      119

have known that courses can be in the state of 4. In courses of unit one and four, one of the soft constraints is
that a course must not be held more than one time in a day.

Now, with this approach, we are readily able to satisfy the random initialization of these constraints
and other constraints. Assume that we want to initialize a three-unit course. We allocate a random number
between 1 and 5 to “day1” and for the course, we put a random number between 1 and 4 to the field “time1.”
As a short note, 1 to 4 means a 2-h class. Then, we should determine the remaining 1-h status, so we allocate
a random number to the field “day2”; however, if the random number would be equal to the field “day1,” we

Figure 5: Obtained Results from the Proposed GA in a Department.

Figure 4: Free Resources for Each Department in Timetabling.

120      J. Nourmohammadi-Khiarak et al.: Combined Multi-Agent Method for University Course Timetabling

produce another random number. We continue this operation unless these two numbers are equal. For the
time interval of the unit, we produce a random number between 5 and 12 (1-h class) and put it in the field
“time2.” Using this solution, we regard the random initialization and avoid the occurrence of some states that
are opposite to the hard or soft constraints.

Keep in mind that in this article, we satisfied restrictions more than did the rest of the other articles. The
GA that we have used in this paper has exclusive features such as crossover and mutation approaches. The
crossover and mutation that are used here are completely based on an innovation, and a logical answer is
produced differently from the rest of the works. A comparison of the algorithm criteria with other papers is
shown in Table 3.

The number of repetitions associated with the obtained responses used by Alsmadi et al. [1] is shown in
Figure 6. Figure 7 represents the results of the proposed algorithm in which the repetition number is much
less than those used by Alsmadi et al. [1].

We consider the results of common events timetabling in the departments. We have used ICA to solve the
common events timetabling problem, which was described in details in a previous section. The ICA used in
this paper is the discrete version of ICA [17]. The results of this algorithm represent its high efficiency in opti-
mization. We employed this algorithm in the third part as an interface agent, and Figure 8 shows the algorithm
efficiency. During different experiments, we obtained good results and the fastest convergence was achieved.

A typical response that has been obtained is shown in Figure 9.

4.1 �Formulation

The means of formulation is to consider different weights for different constraints. For this purpose, we con-
sidered the formulas used in Refs. [12, 13], and also the three formulas presented in Ref. [10] so that we can
evaluate our proposed method. The UD6 of our formula is in line with the wishes of Tabriz University in
Table 4. We downloaded the dataset of from a web site (http://tabu.diegm.uniud.it/ctt) related to Ref. [10].

Table 3: Parameters of the Proposed Algorithm.

Parameter name   Alsmadi et al. [1]   Proposed algorithm

Input   Courses list   Courses list
Output   Optimum timetabling   Optimum timetabling
Population size   100   100
Chromosome length  Number of courses   Number of courses
Crossover rate   0.6   0.85
Mutation rate   0.07   0.05–0.15
Termination
conditions

  Number of iterations = 2000 and
achieve zero hard constraint

  Number of iterations = 2000 and
achieve zero hard constraint

Comparison with different population
2300

2100

1900

1700

1500

1300
1 501 1001 1501

Generation

Population of 25
Population of 50
Population of 100

C
os

t

2001 2501

Figure 6: Results Using GA with Various Populations [1].

http://tabu.diegm.uniud.it/ctt

J. Nourmohammadi-Khiarak et al.: Combined Multi-Agent Method for University Course Timetabling      121

21
20
19
18
17
16
15
14
13
12
11

F
itn

es
s

10
9
8
7
6
5
4
3
2
1
0

10 20 30 40 50

Fitness average for IM

Iteration
60 70 80 90 100

21
21
21
21
21
21
21
19
19
18
18
18
18
16
16
16
16
16
16
16
16
13
12
12

Figure 8: Using ICA to Solve Common Events Timetabling among Departments.

21
20
19
18
17
16
15
14
13
12
11

F
itn

es
s

10
9
8
7
6
5
4
3
2
1
0

20 40 60 80 100

Fitness average for IM

Iteration
120 140 160 180 200

21
21
20
20
20
20
20
20
20
20
20
19
19
19
19
19
19
19
19
19
19
19
19
19

Figure 9: Other Solution for Common Events Timetabling among Departments Using ICA.

Fitness average for GA
120

110

100

90

80

70

60

50

40

30

20

10

0
0 100 200 300 400 500

Iteration

F
itn

es
s

600 700 800 900

121
121
121
121
121
121
121
121
121
121
121
119
119
118
118
118
116
116
116
116
114
112
111
109

1000

Figure 7: Results Using the Proposed GA with 100 Populations.

122      J. Nourmohammadi-Khiarak et al.: Combined Multi-Agent Method for University Course Timetabling

Table 4 shows the values for each formula that have been considered. If H is written, this means that this
limitation is strict. If it is “–,” then this means that the restriction is not considered in the particular formula.
All information needed to benchmark the proposed algorithm and for comparing it with other research is
presented.

In Table 5, the set of cases cited from Comp01 to Comp21 are the states proposed in Ref. [10], and the Test1
to Test4 modes are those presented in Ref. [12]. De Cesco et al. [10] added seven other modes that they claim to
have come from the real world, which are aggregated from different institutions. They are referred to as DDS1
to DDS7 modes. Another case called Toy is presented in Ref. [10], which was extensively used by the authors
for testing and troubleshooting.

In Table 5, the important features of each mode are shown with similar statistical values. In the headers,
C, L, R, PpD, D, Cu, MML, Co, TA, CL, and RO represent the course, sum of the courses, rooms, repetition per
day, days, curriculum, minimum and maximum session for one course, mean of collisions, average teacher’s
availability, average of the courses in each curriculum per day, and average occupancy of the room, respec-
tively. Co is a feature that counts each couple of courses that cannot be scheduled at the same time (for a
similar teacher and curriculum).

It should be explained that Co and TA are computed for a single lecture toward the course level; this
means that the courses are with different lectures.

According to De Cesco et al. [10] and Di Gaspero and Schaerf [12, 13], we considered the values necessary
for our variables close to the models of those authors that could satisfy the demands of Tabriz University as
much as possible. Therefore, the test with the formula given in Table 1 with the title DU6 was implemented
with the modes we created, including TUDS1 to TUDS3, and the results were compared with the results of the
references. For this, we have added to this system the various constraints that we have implemented based
on referenced data (Tables 6–10).

5 �Comparison of the Proposed ICA with the IP/LP Approach
The purpose of this comparison is to survey the objective function related to each approach that has solved
the university timetabling problems. In this research, the proposed algorithm is cooperative and we have
used the ICA approach in order to achieve the objective of the research. The IP/LP approach, by formulizing
hard and soft constraints of university timetabling, has done events for the resources by using the branch
and threat algorithm. The LP approach in formulizing and solving problems is related to limited resource
performance and ability of initialization [32]. The IP/LP approach is completely a mathematical method that
is based on the structure and type of the departments and interviews from deans, heads of groups, etc.

Table 4: Problem Formulation Descriptions.

Problem formulation: cost component UD1 UD2 UD3 UD4 UD5 UD6

Lectures H H H H H H
Conflicts H H H H H H
RoomOccupancy H H H H H H
Availability H H H H H H
RoomCapacity 1 1 1 1 1 1

MinWorkingDays 5 5 – 1 5 1
IsolatedLectures 1 2 – – 1 1
Windows – – 4 1 2 –
RoomStability – 1 – – – 1
StudentMinMaxLoad – – 2 1 2 1
TravelDistance – – – – 2 –
RoomSuitability – – 3 H – 3
DoubleLectures – – – 1 – –

J. Nourmohammadi-Khiarak et al.: Combined Multi-Agent Method for University Course Timetabling      123

Table 5: Description of the Samples.

Instance C L R PpD D Cu MML Co TA CL RO

Comp01 30 160 6 6 5 14 2–5 13.2 93.1 3.24 88.9
Comp02 82 283 16 5 5 70 2–4 7.97 76.9 2.62 70.8
Comp03 72 251 16 5 5 68 2–4 8.17 78.4 2.36 62.8
Comp04 79 286 18 5 5 57 2–4 5.42 81.9 2.05 63.6
Comp05 54 152 9 6 6 139 2–4 21.7 59.6 1.8 46.9
Comp06 108 361 18 5 5 70 2–4 5.24 78.3 2.42 80.2
Comp07 131 434 20 5 5 77 2–4 4.48 80.8 2.51 86.8
Comp09 86 324 18 5 5 61 2–4 4.52 81.7 2 72
Comp09 76 279 18 5 5 75 2–4 6.64 81 2.11 62
Comp10 115 370 18 5 5 67 2–4 5.3 77.4 2.54 82.2
Comp11 30 162 5 9 5 13 2–6 13.8 94.2 3.94 72
Comp12 88 218 11 6 6 150 2–4 13.9 57 1.74 55.1
Comp13 82 308 19 5 5 66 2–3 5.16 79.6 2.01 64.8
Comp14 85 275 17 5 5 60 2–4 6.87 75 2.34 64.7
Comp15 72 251 16 5 5 68 2–4 8.17 78.4 2.36 82.8
Comp16 108 366 20 5 5 71 2–4 5.12 81.5 2.39 73.2
Comp17 99 339 17 5 5 70 2–4 5.49 79.2 2.33 79.8
Comp18 47 138 9 6 6 52 2–3 13.3 64.6 1.53 42.6
Comp19 74 277 16 5 5 66 2–4 7.45 76.4 2.42 69.2
Comp20 121 390 19 5 5 78 2–4 5.06 78.7 2.5 82.1
Comp21 94 327 18 5 5 78 2–4 6.09 82.4 2.25 72.7

Test1 46 207 12 4 5 26 2–4 5.25 97.6 1.97 86.2
Test2 52 223 12 4 5 30 2–4 5.57 86.1 2.11 92.9
Test3 56 252 13 4 5 55 2–4 5.89 78.1 2 96.9
Test4 55 250 10 5 5 55 2–4 5.98 76.8 2 100

DDS1 201 900 21 15 5 99 3–7 4.58 21.3 5.18 57.1
DDS2 82 146 11 11 6 11 3–6 23.2 34.8 4.06 20.1
DDS3 50 206 8 11 5 9 3–6 12.4 58.8 4.76 46.8
DDS4 217 972 31 10 5 105 3–6 2.85 91.4 3.78 62.7
DDS5 109 560 18 12 6 44 3–6 2.19 66 1.89 43.2
DDS6 107 324 17 5 5 62 2–4 5.79 77.8 2.38 76.2
DDS7 49 254 9 10 6 37 3–6 14 89 3.01 47

Toy 4 16 3 4 5 2 2–3 75 90 2.1 26.7

TU-DS1 94 215 15 5 5 55 2–4 6.01 71.1 2.2 60.2
TU-DS2 52 233 12 4 5 41 2–4 4.6 89.2 2.9 45.7
TU-DS3 116 480 16 10 5 52 3–6 8.1 74.1 4.5 41.2

Table 6: Results of References Part 1.

Form/instance Comp01 Comp02 Comp03 Comp04 Comp05 Comp06 Comp07

UD1 4 35 52 21 244 27 13
UD2 5 75 93 45 326 62 38
UD3 8 34 45 2 434 14 12
UD4 6 49 371 20 408 28 35
UD5 11 270 206 92 1269 202 213
UD6 2 18 29 9 123 13 7

In solving the timetabling problem of university courses [1, 5, 24, 38], the solutions are different from
institute to institute and are affected by the size of the institutes. It is rather difficult to obtain an optimum
solution for the timetabling of university courses at the end of the IP/LP method, so these kinds of approaches
are utilized separately. A comparison of the objective function associated with its parameters in the proposed
approach with the IP/LP method is shown in Table 11.

124      J. Nourmohammadi-Khiarak et al.: Combined Multi-Agent Method for University Course Timetabling

6 �Conclusion and Future Work
We have obtained desirable results by implementing the proposed algorithm. The results include the per-
formance of the GA for every department timetabling and the ICA for solving the common events problem
among departments, in order to meet the research objectives within a collaborative search solution. The
results of the proposed solution can be expressed as follows: (i) dissipation of excess resources (unused) in
each department has been minimized so that it represents an allocation improvement of common events to
resources, and (ii) the proposed approach creates descending satisfactions of common event priorities among
departments for allocation of excess resources.

Table 7: Results of References Part 2.

Form/instance Comp08 Comp09 Comp10 Comp11 Comp12 Comp13 Comp14

UD1 24 61 10 0 268 38 30
UD2 50 119 27 0 358 77 59
UD3 8 18 2 0 140 32 2
UD4 20 47 18 0 147 51 21
UD5 102 208 190 0 665 195 138
UD6 8 17 4 0 121 20 5

Table 8: Results of References Part 3.

Form/instance Comp15 Comp16 Comp17 Comp18 Comp19 Comp20 Comp21

UD1 46 28 44 41 36 25 69
UD2 87 47 86 71 74 54 117
UD3 30 12 14 10 34 24 30
UD4 42 23 38 32 39 39 60
UD5 259 182 216 150 224 309 247
UD6 21 11 14 9 19 14 28

Table 9: Results of References Part 5.

Form/instance Test1 Test2 Test3 Test4

UD1 214 8 36 43
UD2 234 17 86 132
UD3 200 0 18 24
UD4 213 4 22 37
UD5 245 24 108 173
UD6 111 0 10 21

Table 10: Results of References Part 6.

Form/instance DDS1 DDS2 DDS3 DDS4 DDS5 DDS6 DDS7

UD1 238 0 0 233 0 5 0
UD2 1024 0 0 261 0 11 0
UD3 5944 128 22 3988 56 2 40
UD4 2593 78 11 6735 165 10 29
UD5 9677 93 22 13,064 128 185 97
UD6 115 0 0 111 0 2 0

J. Nourmohammadi-Khiarak et al.: Combined Multi-Agent Method for University Course Timetabling      125

It should be mentioned that using the methods based on multi-agent systems leads to increase in the
timetabling independence of each of department. This prevents autonomy, scalability of collisions, and
unplanned allocations due to negotiating between agents in a distributed environment. Using methods like
colonialism for common events will lead to uniform distribution and allocation of excess resources in the
timetabling process. Because of varying constraints and priorities of the common events among depart-
ments, all demands cannot be satisfied to a desirable level in reality. Future work should be conducted to
solve this problem.

Bibliography
[1]	 O. M. Alsmadi, Z. S. Abo-Hammour, D. Abu-Al-Nadi and A. Algsoon, A novel genetic algorithm technique for solving uni-

versity course timetabling problems, in: 7th International Workshop on Systems, Signal Processing and their Applications
(WOSSPA 2011), Ecole Nationale Polytechnique, Algeria Tipaza, Algeria, 2011.

[2]	 M. G. Asham, M. M. Soliman and R. A. Ramadan, Trans genetic coloring approach for timetabling problem, Int. J. Comput.
Appl. (2011), 17–25. Doi: 10.5120/2824-205.

[3]	 H. Babaei and A. Hadidi, A review of distributed multi-agent systems approach to solve university course timetabling prob-
lem, Adv. Comput. Sci. 3 (2014), 19–28.

[4]	 E. Babkin, H. Abdulrab and T. Babkina, AgentTime: a distributed multi-agent software system for university’s timetabling,
in: M. Aziz-Alaoui, C. Bertelle, eds., From System Complexity to Emergent Properties, pp. 341–354, Springer, Berlin, 2009.

[5]	 M. A. Bakir and C. Aksop, A 0-1 integer programming approach to a university timetabling problem, Hacettepe J. Math. Stat.
37 (2008), 1–15.

[6]	 C. Blum and A. Roli, Metaheuristics in combinatorial optimization: overview and conceptual comparison, ACM Comput. Surv.
(CSUR) 35 (2003), 268–308.

[7]	 E. Burke and P. Ross, Practice and Theory of Automated Timetabling: First International Conference, Edinburgh, UK, August
29–September 1, 1995, Selected Papers, vol. 1153, Springer Science & Business Media, New York, 1996.

[8]	 T. B. Cooper and J. H. Kingston, The complexity of timetable construction problems, in: International Conference on the Prac-
tice and Theory of Automated Timetabling, Edinburgh, UK, 1995.

Table 11: Parametric Comparison between the IP/LP and ICA Methods to Solve the Timetabling Problem.

Method comparison parameters   IP/LP for solving
university
timetabling

  ICA method for
solving common event
problems (proposed)

Reducing event dissatisfactions in a department based on the objective function   ✓  
Reducing common events dissatisfactions among departments based on the
objective function

    ✓

Minimizing excess resource dissipation in more than one department     ✓

For common events, if two or more courses are offered to a professor, those courses
must not overlap with each other

  ✓   ✓

For classrooms, one classroom must not be dedicated to more than one course at
the same time

  ✓   ✓

Compatibility of classrooms: all periods of a specific course must be held in a room
at a certain time

  ✓   ✓

If a course has theoretical and practical prerequisites, the practical classes must be
held before the theoretical classes

  ✓  

Common event time slots are expressed optionally and are expressed by themselves  ✓  
Priorities of common event time slots of inter-departments are optionally expressed
by themselves

    ✓

Compatibilities of classrooms: all periods of a course must be held in the same
classroom in a day

  ✓   ✓

The time complexity for obtaining timetabling corresponds to desirable objective of
solutions

    ✓

Reducing dissatisfactions of non-department events at a department based on the
objective function

  ✓   ✓

https://doi.org/10.5120/2824-205

126      J. Nourmohammadi-Khiarak et al.: Combined Multi-Agent Method for University Course Timetabling

[9]	 L. Davis, Adapting operator probabilities in genetic algorithms, in: Proceedings of the 3rd International Conference on
Genetic Algorithms, San Francisco, CA, USA, 1989.

[10]	 F. De Cesco, L. Di Gaspero and A. Schaerf, Benchmarking curriculum-based course timetabling: formulations, data formats,
instances, validation, and results, in: Proceedings of the 7th PATAT Conference, Montréal, Canada, 2008.

[11]	 P. Demeester, B. Bilgin, P. De Causmaecker and G. Vanden Berghe, A hyperheuristic approach to examination timetabling
problems: benchmarks and a new problem from practice, J. Schedul. 15 (2012), 83–103.

[12]	 L. Di Gaspero and A. Schaerf, Multi-neighbourhood local search with application to course timetabling, in: International
Conference on the Practice and Theory of Automated Timetabling, Pittsburgh, PA, USA, 2002.

[13]	 L. Di Gaspero and A. Schaerf, Neighborhood portfolio approach for local search applied to timetabling problems, J. Math.
Model. Algorithms 5 (2006), 65–89.

[14]	 L. Di Gaspero, S. Mizzaro and A. Schaerf, A multiagent architecture for distributed course timetabling, in: Proceedings of the
5th International Conference on the Practice and Theory of Automated Timetabling (PATAT-2004), Pittsburgh, PA, USA, 2004.

[15]	 M. Dimopoulou and P. Miliotis, Implementation of a university course and examination timetabling system, Eur. J. Oper.
Res. 130 (2001), 202–213.

[16]	 M. Eley, Ant algorithms for the exam timetabling problem, in: Practice and Theory of Automated Timetabling VI,
pp. 364–382, Springer, Berlin, 2007.

[17]	 H. Emami and S. Lotfi, Graph colouring problem based on discrete imperialist competitive algorithm, (IJFCST), Vol. 3, July
2013, pp. 1–12. arXiv preprint arXiv:1308.3784.

[18]	 T. Fogarty, Varying the probability of mutation in the genetic algorithm, in: Proceedings of the 3rd International Conference
on Genetic Algorithms, Virginia, USA, 1989.

[19]	 C. W. Fong, H. Asmuni and B. McCollum, A hybrid swarm based approach to university timetabling, IEEE Trans. Evol. Com-
put. 19 (2015), 870–884.

[20]	 M. R. Garey and D. S. Johnson, Computers and Intractability: A Guide to the Theory of NP-Completeness, W. H. Freeman &
Co., New York, 1979.

[21]	 A. B. Hassine, X. Defago and T. B. Ho, Agent-based approach to dynamic meeting scheduling problems, in: Third Interna-
tional Joint Conference on Autonomous Agents and Multiagent Systems, vol. 3, New York, NY, USA, 2004.

[22]	 J. Henry Obit, Developing Novel Meta-heuristic, Hyper-heuristic and Cooperative Search for Course Timetabling Problems.
University of Nottingham, Nottingham, England, 2010.

[23]	 L. Kang, G. H. von Schoenberg and G. M. White, Complete university timetabling using logic, Comput. Educ. 17 (1991), 145–153.
[24]	 A. H. Karami and M. Hasanzadeh, University course timetabling using a new hybrid genetic algorithm, in: 2nd International

eConference on Computer and Knowledge Engineering (ICCKE), Ferdowsi University of Mashhad, Mashhad, Iran, 2012.
[25]	 Z. Lü and J. K. Hao, Adaptive tabu search for course timetabling, Eur. J. Oper. Res. 200 (2010), 235–244.
[26]	 M. Nandhini and S. Kanmani, Implementation of class timetabling using multi agents, in: International Conference on Intel-

ligent Agent & Multi-Agent Systems, 2009, IAMA, Chennai, India, 2009.
[27]	 H. E. Nouri and O. B. Driss, Distributed model for university course timetabling problem, in: International Conference on

Computer Applications Technology (ICCAT), Zone Touristique El Kantaoui Sousse, Tunisia, 2013.
[28]	 H. E. Nouri and O. B. Driss, MATP: a multi-agent model for the university timetabling problem, in: Software Engineering

Perspectives and Application in Intelligent Systems, pp. 11–22, Springer, Berlin, 2016.
[29]	 J. H. Obit, D. Landa-Silva, D. Ouelhadj, T. K. Vun and R. Alfred, Designing a multi-agent approach system for distributed

course timetabling, in: 11th International Conference on Hybrid Intelligent Systems (HIS), Melacca, Malaysia, 2011.
[30]	 M. Oprea, MAS_UP-UCT: a multi-agent system for university course timetable scheduling, Int. J. Comput. Commun. Control

2 (2007), 94–102.
[31]	 R. Qu, E. K. Burke, B. McCollum, L. T. Merlot and S. Y. Lee, A survey of search methodologies and automated system devel-

opment for examination timetabling, J. Schedul. 12 (2009), 55–89.
[32]	 T. A. Redl, A Study of University Timetabling That Blends Graph Coloring with the Satisfaction of Various Essential and

Preferential Conditions, Texas Southern University, Houston, TX, 2004.
[33]	 N. R. Sabar, M. Ayob, G. Kendall and R. Qu, A honey-bee mating optimization algorithm for educational timetabling prob-

lems, Eur. J. Oper. Res. 216 (2012), 533–543.
[34]	 S. C. Sarin, Y. Wang and A. Varadarajan, A university-timetabling problem and its solution using Benders’ partitioning – a

case study, J. Schedul. 13 (2010), 131–141.
[35]	 J. D. Schaffer and A. Morishima, An adaptive crossover distribution mechanism for genetic algorithms, in: Genetic Algorithms

and their Applications: Proceedings of the Second International Conference on Genetic Algorithms, Massachusetts, USA, 1987.
[36]	 T. Starkweather, D. Whitley and K. Mathias, Optimization using distributed genetic algorithms, in: International Conference

on Parallel Problem Solving from Nature, Dortmund, Germany, 1990.
[37]	 P. Wangmaeteekul, Using Distributed Agents to Create University Course Timetables Addressing Essential & Desirable

Constraints and Fair Allocation of Resources, Durham University, Durham, 2011.
[38]	 Y. Yang, R. Paranjape, L. Benedicenti and N. Reed, A system model for university course timetabling using mobile agents,

Multiagent Grid Syst. 2 (2006), 267–275.
[39]	 E. Yu and K. S. Sung, A genetic algorithm for a university weekly courses timetabling problem, Int. Trans. Oper. Res. 9

(2002), 703–717.

