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Abstract: In this paper, we introduce the concept of the Pythagorean hesitant fuzzy set (PHFS), which is the 
generalization of the intuitionistic hesitant fuzzy set under the restriction that the square sum of its member-
ship degrees is ≤1. In decision making with PHFSs, aggregation operators play a key role because they can 
be used to synthesize multidimensional evaluation values represented as Pythagorean hesitant fuzzy values 
into collective values. Under PHFS environments, Pythagorean hesitant fuzzy ordered weighted averaging 
and Pythagorean fuzzy ordered weighted geometric operators are used to aggregate the Pythagorean hesitant 
fuzzy values. The main advantage of these operators is that they provide more accurate and valuable results. 
Furthermore, these operators are applied to decision-making problems in which experts provide their prefer-
ences in the Pythagorean hesitant fuzzy environment to show the validity, practicality, and effectiveness of 
the new approach. Finally, we compare the proposed approach to the existing methods.

Keywords: Pythagorean hesitant fuzzy set, PHFWA operator, PHFWG operator, PHFOWA operator, PHFOWG 
operator, group decision making.

1  �Introduction
The concept of fuzzy set was first proposed by Zadeh in his important paper [31] to handle uncertainty. The 
aggregation of various inputs into a single output is a major problem and has been discussed by many others 
[23, 24, 30]. Therefore, in Ref. [4], the concept of fuzzy set used by Bellman and Zadeh in decision making for 
the solution of uncertainty in information came from human preferences. Dubois [7] compared old and new 
methods for fuzzy decision analysis. Liu and Liao [17] conducted a bibliometric analysis on fuzzy decision-
related research for finding underlying patterns and dynamics in this research direction. The fuzzy set is 
characterized by membership degrees; therefore, Atanassov defined the intuitionistic fuzzy set (IFS), which 
is the generalization of fuzzy set and characterized by a membership function and a non-membership func-
tion [1, 2]. The notion of IFS is more appropriate for dealing with uncertainty and fuzziness than that of fuzzy 
set. IFS is very suitable for showing the uncertainty and vagueness of an object, and hence an IFS can be used 
as a powerful tool to obtain precise data information under different fuzzy environments that receive great 
attention. In decision-making problems, the concept of IFS is broadly applied [3, 5, 6, 10]. Liao and Xu [13] 
proposed a series of intuitionistic hybrid operators, namely intuitionistic hybrid weighted average operator, 
intuitionistic hybrid weighted geometric operator, generalized intuitionistic hybrid weighted average opera-
tor, and generalized intuitionistic hybrid weighted geometric operator. In Ref. [15], Liao et al. proposed an 
enhanced consensus-reaching process for group decision making with intuitionistic fuzzy preference rela-
tions (IFPRs). In Ref. [25], Xu and Liao presented a comprehensive survey on decision making with IFPRs 
with the aim of providing a clear perspective on the originality, consistency, prioritization, and consensus of 
IFPRs. In Ref. [29], Yu and Liao made a scientometric review on IFS studies to reveal the most cited papers, 
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influential authors, and influential journals in this domain, based on the 1318 references retrieved from the 
Science Citation Index Expanded and Social Science Citation Index databases via Web of Science.

The extended the notion of IFS by Yager in Refs. [26, 27] initiated the notion of the Pythagorean fuzzy set 
(PFS), under the restriction that the sum of square of membership degree and non-membership degree is ≤1. 
Many researchers have paid attention to the group decision-making problems by using the concept of Pythag-
orean fuzzy. In Ref. [28], the relation between Pythagorean membership degrees and complex numbers has 
been discussed. The authors showed that Pythagorean degrees are a subclass of complex numbers and is said 
to be Π − i numbers. Zhang and Xu in Ref. [33] introduced a method for order preference by similarity to a best 
solution to solve the multiple criteria decision-making (MCDM) problem with Pythagorean fuzzy informa-
tion. In Ref. [27], Yager proposed a series of aggregation operators, which are the Pythagorean fuzzy weighted 
average operator, Pythagorean fuzzy weighted geometric average operator, Pythagorean fuzzy weighted 
power average operator, and Pythagorean fuzzy weighted power geometric average operator, to aggregate the 
different Pythagorean fuzzy numbers (PFNs). These proposed operators have been proved with an applica-
tion to the MCDM problem. Peng and Yang [18] introduced some new operations in PFS, which are division 
and subtraction, and discussed their corresponding properties. The authors also dealt with the superiority 
and inferiority ranking method to solve the multi-attribute group decision-making problems with Pythag-
orean fuzzy information. Liang et al. [11] initiated the concept of Pythagorean fuzzy geometric Bonferroni 
mean and weighted Pythagorean fuzzy geometric Bonferroni mean operators. In Ref. [8], Garg developed the 
interval-valued Pythagorean fuzzy weighted average operator and interval-valued Pythagorean fuzzy geo-
metric operator, and introduced the concept of new accuracy function under an interval-valued Pythagorean 
fuzzy environment.

The concept of fuzzy set was further extended by Torra in Ref. [22], who then introduced the notion of 
hesitant fuzzy sets (HFSs). HFSs permit the situation of the membership having a set of possible values. Using 
the concept of HFS, many researchers solved group decision-making problems with aggregation operators in 
Refs. [16, 22, 23, 30, 32]. Liao and Xu [12] proposed the concepts of hesitant fuzzy hybrid arithmetic averaging 
(HFHAA) operator, hesitant fuzzy hybrid arithmetic geometric (HFHAG) operator, quasi-HFHAA operator, 
and quasi-HFHAG operator, and investigated some of their properties. Liao et al. [14] developed a generalized 
family of hybrid operators under a hesitant fuzzy environment, namely generalized hesitant fuzzy hybrid 
weighted averaging operator, generalized hesitant fuzzy hybrid weighted geometric operator, generalized 
quasi-hesitant fuzzy hybrid weighted averaging operator, generalized quasi-hesitant fuzzy hybrid weighted 
geometric operator, and their induced forms.

In Ref. [21], Qian et al. generalized the notion of HFSs with IFSs and referred to them as generalized HFSs, 
which, in essence, extended the element of HFSs from a real number to an intuitionistic fuzzy number (IFN). 
Zhu et al. [34] developed the concept of dual HFSs and also discussed their basic operations and properties. 
Peng et al. [19] introduced an MCDM approach with hesitant interval-valued IFSs, which are an extension of 
dual interval-valued HFSs. However, dual HFSs are defined in terms of sets of values, as opposed to precise 
numbers, for the membership degrees and non-membership degrees of IFSs. In Ref. [20], the authors applied 
the concept of intuitionistic HFS (IHFS) to group decision-making problems using fuzzy cross-entropy. PFSs, 
HFSs, and IHFSs have attracted more and more scholars’ attention due to their powerfulness in express-
ing vagueness and uncertainty. IHFS satisfies the condition that the sum of its membership degrees is ≤1. 
However, there may be a situation where the decision maker may provide the degree of membership and 
non-membership of a particular attribute in such a way that their sum is >1. To overcome this shortcoming, 
Khan et al. [9] initiated the concept of Pythagorean HFS (PHFS), which is the generalization of the notion 
of IHFS. PHFS satisfies the condition that the square sum of its membership degrees and non-membership 
degree is ≤1. They introduced score and accuracy functions and developed aggregation operators, namely 
Pythagorean hesitant fuzzy weighted average (PHFWA) operator and Pythagorean hesitant fuzzy weighted 
geometric (PHFWG) operator. In this paper, we develop aggregation operators, namely Pythagorean hesitant 
fuzzy ordered weighted average (PHFOWA) operator and Pythagorean hesitant fuzzy ordered weighted geo-
metric (PHFOWG) operator. We discuss some properties, like idempotency, boundedness, and monotonicity, 
of these operators. In order to do so, the remainder of the paper is organized as follows.
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In the next section, we discuss some basic definitions and properties. In Section 3, we develop aggrega-
tion operators, such as the PHFOWA and PHFOWG operators. In Section 4, we develop multi-attribute deci-
sion making based on the proposed aggregation operators in which experts provide their preferences in the 
form of Pythagorean hesitant fuzzy numbers (PHFNs).

In Section 5, we give a numerical example to show the validity, practicality, and effectiveness of the 
proposed approach. In Section 6, we compare the proposed approach to the existing methods. Conclusion is 
given in Section 7.

2  �Preliminaries
In this section, we review some basic definitions and results.

Definition 1 ([26]): Let X be a fixed set. Then, a PFS P in X can be defined as follows:

	 { , ( ), ( ) | },P PP x h x h x x X= 〈 〉 ∈′ � (1)

where hP(x) and ( )Ph x′  are mappings from X to [0, 1], such that 0 ≤ hP(x) ≤ 1, 0 ( ) 1,Ph x≤ ≤′  and also 
2 20 ( ) ( ) 1,P Ph x h x≤ + ≤′  for all x ∈ X; here, hP(x) and h′(x) denote the membership degree and non-membership 

degree of element x ∈ X to set P, respectively. Let 2 2( ) 1 ( ) ( ).P P Px h x h xπ = − − ′  Then, it is commonly called the 
Pythagorean fuzzy index of element x ∈ X to set P, representing the degree of indeterminacy of x to P. Also, 
0 ≤ πP(x) ≤ 1, for every x ∈ X. We denote the PFN by ˆ ˆ, .

h h
p Λ Γ= 〈 〉

To compare two PFNs in Ref. [33], the authors introduced the concept of score function and accuracy 
degree. They also discussed some relation between them.

Definition 2 ([33]): Let 
1 11 , p pp Λ Γ= 〈 〉  and 

2 22 , p pp Λ Γ= 〈 〉  be two PFNs. Then, 2 2

1 11( ) p pS p Λ Γ= −  and 
2 2

2 22( ) p pS p Λ Γ= −  are the scores of p1 and p2, respectively, and 2 2

1 11( ) ,p pH p Λ Γ= +  2 2

2 22( ) p pH p Λ Γ= +  are the 
accuracy degrees of p1, p2, respectively. Then, we have
(1)	 If S(p1) < S(p2), then p1 is smaller than p2, denoted by p1 < p2.
(2)	 If S(p1) = S(p2), then

(a)	 If H(p1) = H(p2), then p1 and p2 represent the same information, i.e. 2 2

1 2p pΛ Λ=  and 2 2

1 2p pΓ Γ=  denoted 
by p1 = p2.

(b)	 If H(p1) < H(p2), then p1 is smaller than p2 denoted by p1 < p2.
(c)	 If H(p1) > H(p2), then p1 is greater than p2 denoted by p1 > p2.

Definition 3 ([22]): Let X be a fixed set. Then, HFS H in X can be defined as follows:

	 { , ( ) | },HH x h x x X= 〈 〉 ∈ � (2)

where hH(x) denotes the set of some values belonging to [0, 1], i.e. the possible membership degree of the 
element x ∈ X to the set H. For convenience, we denote a hesitant fuzzy number (HFN) by h = hH(x) and the set 
of all HFNs as HFN.

Definition 4 ([22]): Let h, h2, and h3 be three HFNs. Then, some basic operations on HFNs can be defined as 
follows:
(1)	 hc = U 

δ∈h{1 − δ}.
(2)	

1 1 2 21 2 , 1 2max{ , }.h hh h
δ δ

δ δ=∪ ∪ ∈ ∈
(3)	

1 1 2 21 2 , 1 2min{ , }.h hh h
δ δ

δ δ=∩ ∪ ∈ ∈

Definition 5 ([20]): Let X be a fixed set. Then, IHFS IH in X can be defined as follows:

	 { , ( ), ( ) | },
H HH I II x x x x XΛ Γ= 〈 〉∈ � (3)
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where ( )
HI xΛ  and ( )

HI xΓ  are mappings from X to [0, 1], denoting a possible degree of membership and non-
membership degree of element x ∈ X in IH, respectively, and for every element x ∈ X, for all ( ) ( ),

HI Ih x xΛ∈  
( ) ( )

H HI Ih x xΓ∃ ∈′  such that 0 ( ) ( ) 1,
H HI Ih x h x≤ + ≤′  and for all ( ) ( ),

H HI Ih x xΓ∈′  ( ) ( )
H HI Ih x xΛ∃ ∈  such that 

0 ( ) ( ) 1.
H HI Ih x h x≤ + ≤′  If X has only one element, , ( ), ( )

H HI Ix x xΛ Γ〈 〉  is said to be an intuitionistic HFN (IHFN) 
and is denoted by ˆ ˆ

ˆ , .
h h

h Λ Γ= 〈 〉  The set of all IHFNs is denoted by IHFNs.

2.1  �Intuitionistic Hesitant Fuzzy Aggregation Operators

Definition 6 ([20]): Let ˆ ˆ
ˆ ( , ) ( 1, 2, 3, , )

i ii h h
h i nΛ Γ= = …  be a collection of all IHFNs, and w = (w1, w2,…,wn) be 

the weight vector of ˆ  ( 1, 2, 3, , )ih i n= …  with wi ≥ 0 (i = 1, 2, 3,…,n) such that wi ∈[0, 1] and 
1

1.n
ii

w
=

=∑  Then, 
the aggregation result using the IHFWA operator is also an IHFN and

	

ˆ ˆ ˆ ˆ ˆˆ 1 2 21

ˆ ˆ ˆ ˆ ˆ ˆ1 1 1 2

ˆ, , ,
1

1 2

ˆ, , ,
1

1 (1 ) ,
( , , , ) .

( )

i

I h h h h h ih n n

i

h h h h h h in n

n
w

h h h h
i

H H Hn n
w

h h h h
i

h
IHFWA I I I

h

Λ Λ Λ

Γ Γ Γ

∈ ∈ ∈
=

∈ ∈ ∈′ ′ ′
=

  − − 
  =

  ′ 
  

∏

∏

…

…

∪

…

∪
�

(4)

Definition 7 ([20]): Let ˆ ˆ
ˆ ( , ) ( 1, 2, 3, , )

i ii h h
h i nΛ Γ= = …  be a collection of all IHFNs, and w = (w1, w2,…,wn) be 

the weight vector of ˆ  ( 1, 2, 3, , )ih i n= …  with wi ≥ i = 0 (i = 1, 2, 3,…,n), where wi ∈[0, 1] and 
1

1.n
ii

w
=

=∑  Then, 
the aggregation result using the IHFWG operator is also an IHFN, and

	

ˆ ˆ ˆ ˆ ˆ ˆ1 1 2 2

ˆ ˆ ˆ ˆ ˆ ˆ1 1 2 2

ˆ, , ,
1

1 2

ˆ, , ,
1

( ) ,
ˆ ˆ ˆ( , , , ) .

1 (1 )

i

h h h h h h in n

i

h h h h h h in n

n
w

h h h h
i

n n
w

h h h h
i

h
IHFWG h h h

h

Λ Λ Λ

Γ Γ Γ

∈ ∈ ∈
=

∈ ∈ ∈′ ′ ′
=

  
 
  =

  − − ′ 
  

∏

∏

…

…

∪

…

∪
�

(5)

In Ref. [9], Khan et al. introduced the concept of PHFS, which is the generalization of IHFS. PHFS is defined 
below.

2.2  �Pythagorean Hesitant Fuzzy Sets

In Ref. [9], Khan et al. generalized the concept of IHFS and introduced the concept of PHFSs. PHFS is defined 
by Definition 8.

Definition 8 ([9]): Let X be a fixed set. A PHFS PH in X is an object with the following notion:

	 { , ( ), ( ) | },
H HH P PP x x x x XΛ Γ= 〈 〉∈ � (6)

where ( )
HP
xΛ  and ( )

HP
xΓ  are mappings from X to [0, 1], denoting a possible degree of membership and 

non-membership degree of element x ∈ X in PH, respectively, and for each element x ∈ X, ∀ ( ) ( ),
H HP Ph x xΛ∈  

( ) ( )
H HP Ph x x∃ ∈Γ′  such that 2 20 ( ) ( ) 1,

H HP Ph x h x≤ + ≤′  and ∀ ( ) ( ),
H HP Ph x x∈Γ′  ( ) ( )

H HP Ph x x∃ ∈Λ  such that 
2 20 ( ) ( ) 1.
H HP Ph x h x≤ + ≤′  Moreover, PHES(X) denotes the set of all elements of PHFSs. If X has only one element 

, ( ), ( ) ,
H HP Px x xΛ Γ〈 〉  then it is said to be PHFN and is denoted by ˆ ˆ

ˆ , 
h h

h Λ Γ= 〈 〉  for convenience. We denote 
the set of all PHFNs by PHFNS. For all x ∈ X, if ( )

HP
xΛ  and ( )

HP
xΓ  have only one element. Then, the 

PHFS become a PFS. If the non-membership degree is {0}, then the PHFS becomes an HFS. For any PHFS 
{ , ( ), ( ) | }

H HH P PP x x x x XΛ Γ= 〈 〉∈  and for all x ∈ X, 2 2
( ), ( ) ( )( ) 1

H P P P P H HH H H H
P h x h x x P Px h h

Λ Γ∈ ∈′Π = − − ′∪  is said to be the 

degree of indeterminacy of x to PH, where 2 21 0.
H HP Ph h− − ≥′
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Definition 9 ([9]): Let 
1 1

ˆ ˆ ˆ ˆ1
ˆ ˆ, , , ,

h h h h
h hΛ Γ Λ Γ= 〈 〉 = 〈 〉  

2 2
ˆ ˆ2

ˆ , ,
h h

h Λ Γ= 〈 〉  are three PHFNs, and λ > 0. Then, their 
operations are defined as follows. The result obtained by these operations is also a PHFN.
(1)	

1 2 1 2
ˆ ˆ ˆ ˆ1 2

ˆ ˆ max{ , }, min{ , } .
h h h h

h h Λ Λ Γ Γ= 〈 〉∪

(2)	
1 2 1 2

ˆ ˆ ˆ ˆ1 2
ˆ ˆ min{ , }, max{ , } .

h h h h
h h Λ Λ Γ Γ= 〈 〉∩

(3)	 ˆ ˆ
ˆ , .c

h h
h Γ Λ= 〈 〉

(4)	 { }2 2 2 2

ˆ ˆ ˆ ˆ 1 2 1 21 1 2 2

ˆ ˆ ˆ ˆ 1 21 1 2 2

ˆ ˆ ˆ ˆ,
1 2

ˆ ˆ, 

,
ˆ ˆ .

{ }
h h h h

h h h h

h h h h h h

h h h h

h h h h
h h

h h
Λ Λ

Γ Γ

∈ ∈

∈ ∈′ ′

+ −
⊕ =

′ ′

∪

∪

(5)	 { }
ˆ ˆ ˆ ˆ 1 21 1 2 2

2 2 2 2

ˆ ˆ ˆ ˆ 1 2 1 21 1 2 2

ˆ ˆ,

1 2
ˆ ˆ ˆ ˆ,

{ },
ˆ ˆ .h h h h

h h h h

h h h h

h h h h h h

h h
h h

h h h h

Λ Λ

Γ Γ∈ ∈′ ′

⊗ =
+ −′ ′ ′ ′

∪

∪

∈ ∈

(6)	 { }
ˆ ˆ ˆ ˆ

2
ˆ ˆ

ˆ 1 (1 ( ) ) , {( ) } , 0.
h h h hh hh h

h h hλ λ
Λ Γ

λ λ′
∈ ∈′= − − >∪ ∪

(7)	 { }
ˆ ˆ ˆ ˆ

2
ˆ ˆ

ˆ { }, 1 (1 ( ) ) , 0.
h h h hh hh h

h h hλ λ λ
Λ Γ

λ∈ ∈′= − − >′∪ ∪

To compare two PHFNs, in the following [9], the score function, accuracy function, and some basic laws on 
the basis of the score function are defined.

Definition 10 ([9]): Let ˆ ˆ
ˆ , 

h h
h Λ Γ= 〈 〉  be a PHFN. Then, we define the score function of ĥ  as follows:

	 ˆ ˆ ˆ ˆˆ ˆ ˆ ˆ

2 2

ˆ ˆ
1 1ˆ( ) ,

h h h hh h h h

h h
h hh h

S h h h
l lΛ ΓΛ Γ∈ ∈′∈ ∈′

   
= − ′   

   
∑ ∑ 

�
(7)

where ˆ( ) [ 1, 1].S h ∈ −  
ĥhl  denotes the number of elements in 

ĥ
Λ  and 

ĥhl ′  denotes the number of elements in ˆ .hΓ

Definition 11 ([9]): Let, ˆ ˆ
ˆ , 

h h
h Λ Γ= 〈 〉  be a PHFN. Then, the accuracy degree of ĥ  is denoted by ˆ( )hσ  and can 

be defined as follows:

	 ˆ ˆ ˆ ˆˆ ˆ ˆ ˆ

2 2

ˆ ˆ
1 1ˆ ˆ ˆ( ) ( ) ( ) .

h h h hh h h h

h h
h hh h

h h S h h S h
l lΛ ΓΛ Γ

σ
∈′∈ ∈′

   
= − + −′   

   
∑ ∑
∈

�
(8)

Here, we can see that ˆ( )S h  is just the mean value in statistics, and ˆ( )hσ  is just the standard variance, which 
reflects the accuracy degree between all values in the PHFN ĥ  and their mean value. Let 1ĥ  and 2ĥ  be two 
PHFNs, 1

ˆ( )S h  be the score of 1
ˆ ,h  2

ˆ( )S h  be the score of 2
ˆ ,h  and 1

ˆ( )hσ  be the deviation degree of 1
ˆ ,h  2

ˆ( )hσ  be 
the deviation degree of 2

ˆ .h  Then
(1)	 If 1 2

ˆ ˆ( ) ( ),S h S h<  then 1 2
ˆ ˆ .h h<

(2)	 If 1 2
ˆ ˆ( ) ( ),S h S h>  then 1 2

ˆ ˆ .h h>
(3)	 If 1 2

ˆ ˆ( ) ( ),S h S h=  then 1 2
ˆ ˆ .h h∼

(i)	 If 1 2
ˆ ˆ( ) ( ),h hσ σ<  then 1 2

ˆ ˆ .h h<
(ii)	 If 1 2

ˆ ˆ( ) ( ),h hσ σ>  then 1 2
ˆ ˆ .h h>

(iii)	If 1 2
ˆ ˆ( ) ( ),h hσ σ=  then 1 2

ˆ ˆ .h h∼

3  �Pythagorean Hesitant Fuzzy Information Aggregation Operators
In this section, we develop some aggregation operators for PHFNs and investigate some of its properties.
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3.1  �PHFWA/Geometric Operator

Definition 12 ([9]): Let ˆ ˆ
ˆ ,  ( 1, 2, 3, , )

i ii h h
h i nΛ Γ= 〈 〉 = …  be a collection of all PHFNs, and w = (w1, w2,…,wn)T be 

the weight vector of ˆ  ( 1, 2, 3, , )ih i n= …  with wi ≥ 0 (i = 1, 2, 3,…,n) where wi ∈[0, 1] and 
1

1.n
ii

w
=

=∑  Then, the 
PHFWA operator is a mapping PHFWA:PHFNn→PHFN can be defined as

	 1 2 1 1 2 2
ˆ ˆ ˆ ˆ ˆ ˆ( , , , ) ,n n nPHFWA h h h w h w h w h= ⊕ ⊕ ⊕… … � (9)

and the PHFWA operator is said to be a PHFWA operator.

Theorem 1 ([9]): Let ˆ ˆ
ˆ ,  ( 1, 2, 3, , )

i ii h h
h i nΛ Γ= 〈 〉 = …  be a collection of all PHFNs, and w = (w1, w2,…,wn)T be the 

weight vector of ˆ  ( 1, 2, 3, , )ih i n= …  with wi ≥ 0 (i = 1, 2, 3,…,n), where wi ∈[0, 1] and 
1

1.n
ii

w
=

=∑  Then, the aggre-
gation result using PHFWA operator is also a PHFN and

	

2

ˆ ˆ ˆ ˆ ˆ ˆ1 1 2 2

ˆ ˆ ˆ ˆ ˆ ˆ1 1 1 2

ˆ, , ,
1

1 2

ˆ, , ,
1

1 (1 ) ,
ˆ ˆ ˆ( , , , ) .

( )

i

h h h h h h in n

i

h h h h h h in n

n
w

h h h h
i

n n
w

h h h h
i

h
PHFWA h h h

h

Λ Λ Λ

Γ Γ Γ

∈ ∈ ∈
=

∈ ∈ ∈′ ′ ′
=

  
− − 

  =
  ′ 
  

∏

∏

…

…

∪
…

∪

�

(10)

Proof. Proof of the theorem follows from Theorem 4.2 in Ref. [9].� □
In the following, we present some properties of the PHFWA operator.

Theorem 2: Let ˆ ˆ
ˆ ,  ( 1, 2, 3, , )

i ii h h
h i nΛ Γ= 〈 〉 = …  be a collection of all PHFNs, and w = (w1, w2,…,wn)T be the 

weight vector of ˆ  ( 1, 2, 3, , )ih i n= …  with wi ≥ 0 (i = 1, 2, 3,…,n) where wi ∈[0, 1] and 
1

1.n
ii

w
=

=∑  Then
(1)	 (Idempotency) If all ˆ ˆ

ˆ ,  ( 1, 2, 3, , )
i ii h h

h i nΛ Γ= 〈 〉 = …  are equal, i.e. ˆ ˆ ( 1, 2, 3, , ) ,ih i n h= =…  then

	 1 2
ˆ ˆ ˆ ˆ( , , , ) .nPHFWA h h h h=… � (11)

(2)	 (Boundedness)

	 1 2
ˆ ˆ ˆ ˆ ˆ( , , , ) ,nh PHFWA h h h h− +≤ ≤… � (12)

where ˆ , ,h h h− − +′= 〈 〉  ˆ , ,h h h+ + −′= 〈 〉  
ˆ

min { },
i hi
h i ih h

Λ
−

∈=∪

ˆ
max { },

i hi
h i ih h

Λ
+

∈=∪  
ˆ

min { },
i hi
h i ih h

Γ
−′

∈′= ′∪  
ˆ

max { }.
i hi
h i ih h

Γ
+′

∈′= ′∪

(3)	 (Monotonicity) If ˆ ˆ ,i ih h∗>  then

	 1 2 1 2
ˆ ˆ ˆ ˆ ˆ ˆ( , , , ) ( , , , ).n nPHFWA h h h PHFWA h h h∗ ∗ ∗≤… … � (13)

Proof. (1) By Theorem 1, we have

2

ˆ ˆ ˆ ˆ

ˆ ˆ ˆ ˆ

1

ˆ ˆ

ˆ ˆ1 2
1 1

2
ˆ ˆ

1 1

2
ˆ

ˆ ˆ ˆ( , , , ) 1 (1 ) , ( )

1 (1 ) , ( )

1 (1 )

i i

h h h hi ii i i i

i i

h h h h

n

i
i

h h

n n
w w

n h hh h
i i

n n
w w

h hh h
i i

w

h h

PHFWA h h h h h

h h

h

Λ Γ

Λ Γ

Λ
=

∈ ∈′
= =

∈ ∈′
= =

∈

      = − − ′   
     

      = − − ′   
     

  ∑=  − −

∏ ∏

∏ ∏

… ∪ ∪

∪ ∪

∪

{ }
1

ˆ ˆ

ˆ ˆ ˆ ˆ

ˆ ˆ ˆ ˆ

ˆ

2
ˆ ˆ

ˆ ˆ

,  ( )

1 (1 ) , { }

ˆ{ }, { }

n

i
i

h h

h h h h

h h h h

w

h h

h hh h

h hh h

h

h h

h h h

Γ

Λ Γ

Λ Γ

=
∈′

∈ ∈′

′
∈′

  ∑ ′  

= − − ′

= =

∪

∪ ∪

∪ ∪∈
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ˆ ˆ ˆ

(2) As min { } { } max { }
i i ih h hi i i
h i i h i h i ih h h

Λ Λ Λ∈ ∈ ∈≤ ≤∪ ∪ ∪ � (14)

	
ˆ ˆ ˆ

and min { } { } max { }.
i i ih h hi i i
h i i h i h i ih h h

Γ Γ Γ∈ ∈ ∈′ ′ ′≤ ≤′ ′ ′∪ ∪ ∪ � (15)

Thus, from Eq. (14), we have

ˆ ˆ ˆ

ˆ ˆ ˆ

ˆ ˆ ˆ

ˆ ˆ

2 2 2

2 2 2

2

min { } { } max { }

min {( ) } {( ) } max {( ) }

1 max {( ) } 1 {( ) } 1 min {( ) }

(1 max {( ) }) (

i i ih h hi i i

i i ih h hi i i

i i ih h hi i i

i

i ih hi i

h i i h i h i i

h i i h i h i i

h i i h i h i i

w
h i i h

h h h

h h h

h h h

h

Λ Λ Λ

Λ Λ Λ

Λ Λ Λ

Λ Λ

∈ ∈ ∈

∈ ∈ ∈

∈ ∈

∈ ∈

≤ ≤

⇔ ≤ ≤

⇔ − ≤ − ≤ −

⇔ − ≤

∪ ∪ ∪

∪ ∪ ∪

∪ ∪ ∪

∪ ∪

∈

ˆ

ˆ ˆ ˆ

1

ˆ ˆ ˆ

2 2

2 2 2

1 1 1

2 2

1

1 {( ) }) (1 min {( ) })

(1 max {( ) }) (1 {( ) }) (1 min {( ) })

(1 max {( ) }) (1 {( ) }) (1 min

i i

i hi

i i i

i i ih h hi i i

n

i
i i

i i ih h hi i i

w w
i h i i

n n n
w w w

h i i h i h i i
i i i

nw
w

h i i h i h
i

h h

h h h

h h

Λ

Λ Λ Λ

Λ Λ Λ
=

∈

∈ ∈ ∈
= = =

∈ ∈ ∈
=

− ≤ −

⇔ − ≤ − ≤ −

∑
⇔ − ≤ − ≤ −

∏ ∏ ∏

∏

∪

∪ ∪ ∪

∪ ∪ ∪ 1

ˆ ˆ ˆ

ˆ ˆ ˆ

ˆ ˆ

2

2 2 2

1

2 2 2

1

2

{( ) })

1 max {( ) } (1 {( ) }) 1 min {( ) }

1 min {( ) } (1 {( ) }) 1 max {( ) }

1 1 min {( ) } 1 (1 {

n

i
i

i

i i ih h hi i i

i

i i ih h hi i i

i ih hi i

w

i i

n
w

h i i h i h i i
i

n
w

h i i h i h i i
i

h i i h

h

h h h

h h h

h

Λ Λ Λ

Λ Λ Λ

Λ Λ

=

∈ ∈ ∈
=

∈ ∈ ∈
=

∈ ∈

∑

⇔ − ≤ − ≤ −

⇔ − + ≤ − − ≤ − +

⇔ − + ≤ − −

∏

∏

∪ ∪ ∪

∪ ∪ ∪

∪ ∪
ˆ

ˆ ˆ ˆ

ˆ ˆ ˆ

2 2

1

2 2 2

1

2

1

( ) }) 1 1 max {( ) }

min {( ) } 1 (1 {( ) }) max {( ) }

min { } 1 (1 {( ) }) max { }

i

i hi

i

i i ih h hi i i

i

i i ih h hi i i

n
w

i h i i
i

n
w

h i i h i h i i
i

n
w

h i i h i h i i
i

h h

h h h

h h h

Λ

Λ Λ Λ

Λ Λ Λ

∈
=

∈ ∈ ∈
=

∈ ∈ ∈
=

≤ − +

⇔ ≤ − − ≤

⇔ ≤ − − ≤

∏

∏

∏

∪

∪ ∪ ∪

∪ ∪ ∪

Now, from Eq. (15), we have

ˆ ˆ ˆ

ˆ ˆ ˆ

ˆ ˆ ˆ
1 1 1

min { } { } max { }

min {( ) } {( ) } max {( ) }

min {( ) } {( ) } max {( ) }

i i ih h hi i i

i i i

i i ih h hi i i

i i i

i i ih h hi i i

h i i h i h i i

w w w
h i i h i h i i

n n n
w w w

h i i h i h i i
i i i

h h h

h h h

h h h

Γ Γ Γ

Γ Γ Γ

Γ Γ Γ

∈ ∈ ∈′ ′ ′

∈ ∈ ∈′ ′ ′

∈ ∈ ∈′ ′ ′
= = =

′

≤ ≤′ ′ ′

⇔ ≤ ≤′ ′ ′

⇔ ≤ ≤′ ′ ′

⇔

∏ ∏ ∏

∪ ∪ ∪

∪ ∪ ∪

∪ ∪ ∪

∪ 1 1

ˆ ˆ ˆ

ˆ ˆ ˆ

1

1

min ( ) {( ) } max ( )

min {( )} {( ) } max {( )}.

n n

i i
i i i

i i ih h hi i i

i

i i ih h hi i i

nw w
w

h i i h i h i i
i

n
w

h i i h i h i i
i

h h h

h h h

Γ Γ Γ

Γ Γ Γ

= =
∈ ∈ ∈′ ′

=

∈ ∈ ∈′ ′ ′
=

   ∑ ∑   ≤ ≤′ ′ ′  

⇔ ≤ ≤′ ′ ′

∏

∏

∪ ∪

∪ ∪ ∪

According to the score function, we have 1 2
ˆ ˆ ˆ ˆ( , , , )nPHFWA h h h h−≥…  with equality if and only if 

ˆ ˆ( ).h PHFWA h− =
Similarly, 1 2

ˆ ˆ ˆ ˆ( , , , )nPHFWA h h h h+≤…  is with equality if and only if ˆ( )PHFWA h  is the same as ˆ .h+  Hence, 

1 2
ˆ ˆ ˆ ˆ ˆ( , , , )nh PHFWA h h h h− +≤ ≤…

(3) If ˆ ˆ ,i ih h∗>  then 1 2 1 2
ˆ ˆ ˆ ˆ ˆ ˆ( , , , ) ( , , , ).n nPHFWA h h h PHFWA h h h∗ ∗ ∗≤… …  As ˆ ˆˆ ˆ, .

i ii ih hh h
Λ Λ Γ Γ∗ ∗≥ ≥  If ˆ ˆ ,

i ih h
Λ Λ ∗≤  

then
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ˆ ˆˆ ˆ

ˆ ˆ

ˆˆ

ˆˆ

ˆ

2 2

2 2

2 2

2 2

1

{ } { } {( ) } {( ) }

{( ) } {( ) }

1 {( ) } 1 {( ) }

(1 {( ) }) (1 {( ) })

i ih hi ii ih hi i

i h ii hi

i hi ihi

i i

i hi ihi

i hi

h i i h i ih h

h i ih

i h ih

w w
i h ih

n

h
i

h h h h

h h

h h

h h

Λ ΛΛ Λ

Λ Λ

ΛΛ

ΛΛ

Λ

∗ ∗
∗ ∗

∗
∗

∗
∗

∗
∗

∗
∗

∗ ∗
∈ ∈ ∈

∗
∈ ∈

∗
∈∈

∗
∈∈

∈
=

≤ ⇔ ≤

⇔ ≤

⇔ − ≤ −

⇔ − ≤ −

⇔ ∏

∪ ∪ ∪ ∪

∪ ∪

∪ ∪

∪ ∪

∪

∈

ˆ

ˆ ˆ

2 2

1

2 2

1 1

(1 {( ) }) (1 {( ) })

1 (1 {( ) }) (1 {( ) }) .

i i

i hi

i i

i h ii hi

n
w w

i h i
i

n n
w w

h i ih
i i

h h

h h

Λ

Λ Λ∗
∗

∗
∈

=

∗
∈ ∈

= =

− ≤ −

⇔ − − ≤ −

∏

∏ ∏

∪

∪ ∪

�
(16)

Now, if ˆ ˆ ,
i ih h

Γ Γ ∗≥  then 
ˆ ˆ

{ } { }
i h ii hi
h i ih

h h
Γ Γ∗′

∗

∗′
∈′ ∈

≥′∪ ∪

	

ˆ ˆ

ˆ ˆ1 1

{( ) } {( ) }

( ) ( ) .

i i

i ih hi i

i i

i h ii hi

w w
i ih h

n n
w w

h i ih
i i

h h

h h

Γ Γ

Γ Γ

′ ∗′
∗

∗′
∗

∗′

∗′
∈′ ∈

= =

⇔ ≥′

   
⇔ ≥′   

  
∏ ∏

∪ ∪

∪ ∪

∈ ∈

�
(17)

Let 1 2
ˆ ˆ ˆ ˆ( , , , )nh PHFWA h h h= …  and 1 2

ˆ ˆ ˆ ˆ( , , , ).nh PHFWA h h h∗ ∗ ∗ ∗= …  Then, from Eqs. (16) and (17), we have 
ˆ ˆ( ) ( ).S h S h∗≤

If ˆ ˆ( ) ( ),S h S h∗<  then 1 2 1 2
ˆ ˆ ˆ ˆ ˆ ˆ( , , , ) ( , , , ).n nPHFWA h h h PHFWA h h h∗ ∗ ∗<… …  If ˆ ˆ( ) ( ),S h S h∗=  then

( ) ( )
( )

ˆ ˆˆ ˆˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆˆ ˆˆ ˆ

ˆ ˆˆ ˆˆ ˆ ˆ ˆ ˆ ˆˆˆ

2 2 221 1 1 1
ˆ ˆ ˆ ˆ

2 21 1 1
ˆ ˆ and 

h hh hh h h hh h h h h h h hh hh h

hh h h h hh h h h h hhh

hl l l lh hh h hh h

hl l lhh h h

h h h h

h h

Λ Γ Λ Γ

Λ Λ Γ

ΓΛ Λ Γ

ΓΛ Λ

∗ ∗′
∗ ∗′∗ ∗

∈ ∈ ∗ ∗′′ ∗ ∗ ∗ ∗∈ ∈∗ ∗∗ ∗

∗
∗ ∗

∈ ∗ ′∗ ∗∈ ∗∗

∈′∈

∈′∈ ∈

   − = −′∑       

 ⇔ =   

∑ ∑ ∑

∑ ∑
∈

∈ ∈

( ) ˆ ˆˆˆ

ˆ ˆ ˆ ˆˆ ˆ ˆ ˆˆ ˆ ˆ ˆˆ ˆˆ ˆ

2 21
ˆ ˆ

1 1 1 1
ˆ ˆˆ ˆ and .

h h h hhh

h hh h h hh hh h h hh h h hh hh h

lh h h

l l l lh hh h h hh h

h h

h h h h

Γ

Λ ΓΛ Γ

Γ

Λ Λ Γ Γ

∗′
∗′ ∗

∗′ ∗ ∗∈ ∗∗

∗ ∗′
∗ ∗′∗ ∗

∈ ∗ ∈ ∗′′∗ ∗ ∗ ∗∈ ∈∗ ∗∗ ∗
∈ ∈′

 =′∑   

⇔ = =′

∑

∑ ∑ ∑ ∑

∈

∈ ∈

As

( ) ( )ˆ ˆ ˆ ˆˆ ˆ ˆ ˆ

ˆ ˆˆ ˆˆ ˆˆ ˆ

2 2
1 1

ˆ ˆ

2 2
1 1

ˆ ˆ

ˆ ˆ ˆ( ) ( ) ( )

ˆ ˆ( ) ( )

ˆ( ),

h hh h h hh h h h

h hh hh hh hh h

l lh hh h

hl lh h h

h h S h h S h

h S h h S h

h

Λ Γ

Λ Γ

Λ Γ

ΓΛ

σ

σ

∈′

∗ ∗′
∗′∗ ∗ ∗∗ ∗∗ ∗′∗ ∗∗ ∗∗ ∗

∈′

∗ ∗

∗

= − + −′

   = − + −∑      

=

∑ ∑

∑
∈

∈ ∈

∈

∈∈

therefore, 1 2 1 2
ˆ ˆ ˆ ˆ ˆ ˆ( , , , ) ( , , , ).n nPHFWA h h h PHFWA h h h∗ ∗ ∗=… … � □

Definition 13 ([9]): Let ˆ ˆ
ˆ ,   ( 1, 2, 3, , )

i ii h h
h i nΛ Γ= 〈 〉 = …  be a collection of all PHFNs, and w = (w1, w2,…,wn) be 

the weight vector of ˆ  ( 1, 2, 3, , )ih i n= …  with wi ≥ 0 (i = 1, 2, 3,…,n) such that wi ∈[0, 1] and 
1

1.n
ii

w
=

=∑  Then, 
the PHFWG operator is a mapping PHFWG:PHFNn→PHFN can be defined as

	 1 2
1 2 1 2

ˆ ˆ ˆ ˆ ˆ ˆ( , , , ) , , ,nww w
n nPHFWG h h h h h h= ⊗ ⊗ ⊗… … � (18)

and PHFWG is said to be a PHFWG operator.
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Theorem 3 ([9]): Let ˆ ˆ
ˆ ,  ( 1, 2, 3, , )

i ii h h
h i nΛ Γ= 〈 〉 = …  be a collection of all PHFNs, and w = (w1, w2,…,wn)T be 

the weight vector of ˆ  ( 1, 2, 3, , )ih i n= …  with wi ≥ 0 (i = 1, 2, 3,…,n), where wi ∈[0, 1] and 
1

1.n
ii

w
=

=∑  Then, the 
aggregation result using the PHFWG operator is also a PHFN, and

	

ˆ ˆ ˆ ˆ ˆ ˆ1 1 2 2

2

ˆ ˆ ˆ ˆ ˆ ˆ1 1 2 2

ˆ, , ,
1

1 2

ˆ, , ,
1

( ) ,
ˆ ˆ ˆ( , , , ) .

1 (1 )

i

h h h h h h in n

i

h h h h h h in n

n
w

h h h h
i

n n
w

h h h h
i

h
PHFWG h h h

h

Λ Λ Λ

Γ Γ Γ

∈ ∈ ∈
=

∈ ∈ ∈′ ′ ′
=

 
 
 =

  
− − ′ 

  

∏

∏

…

…

∪

…

∪
�

(19)

Proof. Proof of the theorem follows from Theorem 4.5 in Ref. [9].� □
In the following, we present some properties of the PHFWG operator.

Theorem 4: Let ˆ ˆ
ˆ ,   ( 1, 2, 3, , )

i ii h h
h i nΛ Γ= 〈 〉 = …  be a collection of all PHFNs, and w = (w1, w2,…,wn)T be the 

weight vector of ˆ  ( 1, 2, 3, , )ih i n= …  with wi ≥ 0 (i = 1, 2, 3,…,n) where wi ∈[0, 1] and 
1

1.n
ii

w
=

=∑  Then
(1)	 (Idempotency) If all ˆ ˆ

ˆ ,   ( 1, 2, 3, , )
i ii h h

h i nΛ Γ= 〈 〉 = …  are equal, i.e. ˆ ˆ ( 1, 2, 3, , ) ,ih i n h= =…  then

	 1 2
ˆ ˆ ˆ ˆ( , , , ) .nPHFWG h h h h=… � (20)

(2)	 (Boundedness)
	 1 2

ˆ ˆ ˆ ˆ ˆ( , , , ) ,nh PHFWG h h h h− +≤ ≤… � (21)

where ˆ , ,h h h− − +′= 〈 〉  ˆ , ,h h h+ + −′= 〈 〉  
ˆ

min { },
i hi
h i ih h

Λ
−

∈=∪

ˆ
max { },

i hi
h i ih h

Λ
+

∈=∪  
ˆ

min { },
i hi
h i ih h

Γ
−′

∈′= ′∪  
ˆ

max { }.
i hi
h i ih h

Γ
+′

′= ′∪ ∈

(3)	 (Monotonicity) If ˆ ˆ ,i ih h∗>  then

	 1 2 1 2
ˆ ˆ ˆ ˆ ˆ ˆ( , , , ) ( , , , ).n nPHFWG h h h PHFWG h h h∗ ∗ ∗≤… … � (22)

Proof. Proof of the theorem follows from Theorem 2.� □

3.2  �PHFOWA/Geometric Operator

In the following, we develop a PHFOWA operator and a PHFOWG operator. We also discuss some properties 
of the developed operators.

Definition 14: Let ˆ ˆ
ˆ ,   ( 1, 2, 3, , )

i ii h h
h i nΛ Γ= 〈 〉 = …  be a collection of all PHFNs, ( )

ˆ
ih

σ
 be the largest in them, and 

w = (w1, w2,…,wn)T be the weight vector of ˆ  ( 1, 2, 3, , )ih i n= …  with wi ≥ 0 (i = 1, 2, 3,…,n) such that wi ∈[0, 1] 
and 

1
1.n

ii
w

=
=∑  Then, the PHFOWA operator is a mapping PHFOWA:PHFNn→PHFN can be defined by

	 1 2 1 (1) 2 (2) ( )
ˆ ˆ ˆ ˆ ˆ ˆ( , , , ) , , .n n nPHFOWA h h h w h w h w h

σ σ σ
= ⊕ ⊕ ⊕… … � (23)

Theorem 5: Let ˆ ˆ
ˆ ,   ( 1, 2, 3, , )

i ii h h
h i nΛ Γ= 〈 〉 = …  be a collection of all PHFNs, ( )

ˆ
ih

σ
 be the largest in them, 

w = (w1, w2,…,wn) be the weight vector of ˆ  ( 1, 2, 3, , )ih i n= …  with wi ≥ 0 (i = 1, 2, 3,…,n) such that wi ∈[0, 1] and 

1
1.n

ii
w

=
=∑  Then, the aggregation result using the PHFOWA operator is also a PHFN and

	

2

ˆ ˆ ˆ ˆ ˆ ˆ ( )( 1 ) ( 1 ) ( 2 ) ( 2 ) ( ) ( )

ˆ ˆ ˆ ˆ ˆ ˆ ( )( 1 ) ( 1 ) ( 2 ) ( 2 ) ( ) ( )

ˆ, , ,
1

1 2

ˆ, , ,
1

1 (1 ) ,
ˆ ˆ ˆ( , , , ) .

( )

i

ih h h h h hn n

i

h h h h h h in n

n
w

h h h
i

n n
w

h h h h
i

h
PHFOWA h h h

h

σσ σ σ σ σ σ

σσ σ σ σ σ σ

Λ Λ Λ α

Γ Γ Γ

∈ ∈ ∈
=

∈ ∈ ∈′ ′ ′
=

  
− − 

  =
 

′ 
 

∏

∏

…

…

∪
…

∪

�

(24)

Proof. Proof of the theorem is the same as Theorem 1.� □
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Example 1: Suppose there are three experts who are invited to evaluate some decision alternatives. The evalua-
tion of the expert is denoted by PHFNs, 1

ˆ {0.5, 0.6, 0.9}, {0.3, 0.6} ,h = 〈 〉  2
ˆ {0.3, 0.6, 0.8}, {0.2, 0.7, 0.9} ,h = 〈 〉  

3
ˆ {0.3, 0.4, 0.7.0.9}, {0.2, 0.8, 0.9} ,h = 〈 〉  respectively, with w = (0.35, 0.4, 0.25)T as the weighted vector of 
ˆ  ( 1, 2, 3).ih i =  To calculate the comprehensive evaluation of the three experts on the decision alternative through 
using the PHFOWA operator, we have

2

ˆ ˆ ˆ ˆ ˆ ˆ ( )( 1 ) ( 1 ) ( 2 ) ( 2 ) ( 3 ) ( 3 )

ˆ ˆ ˆ ˆ ˆ ˆ ( )( 1 ) ( 1 ) ( 2 ) ( 2 ) ( 3 ) ( 3 )

3

ˆ, ,
1

1 2 3 3

ˆ, ,
1

1 (1 ) ,
ˆ ˆ ˆ( , , ) .

( )

i

h h h h h h i

i

h h h h h h i

w
h h h h

i

w
h h h h

i

h
PHFOWA h h h

h

σσ σ σ σ σ σ

σσ σ σ σ σ σ

Λ Λ Λ

Γ Γ Γ

∈ ∈ ∈
=

∈ ∈ ∈′ ′ ′
=

  
− − 

  =
 

′ 
 

∏

∏

∪

∪

First, we calculate the score functions of 1 2
ˆ ˆ, h h  and 3

ˆ .h  For this, we have

1
ˆ( ) 0.928,S h =  2

ˆ( ) 0.117,S h = −  3
ˆ( ) 0.1192.S h =

Thus, 1 3 2
ˆ ˆ ˆ( ) ( ) ( ).S h S h S h> >  Now

1 2 3

0.39, 0.47, 0.57, 0.42, 0.50, 0.59, 0.57, 0.62, 0.68, 0.74, 0.76, 0.80
0.44, 0.51, 0.60, 0.47, 0.54, 0.62, 0.60, 0.65, 0.70, 0.76, 0.78, 0.81,

ˆ ˆ ˆ 0.69, 0.72, 0.76, 0.70, 0.73, 0.77, 0( , ,  )PHFOWA h h h =
,

.82, 0.85, 0.86, 0.88, 0.79, 0.76 .
0.23, 0.32, 0.34, 0.40, 0.55, 0.59, 0.42, 0.58, 0.61,
0.29, 0.43, 0.51, 0.70, 0.75, 0.54, 0.73, 0.78

 
 
 
 
 
  
 
  

This is the required degree of satisfaction and degree of dissatisfaction of the three experts on the deci-
sion alternative.

Theorem 6: Let ˆ ˆ
ˆ ,   ( 1, 2, 3, , )

i ii h h
h i nΛ Γ= 〈 〉 = …  be a collection of all PHFNs, and w = (w1, w2,…,wn)T be the 

weight vector of ˆ ( 1, 2, 3, , )ih i n= …  with wi ≥ 0 (i = 1, 2, 3,…,n), where wi ∈[0, 1] and 
1

1.n
ii

w
=

=∑  Then
(1)	 (Idempotency) If all ˆ ˆ

ˆ ,   ( 1, 2, 3, , )
i ii h h

h i nΛ Γ= 〈 〉 = …  are equal, i.e. ˆ ˆ ( 1, 2, 3, , ) ,ih i n h= =…  then

	 1 2
ˆ ˆ ˆ ˆ( , , , ) .nPHFOWA h h h h=… � (25)

(2)	 (Boundedness)

	 1 2
ˆ ˆ ˆ ˆ ˆ( , , , ) ,nh PHFOWA h h h h− +≤ ≤… � (26)

where ˆ , ,h h h− − +′= 〈 〉  ˆ , ,h h h+ + −′= 〈 〉  
ˆ

min { },
i hi
h i ih h

Λ
−

∈=∪

ˆ
max { },

i hi
h i ih h

Λ
+

∈=∪  
ˆ

min { },
i hi
h i ih h

Γ
−′

∈′= ′∪  
ˆ

max { }.
i hi
h i ih h

Γ
+′

∈′= ′∪

(3)	 (Monotonicity) If ˆ ˆ ,i ih h∗>  then

	 1 2 1 2
ˆ ˆ ˆ ˆ ˆ ˆ( , , , ) ( , , , ).n nPHFOWA h h h PHFOWA h h h∗ ∗ ∗≤… … � (27)

Proof. Proof of the theorem follows from Theorem 2.� □

Definition 15: Let ˆ ˆ
ˆ ,   ( 1, 2, 3, , )

i ii h h
h i nΛ Γ= 〈 〉 = …  be a collection of all PHFNs, ( )

ˆ
ih

σ
 be the largest in them, 

w = (w1, w2,…,wn) be the weight vector of ˆ  ( 1, 2, 3, , )ih i n= …  with wi ≥ 0 (i = 1, 2, 3,…,n) such that wi ∈[0, 1] and 

1
1.n

ii
w

=
=∑  Then, the PHFOWG operator is a mapping PHFOWG:PHFNn→PHFN can be defined by

	 1 2
1 2 (1) (2) ( )

ˆ ˆ ˆ ˆ ˆ ˆ( , , , ) , , .nww w
n nPHFOWG h h h h h h

σ σ σ
= ⊗ ⊗ ⊗… … � (28)
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Theorem 7: Let ˆ ˆ
ˆ ,   ( 1, 2, 3, , )

i ii h h
h i nΛ Γ= 〈 〉 = …  be a collection of all PHFNs, ( )

ˆ
ih

σ
 be the largest in them, 

w = (w1, w2,…,wn) be the weight vector of ˆ  ( 1, 2, 3, , )ih i n= …  with wi ≥ 0 (i = 1, 2, 3,…,n) such that wi ∈[0, 1] and 

1
1.n

ii
w

=
=∑  Then, the aggregation result using PHFOWG operator is also a PHFNS, and

	

ˆ ˆ ˆ ˆ ˆ ˆ ( )( 1 ) ( 1 ) ( 2 ) ( 2 ) ( ) ( )

2

ˆ ˆ ˆ ˆ ˆ ˆ ( )( 1 ) ( 1 ) ( 2 ) ( 2 ) ( ) ( )

ˆ, , ,
1

1 2

ˆ, , ,
1

( ) ,
ˆ ˆ ˆ( , , , ) .

1 (1 )

i

h h h h h h in n

i

h h h h h h in n

n
w

h h h h
i

n n
w

h h h h
i

h
PHFOWG h h h

h

σσ σ σ σ σ σ

σσ σ σ σ σ σ

Λ Λ Λ

Γ Γ Γ

∈ ∈ ∈
=

∈ ∈ ∈′ ′ ′
=

  
 
  =

  
− − ′ 

  

∏

∏

…

…

∪

…

∪
�

(29)

Proof. Proof of the theorem is the same as Theorem 3.� □

Example 2: To compute the comprehensive evaluation of the three experts (Example 2) on the decision alter-
native through using the Pythagorean hesitant fuzzy order weighted geometric operator, we have

( )

ˆ ˆ ˆ ˆ ˆ ˆ ( )( 1 ) ( 1 ) ( 2 ) ( 2 ) ( 3 ) ( 3 )

2

ˆ ˆ ˆ ˆ ˆ ˆ ( )( 1 ) ( 1 ) ( 2 ) ( 2 ) ( 3 )3

3

ˆ, ,
1

1 2 3

ˆ, ,
1

( ) ,
ˆ ˆ ˆ( , , , ) .

1 (1 )

i

h h h h h h i

i

h h h h h h i

w
h h h h

i
n

w
h h h h

i

h
PHFOWG h h h

h

σσ σ σ σ σ σ

σσ σ σ σ σσ

Λ Λ Λ

Γ Γ Γ

∈ ∈ ∈
=

∈ ∈ ∈′ ′ ′
=

 
 
 =   − − ′ 

  

∏

∏

∪

…
∪

First, we calculate the score functions of 1 2
ˆ ˆ, h h  and 3

ˆ .h  For this, we have

1
ˆ( ) 0.928,S h = 2

ˆ( ) 0.117,S h = − 3
ˆ( ) 0.1192.S h =

Thus, 1 3 2
ˆ ˆ ˆ( ) ( ) ( ).S h S h S h> >  Now

1 2

0.36, 0.43, 0.46, 0.40, 0.48, 0.51, 0.50, 0.60, 0.64,
0.56, 0.66, 0.71, 0.38, 0.49, 0.55, 0.54, 0.65, 0.69,
0.59, 0.76, 0.44, 0.52, 0.63, 0.62, 0.74, 0.79, 0.68,ˆ ˆ ˆ( , , , ) 0.81, 0.81nPHFOWG h h h

 



= 

… .

0.24, 0.44, 0.61, 0.63, 0.68, 0.76, 0.71, 0.82, 0.41,
0.54, 0.67, 0.66, 0.72, 0.75, 0.79, 0.84







  
 
  

This is the required degree of satisfaction and degree of dissatisfaction of the three experts on the deci-
sion alternative.

Theorem 8: Let ˆ ˆ
ˆ ,   ( 1, 2, 3, , )

i ii h h
h i nΛ Γ= 〈 〉 = …  be a collection of all PHFNs, and w = (w1, w2,…,wn)T be the 

weight vector of ˆ  ( 1, 2, 3, , )ih i n= …  with wi ≥ 0 (i = 1, 2, 3,…,n), where wi ∈[0, 1] and 
1

1.n
ii

w
=

=∑  Then
(1)	 (Idempotency) If all ˆ ˆ

ˆ ,  ( 1, 2, 3, , )
i ii h h

h i nΛ Γ= 〈 〉 = …  are equal, i.e. ˆ ˆ ( 1, 2, 3, , ) ,ih i n h= =…  then

	 1 2
ˆ ˆ ˆ ˆ( , , , ) .nPHFOWG h h h h=… � (30)

(2)	 (Boundedness)

	 1 2
ˆ ˆ ˆ ˆ ˆ( , , , ) ,nh PHFOWG h h h h− +≤ ≤… � (31)

where ˆ , ,h h h− − +′= 〈 〉  ˆ , ,h h h+ + −′= 〈 〉  
ˆ

min { },
i hi
h i ih h

Λ
−

∈=∪  
ˆ

max { },
i hi
h i ih h

Λ
+

∈=∪  
ˆ

min { },
i hi
h i ih h

Γ
−′

∈′= ′∪  

ˆ
max { }.

i hi
h i ih h

Γ
+′

∈′= ′∪

(3)	 (Monotonicity) If ˆ ˆ ,i ih h∗>  then

	 1 2 1 2
ˆ ˆ ˆ ˆ ˆ ˆ( , , , ) ( , , , ).n nPHFOWG h h h PHFOWG h h h∗ ∗ ∗≤… … � (32)

Proof. Proof of the theorem follows from Theorem 2.� □
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4  �Group Decision Making Based on Pythagorean Hesitant Fuzzy 
Information

In this section, we apply the Pythagorean hesitant fuzzy aggregation operators to multi-attribute decision 
making with anonymity. Suppose that there are n alternatives X = {x1, x2,…,xn} and m attributes A = {A1, 
A2,…,Am} to be evaluated having the weight vector w = (w1, w2,…,wm)T such that wj ∈[0, 1], j = 1, 2,…,m and 

1
1.m

jj
w

=
=∑  To evaluate the performance of the alternative xi under the attributes Aj, the decision maker is 

required to provide not only the information that the alternative xi satisfies the attributes Aj, but also the infor-
mation that the alternative xi does not satisfy the attributes Aj. This two-part information can be expressed 
by Λij and Γij, which denote the degrees that the alternative xi satisfy the criterion Aj and does not satisfy 
the criterion Aj, then the performance of the alternative xi under the criteria Aj can be expressed by a PHFN 
ˆ , ij ij ijh Λ Γ= 〈 〉  with the condition that for all hij ∈ Λij, ∃  ij ijh Γ∈′  such that 2 20 ( ) ( ) 1,ij ijh h≤ + ≤′  and for all hij ∈ Γij, 
∃  ij ijh Λ∈′  such that 2 20 ( ) ( ) 1,ij ijh h≤ + ≤′  i = 1, 2,…,n, j = 1, 2,…,m, and k = 1, 2,…,t. To obtain the ranking of the 
alternatives, the following steps are given.

Step 1: In this step, we construct the Pythagorean hesitant fuzzy decision matrices ˆ( )ij m nC h ×=  for the decision 
where ˆ , ij ij ijh Λ Γ= 〈 〉  (i = 1, 2,…,n; j = 1, 2,…,m).

If the attribute has two types, such as cost and benefit attributes, then the Pythagorean hesitant decision 
matrix can be converted into the normalized Pythagorean hesitant fuzzy decision matrix

DN = (γij)m×n, where 
ˆ if the attribute is of benefit type

,ˆ if the attribute is of cost type
ij

ij c
ij

h
h

γ
= 


where ˆ ,  ( 1, 2, , ; 1, 2, , ).c
ij ij ijh i n j mΓ Λ= 〈 〉 = =… …  If all the attributes have the same type, then there is no need 

to normalize the decision matrix.

Step 2: Utilize the developed aggregation operators to obtain the PHFN ˆ ( 1, 2, , )ih i n= …  for the alternatives 
Xi, that is the developed operators to derive the collective overall preference values ˆ  ( 1, 2, , )ih i n= …  of the 
alternative xi, where 1 2( ,  , , )Tnw w w w= …  is the weighting vector of the attributes.

Step 3: By using Eq. (7), we calculate the scores ˆ( ) ( 1, 2, , )iS h i n= …  and the deviation degree ˆ( ) ( 1, 2, , )ih i nσ = …  
of all the overall values ˆ  ( 1, 2, , ).ih i n= …

Step 4: Rank the alternatives xi (i = 1, 2,…,n) and then select the best one.

5  �Illustrative Example
In this section, we present a numerical example considering the air-conditioning system selection 
problem, which will be installed in a university library under Pythagorean fuzzy contexts to demonstrate 
the applicability and the implementation process of the proposed method. A university is planning to 
build a library. One of the problems faced by higher authority is to determine what kind of air-conditioning 
system should be installed in the library. Suppose that there exist five air-conditioning systems (alterna-
tives) Xi (i = 1, 2, 3, 4, 5), which might be adapted to the physical structure of the library. Suppose that three 
attributes (factors), A1 = economic, A2 = functional, A3 = operational, are taken into consideration in the 
installation problem, where A1 is the attribute of cost type. The five alternatives are to be evaluated using 
PHFNs by the decision makers under the above attributes whose weighting vector (0.25, 0.4, 0.35)Tw =  
are installed, respectively. In the following, we utilize the developed method to get the desire air-condi-
tioning system.
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Step 1: In order to avoid manipulating each other, the decision makers are required to provide their preferences 
in anonymity and the decision matrix ˆ( )ij m nC h ×=  is presented in Table 1, where ˆ  ( 1, 2, 3, 4, 5; 1, 2, 3)ijh i j= =  
are in the form of PHFNs.

Step 2: We utilize the decision information given in matrix, ˆ( )N ij m nD h ×=  and the PHFWA operator to obtain 
the overall preference values ˆ

ih  of the air-conditioning system Xi (i = 1, 2, 3, 4, 5). We have

1

2

{0.4611, 0.5140, 0.5513, 0.4873, 0.5361, 0.5708, 0.5275, 0.5706,ˆ .
0.6016, 0.5487, 0.5889, 0.6181}, {0.5894, 0.7456, 0.61689, 0.7804}

ˆ {0.4355, 0.5653, 0.4841, 0.5976}, {0.5934, 0.6742, 0.7334} .

h

h

=

= 〈 〉

3

4

5

{0.5881, 0.6931, 0.6395, 0.7283}, {0.5850, 0.6236,ˆ .
0.6222, 0.6632, 0.6049, 0.6447, 0.6434, 0.6858}

ˆ {0.2771, 0.4007, 0.3103, 0.4223}, {0.8003, 0.8386, 0.8242, 0.8637} .
ˆ {0.3321, 0.3870}, {0

h

h

h

=

= 〈 〉

= 〈 .8337, 0.9} .〉

Step 3: Calculate the scores ˆ( ) (1, 2, 3, 4, 5)iS h  of the overall PHFNs ˆ  (1, 2, 3, 4, 5) :ih

1 2 3 4 5
ˆ ˆ ˆ ˆ ˆ( ) 0.1663, ( ) 0.17384, ( ) 0.0365, ( ) 0.5674, ( ) 0.6574.S h S h S h S h S h= − = − = = − = −

Step 4: Rank all the alternatives Xi (i = 1, 2, 3, 4, 5) in accordance with the scores ˆ( ) (1, 2, 3, 4, 5)iS h  of the 
overall Pythagorean hesitant fuzzy preference numbers. We have 3 1 2 4 5

ˆ ˆ ˆ ˆ ˆ( ) ( ) ( ) ( ) ( ),S h S h S h S h S h> > > >  which 
shows that X3 > X1 > X2 > X4 > X5. That is, the most desirable air-conditioning system is X3.

Next, we apply the PHFWG operator to the same problem and give steps of our proposed algorithm and 
start from step 2.

Step 2: We utilize the decision information given in matrix ˆ( )ij m nD h ×=  and the PHFWG operator to obtain the 
overall preference values ˆ

ih  of the air-conditioning system Xi (i = 1, 2, 3, 4, 5). We have

1

2

{0.3708, 0.4434, 0.4726, 0.4160, 0.4974, 0.5302, 0.3834, 0.4584,ˆ .
0.4886, 0.4301, 0.5143, 0.5482}, {0.6480, 0.8155, 0.6652, 0.8235}

ˆ {0.3946, 0.4799, 0.4101, 0.4988}, {0.7550, 0.7683, 0.7925} .

ˆ

h

h

=

= 〈 〉

3

4

5

{0.4812, 0.5399, 0.6333, 0.7105}, {0.6707, 0.6287,
.

0.6452, 0.6692, 0.6435, 0.6676, 0.6819, 0.7028}
ˆ {0.2144, 0.2470, 0.2521, 0.2905}, {0.8277, 0.8492, 0.8553, 0.8731} .
ˆ {0.2462, 0.2692}, {0.

h

h
h

=

= 〈 〉
= 〈 8815, 0.9000} .〉

Step 3: Calculate the scores ˆ( ) (1, 2, 3, 4, 5)iS h  of the overall PHFNs ˆ  (1, 2, 3, 4, 5) :ih

1 2 3 4 5
ˆ ˆ ˆ ˆ ˆ( ) 0.3306, ( ) 0.3971, ( ) 0.0910, ( ) 0.6618, ( ) 0.7270.S h S h S h S h S h= − = − = − = − = −

Table 1: Pythagorean Hesitant Fuzzy Decision Matrix C.

A1 A2 A3

X1 〈{0.5, 0.6}, {0.7, 0.8}〉 〈{0.3, 0.4}, {0.5, 0.9}〉 〈{0.3, 0.5, 0.6}, {0.8}〉
X2 〈{0.3, 0.5, 0.7}, {0.6, 0.7}〉 〈{0.3}, {0.9}〉 〈{0.4, 0.7}, {0.6}〉
X3 〈{0.7, 0.8}, {0.2, 0.6}〉 〈{0.6, 0.8}, {0.6, 0.7}〉 〈{0.7}, {0.5, 0.6}〉
X4 〈{0.8, 0.9}, {0.1}〉 〈{0.2, 0.3}, {0.9}〉 〈{0.4, 0.6}, {0.7, 0.8}〉
X5 〈{0.8, 0.9}, {0.4}〉 〈{0.3, 0.4}, {0.9}〉 〈{0.1}, {0.9}〉
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Step 4: Rank all the alternatives Xi (i = 1, 2, 3, 4, 5) in accordance with the scores ˆ( ) (1, 2, 3, 4, 5)iS h  of the 
overall Pythagorean hesitant fuzzy preference numbers. We have 3 1 2 4 5

ˆ ˆ ˆ ˆ ˆ( ) ( ) ( ) ( ) ( ),S h S h S h S h S h> > > >  which 
shows that X3 > X1 > X2 > X4 > X5. That is, the most desirable air-conditioning system is X3.

Moreover, we apply the PHFOWA operator to the problem and the order decision matrix is as follows.

Step 2: We utilize the decision information given in matrix ˆ( )ij m nC h ×=  and the PHFOWA operator to obtain 
the overall preference values ˆ

ih  of the air-conditioning system Xi (i = 1, 2, 3, 4, 5). We have

1

2

{0.4611, 0.5140, 0.5513, 0.4873, 0.5361, 0.5708, 0.5275, 0.5706,ˆ .
0.6016, 0.5487, 0.5888, 0.6181}, {0.5894, 0.7456, 0.6169, 0.7804}

ˆ {0.4393, 0.5822, 0.4873, 0.6127}, {0.5815, 0.6607, 0.7187} .

ˆ

h

h

=

= 〈 〉

3

4

5

{0.5506, 0.6287, 0.6681, 0.7209}, {0.6051, 0.6340,
.

0.6435, 0.6743, 0.6333, 0.6636, 0.6735, 0.7058}
ˆ {0.2450, 0.2783, 0.3490, 0.3716}, {0.8063, 0.8452, 0.8337, 0.8739} .
ˆ {0.3321, 0.3870}, {0.

h

h
h

=

= 〈 〉
= 〈 8739, 0.9} .〉

Step 3: Calculate the scores ˆ( ) (1, 2, 3, 4, 5)iS h  of the overall PHFNs ˆ  (1, 2, 3, 4, 5)ih

1 2 3 4 5
ˆ ˆ ˆ ˆ ˆ( ) 0.1663, ( ) 0.1459, ( ) 0.2221, ( ) 0.6085, ( ) 0.6574.S h S h S h S h S h= − = − = = − = −

Step 4: Rank all the alternatives Xi (i = 1, 2, 3, 4, 5) in accordance with the scores ˆ( ) (1, 2, 3, 4, 5)iS h  of the 
overall Pythagorean hesitant fuzzy preference numbers. We have 3 1 2 4 5

ˆ ˆ ˆ ˆ ˆ( ) ( ) ( ) ( ) ( ),S h S h S h S h S h> > > >  which 
shows that X3 > X1 > X2 > X4 > X5. That is, the most desirable air-conditioning system is X3.

Finally, we apply the PHFOWG operator to the problem and the order decision matrix is in Table 2.

Step 2: We utilize the decision information given in matrix ˆ( )ij m nC h ×=  and the PHFOWG operator to obtain 
the overall preference values ˆ

ih  of the air-conditioning system Xi (i = 1, 2, 3, 4, 5). We have

1

2

{0.3708, 0.4434, 0.4726, 0.4160, 0.4974, 0.5302, 0.3834, 0.4584,ˆ .
0.4886, 0.4301, 0.5143, 0.5482}, {0.6480, 0.8155, 0.6652, 0.8235}

ˆ {0.4003, 0.5007, 0.41560, 0.5204}, {0.7370, 0.7515, 0.7776} .

h

h

=

= 〈 〉

3

4

5

{0.4245, 0.6236, 0.4763, 0.6996}, {0.6205, 0.6750,ˆ .
0.6621, 0.7091, 0.6395, 0.6905, 0.6784, 0.7226}

ˆ {0.1866, 0.2195, 0.2065, 0.2429}, {0.8342, 0.8699, 0.8492, 0.8815} .
ˆ {0.2462, 0.2692}, {0

h

h
h

=

= 〈 〉
= 〈 .8815, 0.9000} .〉

Step 3: Calculate the scores ˆ( ) (1, 2, 3, 4, 5)iS h  of the overall PHFNs ˆ  (1, 2, 3, 4, 5)ih

1 2 3 4 5
ˆ ˆ ˆ ˆ ˆ( ) 0.3306, ( ) 0.3597, ( ) 0.1461, ( ) 0.6817, ( ) 0.7270.S h S h S h S h S h= − = − = − = − = −

Table 2: Normalized Pythagorean Hesitant Fuzzy Decision Matrix DN.

A1 A2 A3

X1 〈{0.7, 0.8}, {0.5, 0.6}〉 〈{0.3, 0.4}, {0.5, 0.9}〉 〈{0.3, 0.5, 0.6}, {0.8}〉
X2 〈{0.6, 0.7}, {0.3, 0.5, 0.7}〉 〈{0.3}, {0.9}〉 〈{0.4, 0.7}, {0.6}〉
X3 〈{0.2, 0.6}, {0.7, 0.8}〉 〈{0.6, 0.8}, {0.6, 0.7}〉 〈{0.7}, {0.5, 0.6}〉
X4 〈{0.1}, {0.8, 0.9}〉 〈{0.2, 0.3}, {0.9}〉 〈{0.4, 0.6}, {0.7, 0.8}〉
X5 〈{0.4}, {0.8, 0.9}〉 〈{0.3, 0.4}, {0.9}〉 〈{0.1}, {0.9}〉
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Step 4: Rank all the alternatives Xi (i = 1, 2, 3, 4, 5) in accordance with the scores ˆ( )iS h  (1, 2, 3, 4, 5) of the 
overall Pythagorean hesitant fuzzy preference numbers. We have 3 1 2 4 5

ˆ ˆ ˆ ˆ ˆ( ) ( ) ( ) ( ) ( ),S h S h S h S h S h> > > >  which 
shows that X3 > X1 > X2 > X4 > X5. That is, the most desirable air-conditioning system is X3.

6  �Comparison Analysis
In order to verify the validity and effectiveness of the proposed approach, a comparative study is conducted 
using the methods of HFNs by Torra [22] and IHFSs by Peng et al. [20], which are special cases of PHFNs, to 
the same illustrative example (Table 3).

For comparison with the HFNs, the PHFNs can be transformed to HFNs by retaining only the membership 
degrees. The hesitant fuzzy information is represented in Table 4.

The ordered hesitant fuzzy decision matrix is given in Table 5.
Using the HFOWA operator [23], the score values are as follows:

1
ˆ( ) 0.5326,S h =  2

ˆ( ) 0.5145,S h =  3
ˆ( ) 0.6268,S h =  4

ˆ( ) 0.2907,S h =  5
ˆ( ) 0.2865.S h =

The ranking of the alternatives is X3 > X1 > X2 > X4 > X5.
Using the HFOWG operator [23], the score values are as follows:

1
ˆ( ) 0.4746,S h =  2

ˆ( ) 0.4594,S h =  3
ˆ( ) 0.5564,S h =  4

ˆ( ) 0.2213,S h =  5
ˆ( ) 0.2329.S h =

The ranking of the alternatives is X3 > X1 > X2 > X5 > X4.

Table 3: Ordered Pythagorean Hesitant Fuzzy Decision Matrix.

A1 A2 A3

X1 〈{0.7, 0.8}, {0.5, 0.6}〉 〈{0.3, 0.4}, {0.5, 0.9}〉 〈{0.3, 0.5, 0.6}, {0.8}〉
X2 〈{0.6, 0.7}, {0.3, 0.5, 0.7}〉 〈{0.4, 0.7}, {0.6}〉 〈{0.3}, {0.9}〉
X3 〈{0.7}, {0.5, 0.6}〉 〈{0.6, 0.8}, {0.6, 0.7}〉 〈{0.2, 0.6}, {0.7, 0.8}〉
X4 〈{0.4, 0.6}, {0.7, 0.8}〉 〈{0.2, 0.3}, {0.9}〉 〈{0.1}, {0.8, 0.9}〉
X5 〈{0.4, 0.5}, {0.9}〉 〈{0.1}, {0.9}〉 〈{0.4}, {0.8, 0.9}〉

Table 4: Hesitant Fuzzy Decision Matrix.

A1 A2 A3

X1 {0.7, 0.8} {0.3, 0.4} {0.3, 0.5, 0.6}
X2 {0.6, 0.7} {0.3} {0.4, 0.7}
X3 {0.2, 0.6} {0.6, 0.8} {0.7}
X4 {0.1} {0.2, 0.3} {0.4, 0.6}
X5 {0.4} {0.3, 0.4} {0.1}

Table 5: Ordered Hesitant Fuzzy Decision Matrix.

A1 A2 A3

X1 {0.7, 0.8} {0.3, 0.5, 0.6} {0.3, 0.4}
X2 {0.6, 0.7} {0.4, 0.7} {0.3}
X3 {0.6, 0.8} {0.7} {0.2, 0.6}
X4 {0.4, 0.6} {0.2, 0.3} {0.1}
X5 {0.4} {0.3, 0.4} {0.1}
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Obviously, the ranking of the alternatives is the same as derived from the proposed method. However, 
PHFSs are more suitable than HFSs. The main reason is that HFNs only consider the membership degrees of 
an element and ignore the non-membership degrees, which may result in information distortion and loss.

For comparison with the IHFN, the PHFN can be transformed to IHFN by restricting the square sum of 
its membership and non-membership degree to ≤1; the sum of membership degrees and non-membership 
degree is ≤1; and the intuitionistic hesitant fuzzy information is represented in Table 6. The ordered intuition-
istic hesitant fuzzy decision matrix is given in Table 7.

Using the IHFOWA operator [20], the score values are as follows:

1 2 3 4 5
ˆ ˆ ˆ ˆ ˆ( ) 0.0257, ( ) 0.1809, ( ) 0.2727, ( ) 0.5179, ( ) 0.3896.S h S h S h S h S h= = − = = − = −

The ranking of the alternatives is X3 > X1 > X2 > X5 > X4.
Using the IHFOWG operator [20], the score values are as follows:

1 2 3 4 5
ˆ ˆ ˆ ˆ ˆ( ) 0.0134, ( ) 0.2219, ( ) 0.1719, ( ) 0.6257, ( ) 0.5139.S h S h S h S h S h= − = − = = − = −

The ranking of the alternatives is, X3 > X1 > X2 > X4 > X5.
Obviously, the ranking of the alternatives is the same as derived from the proposed method. However, 

PHFSs are more suitable than IHFSs. The main reason for this is that IHFNs consider the membership degrees 
and non-membership degrees, which satisfy the condition that the sum of its membership and non-member-
ship degree is ≤1, while in the proposed approach the square sum of membership degree and non-member-
ship degree is ≤1.

7  �Conclusion
PHFS is a very powerful tool for dealing with uncertainty and fuzziness. It was proposed by Khan et al. [9]. 
Therefore, in this paper, we developed a multi-attribute decision making approach under Pythagorean hesi-
tant fuzzy information. We discussed some properties of the developed operators, namely PHFWA opera-
tor and PHFWG operator [9]. Furthermore, we generalized these operators and developed the PHFOWA and 
PHFOWG operators to solve the decision- making problems with anonymity. By the illustrative example, we 
have roughly shown the change trends of the results derived by the developed aggregation operators. Finally, 
a comparison method has been discussed between the proposed approach and existing methods.

Table 6: Intuitionistic Hesitant Fuzzy Decision Matrix.

A1 A2 A3

X1 〈{0.3, 0.4}, {0.5, 0.6}〉 〈{0.3, 0.4}, {0.5, 0.6}〉 〈{0.3, 0.5, 0.6}, {0.4}〉
X2 〈{0.3, 0.4}, {0.3, 0.5, 0.6}〉 〈{0.3}, {0.7}〉 〈{0.4, 0.5}, {0.5}〉
X3 〈{0.2, 0.6}, {0.3, 0.4}〉 〈{0.6, 0.8}, {0.1, 0.2}〉 〈{0.6}, {0.4, 0.5}〉
X4 〈{0.1}, {0.8, 0.9}〉 〈{0.2, 0.3}, {0.9}〉 〈{0.4, 0.5}, {0.5, 0.6}〉
X5 〈{0.4}, {0.5, 0.6}〉 〈{0.3, 0.4}, {0.6}〉 〈{0.1}, {0.9}〉

Table 7: Ordered Intuitionistic Hesitant Fuzzy Decision Matrix.

A1 A2 A3

X1 〈{0.5, 0.6}, {0.3, 0.4}〉 〈{0.3, 0.5, 0.6}, {0.4}〉 〈{0.3, 0.4}, {0.5, 0.6}〉
X2 〈{0.4, 0.5}, {0.5}〉 〈{0.3, 0.4}, {0.3, 0.5, 0.6}〉 〈{0.3}, {0.7}〉
X3 〈{0.6, 0.8}, {0.1, 0.2}〉 〈{0.6}, {0.4, 0.5}〉 〈{0.2, 0.6}, {0.3, 0.4}〉
X4 〈{0.4, 0.5}, {0.5, 0.6}〉 〈{0.2, 0.3}, {0.9}〉 〈{0.1}, {0.8, 0.9}〉
X5 〈{0.4}, {0.5, 0.6}〉 〈{0.3, 0.4}, {0.6}〉 〈{0.1}, {0.9}〉
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In the future, we will introduce the concept of generalized Pythagorean hesitant fuzzy aggregation opera-
tors, Pythagorean hesitant fuzzy hybrid aggregation operators, and their generalizations, TOPSIS and TODIM 
methods, under the Pythagorean hesitant fuzzy environment.
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