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Abstract: This research provides a comparative study of intelligent systems in structural damage assessment 
after the occurrence of an earthquake. Seismic response data of a reinforced concrete structure subjected to 
100 different levels of seismic excitation are utilized to study the structural damage pattern described by a 
well-known damage index, the maximum inter-story drift ratio (MISDR). Through a time-frequency analysis 
of the accelerograms, a set of seismic features is extracted. The aim of this study is to analyze the perfor-
mance of three different techniques for the set of the proposed seismic features: an artificial neural network 
(ANN), a Mamdani-type fuzzy inference system (FIS), and a Sugeno-type FIS. The performance of the models 
is evaluated in terms of the mean square error (MSE) between the actual calculated and estimated MISDR 
values derived from the proposed models. All models provide small MSE values. Yet, the ANN model reveals 
a slightly better performance.

Keywords: Fuzzy inference system (FIS), Mamdani, Sugeno, artificial neural network (ANN), maximum inter-
story drift ratio (MISDR), structural damage estimation.

MSC2010: 05C90. 

1  �Introduction
This paper is motivated by the major problem of managing damages and life-saving resources in urban areas 
after the manifestation of an earthquake. Its goal is to estimate potential structural damage on the affected 
area, avoiding either non-linear dynamic analysis of structures or post-seismic inspection of buildings. Struc-
tural damages can be evaluated either in terms of classification to damage categories or in terms of numerical 
structural damage prediction.

In order to perform structural damage estimation, three intelligent techniques are developed. An ANN, 
a Mamdani-type FIS, and a Sugeno-type FIS are utilized for damage classification and numerical estimation 
of a widely used damage index, the MISDR. The novelty of the proposed study is the application and the 
comparison of the three regression models for the evaluation of damage indicator. The proposed models are 
able to efficiently quantify the structural damage by utilizing a set of newly introduced seismic intensity para-
meters. Previous studies confirmed the strong correlation of the aforementioned set of seismic parameters 
with MISDR.

This paper underlines the differences between the three schemes and shows the better choice for the 
problem under study. It is of major importance to identify the most accurate and efficient intelligent scheme 
for the damage assessment, as the estimation is inextricably associated to potential human loses and essential 
for the repair actions after a seismic event. Such actions must occur within a short time after the earthquake, 
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especially in urban areas, and usually they involve a considerable number of structures. Thus, it is clear that 
knowledge of structural adequacy in concrete constructions is indispensable.

Among the data-driven methods, fuzzy methods are able to efficiently solve complex problems and reduce 
upcoming uncertainties. FISs are appealing for researchers and have found applications in various fields of 
science [6, 16, 25]. The most appealing characteristic of fuzzy models is that they are able to describe complex 
and non-linear problems [24]. The fuzzy rules, which contain the input information, are easily interpretable. 
Furthermore, they provide a simple interface for extending the model with additional information by adding 
new rules or alternate the existing ones. The advantages of fuzzy techniques can be summarized as follows: 
(i) allow comprehensible definitions of knowledge of the system through “if-then” rules, (ii) deal with inher-
ent uncertainties like experts’ approach to problems, (iii) are based on a solid mathematical basis, and (iv) 
combine numerical and categorical data. Fuzzy techniques are reported in the literature for damage classifi-
cation [1, 20]. ANN techniques have also been successfully employed in numerous classification procedures 
or object recognition and other applications [5, 10]. The proposed models are not restricted to classifying the 
damage into damage categories, but they numerically estimate the structural damage degree. Classification 
results may be misleading, as it is common to assign the damage that belongs to the edges of the predefined 
intervals in neighboring categories. However, by utilizing the proposed method, one can numerically evalu-
ate the structural damage, providing the objective picture of the damage status.

The paper is organized as follows. Section 2 describes the seismic intensity feature extraction process. 
Section 3 presents the motivation for the comparison of the Mamdani versus Sugeno types of FIS, and shows 
the development of the two schemes. Section 4 presents the ANN model. Experimental results are illustrated 
in Section 5. Final conclusions are drawn in Section 6.

2  �Fundamentals
This paper introduces three model schemes based on artificial intelligence techniques to relate inputs to 
outputs. The models receive the same set of input parameters that describe both the damage potential of 
seismic excitations and the characteristics of the structure under study. The structural damage degree is 
considered as the output of the models by means of a widely used global damage index. More specifically, 
the models receive as input a set of four well-known and four proposed seismic intensity parameters. These 
parameters are associated with the dissipated energy and the frequency content of the seismic accelerogram. 
The output of both models is an MISDR value that efficiently describes the seismic structural damage poten-
tial. Figure 1 demonstrates the proposed methodology for the FIS models. The seismic feature extraction 
process, the definition of the utilized structural damage index, and the details of the examined frame struc-
ture are provided in the following subsections.
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Figure 1: Proposed Methodology.
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2.1  �Seismic Intensity Feature Extraction

In this work, four well-known and four newly extracted seismic intensity parameters, calculated from the 
same original definitions, are utilized. Seismic intensity parameters are divided into four categories: spec-
tral intensity, spectral, energy, and peak parameters [4]. One parameter from each category is selected and 
calculated for the entire seismic signal – the one that is proven to be the most correlated to MISDR [4]. These 
parameters are the spectrum intensity after Housner (SIH), spectral displacement (SD), Arias intensity (IA), 
and peak ground velocity (PGV). The same set of parameters is also calculated for a specified subsection of 
the initial seismic signal to form the new modified set of seismic intensity parameters, referred to as MSIH, 
MSD, MIA, and MPGV. The proposed seismic intensity feature extraction is according to a recent methodology 
[22]. The process is illustrated in Figure 1 and is briefly reviewed below.

In the first step of the process, the Hilbert-Huang transform (HHT) [7] is performed. The HHT employs 
the ensemble empirical mode decomposition [23] to decompose the signal into a finite number of intrinsic 
mode functions (IMFs). For each IMF, the mean frequency value is calculated. When damage occurs to a 
structure, its eigenfrequency varies close to its original value. Thus, the IMF with a mean frequency value 
closest (within a predetermined area) to the fundamental frequency of the examined structure is selected. 
Supposing that f0 is the eigenfrequency of the structure, then the proposed area is between 0.9 f0 and 1.1 
f0. The selected frequency band is based on the integration limits suggested by Kappos for the evaluation of 
spectrum intensity [8]. If the closest mean frequency value belongs to this area, then the respective IMF is 
selected for further analysis. If the closest mean frequency value is spaced beyond the predetermined region, 
then two IMFs, those that are located in either side of the region, are selected and summed.

In the second step of the process, an appropriate time-window of the selected IMF(s) is isolated. Two 
thresholds are specified for the time-window: tmin and tmax. The tmin value is set to the time when the Husid 
diagram reaches the value 0.05, which is equal to the time when MISDR reaches the value 0.05, which is 
10% of the low-damage category threshold (set to 0.5) (Table 1). The tmax value is the time when the Husid 
diagram reaches 80% of its maximum value, which is almost equal to the time when MISDR reaches 90% of 
its maximum value. The introduction of the time window helps reduce the computational burden, as, instead 
of the entire signal, only a part of one or two IMFs is imported to the following computer-supported analysis. 
Additionally, it represents a part of the earthquake duration where most of the seismic energy is released. 
Moreover, the time window is directly related to the damage evolution of the examined structure. Finally, it 
helps eliminate the end-effects issue [7], one reported drawback of HHT, as the IMF edges are cut off. In this 
strong motion time window, the four aforementioned proposed seismic intensity parameters are calculated.

In the third step of the process, the set of eight seismic parameters is input to the intelligent models, and 
the MISDR value is estimated for 100 seismic events. The development of the FIS involves a tuning process, 
so as to optimize the number of membership functions (MFs). The tuning process is analyzed in Section 3.1.

2.2  �Structural Damage Index MISDR

Damage indices summarize the damage evoked to a structure into a single value. MISDR can evaluate the 
level of the post-seismic damage of a structure, and it is calculated according to the following equation:

	
max| |

MISDR 100 [%],
u
h

=
�

(1)

Table 1: Structural Damage States According to MISDR.

Structural damage index Low Medium Large Total

MISDR (%) ≤0.5 0.5 < MISDR ≤ 1.5 1.5 < MISDR ≤ 2.5 >2.5
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where |u | max is the maximum absolute inter-story drift and h is the inter-story height [17]. The intervals of 
MISDR values are stated in Table 1. According to the ranges provided, the damage degree is classified as low, 
medium, large, or total. These categories refer to insignificant, reparable, irreparable, and severe damage or 
breakdown of the building, respectively.

2.3  �Reinforced Concrete Structure Frame Model

Figure 2 demonstrates the examined reinforced concrete (RC) frame structure. The eigenfrequency of the 
eight-story model is 0.85 Hz. The frame is designed according to Euro-code rules EC2 and EC8 [2, 3]. The 
cross-sections of the beams are T-beams with 40-cm width, 20-cm slab thickness, 60-cm total beam height, 
and 1.45-m effective slab width. The distance between the frames of the structure is 6 m. The frame structure 
has been characterized as an “importance class II and ductility class medium” according to EC8. The subsoil 
is of type C and the region seismicity belongs to category 2. External loads are included and are incorporated 
into load combinations, as suggested in EC2 and EC8. After the design of frame, a non-linear dynamic analy-
sis takes place and its structural seismic response (MISDR) is calculated through the computer program 
IDARC [14].

2.4  �Correlation Analysis

The examined intelligent models predict an MISDR value based upon the inserted input data. In order to eval-
uate the efficiency of the seismic intensity parameters, which will be utilized subsequently as input data to 
the proposed models, a correlation analysis is carried out. The relation between the seismic intensity param-
eters and the structural damage index MISDR is investigated. For this purpose, a correlation study based on 
Spearman rank correlation coefficient is carried out. For a set of n measurements of X and Y, where i  =  1, 2, 
…, n, the Spearman correlation coefficient is defined as
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where D is the difference between the ranking degree of X and Y, respectively. Correlation coefficient values 
>0.8 indicate a strong connection between the parameters. Values <0.45 indicate a weak connection, and all 
other cases between 0.45 and 0.8 reveal a medium connection [4]. The correlation degrees between MISDR 
and the selected seismic parameters are presented in Table 2. A strong association with MISDR is revealed for 
the set of seismic intensity parameters, >0.81 in all cases.

3  �Mamdani Versus Sugeno FIS
FIS has two types based on the mathematical calculation of the inference: the Mamdani-type [11] and the 
Sugeno-type inference [18]. A Mamdani-type fuzzy rule is described as follows: “If A is X1 and B is X2, then 
C is X3,” where A, B, C are variables and X1, X2, X3 are fuzzy sets. A Sugeno-type fuzzy rule is described as 
follows: “If A is X1 and B is X2, then C = aA + bB + c,” where a, b, c are constants; A, B, C are variables; and X1, 
X2, X3 are fuzzy sets.

The main difference between the two schemes is in the evaluation of the output MFs. In Sugeno-type FIS, 
the output MF is a constant or linear function (allows a single output), while in Mamdani-type it is a fuzzy set 
(allows multiple outputs). Mamdani-type FIS uses defuzzification technique of the fuzzy output. Sugeno-type 
FIS uses weighted average to compute a crisp output. Thus, Mamdani FIS provides an interpretable output. 
On the other hand, Sugeno FIS is more computationally efficient and has a better processing time, as the 
weighted average technique replaces the time-consuming defuzzification procedure. Moreover, the Sugeno 
FIS is more flexible, as it permits more than one parameter in the output. The output of Sugeno FIS is a func-
tion of the inputs; hence, it expresses a more distinct relation between them.

Here, the output of the model is a single numerical MISDR value. For problems of multiple inputs and 
of one output, both models can be equally utilized and a performance comparison between them can be 
provided.

3.1  �Development of the Mamdani FIS

MISDR damage estimation is initially developed by utilizing the Mamdani-type FIS model. The model receives 
eight input parameters and provides one output, the MISDR estimated value. The rule base is constructed 
from the input-output pairs. Input and output ranges are divided into fuzzy regions. Every region is deter-
mined by an MF. The performance of the model has been tested for successive values of MFs, starting from 
4. The number of MFs has been increased until the best result has been obtained. The performance of the 
FIS is evaluated in terms of the mean square error (MSE) between the actual calculated MISDR value and the 
estimated MISDR value derived from the FIS, according to the equation

	

2
calculated estimated

1

1MSE | MISDR MISDR | ,
v

jv =

= −∑
�

(3)

where ν is the number of samples (the set of examined seismic events). Figure 3 demonstrates the evolution 
of the average MSE for different numbers of MFs. Optimal performance is achieved for 10 MFs for input and 
output parameters.

Table 2: Rank Correlation Coefficients after Spearman.

Seismic parameters IA MIA SIH MSIH SD MSD PGV MPGV

MISDR 0.85 0.87 0.92 0.81 0.89 0.85 0.82 0.82
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The parameters that define the MFs are subsequently defined through a genetic algorithm (GA) [15]. The 
determination of the appropriate parameters is an optimization problem. GAs are extensively employed to 
resolve fuzzy optimization problems [9, 19]. Triangular MFs are utilized in this work. Defining a triangular 
MF is essential to designate three variables: the minimum, center, and maximum values. These values are 
determined from the tuning process. For eight input parameters and one output of 10 MFs each, the tuning 
variables rise to 270. An objective function is required to evaluate the potential solutions. The objective func-
tion in this work is the MSE between the calculated and the estimated value of MISDR defined from Eq. (3). 
The GA searches for the optimal solution so as to minimize the MSE. It starts with 20 individuals as initial 
population. The optimized parameters are encoded in a vector of double values and scaling function is set to 
rank. A number of genetic operators are utilized. The selection function is roulette, the crossover function is 
scattered, the mutation technique is Gaussian, and the migration direction is forward. The number of genera-
tions is set to 100, and fitness tolerance to the order of 10−8.

Figure 4 illustrates the evolution of the objective value during the optimization process. The GA finishes 
after 51 iterations due to fitness tolerance. Figure 5 demonstrates the MFs for the FIS input variables IA and 
ΜPGV, as determined from the optimization process.

3.2  �Development of the Sugeno FIS

The development of the MISDR damage estimation model utilizing Sugeno FIS is the same as the Mamdani 
FIS. In order for the two models to be directly comparable, all initial settings remain the same. The model 
receives the same set of information from eight input parameters and derives one output, the MISDR estima-
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tion value. The rule base for the Sugeno FIS is the same as for the Mamdani FIS. The triangular MFs remain 
the same for the input parameters, as these were defined from the optimization process.

4  �Development of the ANN model
In an additional effort to estimate the MISDR numerically and classify seismic signals to the correct class, 
the aforementioned eight seismic intensity parameters are provided to construct an ANN. The ANN is a mul-
tilayer supervised feed-forward network, trained with the backpropagation learning algorithm. The goal of 
the net training is to minimize the MSE defined from Eq. (3). In the proposed model, each of the 100 seismic 
signals is represented by eight seismic intensity parameters. Thus, in the first layer of the ANN, the number 
of input units is set to eight. The ANN has a hidden layer of six neurons. The number of output units is set 
to one; a numerical value of the MISDR estimation is extracted every time. Each neuron of the hidden and 
output layer has a hyperbolic tangent sigmoid neural transfer function. The proposed ANN is illustrated in 
Figure 6.

After a neural network has been created, it must be configured. The configuration step consists of exam-
ining input and target data, setting the network’s input and output sizes to match the data, and choosing 
settings for processing inputs and outputs that will enable best network performance. The configuration step 
is done automatically, when the training function is called. The selected training function for the ANN is the 
trainlm. According to the selected training function, the weight and bias values are updated according to Lev-
enberg-Marquardt optimization [12]. It is considered as the fastest backpropagation algorithm and highly rec-
ommended among supervised algorithms. Additionally, it supports training with validation and test vectors. 
Validation vectors are used to stop training early if the network performance on the validation vectors fails to 
improve or remains the same for the maximum defined epochs in a row, set to 1000 in the present work. Test 
vectors are used as a further check that the network is generalizing well.
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Table 4: MISDR Estimation Values with Mamdani and Sugeno FIS.

No. of 
event

  MISDR estimation No. of 
event

  MISDR estimation  
 
No. of 
event

  MISDR estimation  
 
No. of 
event

  MISDR estimation

Mamdani   Sugeno Mamdani   Sugeno Mamdani   Sugeno Mamdani   Sugeno

1   4.92   4.92   26   2.38   2.03   51   0.77   1.84   76   0.50   1.19
2   6.08   5.4   27   2.55   2.89   52   2.03   1.86   77   0.32   0.315
3   5.40   5.11   28   2.10   2.21   53   1.60   1.68   78   0.31   0.316
4   4.94   4.94   29   2.32   2.3   54   2.15   1.69   79   0.35   1.16
5   5.17   5.17   30   2.40   2.46   55   1.33   1.33   80   0.64   0.729
6   5.80   5.3   31   2.12   2.12   56   1.52   1.19   81   0.32   0.123
7   5.45   4.96   32   1.51   1.59   57   1.33   0.957   82   0.32   0.315
8   5.34   4.75   33   2.06   1.65   58   1.65   1.26   83   0.51   0.509
9   3.94   3.94   34   1.61   1.75   59   1.83   1.99   84   0.47   0.122
10   3.94   3.94   35   2.10   2.1   60   1.25   1.47   85   0.36   0.325
11   4.31   5.27   36   1.81   1.83   61   1.49   1.43   86   0.51   0.571
12   5.39   3.1   37   2.84   2.47   62   1.70   1.95   87   0.50   0.388
13   3.94   3.66   38   2.05   2.1   63   1.13   1.19   88   0.32   0.317
14   3.94   3.94   39   2.13   2.11   64   1.02   1.44   89   0.31   0.455
15   3.94   4.53   40   1.69   2.39   65   0.70   0.7   90   0.15   0.315
16   3.94   3.94   41   1.56   2.13   66   0.87   0.509   91   0.45   0.357
17   3.04   3.83   42   2.10   1.76   67   0.76   0.696   92   0.13   0.421
18   3.77   2.44   43   2.21   1.99   68   1.19   1.46   93   0.13   0.122
19   3.95   3.94   44   1.65   1.67   69   0.80   0.767   94   0.16   0.315
20   2.91   2.5   45   1.80   2.41   70   0.76   0.799   95   0.13   0.125
21   2.12   2.55   46   2.11   2.1   71   0.74   0.771   96   0.13   0.122
22   2.32   2.07   47   1.83   2.4   72   0.50   0.593   97   0.12   0.12
23   3.94   2.1   48   2.01   2.29   73   0.51   0.587   98   0.15   0.122
24   2.80   2.1   49   1.94   1.94   74   0.51   0.509   99   0.15   0.122
25   2.63   1.93   50   2.20   1.89   75   0.51   0.639   100   0.12   0.12

Fourth damage category   Third damage category   Second damage category   First damage category
Misclassified 
Mamdani:

  2   Misclassified 
Mamdani:

  1   Misclassified 
Mamdani:

  5   Misclassified 
Mamdani:

  1

Misclassified 
Sugeno:

  4   Misclassified 
Sugeno:

  1   Misclassified 
Sugeno:

  6   Misclassified 
Sugeno:

  2

Correct classification rate for all the experiments with Mamdani-type FIS:   91%
Correct classification rate for all the experiments MSE with Sugeno-type FIS:   87%

Misclassified signals are marked in bold font.

5  �Experimental Results

5.1  �FIS Models

A set of 100 seismic excitations, natural and artificially generated, are utilized to train and test the examined 
models. Natural accelerograms are derived from the Pacific Earthquake Engineering Research Center [13]. 
Artificial accelerograms are derived from the natural accelerograms, utilizing the methodology suggested 
by Vrochidou et al. [21]. The final data set of seismic excitations covers a wide range of MISDR values and 
displays a uniform formation: 25 accelerograms in each one of the four seismic categories according to the 
MISDR calculated values. Table 3 provides the necessary information (seismic event, country, date, station, 
and component) for the set of 100 accelerograms. In Table 3, the calculated MISDR values for the seismic 
events regarding the examined structure are also included.

The FIS models are trained with the eight selected seismic parameters of 99 seismic signals. One seismic 
signal is tested every time. Table 4 presents the MISDR estimation achieved with the Mamdani and Sugeno 
FIS, for every seismic event. The MSE between the estimated and the calculated value of MISDR for every 
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Table 5: MSE with Mamdani and Sugeno FIS.

No. of 
event

 
 

MSE   No. of 
event

 
 

MSE   No. of 
event

 
 

MSE   No. of 
event

 
 

MSE

Mamdani   Sugeno Mamdani   Sugeno Mamdani   Sugeno Mamdani   Sugeno

1   8.762   8.762   26   0.005   0.176   51   0.504   0.130   76   0.003   0.548
2   0.005   0.563   27   0.012   0.250   52   0.397   0.212   77   0.010   0.011
3   0.303   0.706   28   0.078   0.029   53   0.063   0.109   78   0.006   0.005
4   0.722   0.722   29   0.003   0.005   54   0.740   0.160   79   0.002   0.593
5   0.000   0.000   30   0.002   0.010   55   0.026   0.026   80   0.068   0.122
6   0.476   0.036   31   0.036   0.036   56   0.212   0.023   81   0.003   0.061
7   0.397   0.020   32   0.518   0.410   57   0.144   0.000   82   0.001   0.001
8   0.462   0.008   33   0.012   0.270   58   0.500   0.100   83   0.029   0.029
9   0.384   0.384   34   0.270   0.144   59   0.792   1.103   84   0.017   0.048
10   0.303   0.303   35   0.000   0.000   60   0.116   0.314   85   0.001   0.000
11   0.001   0.980   36   0.048   0.040   61   0.360   0.292   86   0.032   0.058
12   1.392   1.232   37   0.689   0.212   62   0.672   1.145   87   0.040   0.008
13   0.004   0.048   38   0.004   0.012   63   0.068   0.102   88   0.002   0.001
14   0.010   0.010   39   0.023   0.017   64   0.048   0.410   89   0.002   0.034
15   0.084   0.774   40   0.058   0.212   65   0.008   0.008   90   0.012   0.003
16   0.096   0.096   41   0.084   0.078   66   0.008   0.073   91   0.040   0.011
17   0.221   0.102   42   0.084   0.003   67   0.003   0.000   92   0.012   0.033
18   0.185   0.810   43   0.176   0.040   68   0.270   0.624   93   0.012   0.014
19   0.410   0.397   44   0.002   0.000   69   0.020   0.011   94   0.005   0.007
20   0.008   0.250   45   0.023   0.578   70   0.012   0.022   95   0.003   0.003
21   0.689   0.160   46   0.260   0.250   71   0.010   0.017   96   0.000   0.000
22   0.325   0.672   47   0.058   0.656   72   0.010   0.000   97   0.000   0.000
23   1.440   0.410   48   0.221   0.563   73   0.004   0.000   98   0.004   0.001
24   0.014   0.336   49   0.176   0.176   74   0.002   0.002   99   0.005   0.002
25   0.012   0.348   50   0.476   0.144   75   0.001   0.010   100   0.003   0.003

Fourth damage category   Third damage category   Second damage category   First damage category
Mean MSE 
Mamdani:

  0.668   Mean MSE 
Mamdani:

  0.133   Mean MSE 
Mamdani:

  0.198   Mean MSE 
Mamdani:

  0.012

Mean MSE 
Sugeno:

  0.725   Mean MSE 
Sugeno:

  0.172   Mean MSE 
Sugeno:

  0.196   Mean MSE 
Sugeno:

  0.064

Average MSE for all the experiments with Mamdani-type FIS:   0.253
Average MSE for all the experiments MSE with Sugeno-type FIS:   0.289

Total average MSE for both models is marked in bold font.

seismic event with the two models is included in Table 5. The average MSE for all experiments is 0.253 with 
Mamdani-type FIS and 0.289 with Sugeno-type FIS. The results obtained show that for the given application 
of structural damage estimation, Mamdani-type FIS and Sugeno-type FIS work rather similarly.

Table 5 also presents the average MSE for every damage category separately for both models. It is obvious 
that for both models, the average MSE is lower in the first damage category, in the same range of values in 
the second and third categories, and higher in the fourth damage category. This was expected as, according 
to Table 1, the MISDR value range is narrow for category 1, in the same range for categories 2 and 3, and very 
wide for category 4. Indeed, for the fourth damage category, there is no upper limit. In order to accurately 
estimate the MISDR value for seismic signals that belong in this category, like in case of the seismic event no. 
1 (Kobe), more seismic signals of that intensity are required. The FIS in neither model can accurately predict 
this value, as the training test does not comprise seismic events of that range of MISDR values.

The ability of the two models to classify the damage into damage categories is also examined according 
to the estimated MISDR values. In Table 4, the misclassified seismic signals are marked in bold. Correct clas-
sification rates of 91% are achieved with the Mamdani-type FIS, while 87% with the Sugeno-type FIS.

In a second experimental approach, the training process exploits 80  signals and the testing process 
20 signals, randomly selected every time. The experiment takes place 100 times for statistical reasons in order 
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Table 7: MISDR Estimation Values and MSE with ANN.

No. of 
event

  MISDR 
estimation

  MSE   No. of 
event

  MISDR 
estimation

  MSE   No. of 
event

  MISDR 
estimation

  MSE   No. of 
event

  MISDR 
estimation

  MSE

1   7.63   0.063   26   2.33   0.014   51   1.34   0.020   76   0.46   0.000
2   5.55   0.360   27   2.41   0.000   52   1.74   0.116   77   0.46   0.002
3   5.83   0.014   28   2.29   0.008   53   1.29   0.004   78   0.4   0.000
4   6.57   0.608   29   1.69   0.462   54   1.48   0.036   79   0.64   0.063
5   4.84   0.102   30   2.39   0.001   55   1.17   0.000   80   0.4   0.000
6   4.39   0.518   31   2.35   0.002   56   1.07   0.001   81   0.37   0.000
7   5.83   1.020   32   1.65   0.336   57   0.91   0.002   82   0.35   0.000
8   5.53   0.757   33   2.46   0.084   58   0.93   0.000   83   0.43   0.008
9   4.66   0.010   34   2.1   0.001   59   1.62   0.462   84   0.35   0.000
10   4.49   0.000   35   2.16   0.005   60   0.93   0.000   85   0.37   0.002
11   3.55   0.533   36   1.82   0.044   61   0.94   0.002   86   0.3   0.001
12   2.66   2.403   37   2.03   0.000   62   1.24   0.130   87   0.28   0.000
13   3.38   0.250   38   1.92   0.005   63   0.91   0.002   88   0.28   0.000
14   3.45   0.152   39   1.88   0.010   64   0.8   0.000   89   0.29   0.000
15   3.49   0.026   40   2.07   0.020   65   0.82   0.001   90   0.2   0.004
16   3.67   0.002   41   1.81   0.002   66   0.82   0.002   91   0.24   0.000
17   3.76   0.063   42   1.81   0.000   67   0.82   0.012   92   0.27   0.001
18   3.08   0.068   43   1.77   0.000   68   0.93   0.068   93   0.21   0.001
19   3.86   0.303   44   2.95   1.588   69   0.69   0.001   94   0.27   0.002
20   2.7   0.090   45   2.02   0.137   70   0.79   0.020   95   0.22   0.002
21   2.88   0.005   46   1.55   0.003   71   0.65   0.000   96   0.12   0.000
22   1.87   1.040   47   1.75   0.026   72   0.56   0.002   97   0.38   0.078
23   2.95   0.044   48   1.57   0.001   73   0.61   0.002   98   0.08   0.000
24   2.69   0.000   49   2.24   0.518   74   0.52   0.001   99   0.09   0.000
25   2.39   0.017   50   1.56   0.003   75   0.55   0.000   100   0.12   0.003

First damage category   Second damage category   Third damage category   Fourth damage category
Mean MSE:   0.338   Mean MSE:   0.131   Mean MSE:   0.035   Mean MSE:   0.007
Average MSE for all the experiments MSE with ANN:   0.128
Correct classification rate:   96%

Misclassified signals are marked in bold font.

Table 6: Minimum, Median, and Maximum MSE of MISDR Estimation for 100 Trials of Randomly Selected Training and Testing 
Sets with Mamdani and Sugeno FIS.

  Minimum   Median   Maximum

MSE Mamdani   0.06  0.21  1.15
MSE Sugeno   0.08  0.23  1.07

to achieve convergence. Table 6 summarizes the results, presenting the minimum, maximum, and median 
values of the MSE utilizing both models. The minimum, maximum, and median values of the MSE are 0.06, 
1.15, and 0.21, respectively, for the Mamdani-type FIS. The median value arising from the second experimen-
tal approach is close to the total average MSE value (0.253) of the first experimental approach. Similarly, the 
minimum, maximum, and median values of the MSE are 0.08, 1.07, and 0.23, respectively, for the Sugeno-type 
FIS. The median value arising from this approach is close to the total average MSE value (0.289) of the first 
experimental approach.

This observation justifies the use of the proposed FIS for the MISDR estimation. Based on these findings, 
one may claim that the Mamdani-type FIS outperforms the Sugeno-type FIS in case of the examined struc-
tural damage estimation problem.
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Table 8: Comparison of the FIS and ANN Models.

  Mamdani FIS   Sugeno FIS   ANN

Average MSE   0.253   0.289   0.128
Correct classification rate   91%   87%   96%

5.2  �ANN Model

In this work, from the set of 100 accelerograms, 83 seismic signals are utilized for training, 12 seismic signals 
(3 out of each one of the 4 damage categories) for validation, and 5 seismic signals for testing. The numerical 
results are presented in Table 7. Table 7 includes the estimated MISDR value and the MSE for every seismic 
signal and the average MSE for every damage category separately. The average MSE is lower in the first 
damage category, higher in the fourth damage category, and the same range of values in the second and third, 
as expected. The proposed ANN provides very low average MSE in the MISDR estimation, equal to 0.128. As it 
can be observed from Table 7, in most of the experiments, the MSE is significantly low. When the numerical 
MISDR estimation values of Table 6 are assigned to damage categories (according to Table 1), the ability of 
the ANN to classify the structural damage in one of the defined categories increases up to 96%. Misclassified 
signals are marked in Table 7 in bold font. It can be observed that misclassified signals belong, in most cases, 
to the edges of the predefined intervals.

5.3  �FIS Models Versus ANN Model

The presented ANN model can be compared to the FIS model analyzed in the previous section. Both models 
receive the same input data and export an MISDR numerical estimation value. Table 8 is a comparative table 
of the results obtained with the examined models. As it can be seen from Table 8, FIS and ANN approximate 
the same level of performance; all models provide high classification rates and small MSE values.

It should be noted, though, that the ANN model, in the case of the examined damage assessment problem, 
reveals a slightly better performance. This is due to the different architecture of the models. When a small set 
of inputs is utilized for training the FIS, then fewer rules are obtained and the system finds difficulty in opti-
mally mapping multiple inputs to outputs. However, as the training set increases, more rules are obtained 
and the FIS is able to produce more accurate estimations and, therefore, lower MSE and better classification 
results.

6  �Conclusions
Classification results are not always reliable indicators of the post-earthquake status of buildings. The aim of 
this work is to numerically estimate the MISDR structural damage index through a time-frequency analysis of 
the seismic signal. A new set of seismic intensity features that quantitatively expresses the seismic energy in 
association with the occurred damage on a certain structure is extracted. The effectiveness of the new seismic 
features is numerically justified through a correlation analysis; a strong degree of interdependence between 
the new features and the MISDR, as a set of well-known seismic parameters, is obtained. One hundred earth-
quake records are utilized to test the proposed methodologies: a Mamdani-type FIS, a Sugeno-type FIS, and an 
ANN. One hundred natural and artificial earthquake signals are utilized to train and test the proposed models. 
The models are trained to estimate the MISDR value induced by a seismic signal in a certain structure. Every 
tested seismic signal is inserted as input to the models in terms of eight proposed seismic intensity parameters.

The Mamdani-type FIS is developed primarily. The FIS is combined with a GA to tune its MFs optimally. 
In the Sugeno-type FIS, MFs and rule base are designed to be the same as in the Mamdani-type FIS. Results 
reveal that the two models similarly perform the estimation of the MISDR value, as the average MSE of all 
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experiments is almost the same: 0.253 for Mamdani FIS and 0.289 for Sugeno FIS. Moreover, two different 
approaches for training the FIS models, manually and randomly, lead to the same degree of MSE for both 
models. When MISDR estimation values are assigned to damage categories, correct classification of up to 91% 
is achieved with the Mamdani FIS, while 87% with the Sugeno FIS.

Finally, for the same set of earthquake signals, and the same input and output parameters, an ANN is 
developed. Experimental results reveal that the total average MSE of the MISDR estimation is equal to 0.128; 
results translated to classification rate correspond to 96%. FIS and ANN models approximate the same level 
of performance regarding the examined structural damage assessment problem.

The models proposed in this work are original and can evaluate the post-seismic damage status of build-
ings in the form of damage indices, avoiding complicated and time-consuming non-linear dynamic analysis. 
All models can be utilized by the public administration for the evaluation of damage scenarios in important 
buildings or regions. This is of great importance for an adequate post-seismic management of financial and 
other resources in the case of severe earthquakes. Another possible application of the proposed damage 
assessment techniques is their implementation on a microchip in combination with an accelerograph and 
a signal transmitting unit for the direct and real-time evaluation of damage caused by an earthquake. Until 
today, surveys are performed with on-site examination by expert engineers and the process is not automatic. 
Thus, these models could be useful tools for an online estimation of the structural damage on buildings right 
after the occurrence of an earthquake.
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