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Abstract: In this paper, we introduce the notion of Einstein aggregation operators, such as the interval-valued 
Pythagorean fuzzy Einstein weighted averaging aggregation operator and the interval-valued Pythagorean 
fuzzy Einstein ordered weighted averaging aggregation operator. We also discuss some desirable properties, 
such as idempotency, boundedness, commutativity, and monotonicity. The main advantage of using the pro-
posed operators is that these operators give a more complete view of the problem to the decision makers. 
These operators provide more accurate and precise results as compared the existing method. Finally, we 
apply these operators to deal with multiple-attribute group decision making under interval-valued Pythago-
rean fuzzy information. For this, we construct an algorithm for multiple-attribute group decision making. 
Lastly, we also construct a numerical example for multiple-attribute group decision making.

Keywords: Interval-valued Pythagorean fuzzy Einstein weighted averaging operator, interval-valued Pytha
gorean fuzzy Einstein ordered weighted averaging operator, group decision making.

1  �Introduction
Atanassov [1] introduced the concept of intuitionistic fuzzy sets (IFSs) characterized by a membership func-
tion and a non-membership function. It is more suitable for dealing with fuzziness and uncertainty than the 
ordinary fuzzy set developed by Zadeh [33] characterized by membership function. In 1986, many scholars 
[2–6, 22] have done works in the field of IFS and its applications. Particularly, information aggregation is a 
very crucial research area in IFS theory that has been receiving more and more focus. Xu [23] developed some 
basic arithmetic aggregation operators, including intuitionistic fuzzy weighted averaging (IFWA) aggrega-
tion operator, intuitionistic fuzzy ordered weighted averaging (IFOWA) aggregation operator, and intuition-
istic fuzzy hybrid averaging (IFHA) aggregation operator, and applied them to group decision making. Xu 
and Yager [26] defined some basic geometric aggregation operators, such as intuitionistic fuzzy weighted 
geometric (IFWG) aggregation operator, intuitionistic fuzzy ordered weighted geometric (IFOWG) aggrega-
tion operator, and intuitionistic fuzzy hybrid geometric (IFHG) aggregation operator. In Refs. [24, 25], Chen 
and Xu familiarized a series of a new types of aggregation operators, such as interval-valued IFWA (IIFWA) 
aggregation operator, interval-valued IFOWA (IIFOWA) aggregation operator, interval-valued IFHA (IIFHA) 
aggregation operator, interval-valued IFWG (IIFWG) aggregation operator, interval-valued IFOWG (IIFOWG) 
aggregation operator, and interval-valued IFHG (IIFHG) aggregation operator. In Refs. [20, 21], Wang and 
Liu introduced the concept of intuitionistic fuzzy Einstein weighted geometric (IFEWG) aggregation opera-
tor, intuitionistic fuzzy Einstein ordered weighted geometric (IFEOWG) aggregation operator, intuitionistic 
fuzzy Einstein weighted averaging (IFEWA) aggregation operator, and intuitionistic fuzzy Einstein ordered 
weighted averaging (IFEOWA) aggregation operator, and applied them to group decision making. In Refs. [29–
32], Yu also worked in the field of IFS theory and introduced many aggregation operators and applied them 
to group decision making. However, there are many cases where the decision maker may provide the degree 
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of membership and non-membership of a particular attribute in such a way that their sum is greater than 
one. Therefore, Yager [27] introduced the concept of another set called Pythagorean fuzzy set. The Pythago-
rean fuzzy set is a more powerful tool for solving uncertain problems. Like intuitionistic fuzzy aggregation 
operators, Pythagorean fuzzy aggregation operators have also become an interesting and important area for 
research, after the advent of the Pythagorean fuzzy set theory. In Ref. [28], Yager and Abbasov introduced the 
notion of two new Pythagorean fuzzy aggregation operators, such as Pythagorean fuzzy weighted averaging 
(PFWA) aggregation operator and Pythagorean fuzzy ordered weighted averaging (PFOWA) operator. In Refs. 
[12–14, 16, 17], Rahman et al. introduced the concept of Pythagorean fuzzy hybrid averaging (PFHA) aggre-
gation operator, Pythagorean fuzzy weighted geometric (PFWG) aggregation operator, Pythagorean fuzzy 
ordered weighted geometric (PFOWG) operator, Pythagorean fuzzy hybrid geometric (PFHG) aggregation 
operator, and Pythagorean fuzzy Einstein weighted geometric (PFEWG) operator, and applied them to group 
decision making. In Refs. [7, 8], Garg introduced the notion of Pythagorean fuzzy Einstein weighted averaging 
(PFEWA) aggregation operator, Pythagorean fuzzy Einstein ordered weighted averaging (PFEOWA) operator, 
generalized PFEWA (GPFEWA) aggregation operator, generalized PFEOWA (GPFEOWA) aggregation opera-
tor, PFWG aggregation operator, PFOWG aggregation operator, PFEWG aggregation operator, Pythagorean 
fuzzy Einstein ordered weighted geometric (PFEOWG) aggregation operator, GPFEOWA aggregation operator, 
and generalized PFEOWG (GPFEOWG) aggregation operator, and applied them to group decision making. In 
Ref. [11], Peng and Yang introduced the notion of interval-valued PFWA (IVPFWA) aggregation operator and 
interval-valued PFWG (IVPFWG) aggregation operator. In Refs. [15, 18], Rahman et al. introduced the concept 
of interval-valued PFOWA (IVPFOWA) aggregation operator, interval-valued PFHA (IVPFHWA) aggregation 
operator, interval-valued PFOWG (IVPFOWG) aggregation operator, and interval-valued Pythagorean fuzzy 
hybrid weighted geometric operator, and applied them to group decision making. In Refs. [9, 10, 19, 34], many 
scholars worked in Pythagorean fuzzy set theory and aggregation operators.

Thus, keeping the advantages of these operators, in this paper, we introduce the notion of interval-valued 
PFEWA (IVPFEWA) aggregation operator and interval-valued PFEOWA (IVPFEOWA) aggregation operator. By 
comparison with the existing method, it is decided that the method developed in this paper is a good comple-
ment to the existing method.

The remainder of this paper is structured as follows. In Section 2, we give some basic definitions and 
results, which will be used in later sections. In Section 3, we introduce some Einstein operations for interval-
valued Pythagorean fuzzy values. In Section 4, we introduce the notion of IVPFEWA and IVPFEOWA aggrega-
tion operators. In Section 5, we apply these operators to deal with multiple-attribute group decision-making 
(MAGDM) problems with Pythagorean fuzzy information. In Section 6, we develop a numerical example. In 
Section 7, we present our conclusion.

2  �Preliminaries
Definition 1 ([11]): Let K be a fixed set, then an IVPFS can be defined as

	 { , ( ), ( ) | },I II k u k v k k K= 〈 〉 ∈ � (1)

where

	 ( ) [ ( ), ( )] [0, 1],a b
I I Iu k u k u k= ⊂ � (2)

	 ( ) [ ( ), ( )] [0, 1].a b
I I Iv k v k v k= ⊂ � (3)

As

	 ( ) inf ( ( )),a
I Iu k u k= � (4)

	 ( ) sup ( ( )),b
I Iu k u k= � (5)
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	 ( ) inf ( ( )),a
I Iv k v k= � (6)

	 ( ) sup ( ( )),b
I Iv k v k= � (7)

and

	 2 20 ( ( )) ( ( )) 1.b b
I Iu k v k≤ + ≤ � (8)

If

	 ( ) [ ( ), ( )],a b
I I Ik k kπ π π= � (9)

then it is called the interval-valued Pythagorean fuzzy index of k to I, where

	 2 2( ) 1 ( ( )) ( ( )) ,a b b
I I Ik u k v kπ = − − � (10)

	 2 2( ) 1 ( ( )) ( ( )) .b a a
I I Ik u k v kπ = − − � (11)

Definition 2 ([11]). Let λ = ([u
λ
, v

λ
], [x

λ
, y

λ
]) be an IVPFN, then the score function and accuracy function of λ can 

be defined as

	
2 2 2 21( ) [( ) ( ) ( ) ( ) ],

2
S u v x y

λ λ λ λ
λ = + − −

�
(12)

and

	
2 2 2 21( ) [( ) ( ) ( ) ( ) ].

2
H u v x y

λ λ λ λ
λ = + + +

�
(13)

If λ1 and λ2 are two IVPFNs, then
1.	 If S(λ1) < S(λ2), then λ1 <  λ2.
2.	 If S(λ1) = S(λ2), then we have the following three conditions:

(i)	 If H(λ1) = H(λ2), then λ1 =  λ2.
(ii)	 If H(λ1) < H(λ2), then λ1 <  λ2.
(iii)	If H(λ1) > H(λ2), then λ1 >  λ2.

Definition 3 ([11]): Let 
λ λ λ λ

λ = =([ , ],  [ ,  ]) ( 1, 2, ...,  )
j j jj j

u v x y j n  be a collection of IVPFVs, and let IVPFWA: 
Θn → Θ, if

	

2 2

1 1
1 2 3

1 1

1 (1 ( ) ) , 1 (1 ( ) ) ,
IVPFWA ( , , , ..., ) ,

( ) , ( )

j j

j j

j j

j j

n n
w w

j j
w n n n

w w

j j

u v

x y

λ λ

λ λ

λ λ λ λ = =

= =

  
− − − −  

   =        

∏ ∏

∏ ∏
�

(14)

where w = (w1, w2, …, wn)T is the weighted vector of λj with wj ∈[0, 1] and =∑ =1 1.n
j jw  Then, IVPFWA is called 

interval-valued Pythagorean fuzzy weighted averaging operator.

Definition 4 ([18]): Let λ λ λ λ
λ = =([ , ],  [ ,  ]) ( 1, 2, ...,  )

j j j jj u v x y j n  be a collection of IVPFVs, and let IVPFOWA: 
Θn → Θ, if

	

( ) ( )

( ) ( )

2 2

1 1
1 2 3

1 1

1 (1 ( ) ) , 1 (1 ( ) ) ,
IVPFOWA ( , , ,  ...,  ) ,

( ) , ( )

j j

j j

j j

j j

n n
w w

j j
w n n n

w w

j j

u v

x y

σ σ

σ σ

λ λ

λ λ

λ λ λ λ = =

= =

  
 − − − − 
   =        

∏ ∏

∏ ∏
�

(15)
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where w = (w1, w2, …, wn)T is the weighted vector of λj with wj ∈[0, 1] and 1 1,n
j jw=∑ =  and λ

σ(j) is the jth largest 
value of λj. Then, IVPFOWA is called interval-valued Pythagorean fuzzy ordered weighted averaging operator.

Definition 5 ([18]): An IVPFHA operator of dimension n is a mapping IVPFHA: Θn → Θ, which has an associ-
ated vector w = (w1, w2, …, wn)T, such that wj ∈[0, 1] and 1 1.n

j jw=∑ =  Furthermore

	

( ) ( )

( ) ( )

2 2

1 1
, 1 2 3

1 1

1 (1 ( ) ) , 1 (1 ( ) ) ,
IVPFHA ( , , ,  ...,  ) ,

( ) , ( )

j j

j j

j j

j j

n n
w w

j j
w w n n n

w w

j j

u v

x y

σ σ

σ σ

λ λ

λ λ

λ λ λ λ = =

= =

  
 − − − − 
   =        

∏ ∏

∏ ∏

� �

� �

�

(16)

where ( )jσ
λ�  is the jth largest of the weighted PFVs, ( ) ( ) ( ),j j j jnw

σ σ
λ λ λ=� �  and w = (w1, w2, …, wn)T is the weighted 

vector of λj (j = 1, 2, …, n) such that wj ∈[0, 1] and 1 1n
j jw=∑ =  and n is the balancing coefficient, which plays 

a role of balancing. If the vector (w1, w2, …, wn)T approaches  
 
 

1 1 1, ,  ...,  ,
T

n n n
 then the vector (nw1λ1, nw2λ2, …, 

nwnλn)T approaches (λ1, λ2, …, λn)T.

3  �Some Einstein Operations of Interval-Valued Pythagorean Fuzzy 
Sets

Definition 6: Let λ = ([u, v], [x, y]), λ1 = ([u1, v1], [x1, y1]), and λ2 = ([u2, v2], [x2, y2]) be three IVPFNs and δ > 0, then 
some Einstein operations for λ, λ1, λ2 can be defined as follows:

	

ε
λ λ

  + +  
  + +  ⊕ =
  
  
 + − − + − −   

2 2 2 2
1 2 1 2

2 2 2 2
1 2 1 2

1 2
1 2 1 2

2 2 2 2
1 2 1 2

,  ,
1 1 .

, 
1 (1 )(1 ) 1 (1 )(1 )

u u v v

u u v v
x x y y

x x y y
�

(17)

	

ε
λ λ

  
  
  + − − + − −  ⊗ =   + +  
  + +  

1 2 1 2
2 2 2 2
1 2 1 2

1 2 2 2 2 2
1 2 1 2

2 2 2 2
1 2 1 2

,  ,
1 (1 )(1 ) 1 (1 )(1 )

.

, 
1 1

u u v v

u u v v

x x y y

x x y y
�

(18)

	

δ δ δ δ

δ δ δ δ

δδ

δ δ δ δ

δλ

  + − − + − −  
  + + − + + −  =

  
    − + − +  

2 2 2 2

2 2 2 2

22

2 2 2 2

(1 ) (1 ) (1 ) (1 ),  ,
(1 ) (1 ) (1 ) (1 )

.
2( )2( ) ,   

(2 ) ( ) (2 ) ( )

u u v v
u u v v

yx
x x y y

�

(19)

	

δ δ

δ δ δ δ
δ

δ δδ δ

δ δ δ δ

λ

  
  
  − + − +  =

  + − −+ − −    + + − + + −  

2 2

2 2 2 2

2 22 2

2 2 2 2

2( ) 2( ),  ,
(2 ) ( ) (2 ) ( )

.
(1 ) (1 )(1 ) (1 ) ,  

(1 ) (1 ) (1 ) (1 )

u v
u u v v

y yx x
x x y y

�

(20)
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4  �Some Interval-Valued Pythagorean Fuzzy Einstein Averaging 
Aggregation Operators

In this section, we introduce two interval-valued Einstein aggregation operators, namely the IVPFEWA and 
IVPFEOWA operators. We also discuss some desirable properties of these proposed operators, such as idem-
potency, boundedness, commutativity, and monotonicity. These operators provide more accurate and precise 
results as compared to the existing method.

4.1  �IVPFEWA Aggregation Operator

Definition 7. Let λj = ([uj, vj], [xj, yj]) (j = 1, 2, 3, …, n) be the collection of IVPFVs, then an IVPFEWA operator of 
dimension n is a mapping IVPFEWAw: Θn → Θ, and

	

2 2 2 2

1 1 1 1

2 2 2 2

1 1 =1 1

1 2 3

2

1

2

1

(1 ) (1 ) (1 ) (1 )
, ,

(1 ) (1 ) (1 ) (1 )

IVPFEWA ( , , ,  ...,  )

2 ( )

(2 )

j j j j

j j j j

j j j j

j j j j

j

j

j

j

n n n n
w w w w

j j j j

n n n n
w w w w

j j j j

w n
n

w

j

n
w

j

u u v v

u u v v

x

x

λ λ λ λ

λ λ λ λ

λ

λ

λ λ λ λ

= = = =

= = =

=

=

 
+ − − + − − 

 
 
 + + − + + −
  =

−

∏ ∏ ∏ ∏

∏ ∏ ∏ ∏

∏

∏

2

1

2 2 2

1 1 1

,

2 ( )
, 

( ) (2 ) ( )

j

j

j j j

j j j

n
w

j

n n n
w w w

j j j

y

x y y

λ

λ λ λ

=

= = =

 
 
 
 
 
 
 
  
  
  
  
  + − +    

∏

∏ ∏ ∏
�

(21)

where w = (w1, w2, w3, …, wn)T is the weighted vector of λj such that wj ∈[0, 1] and 1 1.n
j jw=∑ =

Theorem 1. Let ([ , ],  [ ,  ]) ( 1, 2, ...,  )
j j j jj u v x y j n

λ λ λ λ
λ = =  be the collection of IVPFVs, then their aggregated 

value by using the IVPFEWA operator is also an IVPFV, and

	

λ λ λ λ

λ λ λ λ

λ

λ

λ λ λ λ

= = = =

= = = =

=

=

 
+ − − + − − 

 
 
 + + − + + −  =

−

∏ ∏ ∏ ∏

∏ ∏ ∏ ∏

∏

∏

2 2 2 2

1 1 1 1

2 2 2 2

1 1 1 1

1 2 3

2

1

2

1

(1 ) (1 ) (1 ) (1 )
, ,

(1 ) (1 ) (1 ) (1 )

IVPFEWA ( , , ,  ...,  )

2 ( )

(2 )

j j j j

j j j j

j j j j

j j j j

j

j

j

j

n n n n
w w w w

j j j j

n n n n
w w w w

j j j j

w n
n

w

j

n
w

j

u u v v

u u v v

x

x

λ

λ λ λ

=

= = =

 
 
 
 
 
 
 
  
  
  
  
  + − +    

∏

∏ ∏ ∏

2

1

2 2 2

1 1 1

,

2 ( )
, 

( ) (2 ) ( )

j

j

j j j

j j j

n
w

j

n n n
w w w

j j j

y

x y y
�

(22)

where w = (w1, w2, w3, …, wn)T is the weighted vector of λj (j = 1, 2, 3, …, n) such that wj ∈[0, 1] (j = 1, 2, 3, …, n) 
and 1 1.n

j jw=∑ =

Proof. We can prove this theorem by mathematical induction. First we show that Eq. (22) holds for n = 1.
Taking the left-hand side,

	

λ λ λ λ

λ λ λ λ

λ λ

λ λ λ λ

λ

  + − − + − −  
  + + − + + −  =        − + − +  

2 2 2 2

2 2 2 2

2 2

2 2 2 2

(1 ) (1 ) (1 ) (1 )
, ,

(1 ) (1 ) (1 ) (1 )
IVPFEWA ( ) .

2( ) 2( )
, 

(2 ) ( ) (2 ) ( )

w w w w

w w w w

w
w w

w w w w

u u v v

u u v v

x y

x x y y
�

(23)
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Taking the right-hand side,

	

2 2 2 2

1 1 1 1

2 2 2 2

1 1 1 1

2 2

1 =1

2 2

1 1

(1 ) (1 ) (1 ) (1 )
, ,

(1 ) (1 ) (1 ) (1 )

2 ( ) 2 ( )
, 

(2 ) ( )

j j j j

j j j j

j j j j

j j j j

j j

j j

j j

j j

n n n n
w w w w

j j j j

n n n n
w w w w

j j j j

n n
w w

j j

n n
w w

j j

u u v v

u u v v

x y

x x

λ λ λ λ

λ λ λ λ

λ λ

λ λ

= = = =

= = = =

=

= =

 
+ − − + − − 

 
 
 + + − + + −
  

− +

∏ ∏ ∏ ∏

∏ ∏ ∏ ∏

∏ ∏

∏ ∏ 2 2

1 1

2 2 2 2

2 2 2 2

2 2

2 2 2 2

(2 ) ( )

(1 ) (1 ) (1 ) (1 )
, ,

(1 ) (1 ) (1 ) (1 )

2( ) 2( )
, 

(2 ) ( ) (2 ) ( )

j j

j j

n n
w w

j j

w w w w

w w w w

w w

w w w w

y y

u u v v

u u v v

x y

x x y y

λ λ

λ λ λ λ

λ λ λ λ

λ λ

λ λ λ λ

= =

 
 
 
 
 
 
 
  
  
  
  
  − +    

 + − − + − − 
 + + − + + − 

=



− + − +

∏ ∏

.

 
 
 
 
      �

(24)

From Eqs. (23) and (24), we have Eq. (22) holds for n = 1. Now we show that Eq. (22) holds for n = k. That is

	

λ λ λ λ

λ λ λ λ

λ

λ

λ λ λ λ

= = = =

= = = =

=

=

 
+ − − + − − 

 
 
 + + − + + −  

=

−

∏ ∏ ∏ ∏

∏ ∏ ∏ ∏

∏

∏

2 2 2 2

1 1 1 1

2 2 2 2

1 1 1 1

1 2 3

2

1

2

1

(1 ) (1 ) (1 ) (1 )
, ,
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If Eq. (25) holds for n = k, then we show that Eq. (25) holds for n = k + 1.
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Now putting these values in Eq. (26), we have
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Again putting the values of (t1w2)2 + (t2w1)2, (t2w2)2 + (t1w1)2, (p1a2)2 + (a1p2)2, (p2a2)2 + (p1a1)2, r1b1, 
2 2 2 2 2 2 2 2

2 2 1 1 2 1 1 2 1 12 , ,r b r b r b r b s c+ − −  2 2 2 2 2 2 2 2
2 2 1 1 2 1 1 22 ,s c s c s c s c+ − −  in Eq. (27), we have
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Hence, Eq. (22) holds for n = k + 1. Thus, Eq. (22) holds for all n.� □

Lemma 1 ([16]). Let λj > 0, wj > 0 (j = 1, 2, …, n) and 1 1,n
j jw=∑ =  then

	 11
( )   ,j

n n
w

j j j
jj
wλ λ

==
∑∏ �

�
(28)

where the equality holds if and only if λ1 = λ2 =  … =  λn.

Theorem 2. Let ([ , ],  [ ,  ]) ( 1, 2, ...,  )
j j j jj u v x y j n

λ λ λ λ
λ = =  be the collection of IVPFVs, where the weighted vector 

of λj is w = (w1, w2, …, wn)T such that wj ∈[0, 1] and 1 1,n
j jw=∑ =  then

	 1 2 3 1 2 3IVPFEWA ( , , ,  ...,  ) IVPFWA ( , , ,  ...,  ).w n w nλ λ λ λ λ λ λ λ≤ � (29)

Proof. Straightforward.� □

Example 1. Let

1 2

3 4

([0.3, 0.4], [0.5, 0.7]), ([0.2, 0.6], [0.3, 0.6]),

([0.3, 0.6], [0.3, 0.5]), ([0.4, 0.7], [0.2, 0.6]),

λ λ

λ λ

= =

= =

and let w = (0.1, 0.2, 0.3, 0.4)T be the weighted vector of λj (j = 1, 2, 3, 4), then we have
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Theorem 3. Commutativity: Let λj and λ′  (  = 1, 2, ...,  )j j n  be two collection of IVPFVs, where 1 2( ,  ,  ...,  )nλ λ λ′ ′ ′  is 
any permutation of (λ1, λ2, …, λn), then

	 ( )1 2 3 1 2 3IVPFEWA ( , , ,  ..., ) IVPFEWA , , ,  ...,  .w n w nλ λ λ λ λ λ λ λ= ′ ′ ′ ′ � (30)

Proof. As we know that

	 1 2 3 1 1 2 2IVPFEWA ( , , ,  ...,  )  ... ,w n n nw w w
ε ε ε

λ λ λ λ λ λ λ= ⊕ ⊕ ⊕ � (31)

and

	 1 2 3 1 1 2 2IVPFEWA ( , , ,  ...,  )  ... ,w n n nw w w
ε ε ε

λ λ λ λ λ λ λ′ ′ ′ ′ ′ ′ ′= ⊕ ⊕ ⊕ � (32)

as 1 2 3( , ,  ,  ...,  )nλ λ λ λ′ ′ ′ ′  is any permutation of (λ1, λ1, λ3, …, λn). Thus, Eq. (33) always holds.� □

Theorem 4. Idempotency: If λj = λ for all j (j = 1, 2, 3, …, n), where λ = ([u, v], [x, y]), then

	 1 2 3IVPFEWA ( , , ,  ...,  ) .w nλ λ λ λ λ= � (33)

Proof. As λj = λ for all j, then we have

1 2 3 1 2 3 1 2 3IVPFEWA ( , , ,  ...,  )  ... (  ... ) .w n n nw w w w w w w w
ε ε ε ε ε ε ε ε

λ λ λ λ λ λ λ λ λ λ= ⊕ ⊕ ⊕ ⊕ = ⊕ ⊕ ⊕ ⊕ =

This completes the proof.� □

Theorem 5. Boundedness: Let ([ , ],  [ ,  ]) ( 1, 2, ...,  )
j j j jj u v x y j n

λ λ λ λ
λ = =  be a collection of IVPFVs and let w = (w1, 

w2, …, wn)T be the weighted vector of λj, such that wj ∈ [0, 1], 1 1,n
j jw=∑ =  then

	 min 1 2 3 maxIVPFEWA( , , ,  ...,  ) ,nλ λ λ λ λ λ≤ ≤ � (34)

for all wj and also

	 max max( ),jj
λ λ= � (35)
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	 min ( ).min j
j

λ λ= � (36)

Proof. Let

	 IVPFEWA ([ , ], [ ,  ]).u v x yλ= = � (37)

Now by the score function, we have

	 min min max max([ , ],  [ ,  ]) ([ , ],  [ ,  ]),u v x y u v x y≤ � (38)

	 max max min min([ , ],  [ ,  ]) ([ , ],  [ ,  ]),u v x y u v x y≥ � (39)

as from Eqs. (38) and (39), we have

min 1 2 3 maxIVPFEWA ( , ,  ,  ...,  ) .nλ λ λ λ λ λ≤ ≤

Thus, Eq. (34) always holds.� □

Theorem 6. Monotonicity: If j jλ λ≤ ′  for all j, where j = 1, 2, 3, …, n, then

	 1 2 3 1 2 3IVPFEWA ( , , ,  ...,  ) IVPFEWA ( , , ,  ,  ).w n w nλ λ λ λ λ λ λ λ≤ ′ ′ ′ ′… � (40)

Proof. As we know that

	 1 2 3 1 1 2 2IVPFEWA ( , , ,  ,  )   .w n n nw w w
ε ε ε

λ λ λ λ λ λ λ= ⊕ ⊕ ⊕… … � (41)

and

	 1 2 3 1 1 2 2IVPFEWA ( , , ,  ,  )   ,w n n nw w w
ε ε ε

λ λ λ λ λ λ λ′ ′ ′ ′ ′ ′ ′= ⊕ ⊕ ⊕… … � (42)

as j jλ λ≤ ′  for all j. Thus, Eq. (40) always holds.� □

4.2  �IVPFEOWA Aggregation Operator

Definition 8: Let λj (j = 1, 2, 3, …, n) be a collection of IVPFVs, then an IVPFEOWA operator of dimension n is 
a mapping IVPFEOWAw: Θn → Θ, and
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(43)

where (σ(1), σ(2), …, σ(n)) is a permutation of (1, 2, …, n) such that σ(j)  σ(j–1) for all j, and w  =  (w1, w2, …, 
wn)T is the weighted vector of λ

σ(j) (j = 1, 2, …, n) such that wj ∈[0, 1] and 1 1.n
j jw=∑ =

Theorem 7. Let ([ , ],  [ ,  ]) ( 1, 2, ,  )
j j j jj u v x y j n

λ λ λ λ
λ = = …  be the collection of IVPFVs, then their aggregated 

value by using the IVPFEOWA operator is also an IVPFV, and
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where (σ(1), σ(2), …, σ(n)) is a permutation of (1, 2, …, n) such that σ(j)  σ(j − 1) for all j, and w = (w1, w2, …, wn)T 
is the weighted vector of λ

σ(j) (j = 1, 2, …, n) such that wj ∈[0, 1] (j = 1, 2, …, n) and 1 1.n
j jw=∑ =

Proof. Proof is similar to Theorem 1.� □

Theorem 8. Let ([ , ],  [ ,  ]) ( 1, 2, ,  )
j j j jj u v x y j n

λ λ λ λ
λ = = …  be a collection of IVPFVs, where the weighted vector 

of λj is w = (w1, w2, w3, …, wn)T such that wj ∈[0, 1] and 1 1,n
j jw=∑ =  then

	 1 2 3 1 2 3IVPFEOWA ( , , ,  ,  ) IVPFOWA ( , , ,  ,  ).w n w nλ λ λ λ λ λ λ λ≤… … � (45)

Proof. Straightforward.� □

Theorem 9. Commutativity: If λ′ = … ( 1, ,  )j j n  is any permutation of λj (j = 1, …, n), then

	 1 2 3 1 2 3IVPFEOWA ( , , ,  ,  ) IVPFEOWA ( , , ,  ,  ).w n w nλ λ λ λ λ λ λ λ= ′ ′ ′ ′… … � (46)

Proof. Proof is similar to Theorem 3.� □

Theorem 10. Idempotency: If λj = λ for all j  ( j = 1, 2, 3, …, n), where λ = ([u, v], [x, y]), then

	 1 2 3IVPFEOWA ( , , ,  ,  ) .w nλ λ λ λ λ=… � (47)

Proof. Proof is similar to Theorem 4.� □

Theorem 11. Boundedness: Let ([ , ],  [ ,  ]) ( 1, 2, ,  )
j j j jj u v x y j n

λ λ λ λ
λ = = …  be a collection of IVPFVs and let 

w  =  (w1, w2, …, wn)T be the weighted vector of λ
σ(j), such that 1[0, 1], 1,n

j j jw w=∈ ∑ =  then

	 min 1 2 3 maxIVPFEOWA ( , , ,  ,  ) ,w nλ λ λ λ λ λ≤ ≤… � (48)

for all wj and

	 max max( ),jj
λ λ=

�
(49)

	 min min( ).jj
λ λ=

�
(50)

Proof. Proof is similar to Theorem 5.� □

Theorem 12. Monotonicity: If j jλ λ≤ ′  for all j, where j = 1, 2, …, n, then

	 1 2 3 1 2 3IVPFEOWA ( , , ,  ,  ) IVPFEOWA ( , , ,  ,  ).w n w nλ λ λ λ λ λ λ λ≤ ′ ′ ′ ′… … � (51)

Proof. Proof is similar to Theorem 6.� □
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5  �An Approach to the MAGDM Problem Based on Interval-Valued 
Pythagorean Fuzzy Information

Algorithm 1. Let X = {X1, X2, X3, …, Xm} be a finite set of m alternatives, and C = {C1, C2, C3, …, Cn} be a finite 
set of attributes. Suppose the grade of the alternatives Xi (i = 1, 2, …, m) on attributes Cj (j = 1, 2, …, n) given 
by decision makers are IVPFNs. Let D = {D1, D2, D3, …, Dk} be the set of k decision makers, and let w = (w1, w2, 
…, wn)T be the weighted vector of the attributes Cj (j = 1, 2, …, n), such that wj ∈[0, 1] and 1 1,n

j jw=∑ =  and let 
ω = (ω1, ω2, …, ωk)T be the weighted vector of the decision makers Ds (s = 1, 2, …, k), such that ωs ∈[0, 1] and 

1 1.k
s sω=∑ =  Let D = (aji) = 〈[uji, vji], [xji, yji]〉 (i = 1, 2, …, m, j = 1, 2, 3, …, n), where [uji, vji] indicates the interval 

degree that the alternative Xi satisfies the attribute Cj and [xji, yji] indicates the interval degree that the alterna-
tive Xi does not satisfy the attribute Cj. Also, [uji, vji] ∈[0, 1], [xji, yji] ∈[0, 1] with condition 0 ≤ (vji)2 + (yji)2 ≤ 1 (i = 1, 
2, …, m, j = 1, 2, …, n). This method has the following steps.

–– Step 1: In this step, we construct the interval-valued Pythagorean fuzzy decision-making matrices, 
( )[ ]s s
ji n mD a ×=  (s = 1, 2, …, k) for the decision.

–– Step 2: If the criteria have two types, such as benefit criteria and cost criteria, then the interval-valued 
Pythagorean fuzzy decision matrices, [ ]s s

ji n mD a ×=  can be converted into the normalized interval-valued 
Pythagorean fuzzy decision matrices, ( )[ ] ,s s

ji n mR r ×=  where
( )

( )
( )

,  for benefit criteria ,
, for cost criteria ,

s
ji js

ji s
ji j

a C
r

a C
= 


 
1, 2, ,  ,
1, 2, ,  

j n
i m

 =
 = 

…
…

	 and ( )s
jia  is the complement of .sjiα  If all the criteria have the same type, then there is no need for 

normalization.
–– Step 3: In this step, we apply the IVPFEWA operator to aggregate all the individual normalized inter-

val-valued Pythagorean fuzzy decision matrices, ( )[ ]  ( 1, ,  ),s s
ji n mR r s k×= = …  into a single interval-valued 

Pythagorean fuzzy decision matrix, R = [rji]n×m.
–– Step 4: In this step, we apply the IVPFEWA operator to aggregate all preference values.
–– Step 5: In this step, we calculate the score functions. If there is no difference between two or more than 

two scores, then we must find out the accuracy degrees of the collective overall preference values.
–– Step 6: Arrange the scores of all alternatives in descending order and select that alternative having the 

highest score function.

6  �Illustrative Example
Suppose a company wants to invest money in the following best options: X1, car company; X2, food company; 
and X3, computer company. There are three experts Ds (s = 1, 2, 3) from a group to act as decision makers, 
whose weight vector is ω = (0.2, 0.3, 0.5)T. There are many factors that must be considered when selecting the 
most suitable company; however, here, we have to consider only the following four criteria, whose weighted 
vector is w = (0.1, 0.2, 0.3, 0.4)T:
1.	 C1: risk analysis,
2.	 C2: growth analysis,
3.	 C3: social political impact analysis,
4.	 C4: environmental analysis,

where C1 and C3, are cost-type criteria and C2 and C4 are benefit-type criteria, i.e. the attributes have two types 
of criteria. Thus, we must change the cost-type criteria into the benefit-type criteria.

–– Step 1: The decision makers give their decision in Tables 1–11.
–– Step 2: In this step, we normalize the decision matrices.
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Table 1: Interval-Valued Pythagorean Fuzzy Decision Matrix of D1.

  X1  X2  X3

C1   ([0.5, 0.8], [0.3, 0.4])  ([0.6, 0.7], [0.3, 0.6])  ([0.3, 0.7], [0.3, 0.5])
C2   ([0.3, 0.5], [0.6, 0.7])  ([0.3, 0.7], [0.2, 0.6])  ([0.3, 0.6], [0.4, 0.7])
C3   ([0.5, 0.7], [0.3, 0.7])  ([0.5, 0.6], [0.3, 0.7])  ([0.2, 0.6], [0.3, 0.7])
C4   ([0.3, 0.6], [0.6, 0.7])  ([0.6, 0.5], [0.2, 0.7])  ([0.3, 0.4], [0.5, 0.6])

Table 2: Interval-Valued Pythagorean Fuzzy Decision Matrix of D2.

  X1  X2  X3

C1   ([0.5, 0.6], [0.3, 0.5])  ([0.5, 0.7], [0.3, 0.6])  ([0.2, 0.8], [0.3, 0.4])
C2   ([0.3, 0.4], [0.6, 0.8])  ([0.3, 0.8], [0.2, 0.6])  ([0.3, 0.6], [0.3, 0.7])
C3   ([0.4, 0.5], [0.3, 0.8])  ([0.5, 0.7], [0.3, 0.6])  ([0.2, 0.6], [0.3, 0.8])
C4   ([0.3, 0.6], [0.5, 0.7])  ([0.3, 0.4], [0.2, 0.8])  ([0.3, 0.5], [0.5, 0.7])

Table 3: Interval-Valued Pythagorean Fuzzy Decision Matrix of D3.

  X1  X2  X3

C1   ([0.3, 0.8], [0.5, 0.6])  ([0.3, 0.5], [0.5, 0.7])  ([0.2, 0.4], [0.5, 0.7])
C2   ([0.5, 0.7], [0.3, 0.4])  ([0.4, 0.6], [0.5, 0.8])  ([0.5, 0.7], [0.2, 0.5])
C3   ([0.3, 0.6], [0.4, 0.6])  ([0.3, 0.5], [0.5, 0.6])  ([0.2, 0.8], [0.4, 0.6])
C4   ([0.5, 0.7], [0.3, 0.4])  ([0.5, 0.7], [0.2, 0.4])  ([0.5, 0.6], [0.3, 0.5])

Table 4: Normalized Pythagorean Fuzzy Decision Matrix R1.

  X1  X2  X3

C1   ([0.3, 0.4], [0.5, 0.8])  ([0.3, 0.6], [0.6, 0.7])  ([0.3, 0.5], [0.3, 0.7])
C2   ([0.3, 0.5], [0.6, 0.7])  ([0.3, 0.7], [0.2, 0.6])  ([0.3, 0.6], [0.4, 0.7])
C3   ([0.3, 0.7], [0.5, 0.7])  ([0.3, 0.7], [0.5, 0.6])  ([0.3, 0.7], [0.2, 0.6])
C4   ([0.3, 0.6], [0.6, 0.7])  ([0.6, 0.5], [0.2, 0.7])  ([0.3, 0.4], [0.5, 0.6])

Table 5: Normalized Pythagorean Fuzzy Decision Matrix R2.

  X1  X2  X3

C1   ([0.3, 0.5], [0.5, 0.6])  ([0.3, 0.6], [0.5, 0.7])  ([0.3, 0.4], [0.2, 0.8])
C2   ([0.3, 0.4], [0.6, 0.8])  ([0.3, 0.8], [0.2, 0.6])  ([0.3, 0.6], [0.3, 0.7])
C3   ([0.3, 0.8], [0.4, 0.5])  ([0.3, 0.6], [0.5, 0.7])  ([0.3, 0.8], [0.2, 0.6])
C4   ([0.3, 0.6], [0.5, 0.7])  ([0.3, 0.4], [0.2, 0.8])  ([0.3, 0.5], [0.5, 0.7])

Table 6: Normalized Pythagorean Fuzzy Decision Matrix R3.

  X1  X2  X3

C1   ([0.5, 0.6], [0.3, 0.8])  ([0.5, 0.7], [0.3, 0.5])  ([0.5, 0.7], [0.2, 0.4])
C2   ([0.5, 0.7], [0.3, 0.4])  ([0.4, 0.6], [0.5, 0.8])  ([0.5, 0.7], [0.2, 0.5])
C3   ([0.4, 0.6], [0.3, 0.6])  ([0.5, 0.6], [0.3, 0.5])  ([0.4, 0.6], [0.2, 0.8])
C4   ([0.5, 0.7], [0.3, 0.4])  ([0.5, 0.7], [0.2, 0.4])  ([0.5, 0.6], [0.3, 0.5])
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–– Step 3: In this step, we apply the IVPFEWA operator to aggregate all the individual normalized interval-
valued Pythagorean fuzzy decision matrices, ( )[ ] ,s s

ji n mR r ×=  into a single interval-valued Pythagorean 
fuzzy decision matrix, R = [rji]n×m.

–– Step 4: In this step, we apply the IVPFEWA aggregation operator to aggregate all preference values:

1 ([0.395, 0.644], [0.394, 0.575]).r =

2 ([0.427, 0.617], [0.289, 0.596]).r =

Table 7: Collective Interval-Valued Pythagorean Fuzzy Decision Matrix R.

  X1  X2  X3

C1   ([0.413, 0.537], [0.389, 0.738])  ([0.413, 0.653], [0.405, 0.595])  ([0.413, 0.593], [0.216, 0.562])
C2   ([0.413, 0.593], [0.429, 0.563])  ([0.352, 0.692], [0.320, 0.697])  ([0.413, 0.653], [0.259, 0.595])
C3   ([0.352, 0.692], [0.363, 0.587])  ([0.413, 0.622], [0.389, 0.576])  ([0.352, 0.693], [0.200, 0.697])
C4   ([0.413, 0.653], [0.405, 0.536])  ([0.475, 0.593], [0.200, 0.563])  ([0.413, 0.538], [0.389, 0.576])

Table 8: Pythagorean Fuzzy Ordered Decision Matrix R1.

  X1  X2  X3

C1   ([0.3, 0.7], [0.5, 0.7])  ([0.3, 0.7], [0.2, 0.6])  ([0.3, 0.7], [0.2, 0.6])
C2   ([0.3, 0.6], [0.6, 0.7])  ([0.6, 0.5], [0.2, 0.7])  ([0.3, 0.6], [0.4, 0.7])
C3   ([0.3, 0.5], [0.6, 0.7])  ([0.3, 0.7], [0.5, 0.6])  ([0.3, 0.5], [0.3, 0.7])
C4   ([0.3, 0.4], [0.5, 0.8])  ([0.3, 0.6], [0.6, 0.7])  ([0.3, 0.4], [0.5, 0.6])

Table 9: Pythagorean Fuzzy Ordered Decision Matrix R2.

  X1  X2  X3

C1   ([0.3, 0.8], [0.4, 0.5])  ([0.3, 0.8], [0.2, 0.6])  ([0.3, 0.8], [0.2, 0.6])
C2   ([0.3, 0.5], [0.5, 0.6])  ([0.3, 0.6], [0.5, 0.7])  ([0.3, 0.6], [0.3, 0.7])
C3   ([0.3, 0.6], [0.5, 0.7])  ([0.3, 0.6], [0.5, 0.7])  ([0.3, 0.5], [0.5, 0.7])
C4   ([0.3, 0.4], [0.6, 0.8])  ([0.3, 0.4], [0.2, 0.8])  ([0.3, 0.4], [0.2, 0.8])

Table 10: Pythagorean Fuzzy Ordered Decision Matrix R3.

  X1  X2  X3

C1   ([0.5, 0.7], [0.3, 0.4])  ([0.5, 0.7], [0.2, 0.4])  ([0.5, 0.7], [0.2, 0.4])
C2   ([0.5, 0.7], [0.3, 0.4])  ([0.5, 0.7], [0.3, 0.5])  ([0.5, 0.7], [0.2, 0.5])
C3   ([0.4, 0.6], [0.3, 0.6])  ([0.5, 0.6], [0.3, 0.5])  ([0.5, 0.6], [0.3, 0.5])
C4   ([0.5, 0.6], [0.3, 0.8])  ([0.4, 0.6], [0.5, 0.8])  ([0.4, 0.6], [0.2, 0.8])

Table 11: Collective Pythagorean Fuzzy Ordered Decision Matrix R.

  X1  X2  X3

C1   ([0.413, 0.734], [0.363, 0.481])  ([0.413, 0.734], [0.200, 0.495])  ([0.413, 0.734], [0.200, 0.492])
C2   ([0.413, 0.630], [0.404, 0.509])  ([0.476, 0.638], [0.323, 0.595])  ([0.413, 0.653], [0.259, 0.595])
C3   ([0.352, 0.582], [0.404, 0.649])  ([0.413, 0.622], [0.389, 0.576])  ([0.413, 0.553], [0.351, 0.595])
C4   ([0.413, 0.512], [0.412, 0.800])  ([0.352, 0.550], [0.399, 0.779])  ([0.352, 0.512], [0.241, 0.758])
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3 ([0.495, 0.619], [0.277, 0.613]).r =

–– Step 5: In� this step, we calculate the score functions:

= = =1 2 3( ) 0.042, ( ) 0.069, ( ) 0.083.S r S r S r

–– Step 6: Arrange the scores of all alternatives in descending order and select that alternative having the 
highest score function. Hence, X3 > X2 > X1. Thus, the best alternative is X3.

For the IVPFEOWA aggregation operator:
–– Step 1: In this step, we construct the interval-valued Pythagorean fuzzy ordered decision matrices.
–– Step 2: In this step, we apply the IVPFEOWA operator to aggregate all the individual interval-valued 

Pythagorean fuzzy ordered decision matrices, ( )[ ] ,s s
ji n mR r ×=  into a single interval-valued Pythagorean 

fuzzy decision matrix, R = [rji]n×m.
–– Step 3: In this step, we apply the IVPFEOWA aggregation operator to aggregate all preference values:

1 ([0.395, 0.579], [0.402, 0.659]).r =

2 ([0.403, 0.612], [0.354, 0.649]).r =

3 ([0.389, 0.576], [0.268, 0.646]).r =

–– Step 4: In this step, we calculate the score functions:

1 1 1( ) 0.052, ( ) 0.004, ( ) 0.003.S r S r S r= − = − = −

–– Step 5: Arrange the scores of all alternatives in descending order and select that alternative having the 
highest score function. Hence, X3 > X2 > X1. Thus, the best alternative is X3.

7  �Conclusion
In this paper, we have developed the notions of the IVPFEWA operator, IVPFEOWA operator, and interval-
valued Pythagorean fuzzy Einstein hybrid weighted averaging operator. We have also discussed some of their 
desirable properties, such as idempotency, boundedness, commutativity, and monotonicity. Finally, we have 
applied these operators to deal with the MAGDM problem under interval-valued Pythagorean fuzzy informa-
tion. For this, we constructed an algorithm for the MAGDM problem. Lastly, we also developed a numerical 
example for MAGDM.
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