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Abstract: This research provides a comparative study of intelligent systems in structural damage assessment
after the occurrence of an earthquake. Seismic response data of a reinforced concrete structure subjected to
100 different levels of seismic excitation are utilized to study the structural damage pattern described by a
well-known damage index, the maximum inter-story drift ratio (MISDR). Through a time-frequency analysis
of the accelerograms, a set of seismic features is extracted. The aim of this study is to analyze the perfor-
mance of three different techniques for the set of the proposed seismic features: an artificial neural network
(ANN), a Mamdani-type fuzzy inference system (FIS), and a Sugeno-type FIS. The performance of the models
is evaluated in terms of the mean square error (MSE) between the actual calculated and estimated MISDR
values derived from the proposed models. All models provide small MSE values. Yet, the ANN model reveals
a slightly better performance.

Keywords: Fuzzy inference system (FIS), Mamdani, Sugeno, artificial neural network (ANN), maximum inter-
story drift ratio (MISDR), structural damage estimation.

MSC2010: 05C90.

1 Introduction

This paper is motivated by the major problem of managing damages and life-saving resources in urban areas
after the manifestation of an earthquake. Its goal is to estimate potential structural damage on the affected
area, avoiding either non-linear dynamic analysis of structures or post-seismic inspection of buildings. Struc-
tural damages can be evaluated either in terms of classification to damage categories or in terms of numerical
structural damage prediction.

In order to perform structural damage estimation, three intelligent techniques are developed. An ANN,
a Mamdani-type FIS, and a Sugeno-type FIS are utilized for damage classification and numerical estimation
of a widely used damage index, the MISDR. The novelty of the proposed study is the application and the
comparison of the three regression models for the evaluation of damage indicator. The proposed models are
able to efficiently quantify the structural damage by utilizing a set of newly introduced seismic intensity para-
meters. Previous studies confirmed the strong correlation of the aforementioned set of seismic parameters
with MISDR.

This paper underlines the differences between the three schemes and shows the better choice for the
problem under study. It is of major importance to identify the most accurate and efficient intelligent scheme
for the damage assessment, as the estimation is inextricably associated to potential human loses and essential
for the repair actions after a seismic event. Such actions must occur within a short time after the earthquake,
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especially in urban areas, and usually they involve a considerable number of structures. Thus, it is clear that
knowledge of structural adequacy in concrete constructions is indispensable.

Among the data-driven methods, fuzzy methods are able to efficiently solve complex problems and reduce
upcoming uncertainties. FISs are appealing for researchers and have found applications in various fields of
science [6, 16, 25]. The most appealing characteristic of fuzzy models is that they are able to describe complex
and non-linear problems [24]. The fuzzy rules, which contain the input information, are easily interpretable.
Furthermore, they provide a simple interface for extending the model with additional information by adding
new rules or alternate the existing ones. The advantages of fuzzy techniques can be summarized as follows:
(i) allow comprehensible definitions of knowledge of the system through “if-then” rules, (ii) deal with inher-
ent uncertainties like experts’ approach to problems, (iii) are based on a solid mathematical basis, and (iv)
combine numerical and categorical data. Fuzzy techniques are reported in the literature for damage classifi-
cation [1, 20]. ANN techniques have also been successfully employed in numerous classification procedures
or object recognition and other applications [5, 10]. The proposed models are not restricted to classifying the
damage into damage categories, but they numerically estimate the structural damage degree. Classification
results may be misleading, as it is common to assign the damage that belongs to the edges of the predefined
intervals in neighboring categories. However, by utilizing the proposed method, one can numerically evalu-
ate the structural damage, providing the objective picture of the damage status.

The paper is organized as follows. Section 2 describes the seismic intensity feature extraction process.
Section 3 presents the motivation for the comparison of the Mamdani versus Sugeno types of FIS, and shows
the development of the two schemes. Section 4 presents the ANN model. Experimental results are illustrated
in Section 5. Final conclusions are drawn in Section 6.

2 Fundamentals

This paper introduces three model schemes based on artificial intelligence techniques to relate inputs to
outputs. The models receive the same set of input parameters that describe both the damage potential of
seismic excitations and the characteristics of the structure under study. The structural damage degree is
considered as the output of the models by means of a widely used global damage index. More specifically,
the models receive as input a set of four well-known and four proposed seismic intensity parameters. These
parameters are associated with the dissipated energy and the frequency content of the seismic accelerogram.
The output of both models is an MISDR value that efficiently describes the seismic structural damage poten-
tial. Figure 1 demonstrates the proposed methodology for the FIS models. The seismic feature extraction
process, the definition of the utilized structural damage index, and the details of the examined frame struc-
ture are provided in the following subsections.
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Figure 1: Proposed Methodology.
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2.1 Seismic Intensity Feature Extraction

In this work, four well-known and four newly extracted seismic intensity parameters, calculated from the
same original definitions, are utilized. Seismic intensity parameters are divided into four categories: spec-
tral intensity, spectral, energy, and peak parameters [4]. One parameter from each category is selected and
calculated for the entire seismic signal — the one that is proven to be the most correlated to MISDR [4]. These
parameters are the spectrum intensity after Housner (SI,), spectral displacement (SD), Arias intensity (1,),
and peak ground velocity (PGV). The same set of parameters is also calculated for a specified subsection of
the initial seismic signal to form the new modified set of seismic intensity parameters, referred to as MSI,,
MSD, MI,, and MPGV. The proposed seismic intensity feature extraction is according to a recent methodology
[22]. The process is illustrated in Figure 1 and is briefly reviewed below.

In the first step of the process, the Hilbert-Huang transform (HHT) [7] is performed. The HHT employs
the ensemble empirical mode decomposition [23] to decompose the signal into a finite number of intrinsic
mode functions (IMFs). For each IMF, the mean frequency value is calculated. When damage occurs to a
structure, its eigenfrequency varies close to its original value. Thus, the IMF with a mean frequency value
closest (within a predetermined area) to the fundamental frequency of the examined structure is selected.
Supposing that fO is the eigenfrequency of the structure, then the proposed area is between 0.9 fO0 and 1.1
f0. The selected frequency band is based on the integration limits suggested by Kappos for the evaluation of
spectrum intensity [8]. If the closest mean frequency value belongs to this area, then the respective IMF is
selected for further analysis. If the closest mean frequency value is spaced beyond the predetermined region,
then two IMFs, those that are located in either side of the region, are selected and summed.

In the second step of the process, an appropriate time-window of the selected IMF(s) is isolated. Two
thresholds are specified for the time-window: ¢ . and t_ . Thet value is set to the time when the Husid
diagram reaches the value 0.05, which is equal to the time when MISDR reaches the value 0.05, which is
10% of the low-damage category threshold (set to 0.5) (Table 1). The ¢__ value is the time when the Husid
diagram reaches 80% of its maximum value, which is almost equal to the time when MISDR reaches 90% of
its maximum value. The introduction of the time window helps reduce the computational burden, as, instead
of the entire signal, only a part of one or two IMFs is imported to the following computer-supported analysis.
Additionally, it represents a part of the earthquake duration where most of the seismic energy is released.
Moreover, the time window is directly related to the damage evolution of the examined structure. Finally, it
helps eliminate the end-effects issue [7], one reported drawback of HHT, as the IMF edges are cut off. In this
strong motion time window, the four aforementioned proposed seismic intensity parameters are calculated.

In the third step of the process, the set of eight seismic parameters is input to the intelligent models, and
the MISDR value is estimated for 100 seismic events. The development of the FIS involves a tuning process,
so as to optimize the number of membership functions (MFs). The tuning process is analyzed in Section 3.1.

2.2 Structural Damage Index MISDR

Damage indices summarize the damage evoked to a structure into a single value. MISDR can evaluate the
level of the post-seismic damage of a structure, and it is calculated according to the following equation:

MISDR = M%loo [%], )]

Table 1: Structural Damage States According to MISDR.

Structural damage index Low Medium Large Total

MISDR (%) <0.5 0.5<MISDR<1.5 1.5<MISDR<2.5 >2.5
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where |u|__ is the maximum absolute inter-story drift and h is the inter-story height [17]. The intervals of
MISDR values are stated in Table 1. According to the ranges provided, the damage degree is classified as low,
medium, large, or total. These categories refer to insignificant, reparable, irreparable, and severe damage or
breakdown of the building, respectively.

2.3 Reinforced Concrete Structure Frame Model

Figure 2 demonstrates the examined reinforced concrete (RC) frame structure. The eigenfrequency of the
eight-story model is 0.85 Hz. The frame is designed according to Euro-code rules EC2 and EC8 [2, 3]. The
cross-sections of the beams are T-beams with 40-cm width, 20-cm slab thickness, 60-cm total beam height,
and 1.45-m effective slab width. The distance between the frames of the structure is 6 m. The frame structure
has been characterized as an “importance class Il and ductility class medium” according to EC8. The subsoil
is of type C and the region seismicity belongs to category 2. External loads are included and are incorporated
into load combinations, as suggested in EC2 and EC8. After the design of frame, a non-linear dynamic analy-
sis takes place and its structural seismic response (MISDR) is calculated through the computer program
IDARC [14].

2.4 Correlation Analysis

The examined intelligent models predict an MISDR value based upon the inserted input data. In order to eval-
uate the efficiency of the seismic intensity parameters, which will be utilized subsequently as input data to
the proposed models, a correlation analysis is carried out. The relation between the seismic intensity param-
eters and the structural damage index MISDR is investigated. For this purpose, a correlation study based on
Spearman rank correlation coefficient is carried out. For a set of n measurements of X and Y, wherei =1, 2,
..., n, the Spearman correlation coefficient is defined as
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Figure 2: RC Frame Model.
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Table 2: Rank Correlation Coefficients after Spearman.

Seismic parameters 1, Mmi, Sl, MmsI, SDh MSD PGV MPGV
MISDR 0.85 0.87 0.92 0.81 0.89 0.85 0.82 0.82
=1- 62::1 v’ (2)

pSpearman - n(nz _1) ’

where D is the difference between the ranking degree of X and Y, respectively. Correlation coefficient values
>0.8 indicate a strong connection between the parameters. Values <0.45 indicate a weak connection, and all
other cases between 0.45 and 0.8 reveal a medium connection [4]. The correlation degrees between MISDR
and the selected seismic parameters are presented in Table 2. A strong association with MISDR is revealed for
the set of seismic intensity parameters, >0.81 in all cases.

3 Mamdani Versus Sugeno FIS

FIS has two types based on the mathematical calculation of the inference: the Mamdani-type [11] and the
Sugeno-type inference [18]. A Mamdani-type fuzzy rule is described as follows: “If A is X1 and B is X2, then
C is X3,” where A, B, C are variables and X1, X2, X3 are fuzzy sets. A Sugeno-type fuzzy rule is described as
follows: “If A is X1 and B is X2, then C=aA + bB+c,” where a, b, c are constants; A, B, C are variables; and X1,
X2, X3 are fuzzy sets.

The main difference between the two schemes is in the evaluation of the output MFs. In Sugeno-type FIS,
the output MF is a constant or linear function (allows a single output), while in Mamdani-type it is a fuzzy set
(allows multiple outputs). Mamdani-type FIS uses defuzzification technique of the fuzzy output. Sugeno-type
FIS uses weighted average to compute a crisp output. Thus, Mamdani FIS provides an interpretable output.
On the other hand, Sugeno FIS is more computationally efficient and has a better processing time, as the
weighted average technique replaces the time-consuming defuzzification procedure. Moreover, the Sugeno
FIS is more flexible, as it permits more than one parameter in the output. The output of Sugeno FIS is a func-
tion of the inputs; hence, it expresses a more distinct relation between them.

Here, the output of the model is a single numerical MISDR value. For problems of multiple inputs and
of one output, both models can be equally utilized and a performance comparison between them can be
provided.

3.1 Development of the Mamdani FIS

MISDR damage estimation is initially developed by utilizing the Mamdani-type FIS model. The model receives
eight input parameters and provides one output, the MISDR estimated value. The rule base is constructed
from the input-output pairs. Input and output ranges are divided into fuzzy regions. Every region is deter-
mined by an MF. The performance of the model has been tested for successive values of MFs, starting from
4. The number of MFs has been increased until the best result has been obtained. The performance of the
FIS is evaluated in terms of the mean square error (MSE) between the actual calculated MISDR value and the
estimated MISDR value derived from the FIS, according to the equation

MSE =12| MISDR

j=1

—MISDR P, (3)

calculated estimated

where v is the number of samples (the set of examined seismic events). Figure 3 demonstrates the evolution
of the average MSE for different numbers of MFs. Optimal performance is achieved for 10 MFs for input and
output parameters.
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Figure 3: Average MSE for MISDR Estimation According to the Number of MFs.

The parameters that define the MFs are subsequently defined through a genetic algorithm (GA) [15]. The
determination of the appropriate parameters is an optimization problem. GAs are extensively employed to
resolve fuzzy optimization problems [9, 19]. Triangular MFs are utilized in this work. Defining a triangular
MF is essential to designate three variables: the minimum, center, and maximum values. These values are
determined from the tuning process. For eight input parameters and one output of 10 MFs each, the tuning
variables rise to 270. An objective function is required to evaluate the potential solutions. The objective func-
tion in this work is the MSE between the calculated and the estimated value of MISDR defined from Eq. (3).
The GA searches for the optimal solution so as to minimize the MSE. It starts with 20 individuals as initial
population. The optimized parameters are encoded in a vector of double values and scaling function is set to
rank. A number of genetic operators are utilized. The selection function is roulette, the crossover function is
scattered, the mutation technique is Gaussian, and the migration direction is forward. The number of genera-
tions is set to 100, and fitness tolerance to the order of 10-8.

Figure 4 illustrates the evolution of the objective value during the optimization process. The GA finishes
after 51 iterations due to fitness tolerance. Figure 5 demonstrates the MFs for the FIS input variables I, and
MPGYV, as determined from the optimization process.

3.2 Development of the Sugeno FIS

The development of the MISDR damage estimation model utilizing Sugeno FIS is the same as the Mamdani
FIS. In order for the two models to be directly comparable, all initial settings remain the same. The model
receives the same set of information from eight input parameters and derives one output, the MISDR estima-
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Figure 4: Evolution of Objective Value in GA Optimization.
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Figure 5: Ten Tuned MFs for the FIS Input Variables: (A) MSD and (B) Sl,,.

tion value. The rule base for the Sugeno FIS is the same as for the Mamdani FIS. The triangular MFs remain
the same for the input parameters, as these were defined from the optimization process.

4 Development of the ANN model

In an additional effort to estimate the MISDR numerically and classify seismic signals to the correct class,
the aforementioned eight seismic intensity parameters are provided to construct an ANN. The ANN is a mul-
tilayer supervised feed-forward network, trained with the backpropagation learning algorithm. The goal of
the net training is to minimize the MSE defined from Eq. (3). In the proposed model, each of the 100 seismic
signals is represented by eight seismic intensity parameters. Thus, in the first layer of the ANN, the number
of input units is set to eight. The ANN has a hidden layer of six neurons. The number of output units is set
to one; a numerical value of the MISDR estimation is extracted every time. Each neuron of the hidden and
output layer has a hyperbolic tangent sigmoid neural transfer function. The proposed ANN is illustrated in
Figure 6.

After a neural network has been created, it must be configured. The configuration step consists of exam-
ining input and target data, setting the network’s input and output sizes to match the data, and choosing
settings for processing inputs and outputs that will enable best network performance. The configuration step
is done automatically, when the training function is called. The selected training function for the ANN is the
trainlm. According to the selected training function, the weight and bias values are updated according to Lev-
enberg-Marquardt optimization [12]. It is considered as the fastest backpropagation algorithm and highly rec-
ommended among supervised algorithms. Additionally, it supports training with validation and test vectors.
Validation vectors are used to stop training early if the network performance on the validation vectors fails to
improve or remains the same for the maximum defined epochs in a row, set to 1000 in the present work. Test
vectors are used as a further check that the network is generalizing well.

Hidden Output

Output

6 1

Figure 6: Proposed ANN.
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5 Experimental Results

5.1 FIS Models

A set of 100 seismic excitations, natural and artificially generated, are utilized to train and test the examined
models. Natural accelerograms are derived from the Pacific Earthquake Engineering Research Center [13].
Artificial accelerograms are derived from the natural accelerograms, utilizing the methodology suggested
by Vrochidou et al. [21]. The final data set of seismic excitations covers a wide range of MISDR values and
displays a uniform formation: 25 accelerograms in each one of the four seismic categories according to the
MISDR calculated values. Table 3 provides the necessary information (seismic event, country, date, station,
and component) for the set of 100 accelerograms. In Table 3, the calculated MISDR values for the seismic
events regarding the examined structure are also included.

The FIS models are trained with the eight selected seismic parameters of 99 seismic signals. One seismic
signal is tested every time. Table 4 presents the MISDR estimation achieved with the Mamdani and Sugeno
FIS, for every seismic event. The MSE between the estimated and the calculated value of MISDR for every

Table 4: MISDR Estimation Values with Mamdani and Sugeno FIS.

No. of MISDR estimation  No. of MISDR estimation  No. of MISDR estimation  No. of MISDR estimation
event event event event

Mamdani  Sugeno Mamdani  Sugeno Mamdani  Sugeno Mamdani  Sugeno
1 4.92 4.92 26 2.38 2.03 51 0.77 1.84 76 0.50 1.19
2 6.08 5.4 27 2.55 2.89 52 2.03 1.86 77 0.32 0.315
3 5.40 5.11 28 2.10 2.21 53 1.60 1.68 78 0.31 0.316
4 4.94 4.94 29 2.32 2.3 54 2.15 1.69 79 0.35 1.16
5 5.17 5.17 30 2.40 2.46 55 1.33 1.33 80 0.64 0.729
6 5.80 5.3 31 2.12 2.12 56 1.52 1.19 81 0.32 0.123
7 5.45 4.96 32 1.51 1.59 57 1.33 0.957 82 0.32 0.315
8 5.34 4.75 33 2.06 1.65 58 1.65 1.26 83 0.51 0.509
9 3.94 3.94 34 1.61 1.75 59 1.83 1.99 84 0.47 0.122
10 3.94 3.94 35 2.10 2.1 60 1.25 1.47 85 0.36 0.325
11 4.31 5.27 36 1.81 1.83 61 1.49 1.43 86 0.51 0.571
12 5.39 3.1 37 2.84 2.47 62 1.70 1.95 87 0.50 0.388
13 3.94 3.66 38 2.05 2.1 63 1.13 1.19 88 0.32 0.317
14 3.94 3.94 39 2.13 2.11 64 1.02 1.44 89 0.31 0.455
15 3.94 4.53 40 1.69 2.39 65 0.70 0.7 90 0.15 0.315
16 3.94 3.94 41 1.56 2.13 66 0.87 0.509 91 0.45 0.357
17 3.04 3.83 42 2.10 1.76 67 0.76 0.696 92 0.13 0.421
18 3.77 2.44 43 2.21 1.99 68 1.19 1.46 93 0.13 0.122
19 3.95 3.94 44 1.65 1.67 69 0.80 0.767 94 0.16 0.315
20 2.91 2.5 45 1.80 2.41 70 0.76 0.799 95 0.13 0.125
21 2.12 2.55 46 2.11 2.1 71 0.74 0.771 96 0.13 0.122
22 2.32 2.07 47 1.83 2.4 72 0.50 0.593 97 0.12 0.12
23 3.94 21 48 2.01 2.29 73 0.51 0.587 98 0.15 0.122
24 2.80 2.1 49 1.94 1.94 74 0.51 0.509 99 0.15 0.122
25 2.63 1.93 50 2.20 1.89 75 0.51 0.639 100 0.12 0.12
Fourth damage category Third damage category Second damage category First damage category
Misclassified 2 Misclassified 1 Misclassified 5 Misclassified 1
Mamdani: Mamdani: Mamdani: Mamdani:
Misclassified 4 Misclassified 1 Misclassified 6 Misclassified 2
Sugeno: Sugeno: Sugeno: Sugeno:
Correct classification rate for all the experiments with Mamdani-type FIS: 91%
Correct classification rate for all the experiments MSE with Sugeno-type FIS: 87%

Misclassified signals are marked in bold font.
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Table 5: MSE with Mamdani and Sugeno FIS.

No. of MSE No. of MSE  No. of MSE  No. of MSE
eent — . eent — . eent —__ . _ ____ eent —_ .
Mamdani  Sugeno Mamdani  Sugeno Mamdani  Sugeno Mamdani  Sugeno
1 8.762 8.762 26 0.005 0.176 51 0.504 0.130 76 0.003 0.548
2 0.005 0.563 27 0.012 0.250 52 0.397 0.212 77 0.010 0.011
3 0.303 0.706 28 0.078 0.029 53 0.063 0.109 78 0.006 0.005
4 0.722 0.722 29 0.003 0.005 54 0.740 0.160 79 0.002 0.593
5 0.000 0.000 30 0.002 0.010 55 0.026 0.026 80 0.068 0.122
6 0.476 0.036 31 0.036 0.036 56 0.212 0.023 81 0.003 0.061
7 0.397 0.020 32 0.518 0.410 57 0.144 0.000 82 0.001 0.001
8 0.462 0.008 33 0.012 0.270 58 0.500 0.100 83 0.029 0.029
9 0.384 0.384 34 0.270 0.144 59 0.792 1.103 84 0.017 0.048
10 0.303 0.303 35 0.000 0.000 60 0.116 0.314 85 0.001 0.000
11 0.001 0.980 36 0.048 0.040 61 0.360 0.292 86 0.032 0.058
12 1.392 1.232 37 0.689 0.212 62 0.672 1.145 87 0.040 0.008
13 0.004 0.048 38 0.004 0.012 63 0.068 0.102 88 0.002 0.001
14 0.010 0.010 39 0.023 0.017 64 0.048 0.410 89 0.002 0.034
15 0.084 0.774 40 0.058 0.212 65 0.008 0.008 90 0.012 0.003
16 0.096 0.096 41 0.084 0.078 66 0.008 0.073 91 0.040 0.011
17 0.221 0.102 42 0.084 0.003 67 0.003 0.000 92 0.012 0.033
18 0.185 0.810 43 0.176 0.040 68 0.270 0.624 93 0.012 0.014
19 0.410 0.397 44 0.002 0.000 69 0.020 0.011 94 0.005 0.007
20 0.008 0.250 45 0.023 0.578 70 0.012 0.022 95 0.003 0.003
21 0.689 0.160 46 0.260 0.250 71 0.010 0.017 96 0.000 0.000
22 0.325 0.672 47 0.058 0.656 72 0.010 0.000 97 0.000 0.000
23 1.440 0.410 48 0.221 0.563 73 0.004 0.000 98 0.004 0.001
24 0.014 0.336 49 0.176 0.176 74 0.002 0.002 99 0.005 0.002
25 0.012 0.348 50 0.476 0.144 75 0.001 0.010 100 0.003 0.003
Fourth damage category Third damage category Second damage category First damage category
Mean MSE 0.668 Mean MSE 0.133 Mean MSE 0.198 Mean MSE 0.012
Mamdani: Mamdani: Mamdani: Mamdani:
Mean MSE 0.725 Mean MSE 0.172 Mean MSE 0.196 Mean MSE 0.064
Sugeno: Sugeno: Sugeno: Sugeno:
Average MSE for all the experiments with Mamdani-type FIS: 0.253
Average MSE for all the experiments MSE with Sugeno-type FIS: 0.289

Total average MSE for both models is marked in bold font.

seismic event with the two models is included in Table 5. The average MSE for all experiments is 0.253 with
Mamdani-type FIS and 0.289 with Sugeno-type FIS. The results obtained show that for the given application
of structural damage estimation, Mamdani-type FIS and Sugeno-type FIS work rather similarly.

Table 5 also presents the average MSE for every damage category separately for both models. It is obvious
that for both models, the average MSE is lower in the first damage category, in the same range of values in
the second and third categories, and higher in the fourth damage category. This was expected as, according
to Table 1, the MISDR value range is narrow for category 1, in the same range for categories 2 and 3, and very
wide for category 4. Indeed, for the fourth damage category, there is no upper limit. In order to accurately
estimate the MISDR value for seismic signals that belong in this category, like in case of the seismic event no.
1 (Kobe), more seismic signals of that intensity are required. The FIS in neither model can accurately predict
this value, as the training test does not comprise seismic events of that range of MISDR values.

The ability of the two models to classify the damage into damage categories is also examined according
to the estimated MISDR values. In Table 4, the misclassified seismic signals are marked in bold. Correct clas-
sification rates of 91% are achieved with the Mamdani-type FIS, while 87% with the Sugeno-type FIS.

In a second experimental approach, the training process exploits 80 signals and the testing process
20 signals, randomly selected every time. The experiment takes place 100 times for statistical reasons in order
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Table 6: Minimum, Median, and Maximum MSE of MISDR Estimation for 100 Trials of Randomly Selected Training and Testing
Sets with Mamdani and Sugeno FIS.

Minimum Median Maximum
MSE Mamdani 0.06 0.21 1.15
MSE Sugeno 0.08 0.23 1.07

to achieve convergence. Table 6 summarizes the results, presenting the minimum, maximum, and median
values of the MSE utilizing both models. The minimum, maximum, and median values of the MSE are 0.06,
1.15, and 0.21, respectively, for the Mamdani-type FIS. The median value arising from the second experimen-
tal approach is close to the total average MSE value (0.253) of the first experimental approach. Similarly, the
minimum, maximum, and median values of the MSE are 0.08, 1.07, and 0.23, respectively, for the Sugeno-type
FIS. The median value arising from this approach is close to the total average MSE value (0.289) of the first
experimental approach.

This observation justifies the use of the proposed FIS for the MISDR estimation. Based on these findings,
one may claim that the Mamdani-type FIS outperforms the Sugeno-type FIS in case of the examined struc-
tural damage estimation problem.

Table 7: MISDR Estimation Values and MSE with ANN.

No. of MISDR MSE No. of MISDR MSE  No. of MISDR MSE No. of MISDR MSE
event  estimation event estimation event estimation event estimation

1 7.63 0.063 26 2.33 0.014 51 1.34 0.020 76 0.46  0.000
2 5.55 0.360 27 2.41 0.000 52 1.74 0.116 77 0.46  0.002
3 5.83 0.014 28 2.29 0.008 53 1.29 0.004 78 0.4 0.000
4 6.57 0.608 29 1.69 0.462 54 1.48 0.036 79 0.64 0.063
5 4.84 0.102 30 2.39 0.001 55 1.17 0.000 80 0.4 0.000
6 4.39 0.518 31 2.35 0.002 56 1.07 0.001 81 0.37 0.000
7 5.83 1.020 32 1.65 0.336 57 0.91 0.002 82 0.35 0.000
8 5.53 0.757 33 2.46 0.084 58 0.93 0.000 83 0.43 0.008
9 4.66 0.010 34 2.1 0.001 59 1.62  0.462 84 0.35 0.000
10 4.49 0.000 35 2.16 0.005 60 0.93 0.000 85 0.37 0.002
11 3.55 0.533 36 1.82 0.044 61 0.94 0.002 86 0.3 0.001
12 2.66 2.403 37 2.03 0.000 62 1.24 0.130 87 0.28 0.000
13 3.38 0.250 38 1.92 0.005 63 0.91 0.002 88 0.28 0.000
14 3.45 0.152 39 1.88 0.010 64 0.8 0.000 89 0.29 0.000
15 3.49 0.026 40 2.07 0.020 65 0.82 0.001 90 0.2 0.004
16 3.67 0.002 41 1.81 0.002 66 0.82 0.002 91 0.24 0.000
17 3.76  0.063 42 1.81 0.000 67 0.82 0.012 92 0.27 0.001
18 3.08 0.068 43 1.77 0.000 68 0.93 0.068 93 0.21 0.001
19 3.86 0.303 44 295 1.588 69 0.69 0.001 94 0.27 0.002
20 2.7 0.090 45 2.02 0.137 70 0.79 0.020 95 0.22 0.002
21 2.88 0.005 46 1.55 0.003 71 0.65 0.000 96 0.12  0.000
22 1.87 1.040 47 1.75 0.026 72 0.56 0.002 97 0.38 0.078
23 2.95 0.044 48 1.57 0.001 73 0.61 0.002 98 0.08 0.000
24 2.69 0.000 49 2.24 0.518 74 0.52 0.001 99 0.09 0.000
25 2.39 0.017 50 1.56 0.003 75 0.55 0.000 100 0.12 0.003
First damage category Second damage category Third damage category Fourth damage category
Mean MSE: 0.338 Mean MSE: 0.131  Mean MSE: 0.035 Mean MSE: 0.007
Average MSE for all the experiments MSE with ANN: 0.128
Correct classification rate: 96%

Misclassified signals are marked in bold font.
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Table 8: Comparison of the FIS and ANN Models.

Mamdani FIS Sugeno FIS ANN
Average MSE 0.253 0.289 0.128
Correct classification rate 91% 87% 96%

5.2 ANN Model

In this work, from the set of 100 accelerograms, 83 seismic signals are utilized for training, 12 seismic signals
(3 out of each one of the 4 damage categories) for validation, and 5 seismic signals for testing. The numerical
results are presented in Table 7. Table 7 includes the estimated MISDR value and the MSE for every seismic
signal and the average MSE for every damage category separately. The average MSE is lower in the first
damage category, higher in the fourth damage category, and the same range of values in the second and third,
as expected. The proposed ANN provides very low average MSE in the MISDR estimation, equal to 0.128. As it
can be observed from Table 7, in most of the experiments, the MSE is significantly low. When the numerical
MISDR estimation values of Table 6 are assigned to damage categories (according to Table 1), the ability of
the ANN to classify the structural damage in one of the defined categories increases up to 96%. Misclassified
signals are marked in Table 7 in bold font. It can be observed that misclassified signals belong, in most cases,
to the edges of the predefined intervals.

5.3 FIS Models Versus ANN Model

The presented ANN model can be compared to the FIS model analyzed in the previous section. Both models
receive the same input data and export an MISDR numerical estimation value. Table 8 is a comparative table
of the results obtained with the examined models. As it can be seen from Table 8, FIS and ANN approximate
the same level of performance; all models provide high classification rates and small MSE values.

It should be noted, though, that the ANN model, in the case of the examined damage assessment problem,
reveals a slightly better performance. This is due to the different architecture of the models. When a small set
of inputs is utilized for training the FIS, then fewer rules are obtained and the system finds difficulty in opti-
mally mapping multiple inputs to outputs. However, as the training set increases, more rules are obtained
and the FIS is able to produce more accurate estimations and, therefore, lower MSE and better classification
results.

6 Conclusions

Classification results are not always reliable indicators of the post-earthquake status of buildings. The aim of
this work is to numerically estimate the MISDR structural damage index through a time-frequency analysis of
the seismic signal. A new set of seismic intensity features that quantitatively expresses the seismic energy in
association with the occurred damage on a certain structure is extracted. The effectiveness of the new seismic
features is numerically justified through a correlation analysis; a strong degree of interdependence between
the new features and the MISDR, as a set of well-known seismic parameters, is obtained. One hundred earth-
quake records are utilized to test the proposed methodologies: a Mamdani-type FIS, a Sugeno-type FIS, and an
ANN. One hundred natural and artificial earthquake signals are utilized to train and test the proposed models.
The models are trained to estimate the MISDR value induced by a seismic signal in a certain structure. Every
tested seismic signal is inserted as input to the models in terms of eight proposed seismic intensity parameters.

The Mamdani-type FIS is developed primarily. The FIS is combined with a GA to tune its MFs optimally.
In the Sugeno-type FIS, MFs and rule base are designed to be the same as in the Mamdani-type FIS. Results
reveal that the two models similarly perform the estimation of the MISDR value, as the average MSE of all
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experiments is almost the same: 0.253 for Mamdani FIS and 0.289 for Sugeno FIS. Moreover, two different
approaches for training the FIS models, manually and randomly, lead to the same degree of MSE for both
models. When MISDR estimation values are assigned to damage categories, correct classification of up to 91%
is achieved with the Mamdani FIS, while 87% with the Sugeno FIS.

Finally, for the same set of earthquake signals, and the same input and output parameters, an ANN is
developed. Experimental results reveal that the total average MSE of the MISDR estimation is equal to 0.128;
results translated to classification rate correspond to 96%. FIS and ANN models approximate the same level
of performance regarding the examined structural damage assessment problem.

The models proposed in this work are original and can evaluate the post-seismic damage status of build-
ings in the form of damage indices, avoiding complicated and time-consuming non-linear dynamic analysis.
All models can be utilized by the public administration for the evaluation of damage scenarios in important
buildings or regions. This is of great importance for an adequate post-seismic management of financial and
other resources in the case of severe earthquakes. Another possible application of the proposed damage
assessment techniques is their implementation on a microchip in combination with an accelerograph and
a signal transmitting unit for the direct and real-time evaluation of damage caused by an earthquake. Until
today, surveys are performed with on-site examination by expert engineers and the process is not automatic.
Thus, these models could be useful tools for an online estimation of the structural damage on buildings right
after the occurrence of an earthquake.
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