
J. Intell. Syst. 2020; 29(1): 172–188

Aakunuri Manjula* and G. Narsimha

Using an Efficient Optimal Classifier for Soil 
Classification in Spatial Data Mining Over Big 
Data
https://doi.org/10.1515/jisys-2017-0209
Received May 13, 2017; previously published online January 10, 2018.

Abstract: This article proposes an effectual process for soil classification. The input data of the proposed 
procedure is the Harmonized World Soil Database. Preprocessing aids to generate enhanced representation 
and will use minimum time. Then, the MapReduce framework divides the input dataset into a complimen-
tary portion that is held by the map task. In the map task, principal component analysis is used to reduce 
the data and the outputs of the maps are then contributed to reduce the tasks. Lastly, the proposed process 
is employed to categorize the soil kind by means of an optimal neural network (NN) classifier. Here, the 
conventional NN is customized using the optimization procedure. In an NN, the weights are optimized using 
the grey wolf optimization (GWO) algorithm. Derived from the classifier, we categorize the soil category. The 
performance of the proposed procedure is assessed by means of sensitivity, specificity, accuracy, precision, 
recall, and F-measure. The analysis results illustrate that the recommended artificial NN-GWO process has 
an accuracy of 90.46%, but the conventional NN and k-nearest neighbor classifiers have an accuracy value of 
75.3846% and 75.38%, respectively, which is the least value compared to the proposed procedure. The execu-
tion is made by Java within the MapReduce framework using Hadoop.

Keywords: MapReduce framework, principal component analysis, neural network, grey wolf optimization, 
accuracy, precision, recall, F-measure.

1  �Introduction
In agriculture, the soil is the major resource of invention, which offers an intermediate for plant organi-
zation, seed germination, root expansion, and enlargement [1]. The soil is the extra species-rich habita-
tion of the earth’s ecosystem and its task comprises biomass creation, preservation of nutrient balance, 
chemical recycling, and water storage [12]. The soil and water can be effortlessly tainted by metals/met-
alloids because of direct contact (and interference) through the chemical procedure of metal discharge 
and recruitment that normally are results of mining [6]. Therefore, in the soil, data mining is significant. 
Soil spatial data mining (SDM) is a position region obtained by data mining for the quick investigation of 
spatial data. The objective of soil SDM is data investigation and knowledge discovery in a big quantity of 
spatial data gathered in a spatial scheme such as geographic information systems (GIS) [13]. The study 
endeavors to compare the performance of data mining algorithms among soil possessions such as particle 
allocation, clay content, and plasticity, which are employed to allocate soils a categorization and addition-
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ally with respect to soil restrictions and soil situation with respect to the subsequent uniqueness: acidity, 
alkalinity, sodicity, salinity, low cation replaceability, phosphorus fixation, cracking and swelling, depth, 
soil density, color, and nutrient content [14, 25].

Soil color is a complete pointer of the chemical composition and physical uniqueness of soils that a 
huge amount of soil information can be efficiently attained by the results of soil color. Therefore, the process 
of soil categorization and qualitative recognition rooted in soil colors is the major frequent process [10]. 
This process of soil categorization was an idea loaded, data reduced association, which instigates in the 
late 1950s, afterward the innovation of the digital computer, which permitted the complete computation of 
taxonomic detachment – detachment among position in multidimensional spaces, the axes definite by the 
typeset or features of the soil outline [11]. This soil categorization scheme offers a frequent metric for passing 
on the uniqueness of comparable soil kinds and for comparison among soils. A typical metric permits sci-
entists and engineers to compare efforts or constantly pertain intend strategy transversely changeable soil 
situation [9]. Also, diverse soil categorization schemes were used and are discussed as pursue. In the middle 
of them, the existing Hungarian Soil Classification System (HSCS) was enhanced between the 1950s and the 
1960s, founded on the genetic standard of Dokuchaev. The scheme is somewhat expressive; the taxonomic 
components are discriminated derived from the identification of a group of soil figuring procedure using a 
soil geographic method and restricted laboratory data [8, 20].

Afterward, the spatial disaggregation of a multicomponent soil categorization scheme was improved, as 
map polygons into entity element soil module have been established in an endeavor to commonly update soil 
maps and to generate class dissimilarity surrounded by the boundaries of unique review map elements [22]. 
Lastly, the Unified Soil Classification System (USCS) was enhanced, which is a broadly employed soil catego-
rization scheme that uses the above-mentioned soil possessions to allocate a soil categorization. Although 
many soil categorization schemes have been enhanced, the procedures of assembling soil data and mapping 
soils, additionally the soil categorization scheme employed, considerably vary between the Alpine countries 
[3]. Thus, to conquer those concerns, classification and regression trees (CART) is a data mining representa-
tion procedure effectual for managing classification (or regression) tasks to offer robust analytical represen-
tation [27]. However, as soil possessions offer a range in their spatial dissimilarity, it is hard to classify soil 
models devoid of initiate fault or oversimplifications. Consequently, class limitations are typically elected 
subjectively by granting (1) an uncertainty about the accuracy of the grave threshold or range employed to 
identify association in a definite group and (2) an uncertainty about the eminence of the input maps [16]. The 
main contributions of the proposed technique are described as follows:
1.	 Efficient classifier is used for soil classification in SDM over big data.
2.	 The MapReduce framework is used to split the input dataset into free pieces, which are handled by the 

map tasks.
3.	 Principal component analysis (PCA) is used to reduce the data and the outputs of the maps are then con-

tributed to reduce the tasks.
4.	 To classify the soil type, the method used optimal neural network (ONN) classification.
5.	 To improve the classification accuracy, weights are optimized by the grey wolf optimization (GWO) 

algorithm.
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3  �Problem Definition
Soil SDM is a complicated area in data mining. The unpredictable development of spatial data and the stand-
ard practice of spatial databases designate the necessity for the mechanical recognition of spatial knowledge. 
The restrictions connected by obtainable soil SDM are as follows:
1.	 GWR in Ref. [5] leads to the prediction errors of soil; hence, they are not flexible in soil classification.
2.	 Traditional soil SDM methods in Ref. [2] are incapable of analyzing the behavior of soils and hence clearly 

leads to the incorrect classification of soil.
3.	 Conventional soil SDM methods are difficult to implement, as they increase the computational costs.
4.	 Using conventional soil SDM technologies reduce the performance rate and lack of accuracy.
5.	 Decreased efficiency in soil data mining techniques reduces the productivity of agriculture.
6.	 The present soil classification strategies still need the drying process of soil samples, which causes time 

complexity issues.

All these limitations motivated us to move on to the proposed method where all the problems are 
eliminated.

4  �Proposed Methodology
SDM can be used to understand spatial data, discover the relation between space and nonspace data, set up 
the spatial knowledge base, excel the query, reorganize spatial database, and obtain concise total charac-
teristics [19]. SDM can be used to analyze many social aspects through geographical data. One could find an 
interesting fact that the regional economy has strong spatial correlation [17]. In this article, we aim to suggest 
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Figure 1: Semantic Structure of the Recommended Technique.
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a process for soil SDM using a competent classifier. The proposed soil classification comprises preprocessing, 
MapReduce framework, and soil classification procedure. The proposed process employs input data such as 
the Harmonized World Soil Database. Actual data is habitually partial, conflicting, and/or deficient indefinite 
activity or movement and is possible to include numerous faults. Data preprocessing is a confirmed process 
of determining such concern. A superior data preprocessing assists to generate enhanced representation and 
will use minimum time. The next section of the proposed process is the MapReduce framework. A MapReduce 
framework typically divides the input dataset into a complimentary portion that is held by the map tasks in a 
completely equivalent manner. The scheme reduces the input data by PCA and the productivity of the maps, 
which are then contributed to the reduce phase. Lastly, the proposed process is used to categorize the soil 
kind by means of the classifier. Here, the categorization is derived from the ONN classifier. The conventional 
NN is customized using the optimization procedure. In an NN, the weights are optimized using the GWO 
algorithm. Derived from the classifier, we categorize the soil category. The general semantic structure of the 
recommended technique is shown in Figure 1.

In spatial data, the soil classification procedure flows in the course of the subsequent two sections: 
MapReduce framework and soil classification. In the MapReduce framework, the input soil data is condensed 
by means of PCA. Then, the condensed data is efficiently categorized by the best NN. The entire progression 
of the two major sections is discussed as follows.

4.1  �MapReduce Framework

MapReduce is a structure for the competent distribution of the study of huge data on an outsized amount 
of servers. It is a similar and disseminated large-scale data processing model that has been widely inves-
tigated and extensively approved for huge data function recently. Incorporated among communications 
possessions provisioned by cloud scheme, MapReduce turns out to be much more dominant, flexible, and 
commercial because of the outstanding uniqueness of cloud computing. The MapReduce framework com-
prises two phases: map step and reduce step. Figure 2 illustrates the general arrangement of the MapRe-
duce framework. There are five sections in MapReduce: Input (input involved data), Map (filtering and 
sorting the data), Reduction (redistribute the mapped data using PSA), Reduce (process each group of the 
redistricted data), and Output (collect all the reduce output). MapReduce courses are normally used to 
practice big files.

A MapReduce framework consists of two major phases: (1) Map phase: This phase inputs input soil data 
and divides it into M map task; every map task executes differently. (2) Reduce phase: In this phase, the sepa-
rated soil data from the previous phase is condensed by PCA. The specific clarification of PCA is discussed in 
the next section.

Output
data 

Input Map Reduction Reduce Output 

Soil data Reduce

Map 

Map 

PCA

Figure 2: Flow Diagram of the MapReduce Framework.
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4.2  �PCA

PCA has been described as the majority of the important results from functional linear algebra. PCA is used 
often in every one of the figures of study, from neuroscience to computer graphics, as it is an easy, nonpara-
metric process of removing appropriate information from confounds of data sets. By a smallest supplemen-
tary endeavor, PCA supplies a direction for how to reduce a compound dataset to a lesser measurement to 
expose the occasionally concealed, shortened dynamics that frequently motivates it. The foremost principles 
of PCA are the study of data to recognize models and discovery models to reduce the measurement of the 
dataset among the smallest failure of information.

Our preferred conclusion of the PCA is to offer an attribute space onto a slighter subspace that signifies 
our data “well”. A potential function would be a model categorization task, where we want to reduce the 
computational expenses and the fault of limitation assessment by dropping the amount of measurement of 
our attribute space by removing a subspace that depicts our data “best”.

4.3  �Summary of the PCA Approach

Listed below are the six general steps for performing a PCA:
1.	 Take the whole dataset consisting of d-dimensional samples, ignoring the class labels.
2.	 Compute the d-dimensional mean vector (i.e. the means for every dimension of the whole dataset).
3.	 Compute the covariance matrix of the whole data set.
4.	 Compute eigenvectors (e1, e2,…,ed) and corresponding eigenvalues (λ1, λ2,…,λd).
5.	 Sort the eigenvectors by decreasing eigenvalues and choose k eigenvectors with the largest eigenvalues to 

form a d*k-dimensional matrix M (where every column represents an eigenvector).
6.	 Use this d*k eigenvector matrix to transform the samples onto the new subspace. This can be summa-

rized by the mathematical equation: y = MT*x.

From the above procedure, the input soil data is reduced and then the resultant output is fed to the next 
phase of the MapReduce framework.

In the reduce phase, obtain every one of the condensed data from PCA and construct the productivity of 
the MapReduce scheme.

Lastly, the condensed productivity from the MapReduce framework is provided for to the categorization 
procedure. Agriculture is the field that provides food to the entire world [18]. There would be no existence of 
humans without agriculture. Hence, it is essential to increase the yield of agriculture. The yield of agriculture 
could be increased only via proper classification of soil [23]. Hence, in our suggestion scheme, the best NN is 
used for the soil categorization function. Each phase of the system of the best NN is discussed next.

4.4  �ONN Classifier

The proposed procedure employs the best NN for soil categorization. The conventional NNs are customized 
by means of the GWO algorithm. The GWO algorithm is engaged to optimize the influence in the NN. The 
foremost intention of the ONN is to classify the input spatial soil data. For the preparation function, the 
backpropagation algorithm is used in our recommended procedure. NN encompasses a sequence of nodes 
(neurons) that obtain numerous associations among further nodes. Each one association includes an influ-
ence related to it, which can be diverse in force, in similarity through neurobiology synapses. The artificial 
NN (ANN) structure has an input layer and an output layer as well as hidden layers between these two layers. 
The amount of these layers is reliant on the difficulty we are difficult to explain, that is fundamentally on the 
consumer. There are two very significant sections in the NN system: the preparation section and the experi-
ment section. The general progression of the best NN is shown next.
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4.5  �ONN Function Steps

1.	 Fix weights for every neuron, except the neurons in the input layer.
2.	 Develop the NN with the input soil data as the input units, Hu as the hidden units, and Ou as the output unit.
3.	 The computation of the proposed bias function for the input layer is
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In the proposed best NN, the influences are optimized using the GWO algorithm. Each system of the GWO is 
demonstrated in the next section.

4.6  �GWO Algorithm

The grey wolves adequately enclose Canidae species ancestors and are esteemed as the apex predators offer-
ing their location at the wherewithal’s food sequence [21]. They habitually illustrate a partiality to construct 
suitable as a cluster. The heads represent a male and a female, marked as α, which is the majority division 
in incriminating of enchanting appropriate selection presenting different features; they are fundamentally 
supplementary wolves that effectively suggest a few support to the α in the option constructing or equivalent 
cluster task. The choices prepared by the α are permitted onto the group. The β conveys to the second grade 
in the outstanding arrange of the grey wolves. They are basically complementary wolves that adequately 
treaty a number of assist to the α in the option generating or corresponding group performance. The omega, 
which is the smallest division of the grey wolf group, by and great task as a replacement contribution into 
the further primary wolves very practically on each occasion and is acceptable to obtain just the diminu-
tive leftovers enchanting following an enormous blowout by the organizer wolves. In the GWO process, the 
tracking (optimization) is directed by then α, β, δ, and ω. For picking the best influence, the proposed pro-
cedure employs the GWO algorithm. The pseudo code for the customized GWO algorithm is demonstrated 
below.

Pseudo code for GWO
Begin
Step 1: Initialize the random weights wi = (i = 1, 2, 3,…,n)
 Initialize a, A, and C are the coefficient vectors
Step 2: Find the fitness of the initial weight
 Fiti = minMSE
Step 3: Separate the solution based on the fitness
 w

α
 = first best search weight

 w
β
 = second best search weight

 w
δ
 = third best search weight

While (t < max number of iteration)
 For each search weight
Step 4: Update the position of the current search weight
   + +

+ = 1 2 3( 1)
3

p p p
p

w w w
w t

 End for
Step 5: Calculate the fitness of the new search weight
Step 6: Update w

α
, w

β
, and w

δ

Step 7: Store the best weight so far attained
Iteration = Iteration + 1
End while
Stop
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The step-by-step process of the GWO algorithm is mentioned below.

Step 1: Initialization process
Initialize the input random weights and a, A, and C as coefficient vectors.

Step 2: Fitness evaluation
Evaluate the fitness performance based on Eq. (2) and then pick the best result.

	 min MSEiFit = � (2)

Step 3: Separate the solution based on the fitness
Now, determine the different result on the foundation of the fitness value. Let the first best fitness results be 
w

α
, the second best fitness results w

β
 and the third best fitness results w

δ
.

Step 4: Update the position
We presume that the α, β, and δ obtain the enhanced facts about the probable position of the prey to replicate 
precisely the tracking activities of the grey wolves. Because of the result, we accumulate the primary three 
best influences accomplished until now and necessitate the further search influence (including the omegas) 
to modify their situation along with the situation of the best search influence. For replication, the innovative 
weight wp(t + 1) is predictable by the formulas below:

	 | . ( 1) ( ) |p pK C w t w t= + − 
�� � (3)
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where t is the iteration number, p(t) is the prey location, A and C are the coefficient vector, a�  is linearly 
reduced from 2 to 0, and r1 and r2 are the random vector [0, 1]. It can be distinguished that the final influence 
would be in an arbitrary position prearranged a circle, which is precise by the position of α, β, and δ in the 
investigate break. It also meant by α, β, and δ evaluate the location of the prey and supplementary wolves 
update their location randomly in the region of the prey. Examination and utilization are specific by means of 
the adaptive values of a and A. The adaptive values of limitation a and A allow GWO to effortlessly changeo-
ver in the middle of examination and utilization. By retreating A, half of the iterations are dedicated to the 
examination (|A | < 1) and the other half is devoted to the convention. Attaching the demeanor, the following 
equations are used keeping in mind the conclusion objective to provide arithmetical representation.

Step 5: Fitness calculation
Calculate the fitness of the new search weight using Eq. (2) and then store the best solution.

Step 6: Stopping criteria
Replicate Steps 3–5, awaiting an improved fitness or highest amount of iterations are collected. Derived from 
on top of the declared procedure, accomplish the best influence. After that, the best influence is used for the 
additional procedure.

–– The activation function for the output layer is estimated as

	

1Active ( )
1 SS

e−=
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(6)
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–– Recognize the learning error as follows:
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where Desiredn is desired output and Actualn is actual output.
In the best NN, the mistake should be in the least value. Subsequently, the qualified NN is well qualified 

for presenting the experiment stage. Derived from the qualified data, the NN arrangement efficiently catego-
rized the soil category. The analysis result of the proposed procedure is discussed in Section 5.

5  �Results and Discussion
This section offers the comprehensive results of the effect obtained from the proposed soil categorization 
in SDM, which is carried out in the functioning platform of Java within the MapReduce framework using 
Hadoop. The analysis outcome and the performance of the proposed process are discussed in the subsequent 
sections.

5.1  �Dataset Description

The proposed process was investigated by the Harmonized World Soil Database version 1.2.
The Harmonized World Soil Database is a 30-arc second raster database with more than 15,000 different 

soil mapping components that merge local and countrywide updates of soil information worldwide (SOTER, 
ESD, Soil Map of China, WISE) from the information restricted within the 1:5,000,000 scale FAO-UNESCO Soil 
Map of the World. The resulting raster database consists of 21,600 rows and 43,200 columns, which are linked 
to harmonized soil property data. The dataset is available at http://www.fao.org/soils-portal/soil-survey/
soil-maps-and-databases/harmonized-world-soil-database-v12/en/.

5.2  �Evaluation Metrics

The assessment metrics for the performance of the proposed scheme are sensitivity, specificity, accuracy, 
precision, recall, and F-measure. The standard count values such as true positive (TP), true negative (TN), 
false positive (FP), and false negative (FN) are presented.

5.2.1  �Sensitivity

The ratio of the number of TPs to the sum of TP and FN is called sensitivity.

	

No of TPSensitivity 100
No of TP No of FN

= ×
+ �

(8)

5.2.2  �Specificity

Specificity is defined as the ratio of the number of TNs to the sum of TNs and FPs.

	

No of TNSpecificity 100
No of TN+No of FP

= ×
�

(9)

http://www.fao.org/soils-portal/soil-survey/soil-maps-and-databases/harmonized-world-soil-database-v12/en/
http://www.fao.org/soils-portal/soil-survey/soil-maps-and-databases/harmonized-world-soil-database-v12/en/
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5.2.3  �Accuracy

Accuracy can be calculated using the measures of sensitivity and specificity.

	

TP TNAccuracy 100
TP TN FP FN

+= ×
+ + + �

(10)

5.2.4  �Precision

Precision means the nearness of two or more dimensions to each other. It is defined as the ratio of TP to the 
sum of TP and FP.

	

TPPrecision 100
TP FP

= ×
+ �

(11)

5.2.5  �Recall

Recall is defined as the ratio of TP to the sum of TP and FN.

	

TPRecall 100
TP FN

= ×
+ �

(12)

5.2.6  �F-measure

F-measure comprises the harmonic mean of the combinations of precision and recall.

	

Precision recallF-measure 2
precision recall

∗= ∗
+ �

(13)

5.3  �Performance Analysis

The proposed procedure is discussed in the next section. Table 1 illustrates the performance analysis of the 
proposed procedure. The sensitivity, specificity, accuracy, precision, and recall, and F-measure values are 
presented. In our procedure, 90% of the input data is allowed for preparation and the outstanding 10% is 
allowed for the experiment. The performance analysis of the proposed procedure with varying data size is 
discussed below.

In Table 1, using the proposed process for the data dimension of 1000, the sensitivity value is 0.89676%, 
the specificity value is 0.78947368%, the accuracy value is 0.9046%, the precision value is 0.98979%, the 

Table 1: Performance Analysis by Varying Data Size.

Data size Sensitivity Specificity Accuracy Precision Recall F-measure

1000 0.8967 0.7894 0.9046 0.9897 0.8967 0.9409
2000 0.8657 0.8181 0.9138 0.9489 0.8657 0.9054
3000 0.8950 0.75 0.9107 0.9797 0.8950 0.9354
4000 0.8355 0.784 0.8815 0.9447 0.8355 0.8867
5000 0.8416 0.7777 0.8639 0.9721 0.8416 0.9022
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recall value is 0.89676%, and the F-measure value is 0.940986%. For the data dimension of 2000, the sensi-
tivity value is 0.865787%, the specificity value is 0.81818%, the accuracy value is 0.913846%, the precision 
value is 0.948979%, the recall value is 0.865787%, and the F-measure value is 0.905476%. For the data dimen-
sion of 3000, the sensitivity value is 0.89506%, the specificity value is 0.75%, the accuracy value is 0.9797%, 
the precision value is 0.9797%, the recall value is 0.89506%, and the F-measure value is 0.935484%. For the 
data dimension of 4000, the sensitivity value is 0.83553%, the specificity value is 0.78409%, the accuracy 
value is 0.881538%, the precision value is 0.944737%, the recall value is 0.8355%, and the F-measure value 
is 0.88678%. For the data dimension of 5000, the sensitivity value is 0.8416499%, the specificity value is 
0.77777%, the accuracy value is 0.86399%, the precision value is 0.972163%, the recall value is 0.841649%, 
and the F-measure value is 0.902211%.

Table 2 presents the performance analysis by the cross-validation method with a steady data dimension of 
1000. For cross-validation 1, the sensitivity value is 0.82265%, the specificity value is 0.75%, the accuracy value 
is 0.854769%, the precision value is 0.9638%, the recall value is 0.826%, and the F-measure value is 0.886443% 
for the preparation percentage of 70 and the experiment percentage of 30. For cross-validation 2, the sensitivity 
value is 0.85604%, the specificity value is 0.775862%, the accuracy value is 0.863999%, the precision value is 
0.98095%, the recall value is 0.85265%, and the F-measure value is 0.91817% for the preparation percentage of 
80 and the experiment percentage of 20. For cross-validation 3, the sensitivity value is 0.89676%, the specific-
ity value is 0.78947368%, the accuracy value is 0.9046%, the precision value is 0.98979%, the recall value is 
0.89676%, and the F-measure value is 0.940986% for the preparation percentage of 90 and the experiment 
percentage of 10. The average accuracy value for the cross-validation method is 87.44%.

5.4  �Effectiveness of the Suggested Technique

In this section, the efficiency of the proposed procedure is compared to a further obtainable procedure. The 
detail clarification is demonstrated in Figure 3.

Table 2: Performance Analysis by the Cross-Validation Method.

Cross-validation Testing percentage Sensitivity Specificity Accuracy Precision Recall F-measure

1 30 0.82265 0.75 0.854769 0.9638 0.826 0.886443
2 20 0.85604 0.775862 0.863999 0.98095 0.85265 0.91817
3 10 0.89676 0.78947368 0.9046 0.98979 0.89676 0.940986

Reduced data

Training 

Neural network

Weight optimization
using GWO 

Optimal weight

Testing 

Neural network

Classified O/P

Figure 3: Overall Process of the ONN.
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5.5  �Comparison Analysis of Performance Metrics

The accuracy value is the foremost feature in the soil categorization scheme. It is significant for the process 
to offer the elevated accuracy value to provide the best process. Figure 4 illustrates the proportional study for 
the accuracy value by the obtainable categorization process. We allow the obtainable categorization scheme 
as the conventional NN and k-nearest neighbor (KNN) classifier.

Figure 4 illustrates the accuracy of the proposed ANN-GWO compared to the accuracy of the obtainable 
classifiers such as NN and KNN. The conventional NN classifier has 75.3846% accuracy and the KNN classifier 
has 75.38% accuracy, but the proposed process has 90.46% accuracy, which is the highest value compared to 
the obtainable procedure.

Figure 5 illustrates the sensitivity of the proposed ANN-GWO compared to the sensitivity of the obtainable 
classifiers such as NN and KNN. The conventional NN classifier has a sensitivity value of 0.75% and the KNN 
classifier has 0.7538% sensitivity value, but the proposed classifier ANN-GWO has 0.89676% sensitivity value, 
which is the highest value compared to the obtainable classifier procedure.

Figure 6 illustrates the specificity of the proposed ANN-GWO compared to the specificity of the obtainable 
classifiers such as NN and KNN. The NN classifier has a specificity value of 0.77166% and the KNN classi-
fier has 0.811269% sensitivity value, but the proposed classifier ANN-GWO has 0.789474% sensitivity value. 
Compared to the obtainable procedure, the recommended procedure has the least specificity value. Although 
it has the least specificity value, the categorization accuracy is the highest value compared to the further 
categorization procedure.

Figure 7 illustrates the precision and recall of the proposed ANN-GWO compared to the precision and 
recall of the obtainable classifiers such as NN and KNN. The precision value of the NN classifier is 0.8229% 
and the KNN classifier has 0.81887% precision value, but the proposed classifier ANN-GWO has 0.98979% 
precision value. Compared to the obtainable process, the proposed categorization procedure has the highest 
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precision value. The recall value of the NN classifier is 0.75% and the recall value of the KNN classifier is 
0.7538%, whereas the proposed classifier has 0.89676% recall value, which is better than the obtainable 
classifiers.

Figure 8 illustrates the F-measure value of the proposed ANN-GWO compared to the F-measure value of 
the obtainable classifiers such as NN and KNN. The NN classifier has 0.784768% F-measure value and the 
KNN classifier has 0.8792% F-measure value, but the proposed classifier has 0.940986% F-measure value, 
which is better than the obtainable classifiers.

In Figure 9, the proposed method compares the result for PCA with and without eigenvector k value. 
The performance is evaluated by accuracy, sensitivity, and specificity values. Here, the proposed PCA with 
eigenvector has an accuracy value of 90.46%, the sensitivity value is 0.89676%, and the specificity value is 
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0.789%, but the proposed system PCA without eigenvector has an accuracy value of 87.35%, the sensitivity 
value is 0.8661%, and the specificity value is 0.7556%, which is the minimum value compared to PCA with 
eigenvector. In the graph, PCA with k value improves the proposed performance compared to PCA without 
k value. The comparison result for with and without optimization is shown in Table 3.

Table 3 shows the comparison result for soil classification performance with and without optimization. 
It is clearly shown that the proposed technique with the optimization method has a better result compared 
to that without the optimization method. Here, the accuracy value of the proposed soil classification with 
optimization is 90.46% but that without the optimization method is 88.72%, which is minimum value com-
pared to the proposed technique. From the result, the proposed method concludes that classification with the 
optimization method outperforms the classification without optimization.

The proposed performance is compared to the existing technique [7] in Figure 10. For comparison, the 
proposed technique considers the existing support vector machine (SVM) and PCA with SVM.

Figure 10 illustrates the accuracy value of the proposed ANN-GWO compared to the accuracy value of the 
obtainable classifiers such as SVM and PCA + SVM.
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Figure 9: Comparison Results for PCA with and without k Value.
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Figure 10: Comparison Results for Various Existing Methods.

Table 3: Comparison Results for Soil Classification with and without Optimization.

Metrics Soil classification with optimization Soil classification without optimization

Accuracy 90.46 88.72
Sensitivity 0.8967 0.7958
Specificity 0.8112 0.7643
Precision 0.9897 0.8564
Recall 0.8967 0.7958
F-measure 0.9409 0.8451
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For cross-validation 1, the accuracy value of the SVM classifier is 81.44% and PCA + SVM classifiers have 
72.63% accuracy value, but the proposed classifier ANN-GWO has 85.47% accuracy value.

For cross-validation 2, the accuracy value of the SVM classifier is 59.61% and PCA + SVM classifiers have 
80.61% accuracy value, but the proposed classifier ANN-GWO has 86.399% accuracy value.

For cross-validation 3, the proposed classifier ANN-GWO has 90.46% accuracy value, but the exist-
ing classifier has 75.94% for the SVM classifier and 59.31% for the PCA + SVM classifier. Compared to the 
obtainable process, the proposed categorization procedure has the highest accuracy value. As a result, the 
recommended procedure has the highest result compared to the obtainable classifier for spatial data soil 
categorization.

6  �Conclusion
An effectual soil categorization in SDM in excess of huge data is proposed in this article. The execution is 
made by Java within the MapReduce framework using Hadoop. Originally, the input soil data is preprocessed 
and then the resulting productivity is supplied to the MapReduce framework. Finally, the condensed soil 
data is categorized using the best NN. The performance of the proposed procedure is assessed by means of 
sensitivity, specificity, accuracy, precision, recall, and F-measure. The analysis results illustrate that the rec-
ommended ANN-GWO process has an accuracy of 90.46%, but the conventional NN and KNN classifiers have 
an accuracy value of 75.3846% and 75.38%, respectively, which is the least value compared to the proposed 
procedure. In the future, investigators can use a variety of categorization procedures to accomplish superior 
quality in performance.
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