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Abstract: In many biometric applications, limited data speaker verification plays a significant role in prac-
tical-oriented systems to verify the speaker. The performance of the speaker verification system needs to be 
improved by applying suitable techniques to limited data condition. The limited data represent both train 
and test data duration in terms of few seconds. This article shows the importance of the speaker verification 
system under limited data condition using feature- and score-level fusion techniques. The baseline speaker 
verification system uses vocal tract features like mel-frequency cepstral coefficients, linear predictive cepstral 
coefficients and excitation source features like linear prediction residual and linear prediction residual phase 
as features along with i-vector modeling techniques using the NIST 2003 data set. In feature-level fusion, the 
vocal tract features are fused with excitation source features. As a result, on average, equal error rate (EER) is 
approximately equal to 4% compared to individual feature performance. Further in this work, two different 
types of score-level fusion are demonstrated. In the first case, fusing the scores of vocal tract features and 
excitation source features at score-level-maintaining modeling technique remains the same, which provides 
an average reduction approximately equal to 2% EER compared to feature-level fusion performance. In the 
second case, scores of the different modeling techniques are combined, which has resulted in EER reduction 
approximately equal to 4.5% compared with score-level fusion of different features.

Keywords: Mel-frequency cepstral coefficient (MFCC), linear prediction cepstral coefficients (LPCC), linear 
prediction residual (LPR), linear prediction residual phase (LPRP), i-vector, feature-level fusion, score-level 
fusion.

1  �Introduction
The last two decades, biometric technologies plays important role in recognizing a person for various appli-
cations [11, 18]. Person authentication using biometric application includes fingerprint, face, iris, ear, retina, 
DNA and speech. These biometric features are used to develop practical system for various applications. 
Among these biometric features, speech is considered as one of the features to recognize a person, and it is 
called speaker recognition. The subcategories of speaker recognition are speaker identification and speaker 
verification [32]. In identification, the registered test speech data match with all the speaker models to decide 
the current speaker of the test speech data [32]. Further, speaker verification uses the claimed speaker data to 
verify against the claimed model. Based on speech data, speaker verification system can be divided into text-
dependent and text-independent systems. The same set of text data is used in text-dependent system, and for 
text-independent system, different text data are used to train and test the speakers [13].

In the present situation, speaker verification performs well in case of sufficient data. The sufficient 
data contains speech data of a few minutes (<1  min). Existing techniques like speech analysis, feature 
extraction, modeling and testing perform better under sufficient data condition. On the other hand, limited 
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data means speech data in terms of a few seconds (≤15 s). Many of the biometric applications have to be 
done using less amount of data to verify a speaker. Speech data can be analyzed in different techniques. 
The different analysis techniques in state-of-the-art speaker verification systems are segmental, subseg-
mental and suprasegmental analysis [10]. During segmental analysis, the frame size (FS) and frame rate 
(FR) in the range of 10–30 ms is used for speech analysis in order to extract the vocal tract information 
which is called single frame size and single frame rate (SFSR) analysis [19]. For subsegmental analysis, due 
to rapid variations in the excitation source information as compared to that of vocal tract information. In 
this case, the analysis of speech is done using FS and FR in the range of 3–5 ms [27]. The behavioral aspects 
of the speaker is captured by analyzing the FS and FR in the range of 100–300 ms during suprasegmental 
analysis [12].

The purpose of feature extraction is to extract feature vectors of reduced dimension. The extracted feature 
information are emphasized and other redundant factors are suppressed in these feature vectors [4, 5]. The 
mel-frequency cepstral coefficients (MFCC) [28] and linear prediction cepstral coefficients (LPCC) [2] are used 
to extract the information of vocal tract. The speech signal contains both static and dynamic characteristics. 
The MFCC and LPCC feature set contain only static characteristics. The dynamic characteristic represented 
by Delta (∆) and Delta-Delta (∆∆) contains some more speaker information, which is useful in speaker verifi-
cation [2]. The excitation source features are extracted using prediction residual (LPR) and linear prediction 
residual phase (LPRP) [24].

Reynolds [28] compared the vocal tract features for speaker recognition and reported that MFCC and 
LPCC give a better performance compared with the other features. The reasons may be less intra-speaker 
variability and the availability of rich spectral analysis tools. Speaker recognition performance can be 
increased by combining vocal tract features and excitation source features [24]. In this study, the training 
and testing data are limited to 3 s. The feature used as MFCC and its derivatives and either LPR or LPRP. 
They considered frame size and frame rate in the range of 10–30 and 3–5 ms for MFCC and its derivatives 
and LPR or LPRP, respectively. The study showed that the combination of MFCC and its derivatives along 
with either LPR or LPRP features gives better performance compared with individual performance. The 
author reported that the combined features give better performance compared with individual features in 
speaker recognition.

Das et al. [9] reported on the effort made to develop speech-based person authentication system involv-
ing three different modules of speaker verification under low security applications. They used three different 
modules of the speaker verification system. The modules are voice-password, text-dependent and text-
independent speaker verification. The combination of these system is called multi-level system. The author 
reported that a multi-level system performs better compared to individual modules for speaker verification. 
Also, the functionality of each module can be moderated according to the type of application for which the 
system is designed.

Das et  al. [8] concentrated on highlighting the requirement of phonetic match in a text-independent 
speaker verification framework from the perspective of having practical deployable systems. The authors 
considered sufficient train data and short test data, and i-vector modeling is used. Three minutes of read 
speech is considered for training the speaker models. The chosen phrase and a text-constrained phrase are 
used for testing, and the database used is NIST 2003. The EER obtained is 23%.

Pandey et al. [26] conducted experiments for sufficient training data and limited test data. Limited test 
data are created by truncating the test data of NIST SRE 2003 database. Four different cases of limited test 
data duration of 10, 5, 3 and 2 s are considered, and the EER obtained is 5.87%, 10.52%, 16.94% and 22.31%, 
respectively.

The speaker verification system contains different types of pattern-matching techniques like template 
matching, probabilistic model and artificial neural network. The nearest-neighbor vector quantization (VQ) 
belongs to template matching and probabilistic model contains Gaussian mixture model (GMM), GMM–uni-
versal background model (UBM), joint factor analysis and i-vector. Further, time delay neural work and deci-
sion tree belong to artificial neural network. Among these, i-vector is used for modeling in the present work. 
The state-of-the-art speaker verification system prefers i-vector-based speaker modeling technique over the 
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conventional modeling approaches due to its compact representation and compatible channel/session com-
pensation techniques [10]. The i-vectors are the low-dimensional representation of GMM mean supervector-
derived using factor analysis. The recent works in this area address the problem of mismatch in sensors, 
environment and language, and changes across sessions [15]. To address these problems, different tech-
niques like score/handset/test normalization [3], within class covariance normalization (WCCN) [16], linear 
discriminant analysis (LDA) and joint factor analysis (JFA) [36] are available.

Li et al. [23] proposed a new way of applying PLDA mixture models for robust speaker verification. The 
key idea is to use a classifier to guide the training of PLDA mixture models so that each mixture component 
precisely models one cluster in the i-vector space. In the testing stage, the verification scores are computed by 
combining the PLDA scores with dynamic weights depending on the posterior probabilities given by the clas-
sifier. The proposed method was compared against state-of-the-art models on the NIST SRE 2012 data set. It 
achieves much better performance than PLDA and conventional mixture of PLDA under SNR-level variability 
and channel-type variability.

Al-Ali et al. [1] introduced the use of DWT-based MFCC features and their combination with traditional 
MFCC features for forensic speaker verification. The i-vector and PLDA classifier are used in this work. Exper-
imental results indicate that the fusion feature warping DWT-MFCC and feature-warped MFCC approach 
achieved better performance under most environmental noise, reverberation, and noisy and reverberation 
environments. The robustness in the performance of the fusion feature approach could be used in forensic 
applications.

Kanagasundaram et  al. [21] provided experimental analysis of text-independent speaker verification 
system by varying the amount of train and test data. The analysis given by Das et al. [7] for very less amount 
of test data (<10 s) shows that the performance drops significantly even though sufficient speech data are 
used during training. This trend of downfall in performance for limited test data motivates us to consider 
a source feature that captures complementary speaker information with limited data. Das et al. [7] demon-
strated speaker verification for limited data condition using i-vector modeling. They used 150-dimensional 
LDA and a full-dimensional WCCN matrix. The study reported that different source features along with MFCC 
gives better performance than individual MFCC. Dey et  al. [11] demonstrated the performance of speaker 
verification using i-vector as modeling techniques. The study reported that i-vector modeling gives better 
performance than GMM–UBM, and the performance of raw i-vector-based system was further improved by 
the use of LDA and WCCN followed by T-norm.

The literature in the works of Gudnason and Brookes [14] and Murty and Yegnanarayana [24] shows 
that better performance can be achieved by fusing the vocal tract with source excitation features. Studies by 
Prasanna et al. [27] and Chan et al. [6] show that while dealing with voice source features limited, the amount 
of train and test data can be used as compared with vocal tract features. This is because voice source features 
dependence on phonetic content is very less, where as in vocal tract features requires more amount of pho-
netic content to be captured for speaker modeling. For speaker modeling, a sufficient amount of phonetic 
content has to be captured in vocal tract features, whereas in excitation source features, the phonetic content 
dependency is very low. In case of limited data, the amount of data available is very less. The extracted 
features are insufficient to model well. Each modeling technique uses its own representation of the input 
pattern. Further, the testing method is used for verifying speaker is different for each modeling technique. 
Combining scores of different modeling techniques using score-level fusion may give better verification per-
formance in limited data. This motivates us to use score-level fusion using different modeling techniques in 
case of limited data speaker verification.

In the testing phase, an unknown test speech is represented by channel/session-compensated feature 
vectors and compared against the claimed model to obtain similarity score. The similarity measure is done 
based on the employed modeling method. For instance, Euclidean distance [35], log likelihood score (LLS) 
[29, 30] and log likelihood score ratio (LLSR) [31] are used as the similarity scores for VQ and GMM and GMM–
UBM modeling technique, respectively. In an i-vector-based speaker verification system, the test speech is 
represented as the channel/session-compensated i-vector, and the cosine kernel between the claimed and 
test i-vectors is used as the similarity measure [10].
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The remaining structure of the article is arranged as follows: The database and experimental setup for 
the present work is explained in Section 2. The development of i-vector-based speaker verification system 
using vocal tract and source features is explained in Section 3. Section 4 provides the experimental results 
and discussion of the speaker verification system. Section 5 includes the summary and conclusion for the 
present work.

2  �Database and Experimental Setup for the Work
In the present work, speaker verification is done using the NIST 2003 database [25]. This standard data set 
contains 2915 speakers. In 356 train speakers, 207 were female speakers and 149 were male speakers. The 
NIST SRE 2003 evaluation plan contains 2559 test speakers for verifying the speakers. Apart from test and 
train speech samples, the database also contains development data set to train the UBM [31] and T-matrix. 
We have used Switchboard Corpus II cellular data of 1872 utterances as development data. A small portion of 
the development data contains of 251 female and 251 male speakers of roughly 10 h of duration are required to 
train two gender dependent UBM separately of 8, 16, 32, 64, and 128 Gaussian mixtures. These are combined 
to form a gender-independent UBM having 16, 32, 64, 128 and 256 Gaussian mixtures. Experiments are con-
ducted for limited data, and we considered the train and test data of durations 3–3, 6–6, 9–9, 12–12 and 15–15 s 
each, and for better performance, we increased test data by keeping the train data at 15 s (15–20 and 15–25 s). 
The maximum Gaussian mixtures limited for UBM is 256.

3  �Development of i-Vector-Based Speaker Verification System: 
Vocal Tract and Source Features

The speaker-specific information can be extracted from feature extraction techniques at a reduced data rate 
[33]. These feature vectors contain vocal tract, excitation source and behavioral traits of speaker-specific 
information [19]. A good feature is one which contains all components of speaker-specific information. To 
create a good feature set, different feature extraction techniques need to be understood. These features are 
modeled using i-vector modeling technique.

3.1  �Vocal Tract Features

MFCC and LPCC feature extraction techniques are used to extract vocal tract features. The technique used to 
extract features of MFCC and LPCC are different, and the performance of these features also varies.

In the case of MFCC, the spectral distortion is minimized using hamming window. The magnitude fre-
quency responses are obtained by applying Fourier Transformation to the windowed frame signal. The 22 tri-
angular band pass filters are used to pass the resulting spectrum. Discrete cosine transform (DCT) is applied 
to the output of the mel filters in order to obtain the cepstral coefficients. The obtained MFCC features are 
used to train and test speech data.

LPCC reflects the differences of the biological structure of human vocal tract. The computing method 
using LPCC is a recursion from LPC parameter to LPC cepstrum according to all-pole model. The coeffi-
cients of the all-pole filter form the LPC. It is equivalent to the smoothened envelope of the log spectrum of 
the speech. The part of the speech which has been windowed is used to calculate the LPC by either auto-
correlation or covariance methods. The discrete Fourier transform (DFT) and inverse DFT can be avoided 
while calculating LPCC using the Durbin recursive method because those methods are time consuming and 
complex [17].
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3.2  �Excitation Source Features

The spectral features extracted from THE vocal tract are in the range of 10–30  ms. Some of the speaker-
specific information such as the linear prediction (LP) residual and LP residual phase are ignored by the 
spectral features which can be utilized for speaker verification [27]. The following procedure is carried out to 
calculate the LP residual. First the LP analysis is used to predict the vocal tract information from the speech 
data, followed by suppressing the same from the speech data using the inverse filter formation [27, 34]. To 
calculate LPRP, the LP residual is divided by the Hilbert envelope [34]. The LPR contains information which is 
obtained by the excitation source mainly glottal closure instants (GCIS) and the speaker-specific information 
is contained by LPRP [20]. The LPR and LPRP features contain speaker-specific excitation source information 
which is dissimilar in characteristic. The advantage can be improved by combining these two features.

3.3  �i-Vector

The total variability i-vector representation of speech utterances forms the basis for all state-of-the-art speaker 
verification systems [10]. The GMM mean supervectors of each utterance are projected to a low rank matrix to 
get a reduced dimension representation is called i-vector. The concatenation of mean vectors of adapted GMM 
produces GMM mean supervector for speaker utterance. Figure 1 shows the block diagram of the i-vector-
based speaker verification system.

The total variability matrix is the channel variability and dominant speaker which are simultaneously 
represented in the low-rank matrix. If T is the total variability matrix, the i-vector w and adapted GMM mean 
supervector Ms can be related by the following equation,

	
,sM m Tw= +

� (1)

where m represents the speaker and channel-independent supervector (UBM mean supervector). The UBM 
represented by a weighted sum of C component Gaussian densities as U = {μc, λc, ηc} c = 1, 2,…, C where μc, 
λc and ηc represents the mean vector, covariance matrix and weight associated with mixture component, 
respectively. It is assumed that L speech feature vectors {X1, X2,…, XL} each having a dimension of F extracted 
from the speech signal. The mean of 0th-order which is the weight of the mixture component and mean of the 
first-order Fc centralized with respect to UBM is given by
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Figure 1: Block Diagram Representation of the Speaker Verification System Using i-Vector Modeling [21].



570      T.R. Jayanthi Kumari and H.S. Jayanna: i-Vector-Based Speaker Verification

	 1
( | , )( ),

L

c t t t
i

F P c x U x μ
=

= −∑
�

(3)

where c = 1, 2,….C represent the components of the UBM, P(c | xt, U) is the posterior probability of the mixture 
component c generating the feature vector and is the mean of UBM component c.

The learning of the total variability matrix T from the development data is generally done using a variant 
of probabilistic principal component analysis modified to operate on the Baum-welch statistics of the speech 
data computed using UBM. The estimated i-vector W is computed by the following equation

	
( ) 11 1
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(4)

where N(u) and Σ are the diagonal matrix of dimension CF × CF with diagonal blocks being NcI and Σc, 
respectively. F(u) is supervector of dimension CF × 1 generated by concatenating all first order Baum–Welch 
statistics (Fc) for a given utterance u. The speech utterances are represented in the form of i-vectors during 
training and testing phase. Computing the cosine kernel score of the two i-vectors ŷclm and ŷtst as given below, 
where ŷclm is the i-vectors of the claimed which was obtained in the training phase and ŷtst is the test speaker 
utterances:
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3.3.1  �Session/Channel Compensation in i-Vector-Based Speaker Modeling

The i-vector extracted from the speech utterance contains both channel and speaker variabilities. Imple-
menting channel/session compensation methods help improves the performance of the speaker verifica-
tion system which is based on i-vector. The different compensation method of session/channel variability to 
improve the performance of the speaker verification system which is based on i-vector is given below:
(i)	 Linear discriminant analysis in linear discriminant analysis (LDA): the feature vectors are projected 

down to a set of new orthogonal axes where the intra-class variance caused by the channel is minimized 
and inter-class variance is increased [7, 10]. The projection matrix is composed of the eigen vectors cor-
responding to the best eigen values of the eigen analysis equation as

	
1( ) ,c cW B v vλ− =

� (6)

where Wc is the within-class covariance matrix, Bc is the between-class covarience matrix, v is an arbi-
trary vector and λ is the diagonal matrix of eigen values [17].

(ii)	 Within-class covariance normalization: Compensation of the effects of channel/session mismatch in 
i-vector and super vector representations can be done using within-class covariance normalization 
(WCCN) which is a type of linear transformation [10, 16]. The transformation minimizes the upper bounds 
on the classification error metric and hence minimizes the classification error. The transformation matrix 
B is obtained by Cholesky decomposition of the inverse of the within-class covariance matrix W as,

	
1 tW BB− = � (7)

4  �Experimental Results and Discussion
In this work, the experiments are conducted using different features for speaker verification system. The 
verification performance of the system can be calculated by using equal error rate (EER). It is an operating 
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point where false rejection rate (FRR) equals to false acceptance rate (FAR) [27]. The FRR is defined as ratio 
of number of rejective true speaker to total number of true speaker. The definition of FAR is ratio of number 
of accepted impostor to total number of impostor. For the present work, we extracted vocal tract and excita-
tion source features. The vocal tract features are MFCC and LPCC, excitation source features are LPR and 
LPRP. The amount of data available in limited data condition is very small which gives poor verification 
performance. To improve the verification performance in limited data condition, we need different levels of 
information to be extracted from speech data and they have to be combined to get good verification perfor-
mance. The vocal tract and excitation source information are combined for improving the performance of the 
speaker verification system under limited data condition. All these features are in the dimension of 13 and 39.

First, we conducted experiments for 13 dimension features. The features of MFCC and LPCC are extracted 
by considering FS of 20 ms and FR of 10 ms. The LPR and LPRP features are extracted by considering FS of 
12 ms and FR of 6 ms. The i-vectors are used as classifier. The Gaussian mixtures of 16, 32, 64, 128 and 256 are 
considered to model the speakers. The 0-th first-order statistics (GMM mean supervectors) of all speech data 
of train, test and development data are computed. The channel and session compensation can be computed 
using LDA analysis followed by WCCN.

Table 1 shows the performance of vocal tract and excitation source feature extraction techniques using 
different dimensions of i-vector and LDA in terms of EER and decision cost function (DCF). The experiments 
conducted for the 3–3 second training and testing data for different feature extraction techniques using dif-
ferent dimensions of i-vectors and LDA combination. The best performance is obtained for 100–50 and 50–50 
compared to other combinations. For the present work, we considered dimension of i-vector and LDA is 100–
50 and 50–50, respectively. The reason for considering this dimension is that, extracted features are in 13 
dimensions, and data are limited. Therefore, for 6–6, 9–9, 12–12, 15–15, 15–20 and 15–25 s, this combination 
is used to model the speaker different amount of train, test and development data. The DCF also follows the 
same trend in improvement like EER, when EER decreases there are decrease in DCT also.

The performance of the i-vector-based speaker verification system developed using vocal tract features 
(MFCC and LPCC) and excitation source features (LPR and LPRP) are evaluated for different duration of train 
and test data for dimensions of 100–50 combination is shown in Table 2. Since the study is for limited data, 
we evaluated system performance until 15  s. Consider 3–3 second data, the minimum EER is 42.68% and 
41.55% is obtained for MFCC and LPCC for Gaussian mixtures of 32 and 128, respectively, and the minimum 
EER of 39.92% and 40.28% is obtained for LPR and LPRP for the Gaussian mixtures of 64 and 32, respectively. 
The reduction in EER of LPCC is 1.13% less as compared with reduction in EER of MFCC and LPR is 0.36% 
less in reduction in EER as compared with LPRP. Further, Table 2 clearly shows that, when train and test 
data is increased performance will also increases in all feature extraction techniques. The similar trend is 
observed from Table 3. The minimum EER for 3–3 second data is 40.83% and 40.42% is obtained for MFCC 
and LPCC features for Gaussian mixtures of 128 in both cases. The LPCC is having reduced EER of 0.41% 
less as compared with reduced EER of MFCC. The LPR and LPRP is having minimum EER of 40.46% and 
40.24% for Gaussian mixture of 128. The LPR is having 0.22% less in reduction as compared with LPRP. As we 
observed from these two tables, the dimensions of i-vector and LDA combinations 50–50 performance better 

Table 1: EER of Speaker Verification for Different Dimensions of i-Vector and LDA Using the NIST 2003 Database for the 
3–3 second Train/Test Data and Gaussian Mixture of 16, Features are MFCC, LPCC, LPR and LPRP (13 Dimensions).

Dimensions of 
(i-vector/LDA)

 
 

MFCC 
 

LPCC 
 

LPR 
 

LPRP

EER%  DCT EER%  DCT EER%  DCT EER%  DCT

400–150   49.86  0.8991  48.10  0.8994  49.10  0.8891  49.06  0.8873
200–150   49.41  0.8981  43.45  0.8152  49.63  0.8983  50.00  0.9000
100–100   43.63  0.8252  42.90  0.8060  45.24  0.8523  44.32  0.8342
100–50   43.36  0.8099  41.64  0.7860  40.51  0.7628  41.86  0.7927
50–50   43.58  0.8247  41.37  0.7812  40.42  0.7643  41.50  0.7821
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as compared to 100–50 combination under limited data condition and also performance of LPCC features 
gives minimum EER as compared to minimum EER of MFCC features. Therefore, future experiments in this 
work 50–50 combination of i-vector and LDA is used.

In our earlier work [22], we evaluated the speaker verification system using GMM–UBM modeling for the 
NIST 2003 data set. The extracted features are MFCC and LPCC with FS of 20 ms and FR of 10 ms. The features 
are in the dimensions of 13. It was observed that GMM–UBM modeling works well under limited data [22]. The 
performance using vocal tract features for limited data conditions using GMM–UBM modeling is mentioned 
in Table  4. The performance of GMM–UBM modeling using 3–3 second data, the minimum EER of MFCC 
and LPCC is 40.10% and 39.06% respectively. Comparing the results of GMM–UBM and i-vectors modeling 
as mentioned in Tables 3 and 4. The reduction in EER is 0.73% and 0.36% for MFCC and LPCC in case of 3–3 
second data compared to i-vector modeling. The same trend is not continued in 6–6, 9–9, 12–12, 15–15, 15–20 
and 15–25-second data size. However, 6–6, 9–9, 12–12, 15–15, 15–20 and 15–25-second data, i-vector performs 
better than GMM–UBM. This is because, i-vector-based modeling is an advanced technique than GMM–UBM 
modeling. The i-vector extracted from speech data contains both channel/session variabilities and these vari-
abilities can be compensated by various techniques to improve the performance of i-vector-based speaker 
verification system and these compensation techniques not present in GMM–UBM.

Further, it was observed that EER of LPCC is less than all other features in Table 3. The minimum EER 
obtained is 40.12%, 34.68%, 25.88%, 22.53%, 18.18%, 16.45% and 14.65% for LPCC features for 3–3, 6–6, 9–9, 
2–12, 15–15, 15–20 and 15–25-second data compared to MFCC, LPR and LPRP feature extraction techniques.

Table 2: EER of Speaker Verification for Using NIST 2003 Database for Different Feature Extraction Techniques (13 Dimensions) 
and Modeling Done by i-Vectors.

Train/test 
data (s)

  Feature 
extraction 
techniques

 
 
 

No. of dimension: i-vectors = 100; LDA = 50

16 
 

32 
 

64 
 

128 
 

256

EER%  DCT EER%  DCT EER%  DCT EER%  DCT EER%  DCT

3–3   MFCC   43.36  0.8099  42.68  0.8051  42.77  0.8011  42.68  0.8046  43.81  0.8221
  LPCC   41.64  0.7812  42.77  0.8028  42.09  0.7979  41.55  0.7851  41.59  0.7820
  LPR   41.86  0.7927  40.24  0.7593  39.92  0.7554  40.92  0.7734  40.46  0.7639
  LPRP   40.51  0.7628  40.28  0.7520  40.42  0.7663  41.37  0.7848  42.63  0.8063

6–6   MFCC   38.70  0.7306  38.16  0.7199  37.08  0.7017  39.43  0.7409  39.97  0.7496
  LPCC   39.70  0.7487  38.75  0.7333  39.47  0.7429  37.17  0.6998  35.77  0.6757
  LPR   38.79  0.7262  38.88  0.7252  38.07  0.7127  38.34  0.7250  38.79  0.7308
  LPRP   38.88  0.7306  38.12  0.7131  39.74  0.7503  39.83  0.7384  39.61  0.7469

9–9   MFCC   32.56  0.6180  31.12  0.5872  32.20  0.6103  29.94  0.5657  29.85  0.5641
  LPCC   31.12  0.5903  31.57  0.5953  27.68  0.5191  26.64  0.5028  26.01  0.4910
  LPR   35.95  0.6700  34.10  0.6315  33.46  0.6189  33.60  0.6289  33.92  0.6367
  LPRP   32.92  0.6133  32.06  0.6013  33.15  0.6262  34.95  0.6575  34.23  0.6449

12–12   MFCC   31.75  0.5993  30.71  0.5823  28.68  0.5415  30.98  0.5800  29.31  0.5541
  LPCC   28.36  0.5339  26.19  0.4971  25.11  0.4749  25.20  0.4768  22.31  0.4206
  LPR   34.10  0.6380  32.97  0.6230  32.24  0.5864  31.75  0.5888  31.02  0.5798
  LPRP   32.38  0.6042  31.57  0.5893  32.83  0.6143  33.24  0.6309  34.10  0.6406

15–15   MFCC   29.43  0.5608  29.11  0.5338  28.61  0.5413  27.35  0.5321  26.21  0.4985
  LPCC   21.64  0.4023  21.32  0.4164  20.87  0.3994  20.36  0.3852  19.24  0.3627
  LPR   31.79  0.5953  31.57  0.5893  30.98  0.5872  30.68  0.5823  29.64  0.5612
  LPRP   32.94  0.6814  32.24  0.6309  31.75  0.5972  31.39  0.5888  30.30  0.5926

15–20   MFCC   28.45  0.5438  28.32  0.5418  27.64  0.5333  27.91  0.5365  25.32  0.4775
  LPCC   21.35  0.4012  20.84  0.3965  20.62  0.3964  20.41  0.3832  18.43  0.3512
  LPR   29.34  0.5543  29.18  0.5523  28.84  0.5447  28.52  0.5432  28.32  0.5418
  LPRP   29.64  0.5578  29.34  0.5542  28.74  0.5441  28.85  0.5453  28.84  0.5543

15–25   MFCC   24.54  0.5554  24.32  0.5532  23.33  0.5476  23.21  0.5365  22.82  0.5275
  LPCC   18.32  0.3045  18.21  0.3022  17.64  0.2987  17.31  0.2943  16.35  0.2812
  LPR   28.11  0.5443  28.54  0.5423  27.72  0.5337  27.31  0.5323  26.61  0.5234
  LPRP   28.72  0.5478  28.61  0.5442  27.81  0.5351  27.61  0.5343  26.74  0.5243

The bold values represent minimum EER of particular feature extraction techniques. 
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Table 3: EER of Speaker Verification for Using NIST 2003 Database for Different Feature Extraction Techniques (13 Dimensions) 
and Modeling Done by i-Vectors.

Train/test 
data (s)

  Feature 
extraction 
techniques

 
 
 

No. of dimension: i-vectors = 50; LDA = 50

16 
 

32 
 

64 
 

128 
 

256

EER%  DCT EER%  DCT EER%  DCT EER%  DCT EER%  DCT

3–3   MFCC   43.58  0.8247  42.72  0.8089  41.96  0.7943  41.77  0.7905  40.83  0.7629
  LPCC   41.37  0.7812  42.68  0.8093  42.05  0.7944  40.65  0.7703  40.12  0.7635
  LPR   41.50  0.7821  40.92  0.7743  40.65  0.7652  40.46  0.7640  41.01  0.7748
  LPRP   40.42  0.7643  40.37  0.7647  40.46  0.7670  40.24  0.7586  41.50  0.7806

6–6   MFCC   39.47  0.7412  38.93  0.7261  38.70  0.7292  37.85  0.7133  36.62  0.7088
  LPCC   39.74  0.7402  38.88  0.7322  37.26  0.7022  36.85  0.6975  34.68  0.6541
  LPR   39.38  0.7349  39.97  0.7484  38.25  0.7110  38.43  0.7199  38.52  0.7223
  LPRP   38.70  0.7300  38.66  0.7308  39.25  0.7421  38.61  0.7309  38.66  0.7309

9–9   MFCC   33.33  0.6280  31.61  0.6002  32.24  0.6035  32.56  0.6124  28.13  0.5295
  LPCC   30.89  0.5868  29.81  0.5668  29.22  0.5338  29.53  0.5608  25.88  0.5338
  LPR   35.59  0.6618  35.27  0.6515  33.73  0.6264  32.83  0.6164  32.56  0.6125
  LPRP   33.73  0.6300  31.88  0.5979  33.15  0.6279  33.78  0.6362  33.96  0.6372

12–12   MFCC   31.39  0.5929  31.02  0.5850  27.04  0.5300  32.06  0.6074  31.25  0.5914
  LPCC   28.86  0.5416  26.24  0.4985  25.38  0.4778  24.11  0.4555  22.53  0.4255
  LPR   33.55  0.6326  34.41  0.6399  32.06  0.5990  32.11  0.5851  33.19  0.5798
  LPRP   32.20  0.6032  31.43  0.5831  32.06  0.6054  32.33  0.6046  32.29  0.6067

15–15   MFCC   27.64  0.5374  27.23  0.5086  26.01  0.4922  25.68  0.4986  23.21  0.3717
  LPCC   20.68  0.3964  20.41  0.3852  19.01  0.3575  18.54  0.3214  18.18  0.3061
  LPR   30.39  0.5738  29.04  0.5662  28.31  0.5364  29.99  0.5626  28.16  0.5213
  LPRP   31.30  0.5926  31.25  0.5888  30.62  0.5746  29.10  0.5682  28.31  0.5364

15–20   MFCC   22.77  0.3774  22.54  0.3786  21.59  0.3612  20.64  0.3586  20.78  0.3537
  LPCC   18.45  0.3474  18.32  0.3432  17.34  0.3325  17.11  0.3314  16.45  0.3241
  LPR   27.33  0.5768  27.14  0.5732  26.54  0.5654  26.61  0.5638  25.34  0.5513
  LPRP   27.64  0.5716  27.42  0.5748  26.66  0.5616  26.78  0.5682  25.63  0.5364

15–25   MFCC   21.78  0.3632  20.64  0.3576  19.32  0.3434  18.63  0.3445  17.32  0.3476
  LPCC   16.35  0.3643  15.64  0.3552  15.32  0.3575  14.78  0.3234  14.65  0.3145
  LPR   25.33  0.5358  24.45  0.4472  23.31  0.4364  23.15  0.4326  22.32  0.4213
  LPRP   25.45  0.5396  24.78  0.4468  23.51  0.4346  23.32  0.4382  22.45  0.4264

The bold values represent minimum EER of particular feature extraction techniques. 

Table 4: EER of the Speaker Verification System Using MFCC and LPCC Features (13 Dimensions) and GMM–UBM Modeling for 
the NIST 2003 Data Set.

Train/test 
data (s)

  Feature extraction 
techniques

 
 

Gaussian mixtures

16  32  64  128  256

3–3   MFCC   41.32  40.15  40.10  40.19  40.37
  LPCC   40.01  39.79  39.11  39.25  39.06

6–6   MFCC   38.16  36.94  36.67  37.12  37.57
  LPCC   37.48  36.54  36.49  36.04  35.63

9–9   MFCC   32.47  31.02  30.21  29.62  30.26
  LPCC   28.99  28.54  28.68  29.17  28.54

12–12   MFCC   30.57  28.09  27.46  27.19  27.59
  LPCC   27.28  26.24  26.42  26.28  25.38

15–15   MFCC   28.64  27.32  26.49  24.33  25.32
  LPCC   26.54  25.34  23.23  22.64  21.37

15–20   MFCC   25.32  25.14  24.68  23.84  23.64
  LPCC   21.79  21.64  20.71  20.41  19.64

15–25   MFCC   22.44  22.32  21.78  21.46  20.72
  LPCC   20.45  20.28  19.64  19.32  18.32

The bold values represent minimum EER of particular feature extraction techniques. 
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The same set of experiments are conducted for 39 dimension features. Tables 5 and 6 represents perfor-
mance of the speaker verification system using i-vector and GMM–UBM modeling, respectively. In both mod-
eling techniques, LPCC performance is better than MFCC and also i-vector modeling gives better performance 
than GMM–UBM for all data sizes. Because of first- and second-order derivatives, 39 dimension features gives 
better performance than 13 dimension eatures in both modeling techniques.

The literature survey shows that speaker verification under limited data condition is widely used in secu-
rity, controlled access, authentication of remote transactions, criminal and forensic investigations etc. In 
almost all these applications, the speech data may be limited (criminal may speak for only a few seconds). 
However, when the speech data are less, the speaker-specific information obtained is also less. The speaker 

Table 5: EER of Speaker Verification Using the NIST 2003 database for Different Feature Extraction Techniques (39 Dimensions) 
and Modeling Done by i-Vectors.

Train/test 
data (s)

  Feature 
extraction 
techniques

 
 
 

No. of dimension: i-vectors = 50; LDA = 50

16 
 

32 
 

64 
 

128 
 

256

EER%  DCT EER%  DCT EER%  DCT EER%  DCT EER%  DCT

3–3   MFCC   40.10  0.7591  40.42  0.7630  40.24  0.7594  39.92  0.7550  39.83  0.7548
  LPCC   39.20  0.7426  39.11  0.7397  39.47  0.7412  38.70  0.7292  38.86  0.7199

6–6   MFCC   38.88  0.7322  37.26  0.7022  36.78  0.6799  34.77  0.6575  33.42  0.6305
  LPCC   37.08  0.7018  37.18  0.7150  36.13  0.6799  34.77  0.6575  33.42  0.6305

9–9   MFCC   31.25  0.5891  31.43  0.5671  29.94  0.5650  29.04  0.5485  26.64  0.5210
  LPCC   28.00  0.5224  27.68  0.5124  26.87  0.5045  25.11  0.4749  25.38  0.4749

12–12   MFCC   30.66  0.5811  30.35  0.5677  30.26  0.5683  28.31  0.5364  24.42  0.5274
  LPCC   27.42  0.5086  26.78  0.4991  25.20  0.4768  24.57  0.4651  20.41  0.385

15–15   MFCC   26.34  0.5711  25.34  0.5307  25.17  0.5373  25.32  0.4964  20.12  0.3254
  LPCC   19.43  0.3273  18.31  0.3291  18.03  0.3205  17.34  0.3134  16.68  0.2450

15–20   MFCC   19.84  0.3254  19.32  0.3243  18.64  0.3223  18.52  0.3214  18.35  0.3204
  LPCC   17.64  0.3173  17.32  0.3151  17.18  0.3135  16.45  0.3034  16.32  0.3050

15–25   MFCC   18.32  0.3246  18.45  0.3257  17.41  0.3173  17.31  0.3164  16.64  0.3045
  LPCC   16.78  0.3073  16.64  0.3061  15.32  0.2965  15.11  0.2934  14.86  0.2850

The bold values represent minimum EER of particular feature extraction techniques. 

Table 6: EER of the Speaker Verification System Using MFCC and LPCC Features (39 Dimensions) and GMM–UBM Modeling for 
the NIST 2003 Data Set.

Train/test 
data (s)

  Feature extraction 
techniques

 
 

Gaussian mixtures

16   32   64   128   256

3–3   MFCC   39.70   39.02   38.84   39.15   39.02
  LPCC   39.61   39.15   38.54   38.66   38.70

6–6   MFCC   38.21   37.08   36.22   36.76   36.94
  LPCC   36.44   35.45   34.73   34.73   34.28

9–9   MFCC   28.95   27.59   27.23   27.05   27.14
  LPCC   28.13   27.32   27.05   26.73   27.95

12–12   MFCC   26.01   24.66   24.79   24.48   24.84
  LPCC   25.70   25.15   23.71   23.84   24.62

15–15   MFCC   24.32   23.64   23.68   22.78   21.16
  LPCC   24.13   22.77   22.32   21.94   20.64

15–20   MFCC   22.32   22.14   21.64   21.48   19.86
  LPCC   19.64   19.32   18.74   18.34   17.64

15–25   MFCC   19.84   19.32   18.24   18.11   17.32
  LPCC   17.64   17.32   16.62   16.12   15.32

The bold values represent minimum EER of particular feature extraction techniques. 
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verification performance can be improved by using feature level and score-level fusion. To study the effect of 
this on limited data the following experiments are conducted.

4.1  �Feature-Level Fusion

The feature-level fusion is accomplished by a simple concatenation of the feature sets obtained by different 
feature extraction techniques. In our experiments, we fused vocal tract feature (system information) with 
excitation source features (source features). For instance, let X =  {x1, x2, x3, …, xm} denotes vocal tract features 

Table 7: Results of the i-Vectors System Using Feature-Level Fusion of the Vocal Tract and Excitation Source Features (13 Dimen-
sion) for Limited Data Condition on NIST 2003 Database.

Train/test 
data (s)

  Scores of vocal 
tract and excitation 
source features

 
 
 

No. of dimension: i-vectors = 50; LDA = 50

16 
 

32 
 

64 
 

128 
 

256

EER%  DCT EER%  DCT EER%  DCT EER%  DCT EER%  DCT

3–3   MFCC + LPR   35.99  0.6792  37.48  0.7017  36.90  0.6950  37.03  0.6991  38.34  0.7251
  MFCC + LPRP   41.37  0.7659  40.65  0.7642  41.10  0.7757  40.65  0.7642  40.37  0.7659
  LPCC + LPR   35.32  0.6669  36.22  0.6822  37.12  0.6990  36.31  0.6891  37.39  0.7035
  LPCC + LPRP   41.18  0.7696  41.32  0.7782  39.79  0.7515  40.24  0.7592  40.87  0.7696

6–6   MFCC + LPR   34.46  0.6512  35.09  0.6628  34.82  0.6567  35.68  0.6696  36.35  0.6745
  MFCC + LPRP   39.74  0.7420  38.52  0.7312  38.79  0.7328  38.75  0.7218  38.79  0.7358
  LPCC + LPR   34.68  0.6543  35.00  0.6588  34.64  0.6457  34.55  0.6525  34.91  0.6488
  LPCC + LPRP   39.52  0.7404  39.47  0.7471  37.80  0.7038  37.48  0.7066  38.03  0.7140

9–9   MFCC + LPR   28.45  0.5368  29.53  0.5486  28.04  0.5300  28.54  0.5613  30.17  0.5613
  MFCC + LPRP   33.69  0.6318  32.47  0.6126  33.46  0.6325  32.33  0.6069  33.24  0.6255
  LPCC + LPR   28.99  0.5487  28.99  0.5460  27.77  0.5255  28.22  0.5255  25.15  0.4675
  LPCC + LPRP   35.18  0.6588  34.77  0.6386  32.52  0.6139  31.88  0.5942  31.97  0.5972

12–12   MFCC + LPR   28.22  0.5306  28.13  0.5219  28.00  0.5223  27.55  0.5176  28.22  0.5311
  MFCC + LPRP   32.61  0.6030  32.02  0.6087  32.52  0.6087  31.39  0.5915  32.83  0.6175
  LPCC + LPR   28.41  0.5313  27.32  0.5043  27.32  0.5080  25.73  0.4958  22.33  0.4288
  LPCC + LPRP   33.46  0.6198  32.65  0.6079  30.21  0.5618  30.57  0.5724  30.39  0.5637

15–15   MFCC + LPR   24.64  0.5366  24.18  0.5309  24.34  0.5123  23.22  0.4176  23.11  0.4121
  MFCC + LPRP   24.84  0.4930  24.54  0.4987  24.94  0.4687  23.74  0.4615  23.64  0.4675
  LPCC + LPR   20.42  0.3113  19.32  0.3843  19.81  0.3280  18.24  0.3055  17.32  0.2134
  LPCC + LPRP   20.64  0.3698  20.24  0.3679  19.54  0.3021  17.63  0.2564  18.32  0.2837

15–20   MFCC + LPR   20.84  0.3696  20.34  0.3609  21.54  0.3723  21.64  0.3776  21.32  0.3721
  MFCC + LPRP   21.64  0.3730  20.54  0.3687  21.72  0.3687  21.32  0.3615  21.54  0.3675
  LPCC + LPR   16.84  0.2413  15.24  0.2343  15.34  0.2380  16.32  0.2455  16.14  0.2134
  LPCC + LPRP   17.35  0.2598  15.44  0.2379  15.64  0.2321  16.55  0.2564  16.28  0.2637

15–25   MFCC + LPR   19.44  0.3696  19.32  0.3609  19.45  0.3723  19.64  0.3776  20.32  0.3721
  MFCC + LPRP   19.72  0.3730  19.64  0.3687  19.82  0.3687  20.32  0.3615  20.54  0.3675
  LPCC + LPR   14.54  0.2413  15.32  0.2343  15.54  0.2380  15.62  0.2455  15.44  0.2134
  LPCC + LPRP   15.64  0.2368  14.78  0.2169  15.68  0.2381  15.92  0.2394  16.11  0.2547

The bold values represent minimum EER of particular feature extraction techniques. 

Figure 2: Block Diagram of Feature-Level Fusion.
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(MFCC or LPCC) and Y = {y1, y2, y3…yn} represents excitation source features (LPR or LPRP). In our experi-
ments, we concatenated the both feature set to form Z = {x1, x2, x3, …, xm, y1, y2, y3, …, yn}. This new feature set 
Z is used for both training and testing. Figure 2 shows the block diagram of feature-level fusion. The features 
are fused on the frame-level by concatenating vocal tract features with excitation source features.

The individual EER of MFCC, LPCC, LPR and LPRP is 40.83%, 40.42%, 40.46% and 40.24%, respectively, 
as shown in Table 3. The results obtained for limited data by combining the features of vocal tract and exci-
tation source are shown in Table 7. The minimum EER of feature-level fusion of MFCC + LPR, MFCC + LPRP, 
LPCC + LPR and LPCC + LPRP is 35.99%, 40.37%, 35.32% and 39.79% respectively. The fusion of MFCC + LPR 
and MFCC + LPRP is having reduction of 4.84% and 0.46% less in EER as compared to individual performance 
of MFCC. Similarly, the fusion of LPCC + LPR and LPCC + LPRP is having reduction in EER of 5.1% and 0.63% 
less as compared to LPCC. There is an improvement in the performance of EER using feature-level fusion, 
the combination of vocal tract and excitation source are having dissimilar features relatively improves the 
performance compared to all individual features. The important point noticed in feature-level fusion is that, 
fusion of MFCC + LPR and LPCC + LPR gives better performance as compared to fusion of MFCC + LPRP and 
LPCC + LPRP. This may be due to, LPR contains information obtained from excitation source mainly to glottal 
closure an instant (GCIS) [20]. Further, the fusion of LPCC + LPR performance is better compared to MFCC + LPR 
for limited data. Almost similar trend is observed for other data sizes except fusion of MFCC + LPRP and 
LPCC + LPRP for 9–9, 12–12, 15–15, 15–20 and 15–25-second data.

4.2  �Score-Level Fusion

In case of score-level fusion, fuse the sores of individual system at verification level using the following 
equation:

	 total 1 2(1 ) ,S S Sα α= + − � (8)

where S1 and S2 represent the scores obtained using individual systems and Stotal represents the fused scores 
of S1 and S2; α represents the optimal value of which is chosen for fusion of the two scores to give and it is a 
scalar between the value 0 and 1.

In this work, we conducted two types of score-level fusion to improve the performance of the speaker 
verification system. The first one is to fuse the scores of vocal tract and source excitation features, keeping 
the modeling techniques same. The second one is fusing the scores of different modeling techniques by main-
taining the same feature extraction technique.

The score-level fusion of different feature extraction techniques is shown in Figure 3. The weight factor α 
becomes optimal for the value of 0.05 in case of fusion of scores of two different feature extraction techniques.

From the previous section, we already proved that feature-level fusion gives better performance com-
pared to individual feature. The performance of score-level fusion of vocal tract and excitation source fea-
tures for limited data using NIST 2003 data set is shown in Table 8. Further, the minimum EER of score-level 

Figure 3: Block Diagram of Score-Level Fusion for Different Feature Extraction Techniques.
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fusion of MFCC + LPR, MFCC + LPRP, LPCC + LPR and LPCC + LPRP is 34.91%, 38.12%, 34.82% and 39.15% 
respectively. The score-level fusion of MFCC + LPR and MFCC + LPRP is having reduction of 1.08% and 2.25% 
less in EER as compared to feature-level fusion of MFCC + LPR and MFCC + LPRP, respectively. Similarly 
score-level fusion of LPCC + LPR and LPCC + LPRP is 0.5% and 0.64% less in reduction in EER as compared 
to feature-level fusion of LPCC + LPR and LPCC + LPRP, respectively. The trend in EER reduction remains 
same for other data sizes.

Over the last two decades, speaker verification system facing two main problems such as session vari-
ability and channel mismatch. The main reason for these problems is emotional state of the speaker, envi-
ronmental conditions, recording devices, different transmission channels,...etc. Due to this variability the 
system performance decreases drastically. The GMM–UBM modeling system facing these problems [31].

In case of GMM–UBM, the feature is extracted by frame and number of features are unfixed. Gauss-
ian Mixtures are used to fit all the features. In GMM mapping, the feature is calculated by frame with MAP. 
The difference of the likelihood ratio from the GMM to the UBM is used to describe the result. These entire 
problems can be overcome by using i-vector. The i-vector-based modeling is an advanced technique than 
GMM–UBM modeling. The i-vector extracted from the speech utterance contains both channel and speaker 
variabilities. Implementing channel/session compensation methods help improves the performance of the 
speaker verification system [10]. Due to these reasons, the experiments we conducted using i-vectors show an 
improvements in performance over GMM–UBM. The results are shown in Tables 3–6.

Table 8: Results of the i-Vectors System using Score-Level Fusion of the Vocal Tract and Excitation Source Features (13 Dimen-
sion) for Limited Data Condition on NIST 2003 Database.

Train/test 
data (s)

  Scores of 
feature 
extracted 
signal

 
 
 

Score-level fusion (no. of dimension: i-vectors = 50; LDA = 50)

Gaussian mixtures

16  32  64  128  256

3–3   MFCC + LPR   34.91  35.09  35.63  36.81  36.92
  MFCC + LPRP   39.43  39.47  38.75  38.12  39.47
  LPCC + LPR   34.82  35.04  35.68  35.99  35.81
  LPCC + LPRP   39.34  40.06  39.47  39.15  39.83

6–6   MFCC + LPR   32.79  33.15  32.74  33.55  33.64
  MFCC + LPRP   36.58  36.81  36.94  35.72  36.49
  LPCC + LPR   33.46  33.92  33.64  35.09  34.37
  LPCC + LPRP   38.07  38.21  36.49  36.58  37.17

9–9   MFCC + LPR   26.64  25.92  25.20  25.02  26.28
  MFCC + LPRP   28.31  28.09  28.54  28.27  29.17
  LPCC + LPR   26.87  26.60  27.10  26.64  25.15
  LPCC + LPRP   31.57  31.97  30.84  29.04  30.44

12–12   MFCC + LPR   25.88  24.52  24.48  26.15  25.70
  MFCC + LPRP   28.68  26.91  27.00  29.31  28.50
  LPCC + LPR   26.15  25.92  25.79  26.01  25.42
  LPCC + LPRP   29.58  29.99  28.41  27.82  30.53

15–15   MFCC + LPR   23.98  23.64  23.32  22.16  22.71
  MFCC + LPRP   24.54  24.32  23.94  22.54  22.67
  LPCC + LPR   19.34  19.31  18.13  17.72  16.34
  LPCC + LPRP   19.49  19.64  18.43  17.49  16.54

15–20   MFCC + LPR   20.64  19.32  20.32  20.16  20.32
  MFCC + LPRP   20.82  19.82  20.54  20.31  20.24
  LPCC + LPR   14.54  14.64  15.32  15.84  15.15
  LPCC + LPRP   15.34  14.78  15.64  15.92  15.45

15–25   MFCC + LPR   16.48  16.54  16.13  16.98  16.74
  MFCC + LPRP   16.34  16.64  17.32  17.13  17.11
  LPCC + LPR   12.34  12.64  13.32  13.64  13.51
  LPCC + LPRP   13.51  13.64  12.62  12.82  12.87

The bold values represent minimum EER of particular feature extraction techniques. 
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Figure 4 shows the proposed combined modeling technique in score-level fusion. The improvement in 
performance by combining the scores of i-vector and GMM–UBM modeling techniques at score-level are sig-
nificant as shown in Table 9. The reason for improvement in performance may be due to i-vectors use cosine 
kernel whereas GMM–UBM uses log likelihood ratio test and the working principle of i-vector and GMM–UBM 
are different.

In the proposed system, the optimal value of α is 0.5. The performance of score-level fusion for different 
modeling techniques for 13 dimensions. The LPCC gives very good performance in all data sizes compared to 
MFCC. The LPCC is having minimum reduction in EER of ≈ 4% as compared to MFCC in score-level fusion of 
different modeling techniques.

Table 10 shows comparision for different fusion techniques for 13 dimension features. From this table 
we observed few points. First point is, for 3–3 second data, feature-level fusion and score-level fusion of 
different features gives minimum EER as compared to score-level fusion of different modeling techniques. 
In this case combination of MFCC or LPCC with LPR gives better performance than MFCC or LPCC with 
LPRP. The second point is, when data size increases (6–6, 9–9, 12–12, 15–15, 15–20 and 15–25 s) score-level 
fusion for different modeling techniques gives better performance compared to other fusion techniques. 
From these observation it is clear that, for limited data score-level fusion for different modeling technique 
can be used to get better verification results. This results motivates us to conduct score-level fusion for 39 
dimensions. Table 11 shows the score-level fusion of 39 dimensions for different modeling techniques. In 
this case, LPCC also performs better than MFCC for all data sizes. Compare Tables 9 and 11’s score-level 
fusion for both dimensions. The results shows that there is drastic improvement in 39 dimensions com-
pared with 13 dimensions.

Figure 4: Block Diagram of Proposed Combined Modeling.

Table 9: Performance of the Speaker Verification System for Score-Level Fusion Using i-Vector and GMM–UBM Modeling Tech-
niques for Limited Data Condition in the NIST 2003 Database.

Train/test 
data (s)

 
 
 

Score-level fusion for MFCC features (13 dimensions) 
 
 

Score-level fusion for LPCC features (13 dimensions)

Gaussian mixtures Gaussian mixtures

16  32  64  128  256 16  32  64  128  256

3–3   38.73  37.28  37.74  36.65  36.06  37.35  37.75  36.90  36.63  35.99
6–6   36.72  36.08  36.63  35.90  32.55  34.77  33.69  33.60  32.70  32.15
9–9   29.72  28.45  28.13  30.08  25.00  24.11  23.44  23.89  23.75  23.30
12–12   27.37  26.24  23.80  28.27  28.00  20.09  21.45  21.95  21.45  20.09
15–15   21.64  22.32  19.18  18.92  17.64  16.11  15.24  15.34  14.52  14.63
15–20   14.43  14.34  14.64  14.36  14.52  11.34  11.41  11.14  11.54  11.64
15–25   11.17  11.34  11.32  11.64  11.54  8.38  8.34  8.54  8.51  8.49

The bold values represent minimum EER of particular feature extraction techniques. 



T.R. Jayanthi Kumari and H.S. Jayanna: i-Vector-Based Speaker Verification      579

Ta
bl

e 
10

: 
M

in
im

um
 E

ER
 o

f D
iff

er
en

t F
us

io
n 

Te
ch

ni
qu

es
.

Tr
ai

n/
te

st
 

da
ta

 (s
)

   
Fe

at
ur

e-
le

ve
l f

us
io

n   
Sc

or
e-

le
ve

l f
us

io
n 

fo
r d

iff
er

en
t f

ea
tu

re
s   

Sc
or

e-
le

ve
l f

us
io

n 
fo

r d
iff

er
en

t 
m

od
el

in
g 

te
ch

ni
qu

es

M
FC

C 
+ 

LP
R 

M
FC

C 
+ 

LP
RP

 
LP

CC
 +

 LP
R 

LP
CC

 +
 LP

RP
M

FC
C 

+ 
LP

R 
M

FC
C 

+ 
LP

RP
 

LP
CC

 +
 LP

R 
LP

CC
 +

 LP
RP

M
FC

C 
LP

CC

3–
3

 
35

.9
9 

40
.3

7 
35

.3
2 

39
.7

9 
34

.9
1 

38
.1

2 
34

.8
2 

39
.1

5 
36

.0
6 

35
.9

9
6–

6
 

34
.4

6 
38

.5
2 

34
.5

5 
37

.4
8 

32
.7

4 
35

.7
2 

33
.4

6 
36

.4
9 

32
.5

5 
32

.1
5

9–
9

 
28

.0
4 

32
.3

3 
27

.1
5 

31
.8

8 
25

.0
2 

28
.2

7 
25

.1
5 

29
.0

4 
25

.0
0 

23
.3

0
12

–1
2

 
27

.5
5 

32
.0

2 
26

.3
3 

30
.2

1 
24

.4
8 

26
.9

1 
25

.4
2 

27
.8

2 
23

.8
0 

20
.0

9
15

–1
5

 
23

.1
1 

23
.6

4 
17

.3
2 

17
.5

2 
22

.1
6 

22
.6

4 
16

.3
4 

16
.5

4 
17

.6
4 

14
.5

2
15

–2
0

 
20

.3
4 

20
.5

4 
15

.2
4 

15
.6

4 
19

.3
2 

19
.8

2 
14

.5
4 

14
.7

8 
14

.3
4 

11
.1

4
15

–2
5

 
19

.3
2 

19
.6

4 
14

.5
4 

14
.7

8 
16

.1
3 

16
.1

4 
12

.3
4 

12
.6

2 
11

.1
7 

8.
34



580      T.R. Jayanthi Kumari and H.S. Jayanna: i-Vector-Based Speaker Verification

5  �Conclusion
In this article, we demonstrated the significance of performance of individual modeling technique and dif-
ferent fusion techniques for limited data condition. First, we studied the working principles of individual 
features using i-vector modeling technique. It was observed that i-vector modeling gives better EER compared 
with the GMM–UBM modeling technique. To increase the performance of the speaker verification system, we 
conducted experiments using feature- and score-level fusion for 13 dimensions. Here the vocal tract features 
are fused with excitation source features in feature-level fusion, the performance of feature-level fusion is 
better as compared to performance of individual feature extraction techniques. The two cases of score-level 
fusions are demonstrated in this work for 13 dimensions. In the first case, fusing the scores of vocal tract and 
excitation source features at score-level by maintaining same modeling technique. It was observed that, an 
average reduction of EER is approximately equal to 2% compared with feature-level fusion performance. In 
the second case, the different modeling scores are fused by keeping feature remain same. In the experimen-
tal results, it was observed that an average reduction in EER is approximately equal to 4.5% compared with 
score-level fusion of different features. Further it was observed that, score-level fusion for different modeling 
technique gives better performance compared to the other fusion techniques. It was also observed that, LPCC 
with source features combinations gives better performance as compared to MFCC + LPR and MFCC + LPRP 
under limited data condition. Therefore, we suggest that the LPCC with source features can be used as fea-
tures along with score-level fusion for different modeling to improve the performance of speaker verification 
under limited data condition. Also we observed that score-level fusion for different modeling technique pro-
vides better performance than other two fusion techniques. With this movitation we conducted score-level 
fusion for 39 dimensions. The result shows that there is drastic improvement in EER using 39 dimensions 
compared with 13 dimensions. Therefore, we also suggest that 39 dimensions can also be used to improve the 
performance of the speaker verification system under limited data.
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