Khaista Rahman*, Saleem Abdullah and Muhammad Sajjad Ali Khan

Some Interval-Valued Pythagorean Fuzzy Einstein Weighted Averaging Aggregation Operators and Their Application to Group Decision Making

https://doi.org/10.1515/jisys-2017-0212 Received April 3, 2017; previously published online February 24, 2018.

Abstract: In this paper, we introduce the notion of Einstein aggregation operators, such as the interval-valued Pythagorean fuzzy Einstein weighted averaging aggregation operator and the interval-valued Pythagorean fuzzy Einstein ordered weighted averaging aggregation operator. We also discuss some desirable properties, such as idempotency, boundedness, commutativity, and monotonicity. The main advantage of using the proposed operators is that these operators give a more complete view of the problem to the decision makers. These operators provide more accurate and precise results as compared the existing method. Finally, we apply these operators to deal with multiple-attribute group decision making under interval-valued Pythagorean fuzzy information. For this, we construct an algorithm for multiple-attribute group decision making. Lastly, we also construct a numerical example for multiple-attribute group decision making.

Keywords: Interval-valued Pythagorean fuzzy Einstein weighted averaging operator, interval-valued Pythagorean fuzzy Einstein ordered weighted averaging operator, group decision making.

1 Introduction

Atanassov [1] introduced the concept of intuitionistic fuzzy sets (IFSs) characterized by a membership function and a non-membership function. It is more suitable for dealing with fuzziness and uncertainty than the ordinary fuzzy set developed by Zadeh [33] characterized by membership function. In 1986, many scholars [2-6, 22] have done works in the field of IFS and its applications. Particularly, information aggregation is a very crucial research area in IFS theory that has been receiving more and more focus. Xu [23] developed some basic arithmetic aggregation operators, including intuitionistic fuzzy weighted averaging (IFWA) aggregation operator, intuitionistic fuzzy ordered weighted averaging (IFOWA) aggregation operator, and intuitionistic fuzzy hybrid averaging (IFHA) aggregation operator, and applied them to group decision making. Xu and Yager [26] defined some basic geometric aggregation operators, such as intuitionistic fuzzy weighted geometric (IFWG) aggregation operator, intuitionistic fuzzy ordered weighted geometric (IFOWG) aggregation operator, and intuitionistic fuzzy hybrid geometric (IFHG) aggregation operator. In Refs. [24, 25], Chen and Xu familiarized a series of a new types of aggregation operators, such as interval-valued IFWA (IIFWA) aggregation operator, interval-valued IFOWA (IIFOWA) aggregation operator, interval-valued IFHA (IIFHA) aggregation operator, interval-valued IFWG (IIFWG) aggregation operator, interval-valued IFOWG (IIFOWG) aggregation operator, and interval-valued IFHG (IIFHG) aggregation operator. In Refs. [20, 21], Wang and Liu introduced the concept of intuitionistic fuzzy Einstein weighted geometric (IFEWG) aggregation operator, intuitionistic fuzzy Einstein ordered weighted geometric (IFEOWG) aggregation operator, intuitionistic fuzzy Einstein weighted averaging (IFEWA) aggregation operator, and intuitionistic fuzzy Einstein ordered weighted averaging (IFEOWA) aggregation operator, and applied them to group decision making. In Refs. [29– 32], Yu also worked in the field of IFS theory and introduced many aggregation operators and applied them to group decision making. However, there are many cases where the decision maker may provide the degree

Saleem Abdullah: Department of Mathematics, Abdul Wali Khan University, Mardan, KPK, Pakistan Muhammad Sajjad Ali Khan: Department of Mathematics, Hazara University, Mansehra, KPK, Pakistan

^{*}Corresponding author: Khaista Rahman, Department of Mathematics, Hazara University, Mansehra, KPK, Pakistan, e-mail: khaista355@yahoo.com

of membership and non-membership of a particular attribute in such a way that their sum is greater than one. Therefore, Yager [27] introduced the concept of another set called Pythagorean fuzzy set. The Pythagorean fuzzy set is a more powerful tool for solving uncertain problems. Like intuitionistic fuzzy aggregation operators, Pythagorean fuzzy aggregation operators have also become an interesting and important area for research, after the advent of the Pythagorean fuzzy set theory. In Ref. [28], Yager and Abbasov introduced the notion of two new Pythagorean fuzzy aggregation operators, such as Pythagorean fuzzy weighted averaging (PFWA) aggregation operator and Pythagorean fuzzy ordered weighted averaging (PFOWA) operator. In Refs. [12–14, 16, 17], Rahman et al. introduced the concept of Pythagorean fuzzy hybrid averaging (PFHA) aggregation operator, Pythagorean fuzzy weighted geometric (PFWG) aggregation operator, Pythagorean fuzzy ordered weighted geometric (PFOWG) operator, Pythagorean fuzzy hybrid geometric (PFHG) aggregation operator, and Pythagorean fuzzy Einstein weighted geometric (PFEWG) operator, and applied them to group decision making. In Refs. [7, 8], Garg introduced the notion of Pythagorean fuzzy Einstein weighted averaging (PFEWA) aggregation operator, Pythagorean fuzzy Einstein ordered weighted averaging (PFEOWA) operator, generalized PFEWA (GPFEWA) aggregation operator, generalized PFEOWA (GPFEOWA) aggregation operator, PFWG aggregation operator, PFOWG aggregation operator, PFEWG aggregation operator, Pythagorean fuzzy Einstein ordered weighted geometric (PFEOWG) aggregation operator, GPFEOWA aggregation operator, and generalized PFEOWG (GPFEOWG) aggregation operator, and applied them to group decision making. In Ref. [11], Peng and Yang introduced the notion of interval-valued PFWA (IVPFWA) aggregation operator and interval-valued PFWG (IVPFWG) aggregation operator. In Refs. [15, 18], Rahman et al. introduced the concept of interval-valued PFOWA (IVPFOWA) aggregation operator, interval-valued PFHA (IVPFHWA) aggregation operator, interval-valued PFOWG (IVPFOWG) aggregation operator, and interval-valued Pythagorean fuzzy hybrid weighted geometric operator, and applied them to group decision making. In Refs. [9, 10, 19, 34], many scholars worked in Pythagorean fuzzy set theory and aggregation operators.

Thus, keeping the advantages of these operators, in this paper, we introduce the notion of interval-valued PFEWA (IVPFEWA) aggregation operator and interval-valued PFEOWA (IVPFEOWA) aggregation operator. By comparison with the existing method, it is decided that the method developed in this paper is a good complement to the existing method.

The remainder of this paper is structured as follows. In Section 2, we give some basic definitions and results, which will be used in later sections. In Section 3, we introduce some Einstein operations for intervalvalued Pythagorean fuzzy values. In Section 4, we introduce the notion of IVPFEWA and IVPFEOWA aggregation operators. In Section 5, we apply these operators to deal with multiple-attribute group decision-making (MAGDM) problems with Pythagorean fuzzy information. In Section 6, we develop a numerical example. In Section 7, we present our conclusion.

2 Preliminaries

Definition 1 ([11]): Let *K* be a fixed set, then an IVPFS can be defined as

$$I = \{ \langle k, u_I(k), v_I(k) \rangle | k \in K \}, \tag{1}$$

where

$$u_{t}(k) = [u_{t}^{a}(k), u_{t}^{b}(k)] \subset [0, 1],$$
 (2)

$$v_t(k) = [v_t^a(k), v_t^b(k)] \subset [0, 1].$$
 (3)

As

$$u_{\scriptscriptstyle I}^{a}(k) = \inf \left(u_{\scriptscriptstyle I}(k) \right), \tag{4}$$

$$u_i^b(k) = \sup(u_i(k)), \tag{5}$$

$$v_i^a(k) = \inf(v_i(k)), \tag{6}$$

$$v_{I}^{b}(k) = \sup(v_{I}(k)), \tag{7}$$

and

$$0 \le (u_I^b(k))^2 + (v_I^b(k))^2 \le 1.$$
(8)

If

$$\pi_{I}(k) = [\pi_{I}^{a}(k), \pi_{I}^{b}(k)],$$
 (9)

then it is called the interval-valued Pythagorean fuzzy index of k to I, where

$$\pi_I^a(k) = \sqrt{1 - (u_I^b(k))^2 - (v_I^b(k))^2},$$
(10)

$$\pi_I^b(k) = \sqrt{1 - (u_I^a(k))^2 - (v_I^a(k))^2}.$$
 (11)

Definition 2 ([11]). Let $\lambda = ([u_{\lambda}, v_{\lambda}], [x_{\lambda}, y_{\lambda}])$ be an IVPFN, then the score function and accuracy function of λ can be defined as

$$S(\lambda) = \frac{1}{2} [(u_{\lambda})^2 + (v_{\lambda})^2 - (x_{\lambda})^2 - (y_{\lambda})^2], \tag{12}$$

and

$$H(\lambda) = \frac{1}{2} [(u_{\lambda})^2 + (v_{\lambda})^2 + (x_{\lambda})^2 + (y_{\lambda})^2].$$
 (13)

If λ_1 and λ_2 are two IVPFNs, then

- 1. If $S(\lambda_1) < S(\lambda_2)$, then $\lambda_1 < \lambda_2$.
- 2. If $S(\lambda_1) = S(\lambda_2)$, then we have the following three conditions:
 - (i) If $H(\lambda_1) = H(\lambda_2)$, then $\lambda_1 = \lambda_2$.
 - (ii) If $H(\lambda_1) < H(\lambda_2)$, then $\lambda_1 < \lambda_2$.
 - (iii) If $H(\lambda_1) > H(\lambda_2)$, then $\lambda_1 > \lambda_2$.

Definition 3 ([11]): Let $\lambda_j = ([u_{\lambda_j}, v_{\lambda_j}], [x_{\lambda_j}, y_{\lambda_j}])$ (j = 1, 2, ..., n) be a collection of IVPFVs, and let IVPFWA: $\Theta^n \to \Theta$, if

$$IVPFWA_{w}(\lambda_{1}, \lambda_{2}, \lambda_{3}, ..., \lambda_{n}) = \begin{bmatrix} \sqrt{1 - \prod_{j=1}^{n} (1 - (u_{\lambda_{j}})^{2})^{w_{j}}}, \sqrt{1 - \prod_{j=1}^{n} (1 - (v_{\lambda_{j}})^{2})^{w_{j}}} \\ \prod_{j=1}^{n} (x_{\lambda_{j}})^{w_{j}}, \prod_{j=1}^{n} (y_{\lambda_{j}})^{w_{j}} \end{bmatrix},$$

$$(14)$$

where $w = (w_1, w_2, ..., w_n)^T$ is the weighted vector of λ_j with $w_j \in [0, 1]$ and $\sum_{j=1}^n w_j = 1$. Then, IVPFWA is called interval-valued Pythagorean fuzzy weighted averaging operator.

Definition 4 ([18]): Let $\lambda_j = ([u_{\lambda_j}, v_{\lambda_j}], [x_{\lambda_j}, y_{\lambda_j}])$ (j = 1, 2, ..., n) be a collection of IVPFVs, and let IVPFOWA: $\Theta^n \to \Theta$, if

IVPFOWA_w(
$$\lambda_1, \lambda_2, \lambda_3, ..., \lambda_n$$
) =
$$\begin{bmatrix} \sqrt{1 - \prod_{j=1}^{n} (1 - (u_{\lambda_{\sigma(j)}})^2)^{w_j}}, \sqrt{1 - \prod_{j=1}^{n} (1 - (v_{\lambda_{\sigma(j)}})^2)^{w_j}} \\ \left[\prod_{j=1}^{n} (x_{\lambda_{\sigma(j)}})^{w_j}, \prod_{j=1}^{n} (y_{\lambda_{\sigma(j)}})^{w_j} \right]$$
(15)

where $w = (w_1, w_2, ..., w_n)^T$ is the weighted vector of λ_j with $w_j \in [0, 1]$ and $\sum_{j=1}^n w_j = 1$, and $\lambda_{\sigma(j)}$ is the jth largest value of λ_j . Then, IVPFOWA is called interval-valued Pythagorean fuzzy ordered weighted averaging operator.

Definition 5 ([18]): An IVPFHA operator of dimension n is a mapping IVPFHA: $\Theta^n \to \Theta$, which has an associated vector $w = (w_1, w_2, ..., w_n)^T$, such that $w_i \in [0, 1]$ and $\sum_{i=1}^n w_i = 1$. Furthermore

IVPFHA_{w,w}(
$$\lambda_1, \lambda_2, \lambda_3, ..., \lambda_n$$
) =
$$\begin{bmatrix} \sqrt{1 - \prod_{j=1}^{n} (1 - (u_{\dot{\lambda}_{\sigma(j)}})^2)^{w_j}}, \sqrt{1 - \prod_{j=1}^{n} (1 - (v_{\dot{\lambda}_{\sigma(j)}})^2)^{w_j}} \end{bmatrix}, \\ \begin{bmatrix} \prod_{j=1}^{n} (x_{\dot{\lambda}_{\sigma(j)}})^{w_j}, \prod_{j=1}^{n} (y_{\dot{\lambda}_{\sigma(j)}})^{w_j} \end{bmatrix}$$
(16)

where $\dot{\lambda}_{\sigma(j)}$ is the j^{th} largest of the weighted PFVs, $\dot{\lambda}_{\sigma(j)}$ ($\dot{\lambda}_{\sigma(j)} = nw_j\lambda_j$), and $w = (w_1, w_2, ..., w_n)^T$ is the weighted vector of λ_j (j = 1, 2, ..., n) such that $w_j \in [0, 1]$ and $\sum_{j=1}^n w_j = 1$ and n is the balancing coefficient, which plays a role of balancing. If the vector $(w_1, w_2, ..., w_n)^T$ approaches $\left(\frac{1}{n}, \frac{1}{n}, ..., \frac{1}{n}\right)^T$, then the vector $(nw_1\lambda_1, nw_2\lambda_2, ..., nw_n\lambda_n)^T$ approaches $(\lambda_1, \lambda_2, ..., \lambda_n)^T$.

3 Some Einstein Operations of Interval-Valued Pythagorean Fuzzy Sets

Definition 6: Let $\lambda = ([u, v], [x, y]), \lambda_1 = ([u_1, v_1], [x_1, y_1]), \text{ and } \lambda_2 = ([u_2, v_2], [x_2, y_2])$ be three IVPFNs and $\delta > 0$, then some Einstein operations for λ , λ , λ , can be defined as follows:

$$\lambda_{1} \oplus_{\varepsilon} \lambda_{2} = \begin{bmatrix} \frac{\sqrt{u_{1}^{2} + u_{2}^{2}}}{\sqrt{1 + u_{1}^{2} u_{2}^{2}}}, & \frac{\sqrt{v_{1}^{2} + v_{2}^{2}}}{\sqrt{1 + v_{1}^{2} v_{2}^{2}}} \end{bmatrix}, \\ \frac{x_{1}x_{2}}{\sqrt{1 + (1 - x_{1}^{2})(1 - x_{2}^{2})}}, & \frac{y_{1}y_{2}}{\sqrt{1 + (1 - y_{1}^{2})(1 - y_{2}^{2})}} \end{bmatrix}.$$

$$(17)$$

$$\lambda_{1} \otimes_{\varepsilon} \lambda_{2} = \left[\frac{u_{1}u_{2}}{\sqrt{1 + (1 - u_{1}^{2})(1 - u_{2}^{2})}}, \frac{v_{1}v_{2}}{\sqrt{1 + (1 - v_{1}^{2})(1 - v_{2}^{2})}} \right], \left[\frac{\sqrt{x_{1}^{2} + x_{2}^{2}}}{\sqrt{1 + x_{1}^{2}x_{2}^{2}}}, \frac{\sqrt{y_{1}^{2} + y_{2}^{2}}}{\sqrt{1 + y_{1}^{2}y_{2}^{2}}} \right].$$

$$(18)$$

$$\delta\lambda = \begin{pmatrix} \frac{\sqrt{(1+u^2)^{\delta} - (1-u^2)^{\delta}}}{\sqrt{(1+u^2)^{\delta} + (1-u^2)^{\delta}}}, & \frac{\sqrt{(1+v^2)^{\delta} - (1-v^2)^{\delta}}}{\sqrt{(1+v^2)^{\delta} + (1-v^2)^{\delta}}} \end{pmatrix}, \\ \frac{\sqrt{2(x^2)^{\delta}}}{\sqrt{(2-x^2)^{\delta} + (x^2)^{\delta}}}, & \frac{\sqrt{2(y^2)^{\delta}}}{\sqrt{(2-y^2)^{\delta} + (y^2)^{\delta}}} \end{pmatrix}.$$
(19)

$$\lambda^{\delta} = \left[\frac{\sqrt{2(u^{2})^{\delta}}}{\sqrt{(2-u^{2})^{\delta} + (u^{2})^{\delta}}}, \frac{\sqrt{2(v^{2})^{\delta}}}{\sqrt{(2-v^{2})^{\delta} + (v^{2})^{\delta}}} \right], \frac{\sqrt{(1+y^{2})^{\delta} - (1-y^{2})^{\delta}}}{\sqrt{(1+x^{2})^{\delta} + (1-x^{2})^{\delta}}}, \frac{\sqrt{(1+y^{2})^{\delta} - (1-y^{2})^{\delta}}}{\sqrt{(1+y^{2})^{\delta} + (1-y^{2})^{\delta}}} \right].$$
(20)

4 Some Interval-Valued Pythagorean Fuzzy Einstein Averaging **Aggregation Operators**

In this section, we introduce two interval-valued Einstein aggregation operators, namely the IVPFEWA and IVPFEOWA operators. We also discuss some desirable properties of these proposed operators, such as idempotency, boundedness, commutativity, and monotonicity. These operators provide more accurate and precise results as compared to the existing method.

4.1 IVPFEWA Aggregation Operator

Definition 7. Let $\lambda_i = ([u_i, v_i], [x_i, y_i])$ (j = 1, 2, 3, ..., n) be the collection of IVPFVs, then an IVPFEWA operator of dimension *n* is a mapping IVPFEWA...: $\Theta^n \rightarrow \Theta$, and

$$IVPFEWA_{w}(\lambda_{1}, \lambda_{2}, \lambda_{3}, ..., \lambda_{n}) = \begin{bmatrix} \sqrt{\prod_{j=1}^{n} (1 + u_{\lambda_{j}}^{2})^{w_{j}} - \prod_{j=1}^{n} (1 - u_{\lambda_{j}}^{2})^{w_{j}}}, \sqrt{\prod_{j=1}^{n} (1 + v_{\lambda_{j}}^{2})^{w_{j}} - \prod_{j=1}^{n} (1 - v_{\lambda_{j}}^{2})^{w_{j}}} \\ \sqrt{\prod_{j=1}^{n} (1 + u_{\lambda_{j}}^{2})^{w_{j}} + \prod_{j=1}^{n} (1 - u_{\lambda_{j}}^{2})^{w_{j}}}, \sqrt{\prod_{j=1}^{n} (1 + v_{\lambda_{j}}^{2})^{w_{j}} + \prod_{j=1}^{n} (1 - v_{\lambda_{j}}^{2})^{w_{j}}} \\ \sqrt{\prod_{j=1}^{n} (2 - x_{\lambda_{j}}^{2})^{w_{j}} + \prod_{j=1}^{n} (x_{\lambda_{j}}^{2})^{w_{j}}}, \sqrt{\prod_{j=1}^{n} (2 - y_{\lambda_{j}}^{2})^{w_{j}} + \prod_{j=1}^{n} (y_{\lambda_{j}}^{2})^{w_{j}}} \end{bmatrix}$$

where $w = (w_1, w_2, w_3, ..., w_n)^T$ is the weighted vector of λ_i such that $w_i \in [0, 1]$ and $\sum_{i=1}^n w_i = 1$.

Theorem 1. Let $\lambda_j = ([u_{\lambda_i}, v_{\lambda_i}], [x_{\lambda_i}, y_{\lambda_i}])$ (j = 1, 2, ..., n) be the collection of IVPFVs, then their aggregated value by using the IVPFEWA operator is also an IVPFV, and

$$IVPFEWA_{w}(\lambda_{1}, \lambda_{2}, \lambda_{3}, ..., \lambda_{n}) = \begin{bmatrix} \sqrt{\prod_{j=1}^{n} (1 + u_{\lambda_{j}}^{2})^{w_{j}} - \prod_{j=1}^{n} (1 - u_{\lambda_{j}}^{2})^{w_{j}}}, & \sqrt{\prod_{j=1}^{n} (1 + v_{\lambda_{j}}^{2})^{w_{j}} - \prod_{j=1}^{n} (1 - v_{\lambda_{j}}^{2})^{w_{j}}} \\ \sqrt{\prod_{j=1}^{n} (1 + u_{\lambda_{j}}^{2})^{w_{j}} + \prod_{j=1}^{n} (1 - u_{\lambda_{j}}^{2})^{w_{j}}}, & \sqrt{\prod_{j=1}^{n} (1 + v_{\lambda_{j}}^{2})^{w_{j}} + \prod_{j=1}^{n} (1 - v_{\lambda_{j}}^{2})^{w_{j}}} \\ \sqrt{2\prod_{j=1}^{n} (x_{\lambda_{j}}^{2})^{w_{j}}}, & \sqrt{2\prod_{j=1}^{n} (y_{\lambda_{j}}^{2})^{w_{j}}} \\ \sqrt{\prod_{j=1}^{n} (2 - v_{\lambda_{j}}^{2})^{w_{j}} + \prod_{j=1}^{n} (x_{\lambda_{j}}^{2})^{w_{j}}}, & \sqrt{\prod_{j=1}^{n} (2 - v_{\lambda_{j}}^{2})^{w_{j}}} \end{bmatrix}$$

where $w = (w_1, w_2, w_3, ..., w_n)^T$ is the weighted vector of λ_j (j = 1, 2, 3, ..., n) such that $w_j \in [0, 1]$ (j = 1, 2, 3, ..., n)and $\sum_{i=1}^{n} w_{i} = 1$.

Proof. We can prove this theorem by mathematical induction. First we show that Eq. (22) holds for n=1. Taking the left-hand side,

$$IVPFEWA_{w}(\lambda) = \begin{bmatrix} \sqrt{(1+u_{\lambda}^{2})^{w} - (1-u_{\lambda}^{2})^{w}} \\ \sqrt{(1+u_{\lambda}^{2})^{w} + (1-u_{\lambda}^{2})^{w}}, & \sqrt{(1+v_{\lambda}^{2})^{w} - (1-v_{\lambda}^{2})^{w}} \\ \sqrt{(1+v_{\lambda}^{2})^{w} + (1-v_{\lambda}^{2})^{w}} \end{bmatrix}, \\ \begin{bmatrix} \sqrt{2(x_{\lambda}^{2})^{w}} \\ \sqrt{(2-x_{\lambda}^{2})^{w} + (x_{\lambda}^{2})^{w}}, & \sqrt{2(y_{\lambda}^{2})^{w}} \\ \sqrt{(2-y_{\lambda}^{2})^{w} + (y_{\lambda}^{2})^{w}} \end{bmatrix} \end{bmatrix}.$$
 (23)

Taking the right-hand side,

$$\begin{bmatrix}
\sqrt{\prod_{j=1}^{n} (1+u_{\lambda_{j}}^{2})^{w_{j}} - \prod_{j=1}^{n} (1-u_{\lambda_{j}}^{2})^{w_{j}}}, & \sqrt{\prod_{j=1}^{n} (1+v_{\lambda_{j}}^{2})^{w_{j}} - \prod_{j=1}^{n} (1-v_{\lambda_{j}}^{2})^{w_{j}}} \\
\sqrt{\prod_{j=1}^{n} (1+u_{\lambda_{j}}^{2})^{w_{j}} + \prod_{j=1}^{n} (1-u_{\lambda_{j}}^{2})^{w_{j}}}, & \sqrt{2\prod_{j=1}^{n} (y_{\lambda_{j}}^{2})^{w_{j}} + \prod_{j=1}^{n} (1-v_{\lambda_{j}}^{2})^{w_{j}}} \\
\sqrt{\prod_{j=1}^{n} (2-x_{\lambda_{j}}^{2})^{w_{j}} + \prod_{j=1}^{n} (x_{\lambda_{j}}^{2})^{w_{j}}}, & \sqrt{2\prod_{j=1}^{n} (y_{\lambda_{j}}^{2})^{w_{j}}} \\
\sqrt{\prod_{j=1}^{n} (2-y_{\lambda_{j}}^{2})^{w_{j}} + \prod_{j=1}^{n} (y_{\lambda_{j}}^{2})^{w_{j}}} \\
\sqrt{\left(1+u_{\lambda}^{2}\right)^{w} - (1-u_{\lambda}^{2})^{w}}, & \sqrt{\left(1+v_{\lambda}^{2}\right)^{w} - (1-v_{\lambda}^{2})^{w}} \\
\sqrt{\left(1+v_{\lambda}^{2}\right)^{w} + (1-v_{\lambda}^{2})^{w}}, & \sqrt{\left(1+v_{\lambda}^{2}\right)^{w} + (1-v_{\lambda}^{2})^{w}} \\
\sqrt{\left(2-y_{\lambda}^{2}\right)^{w} + (y_{\lambda}^{2})^{w}}
\end{bmatrix}, (24)$$

From Eqs. (23) and (24), we have Eq. (22) holds for n=1. Now we show that Eq. (22) holds for n=k. That is

$$IVPFEWA_{w}(\lambda_{1}, \lambda_{2}, \lambda_{3}, ..., \lambda_{k}) = \begin{bmatrix} \sqrt{\prod_{j=1}^{k} (1 + u_{\lambda_{j}}^{2})^{w_{j}} - \prod_{j=1}^{k} (1 - u_{\lambda_{j}}^{2})^{w_{j}}}, & \sqrt{\prod_{j=1}^{k} (1 + v_{\lambda_{j}}^{2})^{w_{j}} - \prod_{j=1}^{k} (1 - v_{\lambda_{j}}^{2})^{w_{j}}} \\ \sqrt{\prod_{j=1}^{k} (1 + u_{\lambda_{j}}^{2})^{w_{j}} + \prod_{j=1}^{k} (1 - u_{\lambda_{j}}^{2})^{w_{j}}}, & \sqrt{\prod_{j=1}^{k} (1 + v_{\lambda_{j}}^{2})^{w_{j}} + \prod_{j=1}^{k} (1 - v_{\lambda_{j}}^{2})^{w_{j}}} \\ \sqrt{2\prod_{j=1}^{k} (2 - x_{\lambda_{j}}^{2})^{w_{j}} + \prod_{j=1}^{k} (x_{\lambda_{j}}^{2})^{w_{j}}}, & \sqrt{2\prod_{j=1}^{k} (2 - y_{\lambda_{j}}^{2})^{w_{j}} + \prod_{j=1}^{k} (y_{\lambda_{j}}^{2})^{w_{j}}} \end{bmatrix}$$

If Eq. (25) holds for n = k, then we show that Eq. (25) holds for n = k + 1.

$$IVPFEWA_{w}(\lambda_{1}, \lambda_{2}, \lambda_{3}, ..., \lambda_{k+1}) = \begin{bmatrix} \sqrt{\prod_{j=1}^{k} (1 + u_{\lambda_{j}}^{2})^{w_{j}} - \prod_{j=1}^{k} (1 - u_{\lambda_{j}}^{2})^{w_{j}}} \\ \sqrt{\prod_{j=1}^{k} (1 + u_{\lambda_{j}}^{2})^{w_{j}} + \prod_{j=1}^{n} (1 - u_{\lambda_{j}}^{2})^{w_{j}}} \\ \sqrt{\prod_{j=1}^{k} (1 + u_{\lambda_{j}}^{2})^{w_{j}} + \prod_{j=1}^{k} (1 - u_{\lambda_{j}}^{2})^{w_{j}}} \\ \sqrt{\prod_{j=1}^{k} (1 + u_{\lambda_{j}}^{2})^{w_{j}} + \prod_{j=1}^{k} (1 - u_{\lambda_{j}}^{2})^{w_{j}}} \\ \sqrt{\prod_{j=1}^{k} (2 - x_{\lambda_{j}}^{2})^{w_{j}} + \prod_{j=1}^{k} (x_{\lambda_{j}}^{2})^{w_{j}}} \\ \sqrt{\prod_{j=1}^{k} (2 - y_{\lambda_{j}}^{2})^{w_{j}} + \prod_{j=1}^{k} (y_{\lambda_{j}}^{2})^{w_{j}}} \\ \sqrt{\prod_{j=1}^{k} (2 - y_{\lambda_{j}}^{2})^{w_{k+1}} - (1 - u_{\lambda_{k+1}}^{2})^{w_{k+1}}} \\ \sqrt{(1 + u_{\lambda_{k+1}}^{2})^{w_{k+1}} + (1 - u_{\lambda_{k+1}}^{2})^{w_{k+1}}}} \\ \sqrt{(1 + v_{\lambda_{k+1}}^{2})^{w_{k+1}} + (1 - v_{\lambda_{k+1}}^{2})^{w_{k+1}}}} \\ \sqrt{(2 - y_{\lambda_{k+1}}^{2})^{w_{k+1}} + (1 - v_{\lambda_{k+1}}^{2})^{w_{k+1}}}} \\ \sqrt{(2 - y_{\lambda_{k+1}}^{2})^{w_{k+1}} + (1 - y_{\lambda_{k+1}}^{2})^{w_{k+1}}}}} \\ \end{pmatrix},$$

$$(26)$$

Let

$$t_1 = \sqrt{\prod_{j=1}^k (1 + u_{\lambda_j}^2)^{w_j} - \prod_{j=1}^k (1 - u_{\lambda_j}^2)^{w_j}}.$$

$$t_2 = \sqrt{\prod_{j=1}^{k} (1 + u_{\lambda_j}^2)^{w_j} + \prod_{j=1}^{n} (1 - u_{\lambda_j}^2)^{w_j}}.$$

$$p_1 = \sqrt{\prod_{i=1}^{k} (1 + v_{\lambda_i}^2)^{w_i} - \prod_{i=1}^{k} (1 - v_{\lambda_i}^2)^{w_i}}.$$

$$p_2 = \sqrt{\prod_{j=1}^k (1 + v_{\lambda_j}^2)^{w_j} + \prod_{j=1}^k (1 - v_{\lambda_j}^2)^{w_j}}.$$

$$W_1 = \sqrt{(1 + u_{\lambda_{k+1}}^2)^{w_{k+1}} - (1 - u_{\lambda_{k+1}}^2)^{w_{k+1}}}.$$

$$W_2 = \sqrt{(1 + u_{\lambda_{k+1}}^2)^{w_{k+1}} + (1 - u_{\lambda_{k+1}}^2)^{w_{k+1}}}.$$

$$a_1 = \sqrt{(1+v_{\lambda_{k+1}}^2)^{w_{k+1}} - (1-v_{\lambda_{k+1}}^2)^{w_{k+1}}}.$$

$$a_2 = \sqrt{(1+v_{\lambda_{k+1}}^2)^{w_{k+1}} + (1-v_{\lambda_{k+1}}^2)^{w_{k+1}}}.$$

$$r_2 = \sqrt{\prod_{j=1}^k (2 - x_{\lambda_j}^2)^{w_j} + \prod_{j=1}^k (x_{\lambda_j}^2)^{w_j}}$$
.

$$r_1 = \sqrt{2 \prod_{j=1}^{k} (x_{\lambda_j}^2)^{w_j}}, \ s_1 = \sqrt{2 \prod_{j=1}^{k} (y_{\lambda_j}^2)^{w_j}}.$$

$$S_2 = \sqrt{\prod_{j=1}^k (2 - y_{\lambda_j}^2)^{w_j} + \prod_{j=1}^k (y_{\lambda_j}^2)^{w_j}}.$$

$$b_2 = \sqrt{(2-x_{\lambda_{k+1}}^2)^{w_{k+1}} + (x_{\lambda_{k+1}}^2)^{w_{k+1}}}.$$

$$c_1 = \sqrt{2(y_{\lambda_{k+1}}^2)^{w_{k+1}}}, b_1 = \sqrt{2(x_{\lambda_{k+1}}^2)^{w_{k+1}}}.$$

$$c_2 = \sqrt{(2 - y_{\lambda_{k+1}}^2)^{w_{k+1}} + (y_{\lambda_{k+1}}^2)^{w_{k+1}}}.$$

Now putting these values in Eq. (26), we have

$$IVPFEWA_{w}(\lambda_{1}, \lambda_{2}, \lambda_{3}, ..., \lambda_{k+1}) = \left(\left[\frac{t_{1}}{t_{2}}, \frac{p_{1}}{p_{2}} \right], \left[\frac{r_{1}}{r_{2}}, \frac{s_{1}}{s_{2}} \right] \right) \oplus_{\varepsilon} \left(\left[\frac{w_{1}}{w_{2}}, \frac{a_{1}}{a_{2}} \right], \left[\frac{b_{1}}{b_{2}}, \frac{c_{1}}{c_{2}} \right] \right)$$

$$= \left(\frac{\sqrt{(t_{1}w_{2})^{2} + (t_{2}w_{1})^{2}}}{\sqrt{(t_{2}w_{2})^{2} + (t_{1}w_{1})^{2}}}, \frac{\sqrt{(p_{1}a_{2})^{2} + (a_{1}p_{2})^{2}}}{\sqrt{(p_{2}a_{2})^{2} + (p_{1}a_{1})^{2}}} \right),$$

$$\left[\frac{r_{1}b_{1}}{\sqrt{2r_{2}^{2}b_{2}^{2} + r_{1}^{2}b_{1}^{2} - r_{2}^{2}b_{1}^{2} - r_{1}^{2}b_{2}^{2}}}, \frac{s_{1}c_{1}}{\sqrt{2s_{2}^{2}c_{2}^{2} + s_{1}^{2}c_{1}^{2} - s_{2}^{2}c_{1}^{2} - s_{1}^{2}c_{2}^{2}}} \right] \right).$$

$$(27)$$

Again putting the values of $(t_1w_2)^2 + (t_2w_1)^2$, $(t_2w_2)^2 + (t_1w_1)^2$, $(p_1a_2)^2 + (a_1p_2)^2$, $(p_2a_2)^2 + (p_1a_1)^2$, r_1b_1 , $2r_2^2b_2^2 + r_1^2b_1^2 - r_2^2b_1^2 - r_1^2b_2^2$, s_1c_1 , $2s_2^2c_2^2 + s_1^2c_1^2 - s_2^2c_2^2 - s_1^2c_2^2$, in Eq. (27), we have

$$\text{IVPFEWA}_{\mathbf{w}}(\lambda_{1}, \lambda_{2}, \lambda_{3}, \dots, \lambda_{k+1}) = \begin{bmatrix} \sqrt{\prod_{j=1}^{k+1} (1 + u_{\lambda_{j}}^{2})^{w_{j}} - \prod_{j=1}^{k+1} (1 - u_{\lambda_{j}}^{2})^{w_{j}}}, & \sqrt{\prod_{j=1}^{k+1} (1 + v_{\lambda_{j}}^{2})^{w_{j}} - \prod_{j=1}^{k+1} (1 - v_{\lambda_{j}}^{2})^{w_{j}}} \\ \sqrt{\prod_{j=1}^{k+1} (1 + u_{\lambda_{j}}^{2})^{w_{j}} + \prod_{j=1}^{k+1} (1 - u_{\lambda_{j}}^{2})^{w_{j}}}, & \sqrt{2 \prod_{j=1}^{k+1} (1 + v_{\lambda_{j}}^{2})^{w_{j}} + \prod_{j=1}^{k+1} (1 - v_{\lambda_{j}}^{2})^{w_{j}}} \\ \sqrt{\prod_{j=1}^{k+1} (2 - x_{\lambda_{j}}^{2})^{w_{j}} + \prod_{j=1}^{k+1} (x_{\lambda_{j}}^{2})^{w_{j}}}, & \sqrt{2 \prod_{j=1}^{k+1} (2 - y_{\lambda_{j}}^{2})^{w_{j}} + \prod_{j=1}^{k+1} (y_{\lambda_{j}}^{2})^{w_{j}}} \end{bmatrix}$$

Hence, Eq. (22) holds for n = k + 1. Thus, Eq. (22) holds for all n.

Lemma 1 ([16]). Let $\lambda_i > 0$, $w_i > 0$ (j = 1, 2, ..., n) and $\sum_{i=1}^n w_i = 1$, then

$$\prod_{i=1}^{n} (\lambda_j)^{w_j} \leqslant \sum_{i=1}^{n} w_j \lambda_j, \tag{28}$$

where the equality holds if and only if $\lambda_1 = \lambda_2 = \dots = \lambda_n$.

Theorem 2. Let $\lambda_j = ([u_{\lambda_j}, v_{\lambda_j}], [x_{\lambda_j}, y_{\lambda_j}])$ (j = 1, 2, ..., n) be the collection of IVPFVs, where the weighted vector of λ_i is $w = (w_i, w_j, ..., w_n)^T$ such that $w_i \in [0, 1]$ and $\sum_{i=1}^n w_i = 1$, then

$$IVPFEWA_{w}(\lambda_{1}, \lambda_{2}, \lambda_{3}, ..., \lambda_{n}) \leq IVPFWA_{w}(\lambda_{1}, \lambda_{2}, \lambda_{3}, ..., \lambda_{n}).$$
(29)

Proof. Straightforward.

Example 1. Let

$$\lambda_1 = ([0.3, 0.4], [0.5, 0.7]), \lambda_2 = ([0.2, 0.6], [0.3, 0.6]),$$

 $\lambda_3 = ([0.3, 0.6], [0.3, 0.5]), \lambda_6 = ([0.4, 0.7], [0.2, 0.6]),$

and let $w = (0.1, 0.2, 0.3, 0.4)^T$ be the weighted vector of λ_i (j = 1, 2, 3, 4), then we have

$$IVPFEWA_{w}(\lambda_{1}, \lambda_{2}, \lambda_{3}, \lambda_{4}) = \begin{bmatrix} \sqrt{\prod_{j=1}^{4} (1 + u_{\lambda_{j}}^{2})^{w_{j}} - \prod_{j=1}^{4} (1 - u_{\lambda_{j}}^{2})^{w_{j}}}}, \sqrt{\prod_{j=1}^{4} (1 + v_{\lambda_{j}}^{2})^{w_{j}} - \prod_{j=1}^{4} (1 - v_{\lambda_{j}}^{2})^{w_{j}}}}, \sqrt{\prod_{j=1}^{4} (1 + v_{\lambda_{j}}^{2})^{w_{j}} + \prod_{j=1}^{4} (1 - v_{\lambda_{j}}^{2})^{w_{j}}}}, \sqrt{\prod_{j=1}^{4} (1 + v_{\lambda_{j}}^{2})^{w_{j}} + \prod_{j=1}^{4} (1 - v_{\lambda_{j}}^{2})^{w_{j}}}} \\ \sqrt{2\prod_{j=1}^{4} (2 - x_{\lambda_{j}}^{2})^{w_{j}} + \prod_{j=1}^{4} (x_{\lambda_{j}}^{2})^{w_{j}}}}, \sqrt{\prod_{j=1}^{4} (2 - y_{\lambda_{j}}^{2})^{w_{j}} + \prod_{j=1}^{4} (y_{\lambda_{j}}^{2})^{w_{j}}}} \\ = ([0.3289, 0.6293], [0.2693, 0.5790]).$$

Now

IVPFWA_w(
$$\lambda_1, \lambda_2, \lambda_3, \lambda_4$$
) =
$$\begin{bmatrix} \sqrt{1 - \prod_{j=1}^4 (1 - (u_{\lambda_j})^2)^{w_j}}, \sqrt{1 - \prod_{j=1}^4 (1 - (v_{\lambda_j})^2)^{w_j}} \end{bmatrix}, \\ \begin{bmatrix} \prod_{j=1}^4 (x_{\lambda_j})^{w_j}, \prod_{j=1}^4 (y_{\lambda_j})^{w_j} \end{bmatrix} \\ = ([0.3306, 0.6321], [0.2684, 0.5768]). \end{bmatrix}$$

Theorem 3. Commutativity: Let λ_j and λ_j' (j = 1, 2, ..., n) be two collection of IVPFVs, where $(\lambda_1', \lambda_2', ..., \lambda_n')$ is any permutation of $(\lambda_1, \lambda_2, ..., \lambda_n)$, then

$$IVPFEWA_{w}(\lambda_{1}, \lambda_{2}, \lambda_{3}, ..., \lambda_{n}) = IVPFEWA_{w}(\lambda_{1}', \lambda_{2}', \lambda_{3}', ..., \lambda_{n}').$$
(30)

Proof. As we know that

$$IVPFEWA_{,,,}(\lambda_1, \lambda_2, \lambda_3, ..., \lambda_n) = w_1\lambda_1 \oplus_{\mathcal{S}} w_2\lambda_2 \oplus_{\mathcal{S}} ... \oplus_{\mathcal{S}} w_n\lambda_n, \tag{31}$$

and

$$IVPFEWA_{w}(\lambda'_{1}, \lambda'_{2}, \lambda'_{3}, ..., \lambda'_{n}) = w_{1}\lambda'_{1} \oplus_{\varepsilon} w_{2}\lambda'_{2} \oplus_{\varepsilon} ... \oplus_{\varepsilon} w_{n}\lambda'_{n},$$

$$(32)$$

as $(\lambda'_1, \lambda'_2, \lambda'_3, ..., \lambda'_n)$ is any permutation of $(\lambda_1, \lambda_1, \lambda_3, ..., \lambda_n)$. Thus, Eq. (33) always holds.

Theorem 4. *Idempotency:* If $\lambda_i = \lambda$ for all j (j = 1, 2, 3, ..., n), where $\lambda = ([u, v], [x, y])$, then

$$IVPFEWA_{w}(\lambda_{1}, \lambda_{2}, \lambda_{3}, ..., \lambda_{n}) = \lambda.$$
(33)

Proof. As $\lambda_i = \lambda$ for all j, then we have

IVPFEWA...
$$(\lambda_1, \lambda_2, \lambda_3, \ldots, \lambda_n) = w_1 \lambda \oplus_0 w_2 \lambda \oplus_0 w_3 \lambda \oplus_0 \ldots \oplus_n w_n \lambda = (w_1 \oplus_0 w_2 \oplus_0 w_3 \oplus_0 \ldots \oplus_n w_n) \lambda = \lambda.$$

This completes the proof.

 $w_2, ..., w_n$)^T be the weighted vector of λ_i , such that $w_i \in [0, 1], \sum_{i=1}^n w_i = 1$, then

$$\lambda_{\min} \leq \text{IVPFEWA}(\lambda_1, \lambda_2, \lambda_3, ..., \lambda_n) \leq \lambda_{\max},$$
 (34)

for all w_i and also

$$\lambda_{\max} = \max(\lambda_i),\tag{35}$$

$$\lambda_{\min} = \min_{j} (\lambda_{j}). \tag{36}$$

Proof. Let

$$IVPFEWA = \lambda = ([u, v], [x, y]). \tag{37}$$

Now by the score function, we have

$$([u_{\min}, v_{\min}], [x_{\max}, y_{\max}]) \le ([u, v], [x, y]),$$
 (38)

$$([u_{\max}, v_{\max}], [x_{\min}, y_{\min}]) \ge ([u, v], [x, y]), \tag{39}$$

as from Eqs. (38) and (39), we have

$$\lambda_{\min} \leq \text{IVPFEWA}(\lambda_1, \lambda_2, \lambda_3, ..., \lambda_n) \leq \lambda_{\max}$$

Thus, Eq. (34) always holds.

Theorem 6. Monotonicity: If $\lambda_i \leq \lambda_i'$ for all j, where j = 1, 2, 3, ..., n, then

$$IVPFEWA_{w}(\lambda_{1}, \lambda_{2}, \lambda_{3}, ..., \lambda_{n}) \leq IVPFEWA_{w}(\lambda_{1}', \lambda_{2}', \lambda_{3}', ..., \lambda_{n}'). \tag{40}$$

Proof. As we know that

$$IVPFEWA_{m}(\lambda_{1}, \lambda_{2}, \lambda_{3}, ..., \lambda_{n}) = w_{1}\lambda_{1} \oplus_{c} w_{2}\lambda_{2} \oplus_{c} ... \oplus_{c} w_{n}\lambda_{n}. \tag{41}$$

and

$$IVPFEWA_{w}(\lambda'_{1}, \lambda'_{2}, \lambda'_{2}, ..., \lambda'_{n}) = w_{1}\lambda'_{1} \oplus_{c} w_{2}\lambda'_{2} \oplus_{c} ... \oplus_{c} w_{n}\lambda'_{n}, \tag{42}$$

as $\lambda_i \leq \lambda_i'$ for all *j*. Thus, Eq. (40) always holds.

4.2 IVPFEOWA Aggregation Operator

Definition 8: Let λ_j (j=1, 2, 3, ..., n) be a collection of IVPFVs, then an IVPFEOWA operator of dimension n is a mapping IVPFEOWA_w: $\Theta^n \to \Theta$, and

$$IVPFEOWA_{w}(\lambda_{1}, \lambda_{2}, \lambda_{3}, ..., \lambda_{n}) = \begin{bmatrix} \sqrt{\prod_{j=1}^{n} (1 + u_{\lambda_{\sigma(j)}}^{2})^{w_{j}} - \prod_{j=1}^{n} (1 - u_{\lambda_{\sigma(j)}}^{2})^{w_{j}}}, & \sqrt{\prod_{j=1}^{n} (1 + v_{\lambda_{\sigma(j)}}^{2})^{w_{j}} - \prod_{j=1}^{n} (1 - v_{\lambda_{\sigma(j)}}^{2})^{w_{j}}} \\ \sqrt{\prod_{j=1}^{n} (1 + u_{\lambda_{\sigma(j)}}^{2})^{w_{j}} + \prod_{j=1}^{n} (1 - u_{\lambda_{\sigma(j)}}^{2})^{w_{j}}}, & \sqrt{\prod_{j=1}^{n} (1 + v_{\lambda_{\sigma(j)}}^{2})^{w_{j}} + \prod_{j=1}^{n} (1 - v_{\lambda_{\sigma(j)}}^{2})^{w_{j}}} \\ \sqrt{2 \prod_{j=1}^{n} (2 - x_{\lambda_{\sigma(j)}}^{2})^{w_{j}}}, & \sqrt{2 \prod_{j=1}^{n} (y_{\lambda_{\sigma(j)}}^{2})^{w_{j}}} \\ \sqrt{\prod_{j=1}^{n} (2 - x_{\lambda_{\sigma(j)}}^{2})^{w_{j}} + \prod_{j=1}^{n} (x_{\lambda_{\sigma(j)}}^{2})^{w_{j}}}, & \sqrt{\prod_{j=1}^{n} (2 - y_{\lambda_{\sigma(j)}}^{2})^{w_{j}}} \end{bmatrix}$$

where $(\sigma(1), \sigma(2), ..., \sigma(n))$ is a permutation of (1, 2, ..., n) such that $\sigma(j) \leq \sigma(j-1)$ for all j, and $w = (w_1, w_2, ..., w_n)^T$ is the weighted vector of $\lambda_{\sigma(j)}$ (j=1, 2, ..., n) such that $w_j \in [0, 1]$ and $\sum_{i=1}^n w_i = 1$.

Theorem 7. Let $\lambda_j = ([u_{\lambda_j}, v_{\lambda_j}], [x_{\lambda_j}, y_{\lambda_j}])$ (j = 1, 2, ..., n) be the collection of IVPFVs, then their aggregated value by using the IVPFEOWA operator is also an IVPFV, and

$$IVPFEOWA_{w}(\lambda_{1}, \lambda_{2}, \lambda_{3}, ..., \lambda_{n}) = \begin{bmatrix} \sqrt{\prod_{j=1}^{n} (1 + u_{\lambda_{\sigma(j)}}^{2})^{w_{j}} - \prod_{j=1}^{n} (1 - u_{\lambda_{\sigma(j)}}^{2})^{w_{j}}}, & \sqrt{\prod_{j=1}^{n} (1 + v_{\lambda_{\sigma(j)}}^{2})^{w_{j}} - \prod_{j=1}^{n} (1 - v_{\lambda_{\sigma(j)}}^{2})^{w_{j}}} \\ \sqrt{\prod_{j=1}^{n} (1 + u_{\lambda_{\sigma(j)}}^{2})^{w_{j}} + \prod_{j=1}^{n} (1 - u_{\lambda_{\sigma(j)}}^{2})^{w_{j}}}, & \sqrt{\prod_{j=1}^{n} (1 + v_{\lambda_{\sigma(j)}}^{2})^{w_{j}} + \prod_{j=1}^{n} (1 - v_{\lambda_{\sigma(j)}}^{2})^{w_{j}}} \\ \sqrt{2 \prod_{j=1}^{n} (2 - x_{\lambda_{\sigma(j)}}^{2})^{w_{j}}}, & \sqrt{2 \prod_{j=1}^{n} (y_{\lambda_{\sigma(j)}}^{2})^{w_{j}}} \\ \sqrt{1 \prod_{j=1}^{n} (2 - x_{\lambda_{\sigma(j)}}^{2})^{w_{j}} + \prod_{j=1}^{n} (x_{\lambda_{\sigma(j)}}^{2})^{w_{j}}}, & \sqrt{1 \prod_{j=1}^{n} (2 - y_{\lambda_{\sigma(j)}}^{2})^{w_{j}}} \\ \sqrt{1 \prod_{j=1}^{n} (2 - y_{\lambda_{\sigma(j)}}^{2})^{w_{j}} + \prod_{j=1}^{n} (y_{\lambda_{\sigma(j)}}^{2})^{w_{j}}}} \end{bmatrix}$$

 $where \ (\sigma(1),\sigma(2),...,\sigma(n)) \ is \ a \ permutation \ of \ (1,2,...,n) \ such \ that \ \sigma(j) \leqslant \sigma(j-1) \ for \ all \ j, \ and \ w = (w_1,w_2,...,w_n)^T \ decomposition \ deco$ is the weighted vector of $\lambda_{\sigma(j)}$ (j=1, 2, ..., n) such that $w_j \in [0, 1]$ (j=1, 2, ..., n) and $\sum_{j=1}^n w_j = 1$.

Proof. Proof is similar to Theorem 1.

Theorem 8. Let $\lambda_j = ([u_{\lambda_i}, v_{\lambda_i}], [x_{\lambda_i}, y_{\lambda_i}])$ (j = 1, 2, ..., n) be a collection of IVPFVs, where the weighted vector of λ_i is $w = (w_1, w_2, w_3, ..., w_n)^T$ such that $w_i \in [0, 1]$ and $\sum_{i=1}^n w_i = 1$, then

$$IVPFEOWA_{w}(\lambda_{1}, \lambda_{2}, \lambda_{3}, ..., \lambda_{n}) \leq IVPFOWA_{w}(\lambda_{1}, \lambda_{2}, \lambda_{3}, ..., \lambda_{n}). \tag{45}$$

Proof. Straightforward.

Theorem 9. Commutativity: If λ'_i (j=1, ..., n) is any permutation of λ_i (j=1, ..., n), then

$$IVPFEOWA_{w}(\lambda_{1}, \lambda_{2}, \lambda_{3}, ..., \lambda_{n}) = IVPFEOWA_{w}(\lambda_{1}', \lambda_{2}', \lambda_{3}', ..., \lambda_{n}'). \tag{46}$$

Proof. Proof is similar to Theorem 3.

Theorem 10. *Idempotency:* If $\lambda_i = \lambda$ for all j (j=1, 2, 3, ..., n), where $\lambda = ([u, v], [x, y])$, then

$$IVPFEOWA_{n}(\lambda_{1}, \lambda_{2}, \lambda_{3}, ..., \lambda_{n}) = \lambda.$$
(47)

Proof. Proof is similar to Theorem 4.

Theorem 11. Boundedness: Let $\lambda_j = ([u_{\lambda_i}, v_{\lambda_i}], [x_{\lambda_i}, y_{\lambda_i}])$ (j=1, 2, ..., n) be a collection of IVPFVs and let $w = (w_1, w_2, ..., w_n)^T$ be the weighted vector of $\lambda_{\sigma(i)}$, such that $w_i \in [0, 1], \sum_{i=1}^n w_i = 1$, then

$$\lambda_{\min} \leq \text{IVPFEOWA}_{w}(\lambda_{1}, \lambda_{2}, \lambda_{3}, \dots, \lambda_{n}) \leq \lambda_{\max},$$
 (48)

for all w_i and

$$\lambda_{\max} = \max_{j}(\lambda_{j}),\tag{49}$$

$$\lambda_{\min} = \min_{i}(\lambda_{i}). \tag{50}$$

Proof. Proof is similar to Theorem 5.

Theorem 12. Monotonicity: If $\lambda_i \leq \lambda'_i$ for all j, where j = 1, 2, ..., n, then

$$IVPFEOWA_{w}(\lambda_{1}, \lambda_{2}, \lambda_{3}, ..., \lambda_{n}) \leq IVPFEOWA_{w}(\lambda'_{1}, \lambda'_{2}, \lambda'_{3}, ..., \lambda'_{n}).$$
(51)

Proof. Proof is similar to Theorem 6.

5 An Approach to the MAGDM Problem Based on Interval-Valued **Pythagorean Fuzzy Information**

Algorithm 1. Let $X = \{X_1, X_2, X_3, ..., X_m\}$ be a finite set of m alternatives, and $C = \{C_1, C_2, ..., C_n\}$ be a finite set of attributes. Suppose the grade of the alternatives X_i (i=1, 2, ..., m) on attributes C_i (j=1, 2, ..., n) given by decision makers are IVPFNs. Let $D = \{D_1, D_2, D_3, ..., D_k\}$ be the set of k decision makers, and let $w = \{w_1, w_2, ..., w_k\}$..., w_n)^T be the weighted vector of the attributes C_i (j=1, 2, ..., n), such that $w_i \in [0, 1]$ and $\sum_{i=1}^n w_i = 1$, and let $\omega = (\omega_1, \omega_2, ..., \omega_k)^T$ be the weighted vector of the decision makers D^s (s=1, 2, ..., k), such that $\omega_s \in [0, 1]$ and $\sum_{i=1}^{k} \omega_{s} = 1$. Let $D = (a_{ij}) = \langle [u_{ij}, v_{ij}], [x_{ij}, y_{ij}] \rangle$ (i = 1, 2, ..., m, j = 1, 2, 3, ..., n), where $[u_{ij}, v_{ij}]$ indicates the interval degree that the alternative X_i satisfies the attribute C_i and $[x_{ii}, y_{ij}]$ indicates the interval degree that the alternative X_i , does not satisfy the attribute C_i . Also, $[u_{ij}, v_{ij}] \in [0, 1]$, $[x_{ij}, y_{ij}] \in [0, 1]$ with condition $0 \le (v_{ij})^2 + (y_{ij})^2 \le 1$ (i = 1, 2, ..., m, j = 1, 2, ..., n). This method has the following steps.

- Step 1: In this step, we construct the interval-valued Pythagorean fuzzy decision-making matrices, $D^{s} = [a_{ii}^{(s)}]_{n \times m}$ (s = 1, 2, ..., k) for the decision.
- Step 2: If the criteria have two types, such as benefit criteria and cost criteria, then the interval-valued Pythagorean fuzzy decision matrices, $D^s = [a_{ij}^s]_{n \times m}$ can be converted into the normalized interval-valued Pythagorean fuzzy decision matrices, $R^s = [r_{ii}^{(s)}]_{n \times m}$, where

$$r_{ji}^{(s)} = \begin{cases} a_{ji}^{(s)}, \text{ for benefit criteria } C_j, & (j=1, 2, ..., n, \\ \overline{a}_{ji}^{(s)}, \text{ for cost criteria } C_j, & (i=1, 2, ..., m) \end{cases}$$

and $\overline{a}_{ii}^{(s)}$ is the complement of α_{ii}^{s} . If all the criteria have the same type, then there is no need for normalization.

- Step 3: In this step, we apply the IVPFEWA operator to aggregate all the individual normalized interval-valued Pythagorean fuzzy decision matrices, $R^s = [r_{ji}^{(s)}]_{nom}$ (s = 1, ..., k), into a single interval-valued Pythagorean fuzzy decision matrix, $R = [r_{ij}]_{n \times m}$.
- Step 4: In this step, we apply the IVPFEWA operator to aggregate all preference values.
- Step 5: In this step, we calculate the score functions. If there is no difference between two or more than two scores, then we must find out the accuracy degrees of the collective overall preference values.
- Step 6: Arrange the scores of all alternatives in descending order and select that alternative having the highest score function.

6 Illustrative Example

Suppose a company wants to invest money in the following best options: *X*₁, car company; *X*₂, food company; and X_{s} , computer company. There are three experts D^{s} (s=1, 2, 3) from a group to act as decision makers, whose weight vector is $\omega = (0.2, 0.3, 0.5)^T$. There are many factors that must be considered when selecting the most suitable company; however, here, we have to consider only the following four criteria, whose weighted vector is $w = (0.1, 0.2, 0.3, 0.4)^T$:

- 1. C_1 : risk analysis,
- 2. C_3 : growth analysis,
- 3. C_3 : social political impact analysis,
- 4. C_{α} : environmental analysis,

where C_1 and C_2 , are cost-type criteria and C_2 and C_4 are benefit-type criteria, i.e. the attributes have two types of criteria. Thus, we must change the cost-type criteria into the benefit-type criteria.

- Step 1: The decision makers give their decision in Tables 1-11.
- Step 2: In this step, we normalize the decision matrices.

Table 1: Interval-Valued Pythagorean Fuzzy Decision Matrix of D^1 .

	X ₁	X ₂	X ₃
C ₁	([0.5, 0.8], [0.3, 0.4])	([0.6, 0.7], [0.3, 0.6])	([0.3, 0.7], [0.3, 0.5])
C_{2}	([0.3, 0.5], [0.6, 0.7])	([0.3, 0.7], [0.2, 0.6])	([0.3, 0.6], [0.4, 0.7])
C_3	([0.5, 0.7], [0.3, 0.7])	([0.5, 0.6], [0.3, 0.7])	([0.2, 0.6], [0.3, 0.7])
C ₄	([0.3, 0.6], [0.6, 0.7])	([0.6, 0.5], [0.2, 0.7])	([0.3, 0.4], [0.5, 0.6])

Table 2: Interval-Valued Pythagorean Fuzzy Decision Matrix of D^2 .

	X ₁	X ₂	X ₃
C ₁	([0.5, 0.6], [0.3, 0.5])	([0.5, 0.7], [0.3, 0.6])	([0.2, 0.8], [0.3, 0.4])
<i>C</i> ,	([0.3, 0.4], [0.6, 0.8])	([0.3, 0.8], [0.2, 0.6])	([0.3, 0.6], [0.3, 0.7])
C_{3}	([0.4, 0.5], [0.3, 0.8])	([0.5, 0.7], [0.3, 0.6])	([0.2, 0.6], [0.3, 0.8])
C ₄	([0.3, 0.6], [0.5, 0.7])	([0.3, 0.4], [0.2, 0.8])	([0.3, 0.5], [0.5, 0.7])

Table 3: Interval-Valued Pythagorean Fuzzy Decision Matrix of D^3 .

	X ₁	X ₂	X ₃
C_1	([0.3, 0.8], [0.5, 0.6])	([0.3, 0.5], [0.5, 0.7])	([0.2, 0.4], [0.5, 0.7])
<i>C</i> ,	([0.5, 0.7], [0.3, 0.4])	([0.4, 0.6], [0.5, 0.8])	([0.5, 0.7], [0.2, 0.5])
C_{3}	([0.3, 0.6], [0.4, 0.6])	([0.3, 0.5], [0.5, 0.6])	([0.2, 0.8], [0.4, 0.6])
C_4	([0.5, 0.7], [0.3, 0.4])	([0.5, 0.7], [0.2, 0.4])	([0.5, 0.6], [0.3, 0.5])

Table 4: Normalized Pythagorean Fuzzy Decision Matrix R^1 .

	X ₁	X ₂	X ₃
C ₁	([0.3, 0.4], [0.5, 0.8])	([0.3, 0.6], [0.6, 0.7])	([0.3, 0.5], [0.3, 0.7])
C ₂	([0.3, 0.5], [0.6, 0.7])	([0.3, 0.7], [0.2, 0.6])	([0.3, 0.6], [0.4, 0.7])
C_3	([0.3, 0.7], [0.5, 0.7])	([0.3, 0.7], [0.5, 0.6])	([0.3, 0.7], [0.2, 0.6])
C ₄	([0.3, 0.6], [0.6, 0.7])	([0.6, 0.5], [0.2, 0.7])	([0.3, 0.4], [0.5, 0.6])

Table 5: Normalized Pythagorean Fuzzy Decision Matrix R^2 .

	X ₁	X ₂	X ₃
C ₁	([0.3, 0.5], [0.5, 0.6])	([0.3, 0.6], [0.5, 0.7])	([0.3, 0.4], [0.2, 0.8])
<i>C</i> ,	([0.3, 0.4], [0.6, 0.8])	([0.3, 0.8], [0.2, 0.6])	([0.3, 0.6], [0.3, 0.7])
C_{3}	([0.3, 0.8], [0.4, 0.5])	([0.3, 0.6], [0.5, 0.7])	([0.3, 0.8], [0.2, 0.6])
C_4	([0.3, 0.6], [0.5, 0.7])	([0.3, 0.4], [0.2, 0.8])	([0.3, 0.5], [0.5, 0.7])

Table 6: Normalized Pythagorean Fuzzy Decision Matrix R^3 .

	X ₁	X ₂	X ₃
C_1	([0.5, 0.6], [0.3, 0.8])	([0.5, 0.7], [0.3, 0.5])	([0.5, 0.7], [0.2, 0.4])
<i>C</i> ,	([0.5, 0.7], [0.3, 0.4])	([0.4, 0.6], [0.5, 0.8])	([0.5, 0.7], [0.2, 0.5])
C_3	([0.4, 0.6], [0.3, 0.6])	([0.5, 0.6], [0.3, 0.5])	([0.4, 0.6], [0.2, 0.8])
C_4	([0.5, 0.7], [0.3, 0.4])	([0.5, 0.7], [0.2, 0.4])	([0.5, 0.6], [0.3, 0.5])

Table 7: Collective Interval-Valued Pythagorean Fuzzy Decision Matrix *R*.

	X ₁	X ₂	X ₃
C ₁	([0.413, 0.537], [0.389, 0.738])	([0.413, 0.653], [0.405, 0.595])	([0.413, 0.593], [0.216, 0.562])
Ċ,	([0.413, 0.593], [0.429, 0.563])	([0.352, 0.692], [0.320, 0.697])	([0.413, 0.653], [0.259, 0.595])
C_3	([0.352, 0.692], [0.363, 0.587])	([0.413, 0.622], [0.389, 0.576])	([0.352, 0.693], [0.200, 0.697])
C_4	([0.413, 0.653], [0.405, 0.536])	([0.475, 0.593], [0.200, 0.563])	([0.413, 0.538], [0.389, 0.576])

Table 8: Pythagorean Fuzzy Ordered Decision Matrix R1.

	X ₁	X ₂	X ₃
C ₁	([0.3, 0.7], [0.5, 0.7])	([0.3, 0.7], [0.2, 0.6])	([0.3, 0.7], [0.2, 0.6])
Ċ,	([0.3, 0.6], [0.6, 0.7])	([0.6, 0.5], [0.2, 0.7])	([0.3, 0.6], [0.4, 0.7])
C_3	([0.3, 0.5], [0.6, 0.7])	([0.3, 0.7], [0.5, 0.6])	([0.3, 0.5], [0.3, 0.7])
C_4	([0.3, 0.4], [0.5, 0.8])	([0.3, 0.6], [0.6, 0.7])	([0.3, 0.4], [0.5, 0.6])

Table 9: Pythagorean Fuzzy Ordered Decision Matrix R2.

	X ₁	X_2	X ₃
C ₁	([0.3, 0.8], [0.4, 0.5])	([0.3, 0.8], [0.2, 0.6])	([0.3, 0.8], [0.2, 0.6])
Ċ,	([0.3, 0.5], [0.5, 0.6])	([0.3, 0.6], [0.5, 0.7])	([0.3, 0.6], [0.3, 0.7])
C ₃	([0.3, 0.6], [0.5, 0.7])	([0.3, 0.6], [0.5, 0.7])	([0.3, 0.5], [0.5, 0.7])
C_4	([0.3, 0.4], [0.6, 0.8])	([0.3, 0.4], [0.2, 0.8])	([0.3, 0.4], [0.2, 0.8])

Table 10: Pythagorean Fuzzy Ordered Decision Matrix R^3 .

	<i>X</i> ₁	X ₂	
C ₁	([0.5, 0.7], [0.3, 0.4])	([0.5, 0.7], [0.2, 0.4])	([0.5, 0.7], [0.2, 0.4])
C,	([0.5, 0.7], [0.3, 0.4])	([0.5, 0.7], [0.3, 0.5])	([0.5, 0.7], [0.2, 0.5])
C_3	([0.4, 0.6], [0.3, 0.6])	([0.5, 0.6], [0.3, 0.5])	([0.5, 0.6], [0.3, 0.5])
C_4	([0.5, 0.6], [0.3, 0.8])	([0.4, 0.6], [0.5, 0.8])	([0.4, 0.6], [0.2, 0.8])

 Table 11:
 Collective Pythagorean Fuzzy Ordered Decision Matrix R.

	X ₁	X ₂	X ₃
C ₁	([0.413, 0.734], [0.363, 0.481])	([0.413, 0.734], [0.200, 0.495])	([0.413, 0.734], [0.200, 0.492])
С,	([0.413, 0.630], [0.404, 0.509])	([0.476, 0.638], [0.323, 0.595])	([0.413, 0.653], [0.259, 0.595])
C_{3}	([0.352, 0.582], [0.404, 0.649])	([0.413, 0.622], [0.389, 0.576])	([0.413, 0.553], [0.351, 0.595])
C_4	([0.413, 0.512], [0.412, 0.800])	([0.352, 0.550], [0.399, 0.779])	([0.352, 0.512], [0.241, 0.758])

- Step 3: In this step, we apply the IVPFEWA operator to aggregate all the individual normalized intervalvalued Pythagorean fuzzy decision matrices, $R^s = [r_{ji}^{(s)}]_{n \times m}$, into a single interval-valued Pythagorean fuzzy decision matrix, $R = [r_{ji}]_{n \times m}$.
- Step 4: In this step, we apply the IVPFEWA aggregation operator to aggregate all preference values:

$$r_1 = ([0.395, 0.644], [0.394, 0.575]).$$

$$r_2 = ([0.427, 0.617], [0.289, 0.596]).$$

$$r_3 = ([0.495, 0.619], [0.277, 0.613]).$$

Step 5: In this step, we calculate the score functions:

$$S(r_1) = 0.042$$
, $S(r_2) = 0.069$, $S(r_3) = 0.083$.

Step 6: Arrange the scores of all alternatives in descending order and select that alternative having the highest score function. Hence, $X_3 > X_2 > X_1$. Thus, the best alternative is X_3 .

For the IVPFEOWA aggregation operator:

- Step 1: In this step, we construct the interval-valued Pythagorean fuzzy ordered decision matrices.
- Step 2: In this step, we apply the IVPFEOWA operator to aggregate all the individual interval-valued Pythagorean fuzzy ordered decision matrices, $R^s = [r_{ii}^{(s)}]_{n \times m}$, into a single interval-valued Pythagorean fuzzy decision matrix, $R = [r_{ii}]_{n \times m}$.
- Step 3: In this step, we apply the IVPFEOWA aggregation operator to aggregate all preference values:

$$r_1 = ([0.395, 0.579], [0.402, 0.659]).$$

$$r_3 = ([0.403, 0.612], [0.354, 0.649]).$$

$$r_3 = ([0.389, 0.576], [0.268, 0.646]).$$

Step 4: In this step, we calculate the score functions:

$$S(r_1) = -0.052$$
, $S(r_1) = -0.004$, $S(r_1) = -0.003$.

Step 5: Arrange the scores of all alternatives in descending order and select that alternative having the highest score function. Hence, $X_3 > X_2 > X_3$. Thus, the best alternative is X_3 .

7 Conclusion

In this paper, we have developed the notions of the IVPFEWA operator, IVPFEOWA operator, and intervalvalued Pythagorean fuzzy Einstein hybrid weighted averaging operator. We have also discussed some of their desirable properties, such as idempotency, boundedness, commutativity, and monotonicity. Finally, we have applied these operators to deal with the MAGDM problem under interval-valued Pythagorean fuzzy information. For this, we constructed an algorithm for the MAGDM problem. Lastly, we also developed a numerical example for MAGDM.

Bibliography

- [1] K. Atanassov, Intuitionistic fuzzy sets, Fuzzy Sets Syst. 20 (1986), 87–96.
- [2] K. Atanassov, New operations defined over the intuitionistic fuzzy sets, Fuzzy Sets Syst. 61 (1994), 137-142.
- [3] K. Atanassov, Remarks on the intuitionistic fuzzy sets, III, Fuzzy Sets Syst. 75 (1995), 401-402.
- [4] K. Atanassov, Equality between intuitionistic fuzzy sets, Fuzzy Sets Syst. 79 (1996), 257-258.
- [5] K. Atanassov, Intuitionistic fuzzy sets: theory and applications, Physica-Verlag, Heidelberg, Germany, 1999.
- [6] S. K. De, R. Biswas and A. R. Roy, Some operations on intuitionistic fuzzy sets, Fuzzy Sets Syst. 114 (2000), 477-484.
- [7] H. Garg, A new generalized Pythagorean fuzzy information aggregation using Einstein operations and its application to decision making, Int. J. Intell. Syst. 31 (2016), 1-35.
- [8] H. Garg, Generalized Pythagorean fuzzy geometric aggregation operators using Einstein tnorm and t-conorm for multicriteria decision-making process, Int. J. Intell. Syst. (2016), 1-34.
- [9] X. J. Gou, Z. S. Xu and P. J. Ren, The properties of continuous Pythagorean fuzzy information, Int. J. Intell. Syst. 31 (2016), 401-424.
- [10] Z. M. Ma and Z. S. Xu, Symmetric Pythagorean fuzzy weighted geometric averaging operators and their application in multicriteria decision making problems, Int. J. Intell. Syst. 31 (2016), 1198-1219.

- [11] X. Peng and Y. Yang, Fundamental properties of interval-valued Pythagorean fuzzy aggregation operators, Int. J. Intell. Syst. 31 (2015), 444-487.
- [12] K. Rahman, S. Abdullah, R. Ahmed and M. Ullah, Pythagorean fuzzy Einstein weighted geometric aggregation operator and their application to multiple attribute group decision making, J. Intell. Fuzzy Syst. 33 (2016), 1–13.
- [13] K. Rahman, S. Abdullah, M. S. Ali Khan and M. Shakeel, Pythagorean fuzzy hybrid geometric aggregation operator and their applications to multiple attribute decision making, Int. J. Comput. Sci. Inform. Secur. (IJCSIS) 14 (2016), 837-854.
- [14] K. Rahman, S. Abdullah, F. Husain M. S. Ali Khan, M. Shakeel, Pythagorean fuzzy ordered weighted geometric aggregation operator and their application to multiple attribute group decision making, J. Appl. Environ. Biol. Sci. 7 (2017), 67–83.
- [15] K. Rahman, S. Abdullah, M. Shakeel, M. Sajjad Ali Khan and M. Ullah, Interval-valued Pythagorean fuzzy geometric aggregation operators and their application to group decision making, Cogent Math. 4 (2017), 1-20.
- [16] K. Rahman, M. S. Ali Khan, M. Ullah and A. Fahmi, Multiple attribute group decision making for plant location selection with Pythagorean fuzzy weighted geometric aggregation operator, Nucleus 1 (2017), 66-74.
- [17] K. Rahman, S. Abdullah, M. S. Ali Khan, A. Ali and F. Amin, Pythagorean fuzzy hybrid averaging aggregation operator and its application to multiple attribute decision making, Ital. J. Pure Appl. Math. (in press).
- [18] K. Rahman, A. Ali and M. S. A. Khan, Some interval-valued Pythagorean fuzzy weighted averaging aggregation operators and their application to multiple attribute decision making, Punjab Univ. J. Math. 50 (2018).
- [19] P. J. Ren, Z. S. Xu and X. J. Gou, Pythagorean fuzzy TODIM approach to multi-criteria decision making, Appl. Soft Comput. 42 (2016), 246-259.
- [20] W. Z. Wang, X. W. Liu, Intuitionistic fuzzy geometric aggregation operators based on Einstein operations, Int. J. Intell. Syst. **26** (2011), 1049–1075.
- [21] W. Z. Wang and X. W. Liu, Intuitionistic fuzzy information aggregation using Einstein operations, IEEE Trans. Fuzzy Syst. 20 (2012), 923-938,
- [22] M. Xia and Z. S. Xu, Generalized point operators for aggregating intuitionistic fuzzy information, Int. J. Intell. Syst. 25 (2010), 1061-1080.
- [23] Z. S. Xu, Intuitionistic fuzzy aggregation operators, IEEE Trans. Fuzzy Syst. 15 (2007), 1179-1187.
- [24] Z. S. Xu, Methods for aggregating interval-valued intuitionistic fuzzy information and their application to decision making, Control Decis. 22 (2007), 215-219 (in Chinese).
- [25] Z. S. Xu and J. Chen, On geometric aggregation over interval-valued intuitionistic fuzzy information, in: Fourth International Conference on Fuzzy Systems and Knowledge Discovery (FSKD), vol. 2, pp. 466-471, 2007.
- [26] Z. S. Xu and R. R. Yager, Some geometric aggregation operators based on intuitionistic fuzzy sets, Int. J. Gen. Syst. 35 (2006), 417-433.
- [27] R. R. Yager, Pythagorean fuzzy subsets, in: Proc. Joint IFSA World Congress and NAFIPS Annual Meeting, Edmonton, Canada, pp. 57-61, 2013.
- [28] R. R. Yager and A. M. Abbasov, Pythagorean membership grades, complex numbers and decision making, Int. J. Intell. Syst. 28 (2013), 436-452,
- [29] D. Yu, Decision making based on generalized geometric operator under interval-valued intuitionistic fuzzy environment, J. Intell. Fuzzy Syst. 25 (2013), 471-480.
- [30] D. Yu, Multi-criteria decision making based on generalized prioritized aggregation operators under intuitionistic fuzzy environment, Int. J. Fuzzy Syst. 15 (2013), 47-54.
- [31] D. Yu, A scientometrics review on aggregation operator research, Scientometrics 105 (2015), 115–133.
- [32] D. Yu, Group decision making under interval-valued multiplicative intuitionistic fuzzy environment based on Archimedean t-conorm and t-norm, Int. J. Intell. Syst. 30 (2015), 590-616.
- [33] L. A. Zadeh, Fuzzy sets, Inf. Control 8 (1965), 338-353.
- [34] X. L. Zhang and Z. S. Xu, Extension of TOPSIS to multiple criteria decision making with Pythagorean fuzzy sets, Int. J. Intell. Syst. 29 (2014), 1061-1078.