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Abstract: In many biometric applications, limited data speaker verification plays a significant role in prac-
tical-oriented systems to verify the speaker. The performance of the speaker verification system needs to be
improved by applying suitable techniques to limited data condition. The limited data represent both train
and test data duration in terms of few seconds. This article shows the importance of the speaker verification
system under limited data condition using feature- and score-level fusion techniques. The baseline speaker
verification system uses vocal tract features like mel-frequency cepstral coefficients, linear predictive cepstral
coefficients and excitation source features like linear prediction residual and linear prediction residual phase
as features along with i-vector modeling techniques using the NIST 2003 data set. In feature-level fusion, the
vocal tract features are fused with excitation source features. As a result, on average, equal error rate (EER) is
approximately equal to 4% compared to individual feature performance. Further in this work, two different
types of score-level fusion are demonstrated. In the first case, fusing the scores of vocal tract features and
excitation source features at score-level-maintaining modeling technique remains the same, which provides
an average reduction approximately equal to 2% EER compared to feature-level fusion performance. In the
second case, scores of the different modeling techniques are combined, which has resulted in EER reduction
approximately equal to 4.5% compared with score-level fusion of different features.

Keywords: Mel-frequency cepstral coefficient (MFCC), linear prediction cepstral coefficients (LPCC), linear
prediction residual (LPR), linear prediction residual phase (LPRP), i-vector, feature-level fusion, score-level
fusion.

1 Introduction

The last two decades, biometric technologies plays important role in recognizing a person for various appli-
cations [11, 18]. Person authentication using biometric application includes fingerprint, face, iris, ear, retina,
DNA and speech. These biometric features are used to develop practical system for various applications.
Among these biometric features, speech is considered as one of the features to recognize a person, and it is
called speaker recognition. The subcategories of speaker recognition are speaker identification and speaker
verification [32]. In identification, the registered test speech data match with all the speaker models to decide
the current speaker of the test speech data [32]. Further, speaker verification uses the claimed speaker data to
verify against the claimed model. Based on speech data, speaker verification system can be divided into text-
dependent and text-independent systems. The same set of text data is used in text-dependent system, and for
text-independent system, different text data are used to train and test the speakers [13].

In the present situation, speaker verification performs well in case of sufficient data. The sufficient
data contains speech data of a few minutes (<1 min). Existing techniques like speech analysis, feature
extraction, modeling and testing perform better under sufficient data condition. On the other hand, limited

*Corresponding author: T.R. Jayanthi Kumari, Department of Electronics and Communication Engineering, Siddaganga Institute
of Technology, Bengaluru 560077, Karnataka, India, e-mail: trjayanthikumari@gmail.com

H.S. Jayanna: Department of Information Science and Engineering, Siddaganga Institute of Technology, Tumkur 572103, Karnataka,
India

8 Open Access. © 2020 Walter de Gruyter GmbH, Berlin/Boston. [ IS This work is licensed under the Creative Commons Attribution
4.0 Public License.


https://doi.org/10.1515/jisys-2017-0047
mailto:trjayanthikumari@gmail.com

566 —— T.R.Jayanthi Kumariand H.S. Jayanna: i-Vector-Based Speaker Verification DE GRUYTER

data means speech data in terms of a few seconds (<15 s). Many of the biometric applications have to be
done using less amount of data to verify a speaker. Speech data can be analyzed in different techniques.
The different analysis techniques in state-of-the-art speaker verification systems are segmental, subseg-
mental and suprasegmental analysis [10]. During segmental analysis, the frame size (FS) and frame rate
(FR) in the range of 10-30 ms is used for speech analysis in order to extract the vocal tract information
which is called single frame size and single frame rate (SFSR) analysis [19]. For subsegmental analysis, due
to rapid variations in the excitation source information as compared to that of vocal tract information. In
this case, the analysis of speech is done using FS and FR in the range of 3-5 ms [27]. The behavioral aspects
of the speaker is captured by analyzing the FS and FR in the range of 100-300 ms during suprasegmental
analysis [12].

The purpose of feature extraction is to extract feature vectors of reduced dimension. The extracted feature
information are emphasized and other redundant factors are suppressed in these feature vectors [4, 5]. The
mel-frequency cepstral coefficients (MFCC) [28] and linear prediction cepstral coefficients (LPCC) [2] are used
to extract the information of vocal tract. The speech signal contains both static and dynamic characteristics.
The MFCC and LPCC feature set contain only static characteristics. The dynamic characteristic represented
by Delta (A) and Delta-Delta (AA) contains some more speaker information, which is useful in speaker verifi-
cation [2]. The excitation source features are extracted using prediction residual (LPR) and linear prediction
residual phase (LPRP) [24].

Reynolds [28] compared the vocal tract features for speaker recognition and reported that MFCC and
LPCC give a better performance compared with the other features. The reasons may be less intra-speaker
variability and the availability of rich spectral analysis tools. Speaker recognition performance can be
increased by combining vocal tract features and excitation source features [24]. In this study, the training
and testing data are limited to 3 s. The feature used as MFCC and its derivatives and either LPR or LPRP.
They considered frame size and frame rate in the range of 10-30 and 3-5 ms for MFCC and its derivatives
and LPR or LPRP, respectively. The study showed that the combination of MFCC and its derivatives along
with either LPR or LPRP features gives better performance compared with individual performance. The
author reported that the combined features give better performance compared with individual features in
speaker recognition.

Das et al. [9] reported on the effort made to develop speech-based person authentication system involv-
ing three different modules of speaker verification under low security applications. They used three different
modules of the speaker verification system. The modules are voice-password, text-dependent and text-
independent speaker verification. The combination of these system is called multi-level system. The author
reported that a multi-level system performs better compared to individual modules for speaker verification.
Also, the functionality of each module can be moderated according to the type of application for which the
system is designed.

Das et al. [8] concentrated on highlighting the requirement of phonetic match in a text-independent
speaker verification framework from the perspective of having practical deployable systems. The authors
considered sufficient train data and short test data, and i-vector modeling is used. Three minutes of read
speech is considered for training the speaker models. The chosen phrase and a text-constrained phrase are
used for testing, and the database used is NIST 2003. The EER obtained is 23%.

Pandey et al. [26] conducted experiments for sufficient training data and limited test data. Limited test
data are created by truncating the test data of NIST SRE 2003 database. Four different cases of limited test
data duration of 10, 5, 3 and 2 s are considered, and the EER obtained is 5.87%, 10.52%, 16.94% and 22.31%,
respectively.

The speaker verification system contains different types of pattern-matching techniques like template
matching, probabilistic model and artificial neural network. The nearest-neighbor vector quantization (VQ)
belongs to template matching and probabilistic model contains Gaussian mixture model (GMM), GMM-uni-
versal background model (UBM), joint factor analysis and i-vector. Further, time delay neural work and deci-
sion tree belong to artificial neural network. Among these, i-vector is used for modeling in the present work.
The state-of-the-art speaker verification system prefers i-vector-based speaker modeling technique over the
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conventional modeling approaches due to its compact representation and compatible channel/session com-
pensation techniques [10]. The i-vectors are the low-dimensional representation of GMM mean supervector-
derived using factor analysis. The recent works in this area address the problem of mismatch in sensors,
environment and language, and changes across sessions [15]. To address these problems, different tech-
niques like score/handset/test normalization [3], within class covariance normalization (WCCN) [16], linear
discriminant analysis (LDA) and joint factor analysis (JFA) [36] are available.

Li et al. [23] proposed a new way of applying PLDA mixture models for robust speaker verification. The
key idea is to use a classifier to guide the training of PLDA mixture models so that each mixture component
precisely models one cluster in the i-vector space. In the testing stage, the verification scores are computed by
combining the PLDA scores with dynamic weights depending on the posterior probabilities given by the clas-
sifier. The proposed method was compared against state-of-the-art models on the NIST SRE 2012 data set. It
achieves much better performance than PLDA and conventional mixture of PLDA under SNR-level variability
and channel-type variability.

Al-Ali et al. [1] introduced the use of DWT-based MFCC features and their combination with traditional
MEFCC features for forensic speaker verification. The i-vector and PLDA classifier are used in this work. Exper-
imental results indicate that the fusion feature warping DWT-MFCC and feature-warped MFCC approach
achieved better performance under most environmental noise, reverberation, and noisy and reverberation
environments. The robustness in the performance of the fusion feature approach could be used in forensic
applications.

Kanagasundaram et al. [21] provided experimental analysis of text-independent speaker verification
system by varying the amount of train and test data. The analysis given by Das et al. [7] for very less amount
of test data (<10 s) shows that the performance drops significantly even though sufficient speech data are
used during training. This trend of downfall in performance for limited test data motivates us to consider
a source feature that captures complementary speaker information with limited data. Das et al. [7] demon-
strated speaker verification for limited data condition using i-vector modeling. They used 150-dimensional
LDA and a full-dimensional WCCN matrix. The study reported that different source features along with MFCC
gives better performance than individual MFCC. Dey et al. [11] demonstrated the performance of speaker
verification using i-vector as modeling techniques. The study reported that i-vector modeling gives better
performance than GMM-UBM, and the performance of raw i-vector-based system was further improved by
the use of LDA and WCCN followed by T-norm.

The literature in the works of Gudnason and Brookes [14] and Murty and Yegnanarayana [24] shows
that better performance can be achieved by fusing the vocal tract with source excitation features. Studies by
Prasanna et al. [27] and Chan et al. [6] show that while dealing with voice source features limited, the amount
of train and test data can be used as compared with vocal tract features. This is because voice source features
dependence on phonetic content is very less, where as in vocal tract features requires more amount of pho-
netic content to be captured for speaker modeling. For speaker modeling, a sufficient amount of phonetic
content has to be captured in vocal tract features, whereas in excitation source features, the phonetic content
dependency is very low. In case of limited data, the amount of data available is very less. The extracted
features are insufficient to model well. Each modeling technique uses its own representation of the input
pattern. Further, the testing method is used for verifying speaker is different for each modeling technique.
Combining scores of different modeling techniques using score-level fusion may give better verification per-
formance in limited data. This motivates us to use score-level fusion using different modeling techniques in
case of limited data speaker verification.

In the testing phase, an unknown test speech is represented by channel/session-compensated feature
vectors and compared against the claimed model to obtain similarity score. The similarity measure is done
based on the employed modeling method. For instance, Euclidean distance [35], log likelihood score (LLS)
[29, 30] and log likelihood score ratio (LLSR) [31] are used as the similarity scores for VQ and GMM and GMM-
UBM modeling technique, respectively. In an i-vector-based speaker verification system, the test speech is
represented as the channel/session-compensated i-vector, and the cosine kernel between the claimed and
test i-vectors is used as the similarity measure [10].
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The remaining structure of the article is arranged as follows: The database and experimental setup for
the present work is explained in Section 2. The development of i-vector-based speaker verification system
using vocal tract and source features is explained in Section 3. Section 4 provides the experimental results
and discussion of the speaker verification system. Section 5 includes the summary and conclusion for the
present work.

2 Database and Experimental Setup for the Work

In the present work, speaker verification is done using the NIST 2003 database [25]. This standard data set
contains 2915 speakers. In 356 train speakers, 207 were female speakers and 149 were male speakers. The
NIST SRE 2003 evaluation plan contains 2559 test speakers for verifying the speakers. Apart from test and
train speech samples, the database also contains development data set to train the UBM [31] and T-matrix.
We have used Switchboard Corpus II cellular data of 1872 utterances as development data. A small portion of
the development data contains of 251 female and 251 male speakers of roughly 10 h of duration are required to
train two gender dependent UBM separately of 8, 16, 32, 64, and 128 Gaussian mixtures. These are combined
to form a gender-independent UBM having 16, 32, 64, 128 and 256 Gaussian mixtures. Experiments are con-
ducted for limited data, and we considered the train and test data of durations 3-3, 6-6, 9-9, 12-12 and 15-15 s
each, and for better performance, we increased test data by keeping the train data at 15 s (15-20 and 15-25 s).
The maximum Gaussian mixtures limited for UBM is 256.

3 Development of i-Vector-Based Speaker Verification System:
Vocal Tract and Source Features

The speaker-specific information can be extracted from feature extraction techniques at a reduced data rate
[33]. These feature vectors contain vocal tract, excitation source and behavioral traits of speaker-specific
information [19]. A good feature is one which contains all components of speaker-specific information. To
create a good feature set, different feature extraction techniques need to be understood. These features are
modeled using i-vector modeling technique.

3.1 Vocal Tract Features

MFCC and LPCC feature extraction techniques are used to extract vocal tract features. The technique used to
extract features of MFCC and LPCC are different, and the performance of these features also varies.

In the case of MFCC, the spectral distortion is minimized using hamming window. The magnitude fre-
quency responses are obtained by applying Fourier Transformation to the windowed frame signal. The 22 tri-
angular band pass filters are used to pass the resulting spectrum. Discrete cosine transform (DCT) is applied
to the output of the mel filters in order to obtain the cepstral coefficients. The obtained MFCC features are
used to train and test speech data.

LPCC reflects the differences of the biological structure of human vocal tract. The computing method
using LPCC is a recursion from LPC parameter to LPC cepstrum according to all-pole model. The coeffi-
cients of the all-pole filter form the LPC. It is equivalent to the smoothened envelope of the log spectrum of
the speech. The part of the speech which has been windowed is used to calculate the LPC by either auto-
correlation or covariance methods. The discrete Fourier transform (DFT) and inverse DFT can be avoided
while calculating LPCC using the Durbin recursive method because those methods are time consuming and
complex [17].
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3.2 Excitation Source Features

The spectral features extracted from THE vocal tract are in the range of 10-30 ms. Some of the speaker-
specific information such as the linear prediction (LP) residual and LP residual phase are ignored by the
spectral features which can be utilized for speaker verification [27]. The following procedure is carried out to
calculate the LP residual. First the LP analysis is used to predict the vocal tract information from the speech
data, followed by suppressing the same from the speech data using the inverse filter formation [27, 34]. To
calculate LPRP, the LP residual is divided by the Hilbert envelope [34]. The LPR contains information which is
obtained by the excitation source mainly glottal closure instants (GCIS) and the speaker-specific information
is contained by LPRP [20]. The LPR and LPRP features contain speaker-specific excitation source information
which is dissimilar in characteristic. The advantage can be improved by combining these two features.

3.3 i-Vector

The total variability i-vector representation of speech utterances forms the basis for all state-of-the-art speaker
verification systems [10]. The GMM mean supervectors of each utterance are projected to a low rank matrix to
get a reduced dimension representation is called i-vector. The concatenation of mean vectors of adapted GMM
produces GMM mean supervector for speaker utterance. Figure 1 shows the block diagram of the i-vector-
based speaker verification system.

The total variability matrix is the channel variability and dominant speaker which are simultaneously
represented in the low-rank matrix. If T is the total variability matrix, the i-vector w and adapted GMM mean
supervector M can be related by the following equation,

M =m+Tw, 1

where m represents the speaker and channel-independent supervector (UBM mean supervector). The UBM
represented by a weighted sum of C component Gaussian densities as U :{,uc, Ao ’h} c=1,2,...,, Cwhere u,
. and n_represents the mean vector, covariance matrix and weight associated with mixture component,
respectively. It is assumed that L speech feature vectors {Xl, X,..,X L} each having a dimension of F extracted
from the speech signal. The mean of Oth-order which is the weight of the mixture component and mean of the
first-order F_ centralized with respect to UBM is given by

N, = iP(c |x,, U) @

i=1
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Figure 1: Block Diagram Representation of the Speaker Verification System Using i-Vector Modeling [21].
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F =Y P(c|x,, U)(x,—u,), €)

i=1

where c=1, 2,....C represent the components of the UBM, P(c| x,, U) is the posterior probability of the mixture
component ¢ generating the feature vector and is the mean of UBM component c.

The learning of the total variability matrix T from the development data is generally done using a variant
of probabilistic principal component analysis modified to operate on the Baum-welch statistics of the speech
data computed using UBM. The estimated i-vector W is computed by the following equation

W= (I+T’721N(u)T)7 '3 F(u) “)

where N(u) and X are the diagonal matrix of dimension CFx CF with diagonal blocks being NcI and Zc,
respectively. F(u) is supervector of dimension CFx 1 generated by concatenating all first order Baum—-Welch
statistics (F,) for a given utterance u. The speech utterances are represented in the form of i-vectors during
training and testing phase. Computing the cosine kernel score of the two i-vectors y, and y,_ as given below,

where y_ is the i-vectors of the claimed which was obtained in the training phase and y, is the test speaker
utterances:

<),}clm’ ytst>

Score =—= ~
1Y 1Y s 1l

)

3.3.1 Session/Channel Compensation in i-Vector-Based Speaker Modeling

The i-vector extracted from the speech utterance contains both channel and speaker variabilities. Imple-

menting channel/session compensation methods help improves the performance of the speaker verifica-

tion system which is based on i-vector. The different compensation method of session/channel variability to
improve the performance of the speaker verification system which is based on i-vector is given below:

(i) Linear discriminant analysis in linear discriminant analysis (LDA): the feature vectors are projected
down to a set of new orthogonal axes where the intra-class variance caused by the channel is minimized
and inter-class variance is increased [7, 10]. The projection matrix is composed of the eigen vectors cor-
responding to the best eigen values of the eigen analysis equation as

(Wc'lBC)v = v, (6)

where W_is the within-class covariance matrix, B, is the between-class covarience matrix, v is an arbi-
trary vector and A is the diagonal matrix of eigen values [17].

(ii) Within-class covariance normalization: Compensation of the effects of channel/session mismatch in
i-vector and super vector representations can be done using within-class covariance normalization
(WCCN) which is a type of linear transformation [10, 16]. The transformation minimizes the upper bounds
on the classification error metric and hence minimizes the classification error. The transformation matrix
B is obtained by Cholesky decomposition of the inverse of the within-class covariance matrix W as,

W™ =BB @)

4 Experimental Results and Discussion

In this work, the experiments are conducted using different features for speaker verification system. The
verification performance of the system can be calculated by using equal error rate (EER). It is an operating
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point where false rejection rate (FRR) equals to false acceptance rate (FAR) [27]. The FRR is defined as ratio
of number of rejective true speaker to total number of true speaker. The definition of FAR is ratio of number
of accepted impostor to total number of impostor. For the present work, we extracted vocal tract and excita-
tion source features. The vocal tract features are MFCC and LPCC, excitation source features are LPR and
LPRP. The amount of data available in limited data condition is very small which gives poor verification
performance. To improve the verification performance in limited data condition, we need different levels of
information to be extracted from speech data and they have to be combined to get good verification perfor-
mance. The vocal tract and excitation source information are combined for improving the performance of the
speaker verification system under limited data condition. All these features are in the dimension of 13 and 39.

First, we conducted experiments for 13 dimension features. The features of MFCC and LPCC are extracted
by considering FS of 20 ms and FR of 10 ms. The LPR and LPRP features are extracted by considering FS of
12 ms and FR of 6 ms. The i-vectors are used as classifier. The Gaussian mixtures of 16, 32, 64, 128 and 256 are
considered to model the speakers. The 0-th first-order statistics (GMM mean supervectors) of all speech data
of train, test and development data are computed. The channel and session compensation can be computed
using LDA analysis followed by WCCN.

Table 1 shows the performance of vocal tract and excitation source feature extraction techniques using
different dimensions of i-vector and LDA in terms of EER and decision cost function (DCF). The experiments
conducted for the 3-3 second training and testing data for different feature extraction techniques using dif-
ferent dimensions of i-vectors and LDA combination. The best performance is obtained for 100-50 and 50-50
compared to other combinations. For the present work, we considered dimension of i-vector and LDA is 100—
50 and 50-50, respectively. The reason for considering this dimension is that, extracted features are in 13
dimensions, and data are limited. Therefore, for 6-6, 9-9, 12-12, 15-15, 15-20 and 15-25 s, this combination
is used to model the speaker different amount of train, test and development data. The DCF also follows the
same trend in improvement like EER, when EER decreases there are decrease in DCT also.

The performance of the i-vector-based speaker verification system developed using vocal tract features
(MFCC and LPCC) and excitation source features (LPR and LPRP) are evaluated for different duration of train
and test data for dimensions of 100—-50 combination is shown in Table 2. Since the study is for limited data,
we evaluated system performance until 15 s. Consider 3-3 second data, the minimum EER is 42.68% and
41.55% is obtained for MFCC and LPCC for Gaussian mixtures of 32 and 128, respectively, and the minimum
EER of 39.92% and 40.28% is obtained for LPR and LPRP for the Gaussian mixtures of 64 and 32, respectively.
The reduction in EER of LPCC is 1.13% less as compared with reduction in EER of MFCC and LPR is 0.36%
less in reduction in EER as compared with LPRP. Further, Table 2 clearly shows that, when train and test
data is increased performance will also increases in all feature extraction techniques. The similar trend is
observed from Table 3. The minimum EER for 3-3 second data is 40.83% and 40.42% is obtained for MFCC
and LPCC features for Gaussian mixtures of 128 in both cases. The LPCC is having reduced EER of 0.41%
less as compared with reduced EER of MFCC. The LPR and LPRP is having minimum EER of 40.46% and
£40.24% for Gaussian mixture of 128. The LPR is having 0.22% less in reduction as compared with LPRP. As we
observed from these two tables, the dimensions of i-vector and LDA combinations 50-50 performance better

Table 1: EER of Speaker Verification for Different Dimensions of i-Vector and LDA Using the NIST 2003 Database for the
3-3 second Train/Test Data and Gaussian Mixture of 16, Features are MFCC, LPCC, LPR and LPRP (13 Dimensions).

Dimensions of MFCC LPCC LPR LPRP
(i-vector/LDA)

EER% DCT EER% DCT EER% DCT EER% DCT
400-150 49.86 0.8991 48.10 0.8994 49.10 0.8891 49.06 0.8873
200-150 49.41 0.8981 43.45 0.8152 49.63 0.8983 50.00 0.9000
100-100 43.63 0.8252 42.90 0.8060 45.24 0.8523 44.32 0.8342
100-50 43.36 0.8099 41.64 0.7860 40.51 0.7628 41.86 0.7927

50-50 43.58 0.8247 41.37 0.7812 40.42 0.7643 41.50 0.7821




572 —— T.R.Jayanthi Kumari and H.S. Jayanna: i-Vector-Based Speaker Verification DE GRUYTER

Table 2: EER of Speaker Verification for Using NIST 2003 Database for Different Feature Extraction Techniques (13 Dimensions)
and Modeling Done by i-Vectors.

Train/test  Feature No. of dimension: i-vectors=100; LDA=50

data (s) extra(itlon 16 32 o4 128 256
techniques

EER% DCT EER% DCT EER% DCT EER% DCT EER% DCT

3-3 MFCC 43.36 0.8099 42.68 0.8051 42.77 0.8011 42.68 0.8046 43.81 0.8221

LPCC 41.64 0.7812 42.77 0.8028 42.09 0.7979 41.55 0.7851 41.59 0.7820

LPR 41.86 0.7927 40.24 0.7593 39.92 0.7554  40.92 0.7734 40.46  0.7639

LPRP 40.51 0.7628 40.28 0.7520 40.42 0.7663 41.37 0.7848  42.63 0.8063

6-6 MFCC 38.70 0.7306 38.16 0.7199 37.08 0.7017 39.43 0.7409 39.97 0.7496

LPCC 39.70 0.7487 38.75 0.7333 39.47 0.7429 37.17 0.6998 35.77 0.6757

LPR 38.79 0.7262 38.88 0.7252 38.07 0.7127 38.34 0.7250 38.79 0.7308

LPRP 38.88 0.7306 38.12 0.7131 39.74 0.7503 39.83 0.7384 39.61 0.7469

9-9 MFCC 32.56 0.6180 31.12 0.5872 32.20 0.6103 29.94  0.5657 29.85 0.5641

LPCC 31.12 0.5903 31.57 0.5953 27.68 0.5191 26.64 0.5028 26.01 0.4910

LPR 35.95 0.6700 34.10 0.6315 33.46 0.6189 33.60 0.6289 33.92 0.6367

LPRP 32.92 0.6133 32.06 0.6013 33.15 0.6262 34.95 0.6575 34.23 0.6449

12-12 MFCC 31.75 0.5993 30.71 0.5823 28.68 0.5415 30.98 0.5800 29.31 0.5541

LPCC 28.36 0.5339 26.19 0.4971 25.11 0.4749 25.20 0.4768 22.31 0.4206

LPR 34.10 0.6380 32.97 0.6230 32.24 0.5864 31.75 0.5888 31.02 0.5798

LPRP 32.38 0.6042 31.57 0.5893 32.83 0.6143 33.24 0.6309 34.10 0.6406

15-15 MFCC 29.43 0.5608 29.11 0.5338 28.61 0.5413 27.35 0.5321 26.21 0.4985

LPCC 21.64  0.4023 21.32 0.4164 20.87 0.3994 20.36  0.3852 19.24 0.3627

LPR 31.79 0.5953 31.57 0.5893 30.98 0.5872 30.68 0.5823 29.64 0.5612

LPRP 32.94 0.6814 32.24 0.6309 31.75 0.5972 31.39 0.5888 30.30 0.5926

15-20 MFCC 28.45 0.5438 28.32 0.5418 27.64  0.5333 27.91 0.5365 25.32 0.4775

LPCC 21.35 0.4012 20.84 0.3965 20.62 0.3964 20.41 0.3832 18.43 0.3512

LPR 29.34  0.5543 29.18 0.5523 28.84  0.5447 28.52 0.5432 28.32 0.5418

LPRP 29.64  0.5578 29.34 0.5542 28.74  0.5441 28.85 0.5453 28.84 0.5543

15-25 MFCC 24.54  0.5554 24.32 0.5532 23.33 0.5476 23.21 0.5365 22.82 0.5275

LPCC 18.32 0.3045 18.21 0.3022 17.64 0.2987 17.31 0.2943 16.35 0.2812

LPR 28.11 0.5443 28.54  0.5423 27.72 0.5337 27.31 0.5323 26.61 0.5234

LPRP 28.72 0.5478 28.61 0.5442 27.81 0.5351 27.61 0.5343 26.74 0.5243

The bold values represent minimum EER of particular feature extraction techniques.

as compared to 100-50 combination under limited data condition and also performance of LPCC features
gives minimum EER as compared to minimum EER of MFCC features. Therefore, future experiments in this
work 50-50 combination of i-vector and LDA is used.

In our earlier work [22], we evaluated the speaker verification system using GMM—-UBM modeling for the
NIST 2003 data set. The extracted features are MFCC and LPCC with FS of 20 ms and FR of 10 ms. The features
are in the dimensions of 13. It was observed that GMM-UBM modeling works well under limited data [22]. The
performance using vocal tract features for limited data conditions using GMM-UBM modeling is mentioned
in Table 4. The performance of GMM-UBM modeling using 3-3 second data, the minimum EER of MFCC
and LPCC is 40.10% and 39.06% respectively. Comparing the results of GMM-UBM and i-vectors modeling
as mentioned in Tables 3 and 4. The reduction in EER is 0.73% and 0.36% for MFCC and LPCC in case of 3-3
second data compared to i-vector modeling. The same trend is not continued in 6-6, 9-9, 12-12, 15-15, 15-20
and 15-25-second data size. However, 6-6, 9-9, 12-12, 15-15, 15-20 and 15-25-second data, i-vector performs
better than GMM-UBM. This is because, i-vector-based modeling is an advanced technique than GMM-UBM
modeling. The i-vector extracted from speech data contains both channel/session variabilities and these vari-
abilities can be compensated by various techniques to improve the performance of i-vector-based speaker
verification system and these compensation techniques not present in GMM-UBM.

Further, it was observed that EER of LPCC is less than all other features in Table 3. The minimum EER
obtained is 40.12%, 34.68%, 25.88%, 22.53%, 18.18%, 16.45% and 14.65% for LPCC features for 3-3, 6-6, 9-9,
2-12, 15-15, 15-20 and 15-25-second data compared to MFCC, LPR and LPRP feature extraction techniques.
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Table 3: EER of Speaker Verification for Using NIST 2003 Database for Different Feature Extraction Techniques (13 Dimensions)
and Modeling Done by i-Vectors.

Train/test  Feature No. of dimension: i-vectors=50; LDA=50

data (s) extra(ftlon 16 32 o4 128 256
techniques

EER% DCT EER% DCT EER% DCT EER% DCT EER% DCT

3-3 MFCC 43.58 0.8247 42.72 0.8089 41.96 0.7943 41.77 0.7905 40.83 0.7629

LPCC 41.37 0.7812 42.68 0.8093 42.05 0.7944 40.65 0.7703 40.12 0.7635

LPR 41.50 0.7821 40.92 0.7743 40.65 0.7652 40.46 0.7640 41.01 0.7748

LPRP 40.42 0.7643 40.37 0.7647 40.46 0.7670 40.24 0.7586 41.50 0.7806

6-6 MFCC 39.47  0.7412 38.93 0.7261 38.70 0.7292 37.85 0.7133 36.62 0.7088

LPCC 39.74  0.7402 38.88 0.7322 37.26  0.7022 36.85 0.6975 34.68 0.6541

LPR 39.38 0.7349 39.97 0.7484 38.25 0.7110 38.43 0.7199 38.52 0.7223

LPRP 38.70 0.7300 38.66 0.7308 39.25 0.7421 38.61 0.7309 38.66 0.7309

9-9 MFCC 33.33 0.6280 31.61 0.6002 32.24 0.6035 32.56 0.6124 28.13 0.5295

LPCC 30.89 0.5868 29.81 0.5668 29.22 0.5338 29.53 0.5608 25.88 0.5338

LPR 35.59 0.6618 35.27 0.6515 33.73 0.6264 32.83 0.6164 32.56 0.6125

LPRP 33.73 0.6300 31.88 0.5979 33.15 0.6279 33.78 0.6362 33.96 0.6372

12-12 MFCC 31.39 0.5929 31.02 0.5850 27.04 0.5300 32.06 0.6074 31.25 0.5914

LPCC 28.86 0.5416 26.24  0.4985 25.38 0.4778 24.11 0.4555 22.53 0.4255

LPR 33.55 0.6326 34.41 0.6399 32.06 0.5990 32.11 0.5851 33.19 0.5798

LPRP 32.20 0.6032 31.43 0.5831 32.06 0.6054 32.33 0.6046 32.29 0.6067

15-15 MFCC 27.64  0.5374 27.23 0.5086 26.01 0.4922 25.68 0.4986 23.21 0.3717

LPCC 20.68 0.3964 20.41 0.3852 19.01 0.3575 18.54  0.3214 18.18 0.3061

LPR 30.39 0.5738 29.04 0.5662 28.31 0.5364 29.99 0.5626 28.16 0.5213

LPRP 31.30 0.5926 31.25 0.5888 30.62 0.5746 29.10 0.5682 28.31 0.5364

15-20 MFCC 22.77 0.3774 22.54 0.3786 21.59 0.3612 20.64 0.3586 20.78 0.3537

LPCC 18.45 0.3474 18.32 0.3432 17.34 0.3325 17.11 0.3314 16.45 0.3241

LPR 27.33 0.5768 27.14  0.5732 26.54  0.5654 26.61 0.5638 25.34 0.5513

LPRP 27.64 0.5716 27.42 0.5748 26.66 0.5616 26.78 0.5682 25.63 0.5364

15-25 MFCC 21.78 0.3632 20.64 0.3576 19.32 0.3434 18.63 0.3445 17.32 0.3476

LPCC 16.35 0.3643 15.64 0.3552 15.32 0.3575 14.78 0.3234 14.65 0.3145

LPR 25.33 0.5358 24.45 0.4472 23.31 0.4364 23.15 0.4326 22.32 0.4213

LPRP 25.45 0.5396 24.78 0.4468 23.51 0.4346 23.32 0.4382 22.45 0.4264

The bold values represent minimum EER of particular feature extraction techniques.

Table 4: EER of the Speaker Verification System Using MFCC and LPCC Features (13 Dimensions) and GMM-UBM Modeling for
the NIST 2003 Data Set.

Train/test Feature extraction Gaussian mixtures
data (s) techniques 16 32 4 128 256
3-3 MFCC 41.32 40.15 40.10 40.19 40.37
LPCC 40.01 39.79 39.11 39.25 39.06
6-6 MFCC 38.16 36.94 36.67 37.12 37.57
LPCC 37.48 36.54 36.49 36.04 35.63
9-9 MFCC 32.47 31.02 30.21 29.62 30.26
LPCC 28.99 28.54 28.68 29.17 28.54
12-12 MFCC 30.57 28.09 27.46 27.19 27.59
LPCC 27.28 26.24 26.42 26.28 25.38
15-15 MFCC 28.64 27.32 26.49 24.33 25.32
LPCC 26.54 25.34 23.23 22.64 21.37
15-20 MFCC 25.32 25.14 24.68 23.84 23.64
LPCC 21.79 21.64 20.71 20.41 19.64
15-25 MFCC 22.44 22.32 21.78 21.46 20.72
LPCC 20.45 20.28 19.64 19.32 18.32

The bold values represent minimum EER of particular feature extraction techniques.
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The same set of experiments are conducted for 39 dimension features. Tables 5 and 6 represents perfor-
mance of the speaker verification system using i-vector and GMM-UBM modeling, respectively. In both mod-
eling techniques, LPCC performance is better than MFCC and also i-vector modeling gives better performance
than GMM-UBM for all data sizes. Because of first- and second-order derivatives, 39 dimension features gives
better performance than 13 dimension eatures in both modeling techniques.

The literature survey shows that speaker verification under limited data condition is widely used in secu-
rity, controlled access, authentication of remote transactions, criminal and forensic investigations etc. In
almost all these applications, the speech data may be limited (criminal may speak for only a few seconds).
However, when the speech data are less, the speaker-specific information obtained is also less. The speaker

Table 5: EER of Speaker Verification Using the NIST 2003 database for Different Feature Extraction Techniques (39 Dimensions)
and Modeling Done by i-Vectors.

Train/test  Feature No. of dimension: i-vectors=50; LDA=50
data (s) extraction
. 16 32 64 128 256
techniques
EER% DCT EER% DCT EER% DCT EER% DCT EER% DCT
3-3 MFCC 40.10 0.7591 40.42 0.7630  40.24 0.7594 39.92 0.7550 39.83 0.7548
LPCC 39.20 0.7426 39.11 0.7397 39.47 0.7412 38.70 0.7292 38.86 0.7199
6-6 MFCC 38.88 0.7322 37.26 0.7022 36.78 0.6799 34.77 0.6575 33.42 0.6305
LPCC 37.08 0.7018 37.18 0.7150 36.13 0.6799 34.77 0.6575 33.42 0.6305
9-9 MFCC 31.25 0.5891 31.43 0.5671 29.94 0.5650 29.04 0.5485 26.64 0.5210
LPCC 28.00 0.5224 27.68 0.5124 26.87 0.5045 25.11 0.4749  25.38  0.4749
12-12 MFCC 30.66 0.5811 30.35 0.5677 30.26 0.5683 28.31 0.5364 24.42 0.5274
LPCC 27.42 0.5086 26.78  0.4991 25.20 0.4768 24.57  0.4651 20.41 0.385
15-15 MFCC 26.34 0.5711 25.34 0.5307 25.17 0.5373 25.32 0.4964 20.12 0.3254
LPCC 19.43 0.3273 18.31 0.3291 18.03 0.3205 17.34 0.3134 16.68 0.2450
15-20 MFCC 19.84 0.3254 19.32 0.3243 18.64 0.3223 18.52 0.3214 18.35 0.3204
LPCC 17.64 0.3173 17.32 0.3151 17.18 0.3135 16.45 0.3034 16.32 0.3050
15-25 MFCC 18.32 0.3246 18.45 0.3257 17.41 0.3173 17.31 0.3164 16.64 0.3045
LPCC 16.78 0.3073 16.64 0.3061 15.32 0.2965 15.11 0.2934 14.86 0.2850

The bold values represent minimum EER of particular feature extraction techniques.

Table 6: EER of the Speaker Verification System Using MFCC and LPCC Features (39 Dimensions) and GMM-UBM Modeling for
the NIST 2003 Data Set.

Train/test Feature extraction Gaussian mixtures
data (s) techniques 16 32 64 128 256
3-3 MFCC 39.70 39.02 38.84 39.15 39.02
LPCC 39.61 39.15 38.54 38.66 38.70
6-6 MFCC 38.21 37.08 36.22 36.76 36.94
LPCC 36.44 35.45 34.73 34.73 34.28
9-9 MFCC 28.95 27.59 27.23 27.05 27.14
LPCC 28.13 27.32 27.05 26.73 27.95
12-12 MFCC 26.01 24.66 24.79 24.48 24.84
LPCC 25.70 25.15 23.71 23.84 24.62
15-15 MFCC 24.32 23.64 23.68 22.78 21.16
LPCC 24.13 22.77 22.32 21.94 20.64
15-20 MFCC 22.32 22.14 21.64 21.48 19.86
LPCC 19.64 19.32 18.74 18.34 17.64
15-25 MFCC 19.84 19.32 18.24 18.11 17.32
LPCC 17.64 17.32 16.62 16.12 15.32

The bold values represent minimum EER of particular feature extraction techniques.
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verification performance can be improved by using feature level and score-level fusion. To study the effect of
this on limited data the following experiments are conducted.

4.1 Feature-Level Fusion

The feature-level fusion is accomplished by a simple concatenation of the feature sets obtained by different
feature extraction techniques. In our experiments, we fused vocal tract feature (system information) with
excitation source features (source features). For instance, let X= {x,, x,, Xy oo xm} denotes vocal tract features

Fusion of

Train/ Test vocal Imu 1‘-‘"\“]“'3 Train Modelling .
— 3 (MFCC/LPCC) features technique Testing Accept/Reject
* » | (i-vector) " —
data Source features
PR /L.PRP
(LPR/LPRP) T
Test features

Figure 2: Block Diagram of Feature-Level Fusion.

Table 7: Results of the i-Vectors System Using Feature-Level Fusion of the Vocal Tract and Excitation Source Features (13 Dimen-
sion) for Limited Data Condition on NIST 2003 Database.

Train/test Scores of vocal No. of dimension: i-vectors=50; LDA=50
data (s, tract and excitation
© 16 32 64 128 256
source features

EER% DCT EER% DCT EER% DCT EER% DCT EER% DCT

3-3 MFCC+LPR 35.99 0.6792 37.48 0.7017 36.90 0.6950 37.03 0.6991 38.34 0.7251
MFCC+LPRP 41.37 0.7659 40.65 0.7642 41.10 0.7757 40.65 0.7642 40.37 0.7659
LPCC+LPR 35.32 0.6669 36.22 0.6822 37.12 0.6990 36.31 0.6891 37.39 0.7035
LPCC+LPRP 41.18 0.7696 41.32 0.7782 39.79 0.7515 40.24 0.7592 40.87 0.7696
6-6 MFCC+LPR 34.46 0.6512 35.09 0.6628 34.82 0.6567 35.68 0.6696 36.35 0.6745
MFCC+LPRP 39.74 0.7420 38.52 0.7312 38.79 0.7328 38.75 0.7218 38.79 0.7358
LPCC+LPR 34.68 0.6543 35.00 0.6588 34.64 0.6457 34.55 0.6525 34.91 0.6488
LPCC+LPRP 39.52 0.7404 39.47 0.7471 37.80 0.7038 37.48 0.7066 38.03 0.7140
9-9 MFCC+LPR 28.45 0.5368 29.53 0.5486 28.04 0.5300 28.54 0.5613 30.17 0.5613
MFCC+LPRP 33.69 0.6318 32.47 0.6126 33.46 0.6325 32.33 0.6069 33.24 0.6255
LPCC+LPR 28.99 0.5487 28.99 0.5460 27.77 0.5255 28.22 0.5255 25.15 0.4675
LPCC+LPRP 35.18 0.6588 34.77 0.6386 32.52 0.6139 31.88 0.5942 31.97 0.5972
12-12 MFCC+LPR 28.22 0.5306 28.13 0.5219 28.00 0.5223 27.55 0.5176 28.22 0.5311
MFCC+LPRP 32.61 0.6030 32.02 0.6087 32.52 0.6087 31.39 0.5915 32.83 0.6175
LPCC+LPR 28.41 0.5313 27.32 0.5043 27.32 0.5080 25.73 0.4958 22.33 0.4288
LPCC+LPRP 33.46 0.6198 32.65 0.6079 30.21 0.5618 30.57 0.5724 30.39 0.5637
15-15 MFCC+LPR 24.64 0.5366 24.18 0.5309 24.34 0.5123 23.22 0.4176 23.11 0.4121
MFCC+LPRP 24.84 0.4930 24.54 0.4987 24.94 0.4687 23.74 0.4615 23.64 0.4675
LPCC+LPR 20.42 0.3113 19.32 0.3843 19.81 0.3280 18.24 0.3055 17.32 0.2134
LPCC+LPRP 20.64 0.3698 20.24 0.3679 19.54 0.3021 17.63 0.2564 18.32 0.2837
15-20 MFCC+LPR 20.84 0.3696 20.34 0.3609 21.54 0.3723 21.64 0.3776 21.32 0.3721
MFCC+LPRP 21.64 0.3730 20.54 0.3687 21.72 0.3687 21.32 0.3615 21.54 0.3675
LPCC+LPR 16.84 0.2413 15.24 0.2343 15.34 0.2380 16.32 0.2455 16.14 0.2134
LPCC+LPRP 17.35 0.2598 15.44 0.2379 15.64 0.2321 16.55 0.2564 16.28 0.2637
15-25 MFCC+LPR 19.44 0.3696 19.32 0.3609 19.45 0.3723 19.64 0.3776 20.32 0.3721
MFCC+LPRP 19.72 0.3730 19.64 0.3687 19.82 0.3687 20.32 0.3615 20.54 0.3675
LPCC+LPR 14.54 0.2413 15.32 0.2343 15.54 0.2380 15.62 0.2455 15.44 0.2134
LPCC+LPRP 15.64 0.2368 14.78 0.2169 15.68 0.2381 15.92 0.2394 16.11 0.2547

The bold values represent minimum EER of particular feature extraction techniques.
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(MFCC or LPCC) and Y={y,, y,, y,...y,} represents excitation source features (LPR or LPRP). In our experi-
ments, we concatenated the both feature set to form Z={x, x,, Xy ooes X Vis Vop Vs oo y,}. This new feature set
Z is used for both training and testing. Figure 2 shows the block diagram of feature-level fusion. The features
are fused on the frame-level by concatenating vocal tract features with excitation source features.

The individual EER of MFCC, LPCC, LPR and LPRP is 40.83%, 40.42%, 40.46% and 40.24%, respectively,
as shown in Table 3. The results obtained for limited data by combining the features of vocal tract and exci-
tation source are shown in Table 7. The minimum EER of feature-level fusion of MFCC + LPR, MFCC + LPRP,
LPCC+LPR and LPCC+LPRP is 35.99%, 40.37%, 35.32% and 39.79% respectively. The fusion of MFCC+LPR
and MFCC + LPRP is having reduction of 4.84% and 0.46% less in EER as compared to individual performance
of MFCC. Similarly, the fusion of LPCC+LPR and LPCC+ LPRP is having reduction in EER of 5.1% and 0.63%
less as compared to LPCC. There is an improvement in the performance of EER using feature-level fusion,
the combination of vocal tract and excitation source are having dissimilar features relatively improves the
performance compared to all individual features. The important point noticed in feature-level fusion is that,
fusion of MFCC +LPR and LPCC+ LPR gives better performance as compared to fusion of MFCC+LPRP and
LPCC + LPRP. This may be due to, LPR contains information obtained from excitation source mainly to glottal
closure an instant (GCIS) [20]. Further, the fusion of LPCC + LPR performance is better compared to MFCC + LPR
for limited data. Almost similar trend is observed for other data sizes except fusion of MFCC+LPRP and
LPCC+LPRP for 9-9, 12-12, 15-15, 15-20 and 15-25-second data.

4.2 Score-Level Fusion

In case of score-level fusion, fuse the sores of individual system at verification level using the following
equation:

S =S, +(1-a)S,, (8)
where S, and S, represent the scores obtained using individual systems and S, represents the fused scores
of S, and S ; a represents the optimal value of which is chosen for fusion of the two scores to give and it is a
scalar between the value 0 and 1.

In this work, we conducted two types of score-level fusion to improve the performance of the speaker
verification system. The first one is to fuse the scores of vocal tract and source excitation features, keeping
the modeling techniques same. The second one is fusing the scores of different modeling techniques by main-
taining the same feature extraction technique.

The score-level fusion of different feature extraction techniques is shown in Figure 3. The weight factor «
becomes optimal for the value of 0.05 in case of fusion of scores of two different feature extraction techniques.

From the previous section, we already proved that feature-level fusion gives better performance com-
pared to individual feature. The performance of score-level fusion of vocal tract and excitation source fea-
tures for limited data using NIST 2003 data set is shown in Table 8. Further, the minimum EER of score-level

Train
Train/Test Vocal tract features Modelling A
data ———p» features 1 technique p|  Testing
(MFCC. LPCC) (i-vector) N
Test features Score level __Accegg
fusion Rej ect
Train ry
Train/Test Source features features Modelling —
data — ! (LPR, LPRP) P technique p| Testing
(i-vector) =

Test features

Figure 3: Block Diagram of Score-Level Fusion for Different Feature Extraction Techniques.
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Table 8: Results of the i-Vectors System using Score-Level Fusion of the Vocal Tract and Excitation Source Features (13 Dimen-
sion) for Limited Data Condition on NIST 2003 Database.

Train/test Scores of Score-level fusion (no. of dimension: i-vectors=50; LDA=50)
data (s) feature K ,
extracted Gaussian mixtures
signal 16 32 64 128 256
3-3 MFCC+LPR 34.91 35.09 35.63 36.81 36.92
MFCC + LPRP 39.43 39.47 38.75 38.12 39.47
LPCC+LPR 34.82 35.04 35.68 35.99 35.81
LPCC +LPRP 39.34 40.06 39.47 39.15 39.83
6-6 MFCC +LPR 32.79 33.15 32.74 33.55 33.64
MFCC + LPRP 36.58 36.81 36.94 35.72 36.49
LPCC+LPR 33.46 33.92 33.64 35.09 34.37
LPCC+LPRP 38.07 38.21 36.49 36.58 37.17
9-9 MFCC+LPR 26.64 25.92 25.20 25.02 26.28
MFCC + LPRP 28.31 28.09 28.54 28.27 29.17
LPCC+LPR 26.87 26.60 27.10 26.64 25.15
LPCC+LPRP 31.57 31.97 30.84 29.04 30.44
12-12 MFCC+LPR 25.88 24.52 24.48 26.15 25.70
MFCC + LPRP 28.68 26.91 27.00 29.31 28.50
LPCC+LPR 26.15 25.92 25.79 26.01 25.42
LPCC +LPRP 29.58 29.99 28.41 27.82 30.53
15-15 MFCC +LPR 23.98 23.64 23.32 22.16 22.71
MFCC + LPRP 24.54 24.32 23.94 22.54 22.67
LPCC+LPR 19.34 19.31 18.13 17.72 16.34
LPCC+LPRP 19.49 19.64 18.43 17.49 16.54
15-20 MFCC+LPR 20.64 19.32 20.32 20.16 20.32
MFCC + LPRP 20.82 19.82 20.54 20.31 20.24
LPCC+LPR 14.54 14.64 15.32 15.84 15.15
LPCC+LPRP 15.34 14.78 15.64 15.92 15.45
15-25 MFCC+LPR 16.48 16.54 16.13 16.98 16.74
MFCC + LPRP 16.34 16.64 17.32 17.13 17.11
LPCC+LPR 12.34 12.64 13.32 13.64 13.51
LPCC +LPRP 13.51 13.64 12.62 12.82 12.87

The bold values represent minimum EER of particular feature extraction techniques.

fusion of MFCC + LPR, MFCC + LPRP, LPCC+LPR and LPCC+LPRP is 34.91%, 38.12%, 34.82% and 39.15%
respectively. The score-level fusion of MFCC + LPR and MFCC + LPRP is having reduction of 1.08% and 2.25%
less in EER as compared to feature-level fusion of MFCC+LPR and MFCC + LPRP, respectively. Similarly
score-level fusion of LPCC+ LPR and LPCC+ LPRP is 0.5% and 0.64% less in reduction in EER as compared
to feature-level fusion of LPCC+LPR and LPCC + LPRP, respectively. The trend in EER reduction remains
same for other data sizes.

Over the last two decades, speaker verification system facing two main problems such as session vari-
ability and channel mismatch. The main reason for these problems is emotional state of the speaker, envi-
ronmental conditions, recording devices, different transmission channels,...etc. Due to this variability the
system performance decreases drastically. The GMM-UBM modeling system facing these problems [31].

In case of GMM-UBM, the feature is extracted by frame and number of features are unfixed. Gauss-
ian Mixtures are used to fit all the features. In GMM mapping, the feature is calculated by frame with MAP.
The difference of the likelihood ratio from the GMM to the UBM is used to describe the result. These entire
problems can be overcome by using i-vector. The i-vector-based modeling is an advanced technique than
GMM-UBM modeling. The i-vector extracted from the speech utterance contains both channel and speaker
variabilities. Implementing channel/session compensation methods help improves the performance of the
speaker verification system [10]. Due to these reasons, the experiments we conducted using i-vectors show an
improvements in performance over GMM—-UBM. The results are shown in Tables 3-6.



578 =—— T.R.Jayanthi Kumari and H.S. Jayanna: i-Vector-Based Speaker Verification DE GRUYTER

Figure 4 shows the proposed combined modeling technique in score-level fusion. The improvement in
performance by combining the scores of i-vector and GMM-UBM modeling techniques at score-level are sig-
nificant as shown in Table 9. The reason for improvement in performance may be due to i-vectors use cosine
kernel whereas GMM-UBM uses log likelihood ratio test and the working principle of i-vector and GMM-UBM
are different.

In the proposed system, the optimal value of « is 0.5. The performance of score-level fusion for different
modeling techniques for 13 dimensions. The LPCC gives very good performance in all data sizes compared to
MFCC. The LPCC is having minimum reduction in EER of = 4% as compared to MFCC in score-level fusion of
different modeling techniques.

Table 10 shows comparision for different fusion techniques for 13 dimension features. From this table
we observed few points. First point is, for 3-3 second data, feature-level fusion and score-level fusion of
different features gives minimum EER as compared to score-level fusion of different modeling techniques.
In this case combination of MFCC or LPCC with LPR gives better performance than MFCC or LPCC with
LPRP. The second point is, when data size increases (6—6, 9-9, 12-12, 15-15, 15-20 and 15-25 s) score-level
fusion for different modeling techniques gives better performance compared to other fusion techniques.
From these observation it is clear that, for limited data score-level fusion for different modeling technique
can be used to get better verification results. This results motivates us to conduct score-level fusion for 39
dimensions. Table 11 shows the score-level fusion of 39 dimensions for different modeling techniques. In
this case, LPCC also performs better than MFCC for all data sizes. Compare Tables 9 and 11’s score-level
fusion for both dimensions. The results shows that there is drastic improvement in 39 dimensions com-
pared with 13 dimensions.

Test
Train features
features | pfogelling :
technique »  Testing
(i-vector) v
Accept/Reject
N Vocal tract Score level
Train/Test features 1 fusion —>
data (MFCC/LPCC) Train
features
Modelling —
- technique »| Testing
(GMM-UBM)
Test
features

Figure 4: Block Diagram of Proposed Combined Modeling.

Table 9: Performance of the Speaker Verification System for Score-Level Fusion Using i-Vector and GMM-UBM Modeling Tech-
niques for Limited Data Condition in the NIST 2003 Database.

Train/test Score-level fusion for MFCC features (13 dimensions) Score-level fusion for LPCC features (13 dimensions)
data (s) o o
Gaussian mixtures Gaussian mixtures
16 32 64 128 256 16 32 64 128 256
3-3 38.73 37.28 37.74 36.65 36.06 37.35 37.75 36.90 36.63 35.99
6-6 36.72 36.08 36.63 35.90 32.55 34.77 33.69 33.60 32.70 32.15
9-9 29.72 28.45 28.13 30.08 25.00 24.11 23.44 23.89 23.75 23.30
12-12 27.37 26.24 23.80 28.27 28.00 20.09 21.45 21.95 21.45 20.09
15-15 21.64 22.32 19.18 18.92 17.64 16.11 15.24 15.34 14.52 14.63
15-20 14.43 14.34 14.64 14.36 14.52 11.34 11.41 11.14 11.54 11.64
15-25 11.17 11.34 11.32 11.64 11.54 8.38 8.34 8.54 8.51 8.49

The bold values represent minimum EER of particular feature extraction techniques.
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Table 11: Performance of the Speaker Verification System for Score-Level Fusion Using i-Vector and GMM-UBM Modeling Tech-
niques for Limited Data Condition on the NIST 2003 Database.

Train/test Score-level fusion for MFCC features (39 dimensions) Score-level fusion for LPCC features (39 dimensions)
data (s) R . . .
Gaussian mixtures Gaussian mixtures
16 32 64 128 256 16 32 64 128 256
3-3 36.20 36.11 35.70 34.16 38.93 34.73 33.73 33.69 31.97 31.48
6-6 33.19 33.42 33.46 30.62 30.84 29.26 27.95 28.90 27.10 27.59
9-9 27.82 27.23 25.42 24.61 24.57 21.09 20.05 22.94 22.71 21.34
12-12 25.38 24.11 23.75 22.94 22.17 19.28 19.20 18.15 17.34 19.41
15-15 17.49 16.34 16.51 15.49 15.63 15.32 15.64 14.34 13.21 12.36
15-20 11.69 10.84 9.48 8.64 8.12 9.14 8.34 6.34 6.23 6.04
15-25 5.65 5.84 5.82 5.12 5.05 4.32 4.64 4.12 3.58 3.98

The bold values represent minimum EER of particular feature extraction techniques.

5 Conclusion

In this article, we demonstrated the significance of performance of individual modeling technique and dif-
ferent fusion techniques for limited data condition. First, we studied the working principles of individual
features using i-vector modeling technique. It was observed that i-vector modeling gives better EER compared
with the GMM-UBM modeling technique. To increase the performance of the speaker verification system, we
conducted experiments using feature- and score-level fusion for 13 dimensions. Here the vocal tract features
are fused with excitation source features in feature-level fusion, the performance of feature-level fusion is
better as compared to performance of individual feature extraction techniques. The two cases of score-level
fusions are demonstrated in this work for 13 dimensions. In the first case, fusing the scores of vocal tract and
excitation source features at score-level by maintaining same modeling technique. It was observed that, an
average reduction of EER is approximately equal to 2% compared with feature-level fusion performance. In
the second case, the different modeling scores are fused by keeping feature remain same. In the experimen-
tal results, it was observed that an average reduction in EER is approximately equal to 4.5% compared with
score-level fusion of different features. Further it was observed that, score-level fusion for different modeling
technique gives better performance compared to the other fusion techniques. It was also observed that, LPCC
with source features combinations gives better performance as compared to MFCC + LPR and MFCC + LPRP
under limited data condition. Therefore, we suggest that the LPCC with source features can be used as fea-
tures along with score-level fusion for different modeling to improve the performance of speaker verification
under limited data condition. Also we observed that score-level fusion for different modeling technique pro-
vides better performance than other two fusion techniques. With this movitation we conducted score-level
fusion for 39 dimensions. The result shows that there is drastic improvement in EER using 39 dimensions
compared with 13 dimensions. Therefore, we also suggest that 39 dimensions can also be used to improve the
performance of the speaker verification system under limited data.
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