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Abstract: In this paper, we introduce the notion of Einstein aggregation operators, such as the interval-valued
Pythagorean fuzzy Einstein weighted averaging aggregation operator and the interval-valued Pythagorean
fuzzy Einstein ordered weighted averaging aggregation operator. We also discuss some desirable properties,
such as idempotency, boundedness, commutativity, and monotonicity. The main advantage of using the pro-
posed operators is that these operators give a more complete view of the problem to the decision makers.
These operators provide more accurate and precise results as compared the existing method. Finally, we
apply these operators to deal with multiple-attribute group decision making under interval-valued Pythago-
rean fuzzy information. For this, we construct an algorithm for multiple-attribute group decision making.
Lastly, we also construct a numerical example for multiple-attribute group decision making.

Keywords: Interval-valued Pythagorean fuzzy Einstein weighted averaging operator, interval-valued Pytha-
gorean fuzzy Einstein ordered weighted averaging operator, group decision making.

1 Introduction

Atanassov [1] introduced the concept of intuitionistic fuzzy sets (IFSs) characterized by a membership func-
tion and a non-membership function. It is more suitable for dealing with fuzziness and uncertainty than the
ordinary fuzzy set developed by Zadeh [33] characterized by membership function. In 1986, many scholars
[2-6, 22] have done works in the field of IFS and its applications. Particularly, information aggregation is a
very crucial research area in IFS theory that has been receiving more and more focus. Xu [23] developed some
basic arithmetic aggregation operators, including intuitionistic fuzzy weighted averaging (IFWA) aggrega-
tion operator, intuitionistic fuzzy ordered weighted averaging (IFOWA) aggregation operator, and intuition-
istic fuzzy hybrid averaging (IFHA) aggregation operator, and applied them to group decision making. Xu
and Yager [26] defined some basic geometric aggregation operators, such as intuitionistic fuzzy weighted
geometric (IFWG) aggregation operator, intuitionistic fuzzy ordered weighted geometric (IFOWG) aggrega-
tion operator, and intuitionistic fuzzy hybrid geometric (IFHG) aggregation operator. In Refs. [24, 25], Chen
and Xu familiarized a series of a new types of aggregation operators, such as interval-valued IFWA (IIFWA)
aggregation operator, interval-valued IFOWA (IIFOWA) aggregation operator, interval-valued IFHA (IIFHA)
aggregation operator, interval-valued IFWG (IIFWG) aggregation operator, interval-valued IFOWG (IIFOWG)
aggregation operator, and interval-valued IFHG (IIFHG) aggregation operator. In Refs. [20, 21], Wang and
Liu introduced the concept of intuitionistic fuzzy Einstein weighted geometric (IFEWG) aggregation opera-
tor, intuitionistic fuzzy Einstein ordered weighted geometric IFEOWG) aggregation operator, intuitionistic
fuzzy Einstein weighted averaging (IFEWA) aggregation operator, and intuitionistic fuzzy Einstein ordered
weighted averaging (IFEOWA) aggregation operator, and applied them to group decision making. In Refs. [29—
32], Yu also worked in the field of IFS theory and introduced many aggregation operators and applied them
to group decision making. However, there are many cases where the decision maker may provide the degree
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of membership and non-membership of a particular attribute in such a way that their sum is greater than
one. Therefore, Yager [27] introduced the concept of another set called Pythagorean fuzzy set. The Pythago-
rean fuzzy set is a more powerful tool for solving uncertain problems. Like intuitionistic fuzzy aggregation
operators, Pythagorean fuzzy aggregation operators have also become an interesting and important area for
research, after the advent of the Pythagorean fuzzy set theory. In Ref. [28], Yager and Abbasov introduced the
notion of two new Pythagorean fuzzy aggregation operators, such as Pythagorean fuzzy weighted averaging
(PFWA) aggregation operator and Pythagorean fuzzy ordered weighted averaging (PFOWA) operator. In Refs.
[12-14, 16, 17], Rahman et al. introduced the concept of Pythagorean fuzzy hybrid averaging (PFHA) aggre-
gation operator, Pythagorean fuzzy weighted geometric (PFWG) aggregation operator, Pythagorean fuzzy
ordered weighted geometric (PFOWG) operator, Pythagorean fuzzy hybrid geometric (PFHG) aggregation
operator, and Pythagorean fuzzy Einstein weighted geometric (PFEWG) operator, and applied them to group
decision making. In Refs. [7, 8], Garg introduced the notion of Pythagorean fuzzy Einstein weighted averaging
(PFEWA) aggregation operator, Pythagorean fuzzy Einstein ordered weighted averaging (PFEOWA) operator,
generalized PFEWA (GPFEWA) aggregation operator, generalized PFEOWA (GPFEOWA) aggregation opera-
tor, PFWG aggregation operator, PFOWG aggregation operator, PFEWG aggregation operator, Pythagorean
fuzzy Einstein ordered weighted geometric (PFEOWG) aggregation operator, GPFEOWA aggregation operator,
and generalized PFEOWG (GPFEOWG) aggregation operator, and applied them to group decision making. In
Ref. [11], Peng and Yang introduced the notion of interval-valued PFWA (IVPFWA) aggregation operator and
interval-valued PFWG (IVPFWG) aggregation operator. In Refs. [15, 18], Rahman et al. introduced the concept
of interval-valued PFOWA (IVPFOWA) aggregation operator, interval-valued PFHA (IVPFHWA) aggregation
operator, interval-valued PFOWG (IVPFOWG) aggregation operator, and interval-valued Pythagorean fuzzy
hybrid weighted geometric operator, and applied them to group decision making. In Refs. [9, 10, 19, 34], many
scholars worked in Pythagorean fuzzy set theory and aggregation operators.

Thus, keeping the advantages of these operators, in this paper, we introduce the notion of interval-valued
PFEWA (IVPFEWA) aggregation operator and interval-valued PFEOWA (IVPFEOWA) aggregation operator. By
comparison with the existing method, it is decided that the method developed in this paper is a good comple-
ment to the existing method.

The remainder of this paper is structured as follows. In Section 2, we give some basic definitions and
results, which will be used in later sections. In Section 3, we introduce some Einstein operations for interval-
valued Pythagorean fuzzy values. In Section 4, we introduce the notion of IVPFEWA and IVPFEOWA aggrega-
tion operators. In Section 5, we apply these operators to deal with multiple-attribute group decision-making
(MAGDM) problems with Pythagorean fuzzy information. In Section 6, we develop a numerical example. In
Section 7, we present our conclusion.

2 Preliminaries

Definition 1 ([11]): Let K be a fixed set, then an IVPFS can be defined as

I={(k, u,(K), v,(k))| ke K}, (1)
where
u, (k) =[uf (k), u; (k)] [0, 1], )
v, (k) =[vi(k), v/ (k)] <o, 1]. 3)
As
u; (k) =inf (u,(k)), (4)

u’ (k) =sup (u,(k)), (5)
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v; (k) =inf (v, (k)), (6)
v} (k) =sup (v,(k)), @)
and
<(u)(k))’ + (v} (k) <1. (8)
If
7, (k) =[] (k), 7} (k)], )

then it is called the interval-valued Pythagorean fuzzy index of k to I, where

24 (K)=\[1- @ ()Y (v (K))?, (10)

20 (k) = [1- () (v (K)). (11)

Definition 2 ([11]). Let A= ([u,, vJ, [x;, y,]) be an IVPFN, then the score function and accuracy function of A can
be defined as

su)%[(ul)z+(vx)2—(xl)2—(yl)21, (12)
and

Hu)%[(uj)z+(vl)2+(xl>2+(yi)21. (13)

IfA, and A, are two IVPFNs, then
1. IfS(A)<S@), then <A,
2. IfS(,)=S(,), then we have the following three conditions:
(i) IfH@A)=H(QA,), theni =4,
(ii) IfH@A,)<H(,), theni <4,
(iii) If HA) > H(4,), then 4, > 1..

Definition 3 ([11]): Let 4 —([“w }] [xl , yl D(j=1, 2, ..., n) be a collection of IVPFVs, and let IVPFWA:

0"— 0, if
N T~ J -0, ]
IVPFWA (4, 4,, A, s A )= (14)

) T, )}

where w=(w,, w,, ..., w )" is the weighted vector of /1]. with w,e [0, 1] and 2;':1 w; =1. Then, IVPFWA is called
interval-valued Pythagorean fuzzy weighted averaging operator.

Definition 4 ([18]): Let /1). =(u,, v, [x,,y,D(j=1, 2, ..., n) be a collection of IVPFVs, and let IVPFOWA:

0"— 0, if
Nl—]‘[(l—(u% )) \/1 H(l v, " 1
IVPFOWA (4, 4,, A;, oy 4,)= " (15)

Tl Tow, |
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where w=(w,, w,, ..., w )" is the weighted vector of lj with w,e [0, 1] and 2;’:1 w, =1, and l”(}.) is the j™ largest
value of Ai. Then, IVPFOWA is called interval-valued Pythagorean fuzzy ordered weighted averaging operator.

Definition 5 ([18]): An IVPFHA operator of dimension n is a mapping IVPFHA: ©" — ©, which has an associ-
ated vector w=(w,, w,, ..., w,)’, such that w,e [0, 1] and Z}Ll w,=1. Furthermore

l\/l_ﬁ(l_(ulﬂ(l) )Z)W’ ’ \/1_ﬁ(1 _(Vj'”(l) )Z)W’ }’
{ﬁ (Xiam )" l.l[(y"lom )" }

IVPFHA, (4, 4,, A5 vy A,)= , (16)

where io(;) is the j* largest of the weighted PFVs, ia(;) (A . = nwjij), and w=(w,, w,, ..., w )"is the weighted

a(j)
vector of /1). (=1, 2, ..., n) such that we [0, 1] and Z;’Zl w, =1 and n is the balancing coefficient, which plays

a role of balancing. If the vector (w,, w,, ..., w,)" approaches (1, L 1], then the vector (nwA,, nwA,, ...,
nn n

nw A )" approaches (1, 4,, ..., A )".

3 Some Einstein Operations of Interval-Valued Pythagorean Fuzzy
Sets

Definition 6: Let 1 =([u, v], [x, y]), A, =([u,, v}, [x,, ¥ ]), and 1,=([u,, v,], [x,, y,]) be three IVPFNs and ¢ >0, then
some Einstein operations for 4, 1, A, can be defined as follows:

\/1+ufu22’ \/1+va22 ,
XX, VY,
1+ -x)-x) 14—y A-y2)

2@ A =] (17)

| uu, Vv,
e Ji+a-)a-12) i+ a-)a-v) | -
a,=|t . 18
! ? |:\/X12+X22 \/yf+y§ ]

\/1+x12x§ ’ \/1+y12y§

VHW —-wy  Jasy —(1-v?) 1
5 Ja+w)Y +0—w2y Ja+v?)Y +(1-v?y . w9
! Ly J20)° }

Ja-xy+(y Ja-y P+

A= Je-wy +@y Je-vy +02) .
[\/(“XZ)B_(LXZP J(1+y2)5—(1—y2)‘§] (20)

Ja+x2) +(1-x2) Ja+y Y +a-y?y
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4 Some Interval-Valued Pythagorean Fuzzy Einstein Averaging
Aggregation Operators

In this section, we introduce two interval-valued Einstein aggregation operators, namely the IVPFEWA and
IVPFEOWA operators. We also discuss some desirable properties of these proposed operators, such as idem-

potency, boundedness, commutativity, and monotonicity. These operators provide more accurate and precise
results as compared to the existing method.

4.1 IVPFEWA Aggregation Operator

Definition 7. Let /1].= ([u],, v].], [x]., y},]) (i=1,2,3, ..., n) be the collection of IVPFVs, then an IVPFEWA operator of
dimension n is a mapping IVPFEWA : ©"— 0, and

\/ﬁ(l+u§)w" —ﬁ(l—u;)wf \/ﬁ(l+v§j ) —ﬁ(l—vi )"
\/H(1+u )i +H(1 u ) \/H(1+v )Y +H(1 v )

/ZH(x )" /ZH(y )"

\/H(z -x})"+ H(Xi )" \/ [1G-y)"+ H(yi )"

’

IVPFEWA (4., 4,, A,, w0y A )= . (@)

where w=(w,, w,, w, ..., w )Tis the weighted vector of /1], such that w,e [0, 1] and Z}'Ll w, = 1.

Theorem 1. Let l], =(lw, ,v, L [x,,y,D)(j=1,2,..,n) be the collection of IVPFVs, then their aggregated
value by using the IVPFEWA operator is also an IVPFV, and

Jﬁmuzw TI0-2)" Jﬁmv;)“ -T1a-v)"
j=1 ! j=1 ! j=1 ' j=1 '

> >

\/ﬁ(lﬂé )" +ﬁ(l—u§ )" \/li[(1+v: )" +l£[(1—vj )"

IVPFEWA, (A, A, Ay, on ) =| 5 1 - a - N ¢5)

BI§ K 2T

Jf{(z_x; S § K Jf[(z— v+ T]00)"

where w=(w,, w,, w,, ..., w )" is the weighted vector of/l}. (G=1,2,3, ..., n) such that w,e [0,1]1 (G=1,2,3,...,n)
and X7 w,=

Proof. We can prove this theorem by mathematical induction. First we show that Eq. (22) holds for n=1.

Taking the left-hand side,
[\/(Hu Y —(-u))” \/(1+v ~(1-v; )W}

Jary +a-)y Jaevyea-v)r |

{ Joey L0 } ' @

Je-xr e Je-y)r o)

IVPFEWA (1)=
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Taking the right-hand side,

Jﬁmui.)”f TIa-u)" Jﬁmvz " -Tla-v)"
\/H(1+u )Y +H(1 u ) \/H(1+v )i +H(1 v )

/ZII_I[(X )" /21:[()/1

e I S|
Ja+) —a-2) 1) --v)”
Jarw)y +@-w) Javy s a-vi)” |

Je-xy e -y + ()

il

(24)

From Egs. (23) and (24), we have Eq. (22) holds for n=1. Now we show that Eq. (22) holds for n=k. That is

\/ﬁ(Hui)W’—H(l u ) \/H(Hv )’—H(l v: )'

j=1 j=1 j=1 j=1
k
\/H Q+u ) +H(1 R ) \/H(Hvﬁ )" +H(l—v§_)w’
j=1 j=1 j=1 / j=1 / (25)
IVPFEWA (/11, - 3, ...,ﬂ.k)= .

fzf[(xjj )" /2f[(y§j )"

s

\/H(z -x)7 416" \/H(Z R U Pk

If Eq. (25) holds for n=k, then we show that Eq. (25) holds for n=k+1.

j=1 j=1 j=1 j=1

\/ﬁ(1+u;)wf +H(1—u;)w" \/H(1+vi_)w" +H(1—V§)w’

2[0e )" 20"

Jﬁ(z—x;i)wf+1f[(x;i)wf JH(z v )" +1‘[(yi)'

j=1 j=1

\/ﬁ(1+u§j)w"—l_[(1 u ) \/H(1+v )’—H(l v )’

> s

IVPFEWA (4, 4,5 Ay, vy Ay, )=

o e

Jas - s -y )
A A A A
’
\/(1 + Lljk+1)w/k+1 + (1 - l'ljk+l)v‘,k+1 \/(1 + V§k+l )Wk+1 + (1 - v§k+l)w‘<+1

£ * (26)
oo P

\/(2 B Xikﬂ)wk“ + (Xim)wm \/(2 B yikﬂ )WM + (y;m)wm

>
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k k
t = \/H(l + ui ) -T]a- ui )"
: L

j=1

k n
t,= \/H(1+ ui )+ Ja- uf}_ ).
_ L

j=1

k k
P, :\/H(1+vj ) =TJa-v;)".
[ j [ j

k k
p,= \/H(1+v§ ) +[Ja-vi)".
j:l ] ]:1 ]

_ 2 Wi _ (14,2 Wi
WI_J(Hu%) (-1 ).

— 2 VWi —12 VWi
w,= [ (- )

a =\/(1+v? Pt —(1=y2 ),
1 At A

a,= \/ 1+ vﬁk ) (1 vim )

1

k k
r,= \/H(z = )Y+ H(xi ).
j=1 j=1

k k
n=, 201057, s = 2] T3 )"
= PR

k k
s, =JH(2—Y§)W’ +[1o)".
j=1 ! [

— w2 Waa 2 YWy
b2 \/(2 Xlkﬂ ) + (X;“kﬁ ) '

¢ = /2(yjm)wk*‘, b, = lZ(XEM)W**‘.

Cz - \/(2 B yikﬂ )WM + (yikﬂ )WM '
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Now putting these values in Eq. (26), we have

IVPFEWAW(}‘I’ /12’ ’13’ o )’k+1)=[|:;1’ pl:|’ |:

2 pZ

Jew)y +ew)  J(pa) +@ap,)
J(tzwz)2 +(tw,)? ’ J(pzaz)2 +(p,a,)’ ’

rlbl Slcl
I’
21,2 21.2 21,2 21,2 2.2 2.2 2.2 2.2
\/2r2b2+rlbl—r2b ~1'b; \/Zszc2+slcl—szcl—slc2

1

N
o |
[
~—
@
o
e
1
<=

|

DE GRUYTER

@7)

Again putting the values of (tw)*+(tw)’, (tw)+(tw), (pa)+(ap), @a)+@pa), rb,

21.2 21.2 21.2 21.2 2.2 2.2 2.2 2.2
2r'by +1'b; =1, b, —1°b;, s.c;, 2S,C,+S,C; —S,C; —S,C5,

in Eq. (27), we have

k+1 w k+1 w.
H(1+ui7_) ’ —H(l—uil_) f
j=1 j=1

|

[Ta+v)"-[Ja-v)"
-1 j=1 /

k+1

k+1

Jj=1

IVPFEWA (A, 4,, A, oy A,,)=
k+1

2[ ]2 )"
IS

k+1 w. k+1 w ’
H(1+u§l_) ’ +H(1—ui) ’
j=1

|

k+1

Jj=1

k+1

[Ta+v)" +]Ja-v2 )"
j i j

k+1

10"
j=1

k+1 w k+1 w ’
[1G-x)"+] )"
j=1 ' =T

k+1

k+1

[1G-y)" +I162)"
j=1 ! SR

)

Hence, Eq. (22) holds for n=k+ 1. Thus, Eq. (22) holds for all n. Oa

Lemma 1 ([16]). Let/lj> 0,w;>0 (=1,2,...,n)and 2;?:1 w, =1, then

n

[16)" < S,

=

(28)

where the equality holds if and only if A,=A,= ... =21 .

Theorem 2. Let 1, = ([uij, v, ], [XM’ Vs DG=1, 2, ..., n) be the collection of IVPFVs, where the weighted vector
ofxlj isw=(w, w,, ..., w )" such that we [0, 1] and Z;.':l w, =1, then
IVPFEWA  (4,, A,y Ay ooy A, ) SIVPEWA (A, 2y, A,y oy 4,)- (29)
Proof. Straightforward. O
Example 1. Let
4,=([0.3, 0.4], [0.5, 0.7]), 4,=([0.2, 0.6], [0.3, 0.6]),
2, =([0.3, 0.6], [0.3, 0.5]), 4, =([0.4, 0.7], [0.2, 0.6]),

and let w=(0.1, 0.2, 0.3, 0.4)" be the weighted vector of /l}. (i=1, 2, 3, 4), then we have
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[Ta+)" H(l—u;)f o Tlov)" |
j=1 j=1 J
4 4
H(1+u )i +H(1 u H(l+v )i +H(1 v )
IVPFEWA (4, 4,, A, 4,)=|""' " "
4 4
r i Cak RI10; )"
= =
[T@-x)"+[T16)"  T1@-v)" +]]107)"
=1 ! j1 j=1 ! =
=([0.3289, 0.6293], [0.2693, 0.5790]).
Now

N ]]_1[(1 =, )" \/ H(l (v, )" 1

{ﬁ(x% ", H(yli)w‘}

j=1

=([0.3306, 0.6321], [0.2684, 0.5768]).

IVPFWA (1, 4,, 4,,4,) =

Theorem 3. Commutativity: Let ij and l;. (j=1,2,..., n) be two collection of IVPFVs, where (A}, A, ..., 1)) is
any permutation of (A, 4,, ..., 4 ), then

IVPFEWA, (4, 4,, 4, .., A, ) =IVPFEWA (A7, 25, A, ..., 27). (30)
Proof. As we know that

IVPFEWA (A, A, A,y ey A )= WA O WA D ... ® W 1, (31)
and

IVPFEWA (X, A, 2,y e X)=W A ® WA, D, ... ® W L, (32)
as (47, A;, A%, ..., A’) is any permutation of (1,4, 4,, ..., 1 ). Thus, Eq. (33) always holds. O
Theorem 4. Idempotency: If/lj:l forallj(j=1,2,3, ..., n), where A=([u, v, [x, y]), then

IVPFEWA (4, A, 2, oy )= A. (33)
Proof. As l.:). for all j, then we have
IVPFEWA (A, 4,, 4, w0y 4 )=WA® WAD WAD, .. ® Wi=(W, & w,® W, © ... ® w)i=l

This completes the proof. O

Theorem 5. Boundedness: Let 1, =([u, , v, ], [x, ,

yA/]) (] =1, 2,

..., N) bea collection of IVPFVs and let w = (Wv

W, ..., W )" be the weighted vector ofk, such that w, e [0, 1], Z;':l w, =1, then
A <IVPFEWA(Z, A, A, vy A )SA | (34)
forall W, and also
A= m}ax(i}.), (35)
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Arin = mjin(/l ;- (36)
Proof. Let
IVPFEWA = 1=([u, v], [x, y]). (37)
Now by the score function, we have
(s Vi b [X s Vi DS (s V], [x, ¥), (38)
(s Vi s Xins Vi D) = ([, V1, [, ¥D), (39)

as from Egs. (38) and (39), we have
A, <TVPFEWA (A, 2,4, s )< A

X

Thus, Eq. (34) always holds. O

Theorem 6. Monotonicity: If /1}. < /1; forallj, wherej=1,2,3, ..., n, then
IVPFEWA (4, A, A, <y A, ) SIVPEEWA (A7, A, 2%, ...y A7) (40)

Proof. As we know that

IVPFEWA (A, 4,, 4, ..s A ) =W A ® WA, ®, ... ® Wi (1)
and

IVPFEWA (X, X, X,y oy X)) =W O, WA, ® ... ® Wi, (42)
as /1}. S/I; for all j. Thus, Eq. (40) always holds. Oa

4.2 IVPFEOWA Aggregation Operator

Definition 8: Let /Ii (i=1,2,3, ..., n) be a collection of IVPFVs, then an IVPFEOWA operator of dimension n is
amapping IVPFEOWA : 0" — 0, and

Mose o
1 a(j) -1 a(

\/H(l + uigm )+ J-u . )" \/H(l +v; . )+ a- V;am )i
j=1 j=1 ol j=1 ol j=1

IVPFEOWA (4, 4y, A, <oy 4,) = ,

[ [0 ) 2I1o2
j=1 a(j) j=1 a(j)

\/H(z—xj )+ )" JH(Z—yE AR (70K
ia (i) ja v -1 o PR

o e -flo-,
j=1 i j=1 ol

)l )l

>

(43)

where (0(1), 0(2), ..., 0(n)) is a permutation of (1, 2, ..., n) such that o(j) <o(j-1) for all j, and w = (w,, w,,
w )Tis the weighted vector of /100.) (=1, 2, ..., n)such that w,e [0, 1] and Z;':l w,=1.

Theorem 7. Let li =(lu,,v, L [x,,y,D(=1,2,...,n) be the collection of IVPFVs, then their aggregated
value by using the IV'PFEOWA operator is also an IVPFV, and
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\/H(l+u§a( ))W" -T]a-v ( ))W" \/H(Hv; (_))Wj -T]a-v; (_))W’
i J olj }:l ol ]:1 alj

=1

\/ﬁ 1+u a(j) +H(1 u i) W; \/11[(14_‘/’210(;1)%+ﬁ(l_vio<;’))WI

RS A )

1’ 72? 3’ T n
2 W - 2 W
ZjUI(Xla(/) ) 2]);1[()/10(/) )

- 2w T2 w; - 2 YW T2 Y
\/];1[(2 Xlam) +II;I(X’1~(;')) \/1:1[(2 y’lam) +1}:1[(ylam)

>

IVPFEOWA (4,, 4

where (0(1), 0(2), ..., o(n)) is a permutation of (1, 2, ..., n) such that o(j) < o(j - 1) for all j, and w= (w,, w,, ..., w )"
is the weighted vector oflla(j) (i=1, 2, ..., n) such that w,e [0,1] (=12, ...,n) and 2;':1 w, =1

Proof. Proof is similar to Theorem 1. O
Theorem 8. Let /1). =(lu,,v, L [x,,y,D(=1,2, ..., n) bea collection of IVPFVs, where the weighted vector
of ij isw=(w,, w,, w,, ..., w )" such that w,e [0, 1] and 2;‘:1 w, =1, then

IVPFEOWA, (A, 4, 4, ..., A )SIVPFOWA (A, A, 4,, ..., 2 ). (45)

Proof. Straightforward. O

Theorem 9. Commutativity: If /1; (j=1, ..., n) is any permutation of A, (j=1, ..., n), then

IVPFEOWA (A, A, 4,, ..., 4,)=IVPFEOWA (1, 2}, A%, ..., A1), (46)

127722

Proof. Proof is similar to Theorem 3. O
Theorem 10. Idempotency: If/lj:/l forallj (j=1,2,3, ..., n), where A=([u, v], [x, y]), then
IVPFEOWA (2, A, 4, o 2,)= 2. @7)

Proof. Proof is similar to Theorem 4. O

Theorem 11. Boundedness: Let l}. =(w,,v, L Ix,,y,D(j=1,2, ..., n) be a collection of IVPFVs and let
w = (w,, W,, ..., w ) be the weighted vector of/lom, such that w,e [0, 1], 2;,':1 w, =1, then

Apin SIVPFEOWA (A, 4,, 45, .., A)<A_ (48)
for all W, and
A = m]ax(ll.), (49)
A= min(/l).). (50)
]
Proof. Proof is similar to Theorem 5. O

Theorem 12. Monotonicity: If ’11‘ < A; for allj, wherej=1, 2, ..., n, then

IVPFEOWA (4,, 4 , A, )<IVPFEOWA (47,2, 2, ..., A). (51)

177722 3"" 1% 7722 732

Proof. Proof is similar to Theorem 6. O
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5 An Approach to the MAGDM Problem Based on Interval-Valued
Pythagorean Fuzzy Information

Algorithm 1. Let X={X, X,, X,, ..., X } be a finite set of m alternatives, and C={C, C,, C,, ..., C } be a finite
set of attributes. Suppose the grade of the alternatives X, (i=1, 2, ..., m) on attributes C). (=1, 2, ..., n) given
by decision makers are IVPFNs. Let D={D,, D,, D, ..., D,} be the set of k decision makers, and let w=(w,, w,,
..., w )T be the weighted vector of the attributes C]. (=1, 2, ..., n), such that w,e [0, 1] and Z;‘;l w, =1, and let
o=, o, ..., »)" be the weighted vector of the decision makers D’ (s=1, 2, ..., k), such that o _€[0, 1] and
2’;:1 o =1 LetD:(aji):([uﬁ, V;i]’ [xﬁ, yﬁ]) (i=1,2,...,m,j=1,2,3, ..., n), where [uﬂ., vﬁ] indicates the interval
degree that the alternative X, satisfies the attribute o and [xﬁ, yﬁ] indicates the interval degree that the alterna-
tive X, does not satisfy the attribute C. Also, [uﬁ, vﬁ] elo, 1], [xﬁ, y).i] e [0, 1] with condition 0 < (vﬁ)2+ (y].l.)2 <1(i=1,
2,...,m,j=1,2, ..., n). This method has the following steps.
— Step 1: In this step, we construct the interval-valued Pythagorean fuzzy decision-making matrices,
DS = [aﬁf)]nxm (s=1,2, ..., k) for the decision.
— Step 2: If the criteria have two types, such as benefit criteria and cost criteria, then the interval-valued
Pythagorean fuzzy decision matrices, D*= [afi] can be converted into the normalized interval-valued

nxm

Pythagorean fuzzy decision matrices, R® = [rj‘f)] , wWhere

nxm

© {agf), for benefit criteria C, [1‘:1, 2, .., n,J

ji a}ff’, for costcriteriaC, | i=1, 2, ..., m

and Zzl?f) is the complement of a;. If all the criteria have the same type, then there is no need for

normalization.

— Step 3: In this step, we apply the IVPFEWA operator to aggregate all the individual normalized inter-
val-valued Pythagorean fuzzy decision matrices, R® =[rj‘i5}]nxm (s=1, ..., k), into a single interval-valued
Pythagorean fuzzy decision matrix, R= [rﬁ] o

—  Step 4: In this step, we apply the IVPFEWA operator to aggregate all preference values.

— Step 5: In this step, we calculate the score functions. If there is no difference between two or more than
two scores, then we must find out the accuracy degrees of the collective overall preference values.

— Step 6: Arrange the scores of all alternatives in descending order and select that alternative having the
highest score function.

6 lllustrative Example

Suppose a company wants to invest money in the following best options: X, car company; X,, food company;
and X,, computer company. There are three experts D* (s=1, 2, 3) from a group to act as decision makers,
whose weight vector is w =(0.2, 0.3, 0.5)". There are many factors that must be considered when selecting the
most suitable company; however, here, we have to consider only the following four criteria, whose weighted
vector is w=(0.1, 0.2, 0.3, 0.4)":

1. C:risk analysis,

2. C,: growth analysis,

3. (. social political impact analysis,

4. C,: environmental analysis,

where C and C,, are cost-type criteria and C, and C, are benefit-type criteria, i.e. the attributes have two types
of criteria. Thus, we must change the cost-type criteria into the benefit-type criteria.

— Step 1: The decision makers give their decision in Tables 1-11.

— Step 2: In this step, we normalize the decision matrices.
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Table 1: Interval-Valued Pythagorean Fuzzy Decision Matrix of D.
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Xl XZ X3
C, ([0.5,0.8], [0.3, 0.4]) ([0.6,0.71, [0.3, 0.6]) ([0.3,0.7], [0.3, 0.5])
C, ([0.3, 0.5], [0.6, 0.7]) ([0.3,0.71,[0.2, 0.6]) ([0.3, 0.6], [0.4,0.7])
(o8 (f0.5,0.71,[0.3, 0.7]) ({0.5, 0.6], [0.3, 0.7]) ([0.2,0.6],[0.3,0.7])
C, ([0.3, 0.6], [0.6, 0.7]) ([0.6, 0.5], [0.2, 0.7]) ([0.3, 0.4], [0.5, 0.6])

Table 2: Interval-Valued Pythagorean Fuzzy Decision Matrix of D2

X

1

X

2

X

w e e

Ka¥aNa¥a)

([0.5, 0.6], [0.3, 0.5])
([0.3, 0.4], [0.6, 0.8])
([0.4, 0.5], [0.3, 0.8])
([0.3, 0.6], [0.5, 0.7])

([0.5,0.71, [0.3, 0.6])
([0.3,0.8],[0.2, 0.6])
([0.5,0.71,[0.3, 0.6])
([0.3, 0.4],[0.2,0.8])

([0.2,0.8],[0.3,0.4
([0.3,0.6],[0.3,0.7
([0.2, 0.6], 0.3, 0.8

)
)
)
(0.3, 0.5],[0.5, 0.7])

]
]
]
]

Table 3: Interval-Valued Pythagorean Fuzzy Decision Matrix of D*.

X

1

X

2

X

w e e

Ka¥aNa¥a)

([0.3, 0.8], [0.5, 0.6])
([0.5,0.7], [0.3, 0.4])
([0.3, 0.6], [0.4, 0.6])
([0.5, 0.7, [0.3, 0.4])

([0.3, 0.5, [0.5, 0.7])
([0.4, 0.6], [0.5, 0.8])
([0.3, 0.5], [0.5, 0.6])
([0.5,0.71,[0.2, 0.4])

([0.2, 0.4], [0.5, 0.7
([0.5,0.7],[0.2, 0.5
([0.2, 0.8],[0.4, 0.6

)
)
)
(0.5, 0.6],[0.3, 0.5])

]
]
]
]

Table 4: Normalized Pythagorean Fuzzy Decision Matrix R*.

X

1

X

2

X

w e e

KaWaRa¥a)

([0.3, 0.4], [0.5, 0.8])
([0.3, 0.5], [0.6, 0.7])
([0.3,0.7], [0.5, 0.7])
([0.3, 0.6], [0.6, 0.7])

([0.3, 0.6], [0.6, 0.7])
([0.3,0.71,[0.2, 0.6])
([0.3,0.71,[0.5, 0.6])
([0.6, 0.5],[0.2, 0.7])

([0.3, 0.5], [0.3, 0.7]
([0.3, 0.6], [0.4,0.7]
([0.3,0.7], [0.2, 0.6]

]

)
)
)
(0.3, 0.4],[0.5, 0.6])

Table 5: Normalized Pythagorean Fuzzy Decision Matrix R2.

X

1

X

2

X

3

w e e

KaWaRa¥a

([0.3, 0.5], [0.5, 0.6])
([0.3, 0.4], [0.6, 0.8])
([0.3, 0.8], [0.4, 0.5])
([0.3, 0.6], [0.5, 0.7])

([0.3, 0.6], [0.5, 0.7])
([0.3,0.8],[0.2, 0.6])
([0.3,0.6], [0.5, 0.7])
([0.3,0.4],[0.2, 0.8])

([0.3, 0.4], [0.2, 0.8]
([0.3, 0.6], [0.3,0.7]
([0.3,0.8],[0.2, 0.6]

]

)
)
)
(0.3, 0.5],[0.5, 0.7])

Table 6: Normalized Pythagorean Fuzzy Decision Matrix R®.

X

1

X

2

X

w e e

KaWaRa¥a'

([0.5, 0.6], [0.3, 0.8])
([0.5, 0.7, [0.3, 0.4])
([0.4, 0.6], [0.3, 0.6])
({0.5,0.7], [0.3, 0.4])

([0.5,0.71,[0.3, 0.5])
([0.4, 0.6], [0.5, 0.8])
([0.5, 0.6], [0.3, 0.5])
([0.5,0.71,[0.2, 0.4])

([0.5,0.7], 0.2, 0.4]
([0.5, 0.7], [0.2, 0.5]
([0.4,0.6],[0.2,0.8]

]

)
)
)
(0.5, 0.6],[0.3, 0.5])




406 —— K.Rahman etal.: IVPFEWA Aggregation Operators for Group Decision Making DE GRUYTER

Table 7: Collective Interval-Valued Pythagorean Fuzzy Decision Matrix R.

X, X, X,
c, ((0.413, 0.537], [0.389, 0.738)) (10.413, 0.653], [0.405, 0.595]) (10.413, 0.593], [0.216, 0.562])
c, ((0.413, 0.593], [0.429, 0.563)) (10.352, 0.692], [0.320, 0.697]) ([0.413, 0.653], [0.259, 0.595])
ol (10.352, 0.692], [0.363, 0.587]) (10.413, 0.622], [0.389, 0.576]) (10.352, 0.693], [0.200, 0.697])
c (10.413, 0.653], [0.405, 0.536]) (10.475, 0.593], [0.200, 0.563]) (10.413, 0.538], [0.389, 0.576])

IS

Table 8: Pythagorean Fuzzy Ordered Decision Matrix R

X X X

C ([0.3,0.7], [0.5, 0.7]) ([0.3,0.71,[0.2, 0.6]) ([0.3,0.71,[0.2, 0.6])
C, ([0.3, 0.6], [0.6, 0.7]) ([0.6, 0.5],[0.2, 0.7]) ([0.3, 0.6], [0.4, 0.7])
C, ([0.3, 0.5], [0.6, 0.7]) ([0.3,0.71,[0.5, 0.6]) (f0.3,0.5],[0.3, 0.7])
C ([0.3, 0.4], [0.5, 0.8]) ([0.3,0.6], [0.6, 0.7]) ([0.3, 0.4], [0.5, 0.6])

IS

Table 9: Pythagorean Fuzzy Ordered Decision Matrix R2.

X, X, X,
C, (0.3, 0.8], [0.4, 0.5]) (10.3, 0.8, [0.2, 0.6]) (10.3, 0.8], [0.2, 0.6])
c, (0.3, 0.5, [0.5, 0.6]) (0.3, 0.6], [0.5, 0.7]) ([0.3, 0.6], [0.3, 0.7])
o) (0.3, 0.6], [0.5, 0.7]) (10.3, 0.6, [0.5, 0.7]) ([0.3, 0.5], [0.5, 0.7])
c (10.3, 0.4], [0.6, 0.8)) (0.3, 0.4], [0.2, 0.8]) (10.3, 0.4], [0.2, 0.8])

IS

Table 10: Pythagorean Fuzzy Ordered Decision Matrix R®.

Xl XZ X3
C ([0.5, 0.7, [0.3, 0.4]) ([0.5,0.71,[0.2, 0.4]) ([0.5,0.71,[0.2, 0.4])
C, ([0.5,0.7], [0.3, 0.4]) ([0.5,0.71,[0.3, 0.5]) (f0.5,0.71, [0.2, 0.5])
C, ([0.4, 0.6], [0.3, 0.6]) ((0.5, 0.6], [0.3, 0.5]) ({0.5, 0.6], [0.3, 0.5])
C ({0.5, 0.6], [0.3, 0.8]) ([0.4, 0.6], [0.5, 0.8]) ([0.4, 0.6], [0.2, 0.8])

IS

Table 11: Collective Pythagorean Fuzzy Ordered Decision Matrix R.

X X X

1 2 3
C ([0.413, 0.734], [0.363, 0.481]) ([0.413, 0.734], [0.200, 0.495]) ([0.413, 0.734], [0.200, 0.492])
(o ([0.413, 0.630], [0.404, 0.509]) ([0.476, 0.638], [0.323, 0.595]) ([0.413, 0.653], [0.259, 0.595])
C, ([0.352, 0.582], [0.404, 0.649]) ([0.413, 0.622], [0.389, 0.576]) ([0.413, 0.553], [0.351, 0.595])
C ([0.413, 0.512], [0.412, 0.800]) ([0.352, 0.550], [0.399, 0.779]) ([0.352, 0.512], [0.241, 0.758])

IS

— Step 3: In this step, we apply the IVPFEWA operator to aggregate all the individual normalized interval-
valued Pythagorean fuzzy decision matrices, R® =[rj‘f)] into a single interval-valued Pythagorean
fuzzy decision matrix, R= [rﬁ] o

—  Step 4: In this step, we apply the IV'PFEWA aggregation operator to aggregate all preference values:

nxm?

r =([0.395, 0.644], [0.394, 0.575]).

r,=([0.427, 0.617], [0.289, 0.596]).
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r,=([0.495, 0.619], [0.277, 0.613]).

— Step 5: In this step, we calculate the score functions:
S(r)=0.042, S(r,)=0.069, S(r,)=0.083.

— Step 6: Arrange the scores of all alternatives in descending order and select that alternative having the
highest score function. Hence, X >X,>X. Thus, the best alternative is X,

For the IVPFEOWA aggregation operator:

- Step 1: In this step, we construct the interval-valued Pythagorean fuzzy ordered decision matrices.

Step 2: In this step, we apply the IV'PFEOWA operator to aggregate all the individual interval-valued
Pythagorean fuzzy ordered decision matrices, R® :[r}.f.s)] into a single interval-valued Pythagorean
fuzzy decision matrix, R=[r ]

jiAnxm®

Step 3: In this step, we apply the IVPFEOWA aggregation operator to aggregate all preference values:

nxm?

r =([0.395, 0.579], [0.402, 0.659]).
r,=([0.403, 0.612], [0.354, 0.649]).

r,=([0.389, 0.576], [0.268, 0.646]).
—  Step 4: In this step, we calculate the score functions:

S(r)=-0.052, S(r.) =—0.004, S(r,) =~0.003.

Step 5: Arrange the scores of all alternatives in descending order and select that alternative having the
highest score function. Hence, X>X,>X. Thus, the best alternative is X,

7 Conclusion

In this paper, we have developed the notions of the IVPFEWA operator, IVPFEOWA operator, and interval-
valued Pythagorean fuzzy Einstein hybrid weighted averaging operator. We have also discussed some of their
desirable properties, such as idempotency, boundedness, commutativity, and monotonicity. Finally, we have
applied these operators to deal with the MAGDM problem under interval-valued Pythagorean fuzzy informa-
tion. For this, we constructed an algorithm for the MAGDM problem. Lastly, we also developed a numerical
example for MAGDM.
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