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Abstract: University course timetabling is the scheduling of courses at different time slots in a university.
The two important issues in this process are (i) the allocation of all events (professors, courses, and stu-
dents) to resources (time slots daily/weekly and theory/practical classes) in a semester, and (ii) maximizing
the satisfaction of common events (professors, courses, and students) among multiple departments. Accu-
mulating evidences in university course timetabling problems suggest dividing the problem into several
sub-problems. This study attempted to investigate the appropriateness of using the genetic algorithm (GA)
and the imperialist competitive algorithm (ICA). The proposed technique consists of two steps: (i) using the
proposed manipulated GA for solving the timetabling problem of each department, and (ii) eliminating the
interference of common events among multiple departments and satisfying the hard and soft constraints
by using ICA. Finally, a report on the efficiency of the methodology used in this study was obtained from
the University of Tabriz in Iran and University of Udine in Italy. In this paper, the results are revealed in two
ways: (i) reduction in the problems due to shrinking of the database and solving of the problems in parallel
and (ii) solving the different parts of the problem by using various criterion results, increasing the common
events satisfaction in that sub-problem. Eventually, the proposed model provided successful satisfaction of
the hard constraints in <700 iterations with GA and elimination of interference in 40 iterations with ICA in
most of the cases.

Keywords: University course timetabling, imperialist competitive algorithm, genetic algorithm.

1 Introduction

University course timetabling problems and common events solving among multiple departments are con-
sidered among the major challenges in a university. The timetabling problem for universities concerns pro-
fessors, students, courses, classrooms, and time slots/class schedules, such that professors and students
meet during one or more time slots during the week in certain classrooms for their courses [23]. In this
work, we tried to resolve these issues based on the priorities and demands of common events with respect
to the allocation of free resources among multiple departments. Common events among multiple depart-
ments are a problem that needs to be resolved. Therefore, there needs to exist a solution to make smooth
timetabling of university courses and common events in order to avoid collision of common events among
multiple departments and also to maintain the non-collision of events associated with allocations with
maximum satisfaction. This satisfaction in the allocation of common resources to common events should be
maintained. However, resolving the timetabling of common events among multiple departments gives rise
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to a developed and scalable timetabling process that increases either the magnitude of the problem or the
volume of data.

The problem of university course timetabling in all states belongs to the NP-complete class in terms of
complex computation, as was completely proved in Refs. [7, 8]; thus, there is no algorithm with time complex-
ity of polynomial order to solve this problem. Precision algorithms and approximation algorithms can be used
to solve scheduling problems. Precision algorithms are unessential for solving such problems, as the execu-
tion time of this set of algorithms exponentially increases with the size of the problem [20]; therefore, approx-
imation algorithms are used, such as heuristic and meta-heuristic algorithms. Among these algorithms are
the genetic algorithm (GA) [39], tabu search [25], and honey bee algorithm [33].

In this research, the approach considered was a “divide and conquer method,” in which dividing prob-
lems into sub-problems can reduce the amount of data descriptors. Every department independently and
in parallel manner resolves the problems with other departments. Every department, after resolving its
own timetabling problems according to its criteria, sends some typical possible timetables to an inter-
face agent. Agents of each department do not need to send extra information to the interface agent to
allocate common resources to common events. An interface agent tries to maintain each department’s
offers, extracts free resources from possible timetables, and allocates common events using the imperialist
competitive algorithm (ICA). Each department is assumed as an agent. These agents try to produce typical
possible timetabling by using GA. The proposed GA has been designed for maximum satisfaction in the
output of timetabling.

Several studies have attempted to solve university course timetabling problems [3, 14, 19, 26, 29, 37, 39].
For solving the problem, we need a distributed environment and interface agent for accommodating various
timetabling agents that cooperate to improve a common comprehensive solution [14]. The primary solution
for a multi-agent system is earned based on usage of a marketplace and an artificial currency. Nandhini
and Kanmani [26] implemented a class timetabling approach with multi-agents by the steepest ascent as
proposed for the hill climbing algorithm. The agents they used included (i) a combination generator, which
generates the maximum possible combinations for inputting in the timetable, and (ii) a minimum finder,
which finds a combination with minimum evaluation function value for successive examinations. Obit et al.
[29] proposed a multi-agent approach using a distributed solution environment in which a mediator agent
coordinates various timetabling agents that cooperate to improve a common global solution.

Many multi-agent methods have been proposed for solving the problem of university course timetabling.
Babkin et al. [4] presented a multi-agent method that uses a mathematical model to solve this problem, and
the basis of the proposed algorithm is the famous multi-agent algorithm MSRAC for scheduling meetings.
In another paper [21], a multi-agent method based on an interface agent that performs coordination among
other agents was designed. Also, a multi-agent system consisting of a combined heuristic that includes graph
coloring heuristics and local search was proposed [29]. In Ref. [27], a multi-agent model named multi-fac-
tor model for university courses timetabling (MATP) was presented. This model was based on agents that
compete together and can process parallel and distributed problems. Nouri and Driss [28] presented this
problem and attempted to examine the diversity of the number of messages in terms of priority of allocation
privilege and the effect of the number of messages per CPU time.

In recent years, hybridization of meta-heuristic approaches has been proven to be effective in solving uni-
versity timetabling problems. According to comprehensive surveys on timetabling problems [2, 15, 22, 31, 34],
“There are many research directions generated by considering the hybridization of meta-heuristic methods
particularly between population-based methods and other approaches.” Blum and Roli [6] summarized that
“population-based methods are better in identifying promising areas in the search space, whereas trajectory
methods excel in exploring promising areas in the search space. Thus, meta-heuristic hybrids in some way
manage to combine the advantages of population-based methods with the strength of trajectory methods.”
As an example, Eley [16] proposed two different versions of ant colony algorithms (MMAS-ET and ANTCOL-
ET) in solving examination timetabling problems. Both approaches involved the hybridization of an ant algo-
rithm and a hill climbing approach. The experimental results demonstrated that ANTCOL-ET outperformed
MMAS-ET. This approach is better in exploring promising search regions and is able to escape from local
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optima; however, it is poor in fine-tuning the final solution search region. Wangmaeteekul [37] narrowed the
gap between the theoretical and practical aspects of university timetabling. The author used four different
principles for organizing the interaction between the agents: sequential FIFO, interleaved FIFO, round-robin
and sequential, and round-robin and interleaved.

2 Proposed Method

The issue of research involves several different departments. Each department is associated with one agent
and the research approach will be based on a participatory procedure [30]. Every department accomplishes
timetabling separately and plans the procedure as an autonomous agent. GAs have been used for this work
and have achieved better results compared to others. In this regard, every department satisfies its own hard-
ness and softness constraints. A “surveyor agent” extracts common events among multiple departments
associated with respective constraints and additional available resources. This is done by searching in the
provided timetables by departments. Then, “the interface agent,” which is the imperialist, receives the
extracted information by “the surveyor agent” and uses ICA to move toward the elimination of interferences,
and the common events satisfaction increases [19]. During the ICA process, mapping priorities, constraints,
and common events demand free resources among multiple departments.

The proposed algorithm is shown in Figure 1 and consists of the following four factors:
— n factors for department timetabling;
- Resources surveyor agent;
— Interface agent;
— Results surveyor agent.

o~ ~
Department timetabling agent Results navigator agent
(first phase) (fourth phase)
Course scheduling for department 1
using GA Formatting and representing the
- obtained scheduling data from
Course schedul!ng for department 2 ! interface agent
using GA
—_—— L] e
- -
. e | o
Course scheduling for department n
using GA
Database central server
all agents access to this
database
Resource surveyor agent Interface agent
(second phase) (third phase)
- - Obtaining common events with free
Extraction of inter-department resources and solving it using
common events with their features for Imperialist competitive algorithm
interface agent (ICA) algorithm
/4 b=

Figure 1: Detailed Steps of the Proposed Algorithm.
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2.1 Constraints

Hard constraints:

— Different courses taught by the same teacher should not be scheduled at the same time.

— There should be no missing class in the final result.

—  When two courses require the same classroom, those two courses cannot be scheduled at the same time,
such as laboratory classes.

- Courses that have been scheduled for the same time cannot be assigned to the same classroom.

- Each teacher must be accessible at all times when the course is scheduled for them.

- Each course must be exactly scheduled for one time and one classroom.

— Some courses cannot be repeated more than a limited number of weeks.

— The teacher with a common event should not have the same course to teach at two separate departments
at the same time.

Soft constraints:

— The teacher may have a priority for daily/weekly time for class attendance, so satisfaction of this priority
is considered.

— Teachers can request a special classroom for teaching.

— Each course should be assigned to a classroom that is near the building of one department or is near the
teacher’s office or location.

- Events should be uniformly distributed (courses, teachers, etc.) among resources. This will facilitate the
allocation of resources (time and classrooms). Moreover, this distribution maximizes productivity while
reducing waste of resources.

- Start of classes can be from 8:00 to 16:00 or from 9:00 to 17:00 (this constraint is optional).

Additional optional costs (fines):

- MINWorkingDay: setting the bottom limit for each teacher.

- IsolatedLecture: classes that cannot be changed for any condition, such as laboratory classes.

— RoomStability: all sessions of a course are held in a constant classroom.

— TravelDistance: if the students are going to attend two courses in two distinct buildings, then this dis-
tance between the buildings should be at a minimum.

— RoomSuitability: suitability of the room for the course (e.g. some courses require a projector, amplifier,
etc.) should be maximized.

— DoubleLectures: it may sometimes be necessary to conduct two courses in one class session.

2.2 n Agents for Department Timetabling

In this section, it is attempted to extract and deliver to the next agent a separate scheduling for each depart-
ment using the GA. We will take the input data for each department at this stage, and we will only send an
optimum output obtained with GA to the resource surveyor agent in order to eliminate inter-department
common events collision.

In a GA [1, 11, 39], the genetic population (community) or the same set of chromosomes, the genetic
operators or the same coupling through integration and mutation, and quantitative parameters such as
population size and mutation rate are considered. In this section, assuming the benefits of a standard
GA in designing timetables, the hypothesis of timetabling is shown in Table 1. The boundary parameters
in Table 1 are obtained through trial and error. In this paper, a permutation approach is used for chromo-
some encoding in which integer numbers represent genes in the chromosomes [39]. For the number of
genes, there are integer numbers in the chromosome. The integration must be such that after combining
two chromosomes, a repeated gene is not produced in offspring. Each gene has been used in a limited
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Table 1: Values of Selected Parameters of the Proposed GA for Scheduling Courses in Each Department.

Parameter name Comment

Population size 100

Chromosome length Number of required courses

Crossover operator probability 0.85%

Mutation operator probability 0.05%

Termination conditions Number of iterations=2000 or number of hard constraint=0

range of integer numbers. For example, the number range of 1 to 5 is utilized to represent the days of
the week from Saturday to Wednesday. The pseudo-code used for the GA in the university schedule is as
follows.

Algorithm: GA(NumTi, NumRep, w).

//Initialize generation 0:

k:=0;

Pk:=a population of n randomly generated individuals;
//Evaluate Pk:

Compute fitness(i) for each i e Pk;

do

{//Create generation k+1:

//1. Copy:

Select (1 — NumRep) x NumTi members of Pk and insert into Pk +1;
//2. Crossover:

Select NumRep x NumTi members of Pk; pair them up; produce offspring; insert the offspring into Pk + 1;
//3. Mutate:

Select L x NumTi members of Pk + 1; invert a randomly
selected bit in each;

//Evaluate Pk +1:

Compute fitness(i) for each i € Pk;

//Increment:

k:=k+1;

}

when fitness of the fittest individual in Pk is not high enough;
return the fittest individual from Pk;

NumTi is the number of schedules per department that is considered as the primary population in the
genetics; NumRep is the fraction of the population that is replaced in each repetition; and u is the mutation
rate.

In many previous works [18, 36], the idea of adapting mutation and crossover was applied for the
improvement of GA production. Schaffer and Morishima [35] proposed a crossover mechanism where the
crossover points were chosen depending on the performance of the generated offspring. Davis [9] proposed
a mechanism of adapting probabilities based on the performance of the operators. To select the parameters
of the proposed GA for scheduling courses in each department, we obtained some experience. Crossover and
mutation are important parameters in GA. For choosing the best values, we repeat the algorithm and set the
best values, as shown in Figure 2.

Crossover operator type: In the proposed crossover, parents for the crossover operation are first
selected. Roulette wheels are used and the chromosomes that had better expenses will have more chances
of being a parent. After the parents have been chosen, 20% of the first parent’s chromosomes are displaced
by another parent’s chromosome regarding the course number gene. This means that copies of both parents
are first produced. Twenty percent of the first chromosome’s courses are randomly chosen (every time the
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Fix the parameters of the genetic algorithm

Number of hard constraint or soft constraint
w

o —
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Cross over and mutation values

Figure 2: Fixing the Parameters of GA (Crossover and Mutation).

database is randomly filtered by one of the courses) and then another chromosome associated with this
course code is filtered. These courses are displaced between the two chromosomes without changing any
other fields. This kind of crossover does not give rise to any repetitive courses or professors at all, which
means that it is regarded as a permutation of the problem.

Mutation operator type: The integer number of the gene is randomly exchanged with the allowed value
of the gene in two or more positions in the table (chromosome). For example, if a gene represents random
changes of a day, the integer number of 1 to 5 is given. In the mutation operation, random changes are dif-
ferent for different chromosomes and each chromosome changes according to its own law. As we are taking
into account some soft constraints in the crossover and mutation operations, any random change should be
checked with regard to whether it violates the restrictions or not. For example, one of the limitations is that
there should not be more than 2 h for a course every day (soft constraint). If the gene associated with informa-
tion about the day of the course is selected for a mutation, the chosen day should be different from the second
day of holding the course, if possible. These kinds of rules in many cases avoid the existence of chromosomes
that violate the soft constraints.

Equation (1) represents the utilized fitness function in this paper:

numclass#5#12
Fitness(x) = 2 ¢*NumSC, + NumHc,, 1)

i=1

where Fitness(x) is the fitting function for calculating the value of each chromosome, c is a constant factor
for soft constraints, NumSC is the number of violated soft constraints, NumHc is the number of hard violated
constraints, numclass is the number of classes, the number 5 represents the number of days, and the number
12 represents the number of time periods. Our aims are to minimize the amount of the cost function.
The algorithm termination conditions are as follows:
— There are no violated hard constraints, and violated soft constraints are minimized.
— A certain number of iterations are done (in our experiments, the repeated time is considered 100).
— The population converges (in the designed algorithm, the occurrence probability of this condition is
close to zero in large populations). GA is an efficient method in which the positive characteristics of the
random and greedy approaches are embedded.



116 —— |.Nourmohammadi-Khiarak et al.: Combined Multi-Agent Method for University Course Timetabling DE GRUYTER

2.3 Resource Surveyor Agent

When using several agents with the genetic optimization algorithm, the scheduling of each department is
conducted and the resource surveyor agent collects all the results, which are delivered in the form of a general
timetable, i.e. interface agent. We have used this agent because the interface agent only has the role of solving
the inter-department common events collision and only reports constraints, and in fact extracts or scans the
scheduling by the resources surveyor agent.

2.4 Implementation of the Interface Agent (ICA)

The task of the interface agent is resolving the conflicts between the open source and command events. Open
sources are extracted by a scanner and will be available for the interface agent. This agent will try to com-
plete the resulting timetabling of the department’s agents with command events. In the case of conflict in
timetabling, the conflict is resolved and again will return to autonomous agents of departments. The ICA, like
other evolutionary optimization methods, starts with an initial population. In this algorithm, each element
of the population is called the country. Countries are divided into two categories: colony and colonizer. Each
colonizer dominates some colonial countries depending on its strength.

As the ICA is inherently a continuous algorithm, it must be discrete to allow its use in this article. This
was done by Lotfi [17] in his paper, and it is used in this paper for implementation of scheduled common
events. This converted algorithm is shown in Figure 3.

The pseudo-code used for the ICA to resolve inter-department common events collision is as follows:

Start Jy

A common event scheduling problem instance - ; Is there a colony in an empire which
set algorithm parameters — has lower cost than the imperialist?
Create initial population »L Yes No
Exchange the positions of that colony
Evaluate population and sort the and the imperialist

initial population based on the cost

Create initial empires Compute the total cost of all empires

Numltration = 0 = Unite similar empires
v

Assimilate countries (by using the powerful empires

‘L {Pick the weakest colony from the weakest empires and give it to one of
crossover operator) v

Apply modified revolution operator s there empires without
" - __fimetabling?

v -

Elitism

No
Remove empire

l v

No Termination
— conditions

$ Yes

End

Figure 3: Flowchart of the Process of Applying Discrete ICA on Common Events Solving Among Multiple Departments.
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In this pseudo-code of X

country’

there is a scheduler (country) or solution. The cost of each colony is in the

Step 1. Select some random timetable on the function and initialize the empires

Fit =F(X gy )= F(fs oo s £
Step 2. Move the timetables (colonies) toward their relevant imperialist (assimilation).
Step 3. If there is a timetable (colony) in an empire that has a lower cost than that of the imperialist, exchange the positions of
the imperialist and the colony:

Fitm=max{cost }-cost .
Step 4. Compute the total cost of an empire (related to the power of both imperialist and its timetables):
T-C, =cost(imperialist )+mean{Cost(colonies of empire )}.
Step 5. Pick the weakest colony from the weakest empire and give it to the empire that has the most likelihood to possess it
(imperialist competition):
c

n
Nrmp
2 i=1 Ci

Step 6. Eliminate the powerless empires.
Step 7. If there is just one empire, stop; else, go to step 2.

Pn=

empire, and Cost_is the cost of the empire itself. C, is the total cost of n™ empire.

In this paper, the discrete ICA is used to solve scheduling of command events among departments, and
assessing this algorithm will show its efficiency to solve this problem. In the discrete ICA, the assimilation
operator causes colonies to move toward their respective empires. The assimilation process indicates that
colonies are similar to their empires. Empires try to improve their colonies and use the policy of assimilation
to raise their colonies for more colonies in their empire. This operator is in continuity mode in the ICA, and
as our problem is resolving common events among departments and is considered as a discrete problem, this
part of the ICA should be converted to a discrete problem.

The two-point crossover is used to model the policy of assimilation in discrete mode for scheduling of
common courses. By using crossover, some parts of the colonies of the empires are changed between their
colonies. It should be noted that the colonies of the empires are changed together. In the two-point crossover,
both schedulers (colony) will be cut at two arbitrary points and then the values of cut parts will be changed
together to make two new schedulers. In this section, the ICA will be used to resolve the problem of sched-
uling of common events among departments, and the used parameters and the assigned values are clearly
shown in Table 2.

The advantages of the ICA can be summarized as follows:

— The basic idea of the algorithm is novel.
— Itis the first optimization algorithm based on a social-political process.

Table 2: Values of Selected Parameters of the Proposed GA for the Common Events Solving Among Multiple Departments.

Parameter name Value
Population size 300
Number of initial imperialists 30
Number of all colonies 270
Number of decades/iteration count 50
Revolution rate 0.3
Uniting threshold 0.05
Assimilation coefficient 1.25
Assimilation angle coefficient 0.7

Damp ratio 0.80
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— Its optimization capabilities are on par or even higher in comparison with various optimization algo-
rithms according to variety of optimization problems.
— It has appropriate speed to find the optimal solution.

2.5 Result Surveyor Agent

This agent, in fact, is similar to the resource surveyor agent, with the difference that we have overall out-
comes and timing in the output, and also the output will be our final outcome. However, in the resource
surveyor agent, several departments were the scheduling inputs and the output was an incomplete schedul-
ing, i.e. interfering. In this agent, when a scheduler is received from the interface agent, it checks whether
the possible interactions have been resolved or not. If all the interactions are resolved, the outcome will be
displayed as a complete scheduler at the outlet and sent to all departments.

3 Data Sets

To test the proposed algorithm, the dataset consists of faculties, departments, time slots weekly/daily, and
classrooms. In this dataset for each course, several professors (up to five), three departments (literature,
humanities, and mathematics), 5 weekly time slots (Saturday, Sunday, Monday, Tuesday, and Wednesday), 12
time slots (four 2-h slots and eight 1-h slots for every day), and 17 classrooms for each department (3 practical
classrooms and 14 theoretical classrooms) are considered.

4 Experimental Results and Comparison with Other Papers

Now, we pay attention to the operation of the proposed algorithm on the dataset. First, the number of common
events among three departments associated with their features and constraints are extracted by the surveyor
resource (see Figure 4). Later, the ICA will be applied on common events based on their constraints due to
interface agents. Surveyor operations and gathering of excess resources from each of the three departments
by resource surveyor agents is done while the interface agent operates the ICA. In the end, process mapping
and common events among the three departments in excess resources are fulfilled.

The ultimate goals of the interface agent are as follows:
— Satisfying all the hard constraints;
— Respecting the priorities and aspirations of the common events;
— Minimizing the waste of surplus resources among departments;
— Equitably distributing the common events among free resources.

In the following, we consider the timetabling of each department. Each of the department agents finds
several responses for the departments and sends these responses to the ICA. The goal is that the produced
populations should have many features to achieve satisfaction of the common events. If we use just one time-
table, we would be confined to one response, and in extracting the optimum response, we would be limited
to a certain band of response. However, by using several responses, we consider an exploration problem,
which means that this leads to concentrating on a response band [38]. The response obtained from GA leads
to extraction of several timetables that satisfy either hard constraints or soft constraints associated with the
departments. Figure 5 represents the portion of the timetable associated with department 1, class 1, and time-
table 1. In Figure 4, everything is almost specified clearly and the only things that may bring questions to
mind are time 1 and time 2. This innovation is utilized as online in order to satisfy some of the constraints. We
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ID_Free Fres_Facoly Free_Sch_ID Free_Class ID Free Day Free_Time Used

1 123654 |1 1 1 1 10 0

2 123655 1 1 1 1 7 0

3 123656 1 1 1 2 " 0

4 123657 1 1 1 3 10 0

5 123658 1 1 1 3 8 0

6 123659 1 3} 1 4 1 0

7 123660 1 1 1 5 12 0

8 123661 1 1 2 1 9 0

] 123662 1 1 2 2 12 0

10 123663 1 1 2 3 3 0

11 123664 1 1 2 4 3 0

12 123665 1 1 2 4 " 0

13 123666 1 1 2 5 9 0

14 123667 1 1 - 5 n 0

15 123668 1 1 3 1 5 0

16 123669 1 1 3 1 12 0

17 123670 1 1 3 2 10 0

18 123671 1 1 3 2 1 0

19 123672 1 1 3 3 0

20 123673 1 1 3 3 0

21 123674 1 1 3 4 0

2 12367 1 1 3 4 10 0

23 1237 1 1 3 4 11 0

24 123677 1 1 3 5 9 0

25 123678 1 1 3 5 12 0

Figure 4: Free Resources for Each Department in Timetabling.

D lesson_ID Pro_ID Class_ID Timel Unt Dayl Ch_ld Time2 Day2

1 468306 1nne 619 1 12 2 4 1 NULL NULL

2 468331 111314 1292 1 n 2 1 1 NULL NULL

3 468339 112261 1216 1 10 3 3 1 1 2

4 468370 114123 236 1 9 3 4 1 2 3

5 468380 114500 444 1 9 3 3 1 & 5

6 468381 114501 6 1 1 3 3 1 4 1

7 468395 115581 1437 1 10 2 5 1 NULL NULL

8 468428 213439 976 1 12 3 5 1 7 2

9 468491 114133 708 1 NULL 0 NULL 1 NULL  NULL
S23417 480 1 n 3 5 1 1 1
213433 936 1 10 3 1 1 3 2
593446 303 1 n 3 2 1 1 4
12z 722 1 n 4 4 1 10 1
21331222 1 1 9 2 5 1 NULL NULL
212202 650 1 n 2 3 1 NULL NULL

Figure 5: Obtained Results from the Proposed GA in a Department.

have known that courses can be in the state of 4. In courses of unit one and four, one of the soft constraints is
that a course must not be held more than one time in a day.

Now, with this approach, we are readily able to satisfy the random initialization of these constraints
and other constraints. Assume that we want to initialize a three-unit course. We allocate a random number
between 1 and 5 to “day1” and for the course, we put a random number between 1 and 4 to the field “time1.”
As a short note, 1 to 4 means a 2-h class. Then, we should determine the remaining 1-h status, so we allocate
a random number to the field “day2”; however, if the random number would be equal to the field “day1,” we
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produce another random number. We continue this operation unless these two numbers are equal. For the
time interval of the unit, we produce a random number between 5 and 12 (1-h class) and put it in the field
“time2.” Using this solution, we regard the random initialization and avoid the occurrence of some states that
are opposite to the hard or soft constraints.

Keep in mind that in this article, we satisfied restrictions more than did the rest of the other articles. The
GA that we have used in this paper has exclusive features such as crossover and mutation approaches. The
crossover and mutation that are used here are completely based on an innovation, and a logical answer is
produced differently from the rest of the works. A comparison of the algorithm criteria with other papers is
shown in Table 3.

The number of repetitions associated with the obtained responses used by Alsmadi et al. [1] is shown in
Figure 6. Figure 7 represents the results of the proposed algorithm in which the repetition number is much
less than those used by Alsmadi et al. [1].

We consider the results of common events timetabling in the departments. We have used ICA to solve the
common events timetabling problem, which was described in details in a previous section. The ICA used in
this paper is the discrete version of ICA [17]. The results of this algorithm represent its high efficiency in opti-
mization. We employed this algorithm in the third part as an interface agent, and Figure 8 shows the algorithm
efficiency. During different experiments, we obtained good results and the fastest convergence was achieved.

A typical response that has been obtained is shown in Figure 9.

4.1 Formulation

The means of formulation is to consider different weights for different constraints. For this purpose, we con-
sidered the formulas used in Refs. [12, 13], and also the three formulas presented in Ref. [10] so that we can
evaluate our proposed method. The UD6 of our formula is in line with the wishes of Tabriz University in
Table 4. We downloaded the dataset of from a web site (http://tabu.diegm.uniud.it/ctt) related to Ref. [10].

Table 3: Parameters of the Proposed Algorithm.

Parameter name Alsmadi et al. [1] Proposed algorithm

Input Courses list Courses list

Output Optimum timetabling Optimum timetabling
Population size 100 100

Chromosome length Number of courses Number of courses

Crossover rate 0.6 0.85

Mutation rate 0.07 0.05-0.15

Termination Number of iterations=2000 and Number of iterations=2000 and
conditions achieve zero hard constraint achieve zero hard constraint

Cost

1 501 1001 1501 2001 2501
Generation

Figure 6: Results Using GA with Various Populations [1].


http://tabu.diegm.uniud.it/ctt

DE GRUYTER ). Nourmohammadi-Khiarak et al.: Combined Multi-Agent Method for University Course Timetabling =— 121

Fitness average for GA

120
110 5 121
- 121
100 ~ 121
- 121
90 - 121
121
80 - 121
- 121
g 70 ~ 121
8 - 121
_ug: 60 - 121
- 119
2L - 119
- 118
b - 118
30 - 118
- 116
L - 116
- 116
10 - 116
- 114
e - 112
0 100 200 300 400 500 600 700 800 900 1000 |- 111
lteration - 109

Figure 7: Results Using the Proposed GA with 100 Populations.
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Figure 8: Using ICA to Solve Common Events Timetabling among Departments.
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Figure 9: Other Solution for Common Events Timetabling among Departments Using ICA.
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Table 4: Problem Formulation Descriptions.

Problem formulation: cost component ubD1 ub2 ub3 ub4 ub5s ubé
Lectures H H H H H H
Conflicts H H H H H H
RoomOccupancy H H H H H H
Availability H H H H H H
RoomCapacity 1 1 1 1 1 1
MinWorkingDays 5 5 - 1 5 1
IsolatedLectures 1 2 - - 1 1
Windows - - 4 1 2 -
RoomStability - 1 - - - 1
StudentMinMaxLoad - - 2 1 2 1
TravelDistance - - - - 2 -
RoomSuitability - - 3 H 3
DoubleLectures - - - 1 - -

Table 4 shows the values for each formula that have been considered. If H is written, this means that this
limitation is strict. If it is “—,” then this means that the restriction is not considered in the particular formula.
All information needed to benchmark the proposed algorithm and for comparing it with other research is
presented.

In Table 5, the set of cases cited from Comp01 to Comp21 are the states proposed in Ref. [10], and the Test1
to Test4 modes are those presented in Ref. [12]. De Cesco et al. [10] added seven other modes that they claim to
have come from the real world, which are aggregated from different institutions. They are referred to as DDS1
to DDS7 modes. Another case called Toy is presented in Ref. [10], which was extensively used by the authors
for testing and troubleshooting.

In Table 5, the important features of each mode are shown with similar statistical values. In the headers,
C, L, R, PpD, D, Cu, MML, Co, TA, CL, and RO represent the course, sum of the courses, rooms, repetition per
day, days, curriculum, minimum and maximum session for one course, mean of collisions, average teacher’s
availability, average of the courses in each curriculum per day, and average occupancy of the room, respec-
tively. Co is a feature that counts each couple of courses that cannot be scheduled at the same time (for a
similar teacher and curriculum).

It should be explained that Co and TA are computed for a single lecture toward the course level; this
means that the courses are with different lectures.

According to De Cesco et al. [10] and Di Gaspero and Schaerf [12, 13], we considered the values necessary
for our variables close to the models of those authors that could satisfy the demands of Tabriz University as
much as possible. Therefore, the test with the formula given in Table 1 with the title DU6 was implemented
with the modes we created, including TUDS1 to TUDS3, and the results were compared with the results of the
references. For this, we have added to this system the various constraints that we have implemented based
on referenced data (Tables 6-10).

5 Comparison of the Proposed ICA with the IP/LP Approach

The purpose of this comparison is to survey the objective function related to each approach that has solved
the university timetabling problems. In this research, the proposed algorithm is cooperative and we have
used the ICA approach in order to achieve the objective of the research. The IP/LP approach, by formulizing
hard and soft constraints of university timetabling, has done events for the resources by using the branch
and threat algorithm. The LP approach in formulizing and solving problems is related to limited resource
performance and ability of initialization [32]. The IP/LP approach is completely a mathematical method that
is based on the structure and type of the departments and interviews from deans, heads of groups, etc.
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Table 5: Description of the Samples.
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Instance C L R PpD D Cu MML Co TA CL RO
CompO1 30 160 6 6 5 14 2-5 13.2 93.1 3.24 88.9
Comp02 82 283 16 5 5 70 2-4 7.97 76.9 2.62 70.8
Comp03 72 251 16 5 5 68 2-4 8.17 78.4 2.36 62.8
Comp04 79 286 18 5 5 57 2-4 5.42 81.9 2.05 63.6
CompO05 54 152 9 6 6 139 2-4 21.7 59.6 1.8 46.9
Comp06 108 361 18 5 5 70 2-4 5.24 78.3 2.42 80.2
Comp07 131 434 20 5 5 77 2-4 4.48 80.8 2.51 86.8
Comp09 86 324 18 5 5 61 2-4 4.52 81.7 2 72
Comp09 76 279 18 5 5 75 2-4 6.64 81 2.11 62
Comp10 115 370 18 5 5 67 2-4 5.3 77.4 2.54 82.2
Comp11 30 162 5 9 5 13 2-6 13.8 94.2 3.94 72
Comp12 88 218 11 6 6 150 2-4 13.9 57 1.74 55.1
Comp13 82 308 19 5 5 66 2-3 5.16 79.6 2.01 64.8
Comp14 85 275 17 5 5 60 2-4 6.87 75 2.34 64.7
Comp15 72 251 16 5 5 68 2-4 8.17 78.4 2.36 82.8
Comp16 108 366 20 5 5 71 2-4 5.12 81.5 2.39 73.2
Comp17 99 339 17 5 5 70 2-4 5.49 79.2 2.33 79.8
Comp18 47 138 9 6 6 52 2-3 13.3 64.6 1.53 42.6
Comp19 74 277 16 5 5 66 2-4 7.45 76.4 2.42 69.2
Comp20 121 390 19 5 5 78 2-4 5.06 78.7 2.5 82.1
Comp21 94 327 18 5 5 78 2-4 6.09 82.4 2.25 72.7
Test1 46 207 12 4 5 26 2-4 5.25 97.6 1.97 86.2
Test2 52 223 12 4 5 30 2-4 5.57 86.1 2.11 92.9
Test3 56 252 13 4 5 55 2-4 5.89 78.1 2 96.9
Test4 55 250 10 5 5 55 2-4 5.98 76.8 2 100
DDS1 201 900 21 15 5 99 3-7 4.58 21.3 5.18 57.1
DDS2 82 146 11 11 6 11 3-6 23.2 34.8 4.06 20.1
DDS3 50 206 8 11 5 9 3-6 12.4 58.8 4.76 46.8
DDS4 217 972 31 10 5 105 3-6 2.85 91.4 3.78 62.7
DDS5 109 560 18 12 6 44 3-6 2.19 66 1.89 43.2
DDS6 107 324 17 5 5 62 2-4 5.79 77.8 2.38 76.2
DDS7 49 254 9 10 6 37 3-6 14 89 3.01 47
Toy 4 16 3 4 5 2 2-3 75 90 2.1 26.7
TU-DS1 94 215 15 5 5 55 2-4 6.01 71.1 2.2 60.2
TU-DS2 52 233 12 4 5 41 2-4 4.6 89.2 2.9 45.7
TU-DS3 116 480 16 10 5 52 3-6 8.1 74.1 4.5 41.2
Table 6: Results of References Part 1.

Form/instance Comp01 Comp02 Comp03 Comp04 Comp05 Comp06 Comp07
ub1 4 35 52 21 244 27 13
ub2 5 75 93 45 326 62 38
ubn3 8 34 45 2 434 14 12
UD4 6 49 371 20 408 28 35
ub5 11 270 206 92 1269 202 213
uDé 2 18 29 9 123 13 7

In solving the timetabling problem of university courses [1, 5, 24, 38], the solutions are different from
institute to institute and are affected by the size of the institutes. It is rather difficult to obtain an optimum
solution for the timetabling of university courses at the end of the IP/LP method, so these kinds of approaches
are utilized separately. A comparison of the objective function associated with its parameters in the proposed
approach with the IP/LP method is shown in Table 11.
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Table 7: Results of References Part 2.

Form/instance Comp08 Comp09 Comp10 Comp11 Comp12 Comp13 Comp14
uD1 24 61 10 0 268 38 30
ubD2 50 119 27 0 358 77 59
ubD3 8 18 2 0 140 32 2
ubD4 20 47 18 0 147 51 21
ub5 102 208 190 0 665 195 138
ubDé 8 17 4 0 121 20 5

Table 8: Results of References Part 3.

Form/instance Comp15 Comp16 Comp17 Comp18 Comp19 Comp20 Comp21
uD1 46 28 44 41 36 25 69
ub2 87 47 86 71 74 54 117
ub3 30 12 14 10 34 24 30
ub4 42 23 38 32 39 39 60
ubs 259 182 216 150 224 309 247
ubé 21 11 14 9 19 14 28

Table 9: Results of References Part 5.

Form/instance Test1 Test2 Test3 Test4
UD1 214 8 36 43
uD2 234 17 86 132
uD3 200 0 18 24
UD4 213 4 22 37
ubD5 245 24 108 173
uDé 111 0 10 21

Table 10: Results of References Part 6.

Form/instance DDS1 DDS2 DDS3 DDS4 DDS5 DDS6 DDS7
uD1 238 0 0 233 0 5 0
ub2 1024 0 0 261 0 11 0
ub3 5944 128 22 3988 56 2 40
ub4 2593 78 11 6735 165 10 29
ub5 9677 93 22 13,064 128 185 97
ubé 115 0 0 111 0 2 0

6 Conclusion and Future Work

We have obtained desirable results by implementing the proposed algorithm. The results include the per-
formance of the GA for every department timetabling and the ICA for solving the common events problem
among departments, in order to meet the research objectives within a collaborative search solution. The
results of the proposed solution can be expressed as follows: (i) dissipation of excess resources (unused) in
each department has been minimized so that it represents an allocation improvement of common events to
resources, and (ii) the proposed approach creates descending satisfactions of common event priorities among
departments for allocation of excess resources.
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Table 11: Parametric Comparison between the IP/LP and ICA Methods to Solve the Timetabling Problem.

Method comparison parameters IP/LP for solving ICA method for
university solving common event
timetabling problems (proposed)

Reducing event dissatisfactions in a department based on the objective function v

Reducing common events dissatisfactions among departments based on the v

objective function

Minimizing excess resource dissipation in more than one department v

For common events, if two or more courses are offered to a professor, those courses v v

must not overlap with each other

For classrooms, one classroom must not be dedicated to more than one course at v v

the same time

Compatibility of classrooms: all periods of a specific course must be held inaroom v v

at a certain time

If a course has theoretical and practical prerequisites, the practical classes mustbe v
held before the theoretical classes

Common event time slots are expressed optionally and are expressed by themselves v

Priorities of common event time slots of inter-departments are optionally expressed v
by themselves

Compatibilities of classrooms: all periods of a course must be held in the same v v
classroom in a day

The time complexity for obtaining timetabling corresponds to desirable objective of v
solutions

Reducing dissatisfactions of non-department events at a department based onthe v/ v

objective function

It should be mentioned that using the methods based on multi-agent systems leads to increase in the
timetabling independence of each of department. This prevents autonomy, scalability of collisions, and
unplanned allocations due to negotiating between agents in a distributed environment. Using methods like
colonialism for common events will lead to uniform distribution and allocation of excess resources in the
timetabling process. Because of varying constraints and priorities of the common events among depart-
ments, all demands cannot be satisfied to a desirable level in reality. Future work should be conducted to
solve this problem.
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