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Abstract: In the industrial and manufacturing fields, many problems require tuning of the parameters of 
complex models by means of exploitation of empirical data. In some cases, the use of analytical methods for 
the determination of such parameters is not applicable; thus, heuristic methods are employed. One of the 
main disadvantages of these approaches is the risk of converging to “suboptimal” solutions. In this article, 
the use of a novel type of genetic algorithm is proposed to overcome this drawback. This approach exploits 
a fuzzy inference system that controls the search strategies of genetic algorithm on the basis of the real-time 
status of the optimization process. In this article, this method is tested on classical optimization problems 
and on three industrial applications that put into evidence the improvement of the capability of avoiding the 
local minima and the acceleration of the search process.

Keywords: Optimization, genetic algorithms, fuzzy inference system, adaptive genetic algorithms, industrial 
problems.
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1  �Introduction
One of the most frequent problems within the industrial and manufacturing fields is the tuning of the para-
meters of existing empirical or theoretical models for enhancing the performance of a process or the quality 
of a product on the basis of experimental data. In these cases, the task is driven by the idea of improving the 
available knowledge (theoretical or empirical) on a general phenomenon – usually formalized as a model 
– by adapting such general model to the peculiarities of a particular plant or process that can be extracted 
from the collected data.

Available data are normally used for tuning a subset of the internal parameters of the model. This latter 
operation can be performed either manually, if the effect of the modification of each parameter on the behav-
ior of the model is known and the number of parameters to tune is limited, or by means of analytical tech-
niques that exploit the model and the available data within an optimization problem that can be expressed 
as finding the global minimum x* of an arbitrary objective function

	 Γ →R: ,f � (1)

where the compact set Γ ⊂ ℝD is a D-dimensional parallelepiped and the minimization problem corresponds 
to finding the point x* so that

	 Γ∗ ≤ ∀ ∈( ) ( ), .f x f x x � (2)
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Unfortunately, analytical techniques are not always applicable, for instance in the presence of objec-
tive functions that are non-linear and non-differentiable; moreover, their performance is strongly affected 
by the presence of noise and outliers in the data used for the tuning. These situations are very frequent in 
the industrial and manufacturing fields, and often prevent the use of traditional analytical techniques. For 
this reason, in the last decades, more sophisticated methods based on probabilistic approaches, artificial 
intelligence, and heuristics have been employed with satisfactory results on a multitude of practical real-
world problems. For instance, artificial neural networks (ANNs) have been successfully used by Cabrera and 
Elbuluk [2] for tuning the main parameters of the control of an induction motor of a tool designed for assem-
bly purposes in the manufacturing industry. Chen and Huang [3] employed ANNs for tuning the parameters 
of a proportional–integral–derivative controller that faces the inherent time-varying non-linearity and com-
plexity of a chemical process. Further, the use of evolutionary algorithms (EAs), such as simulated annealing, 
genetic algorithms (GAs), and particle swarm optimization, is very popular in this field. For example, Colla 
et al. [4] used GAs for the tuning of a model for the estimation of the mechanical properties of steel.

When analytical techniques are not applicable, the advantages of EAs are manifold: free derivative char-
acteristics, simple preparation of the optimization model, and parallel nature. However, one crucial issue for 
the success of EAs is the capability of avoiding the premature convergence to suboptimal regions that leads 
to the selection of local minima instead of the global one. This problem is related to the characteristics of 
the model to tune and, by consequence, of the surface of the objective function: because of a high number 
of variables whose interaction is complex and highly non-linear, the quality of the data used for the tuning 
usually generates a complex surface objective function, characterized by a high number of local minima that 
increase the risk of converging to suboptimal solutions. Unfortunately, these situations are often encountered 
in the manufacturing field and limit the effective performance (or even the usability) of EA-based approaches.

Successful EAs should efficiently explore the objective function domain, taking into account compu-
tational constraints and actively avoiding the potentially “dangerous” situations. In the study by Vannucci 
and Colla [26], a novel adaptive GA approach expressly designed for avoiding local minima and based on the 
real-time adjustment of search strategies is proposed and tested on literature problems. In this article, the 
capabilities of this novel GA are assessed on real-world problems related to industrial applications in order to 
put into evidence its practical advantages.

The article is organized as follows: in Section 2, an introduction on GAs is provided focusing on the role 
of recombination rates and on the most advanced strategies for their adjustment. In Section 3, the proposed 
method is described by putting into evidence its elements of novelty. Sections 4 and 5 are devoted to the tests 
pursued in order to assess the efficiency of the adaptive GA. Section 4 includes tests performed on classical 
optimization problems, while in Section 5 the advantages achieved by the use of the adaptive GAs on several 
industrial applications involving optimization tasks affected by the local minima problem are depicted. Some 
final conclusions are drawn in Section 6 together with the future perspective of the proposed method.

2  �Background on GAs
GAs, first proposed by Holland [14], is the most popular evolutionary method and is often used to solve a wide 
range of optimization problems. The GA population, if convergence is not reached, evolves through genera-
tions. At each generation, the new population is formed by a rate rs ∈[0; 1] of survivors from the previous 
generation and a rate of rc of individuals created by mating existing individuals by means of the crossover 
operator. Chromosomes are selected for mating and survival on the basis of an arbitrary fitness function that 
assesses the goodness of each candidate solution (the higher the fitness, the more probable the selection). 
Finally, the mutation operator is applied to a subset of the individuals with uniform probability rm ∈[0; 1].

GAs efficiently explore the most promising regions of the objective function as the consequence of the 
combination of two divergent research lines: the exploration of the search space and the exploitation of the 
knowledge gained during the exploration. The selection and mating of survivors contribute to the exploita-
tion phase as fittest individuals are awarded and a more accurate search in the most promising zones of the 
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problem domain is promoted. On the other hand, the mutation operator directs the search toward unexplored 
regions of the search space.

One of the main drawbacks of traditional GAs is their tendency of premature convergence if certain 
adverse conditions – such as the presence of a high number of local minima within a complex objective 
function surface – hold. This issue arises when the genes of some high-rated individuals quickly attain to 
dominate the population, constraining it to converge toward a local optimum. In this case, the genetic opera-
tors cannot produce any more descendants better than the parents, as proven by Fogel [9]. One of the most 
efficient ways to avoid premature convergence is to preserve both the population diversity and the fittest 
individuals during the evolution.

In this context, such purpose can be achieved by a suitable tuning of the recombination rates rc and rm 
that, at each generation of the GA, determine the composition of the new population by determining the rate 
of chromosomes obtained by the mating of parent chromosomes and the subsequent rate of mutation of the 
so-formed population, respectively.

The influence of mutation and crossover rates on the GA convergence speed and on the quality of the 
achieved solution has been demonstrated since the first work concerning this technique [10]. For this reason, 
many researches have been focused on their convenient tuning with the twofold aim of reducing the conver-
gence time and avoiding local minima [8, 12].

2.1  �Influence and Control of Recombination Rates in GAs

In a GA framework based on a population of candidate chromosomes whose cardinality is N, the population 
Pt+1 at an arbitrary generation t + 1 is formed by (1 − rc) · N individuals directly taken from Pt. The remaining 
rc · N chromosomes are generated by the mating of individuals taken from population Pt through the cross
over operator. In both cases, the survivors and the parents are selected in a probabilistic manner according to 
their fitness: the higher the fitness, the higher the selection probability. In addition, the rm · N values of these 
individuals are selected and undergo the mutation operation that slightly modifies them.

In this framework, rc and rm directly manage the formation of new populations and the interaction 
between exploitation and exploration. In terms of exploitation, the rate of survivors (1 − rc) preserves within 
the GA population all the characteristics of the best individuals, while rc promotes the exchange and mix of 
these characteristics belonging to two distinct solutions and that can potentially lead to a better solution [10]. 
Exploration is influenced by rm that determines the rate of chromosomes, which, after the modification of a 
limited number of genes, move the search to other promising regions of the domain. Mutation can often avoid 
the undesirable convergence of the algorithm toward a local optimum rather than a global one. Despite their 
fundamental role within the search process, the optimal values of rc and rm are very controversial and seem 
to strongly depend on the peculiarity of the faced problems. The various approaches for the determination or 
control of these rates are summarized in Table 1, where the main ideas are reported together with significant 
contributions to each family of approaches.

3  �Fuzzy Adaptive GAs
The fuzzy adaptive recombination strategy (FARS) GA proposed by Vannucci and Colla [26] was aimed at the 
improvement of GA efficiency and particularly at the avoidance of suboptimal solutions by suitably control-
ling some key GA parameters in order to successfully combine the exploration and exploitation phases. In 
particular, FARS operates on the adaptive update of the crossover (rc) and mutation (rm) operator rates that 
influence the evolution of the candidate population and the way the search space is explored in order to 
accelerate the attainment of the optimal solution and to avoid the stoppage in a local optimum through a 
synergism of mutation and crossover.
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The adjustment of rm and rc is performed on the basis of some indicators of the status of search process 
calculated by FARS, such as the trend of the fitness of the candidate solutions and the temporal phase of the 
search. The fitness trend indicator is used to evaluate the eventual stall of the algorithm in a local minimum 
while the phase is taken into account, as different values of rm and rc are suitable for different phases of the 
search (see Ref. [13]): at the beginning of the search, for instance, higher values of rc will be used in order to 
exploit the desirable characteristics of fittest solutions, while in the ending phases rm could be increased for 
solution fine tuning and avoidance of local optima.

The set of employed (crisp) indicators – once fuzzified – is fed to two fuzzy inference systems (FISs) that, 
by means of a set of IF-THEN rules, put into practice varying strategies based on rm and rc modifications 
aimed at GA efficiency improvement.

The use of a FIS allows the design of complex strategies that take into account the interactions among all 
the considered variables, as well as the incorporation and exploitation of intuitive considerations and strate-
gies driven by the experience.

The main elements of the novelty of FARS with respect to existing fuzzy adaptive GAs lie in the charac-
teristics of the performance indicators taken into account and fed to the FIS by FARS (i.e. the involvement of 
the “phases” concept, the computation of indicators related to the performance of the 25% fittest individuals) 
combined to the simultaneous variation of rm and rc.

The rules managing the crossover rate adaptation have the objective of keeping rc constant at the begin-
ning of the optimization in order to allow the successful mating of fittest individuals. Should the trend of the 
average fittest population be positive (which is not desirable in the context of a minimization problem), rc is 
lowered in order to limit the mating of low-fitted chromosomes. In the subsequent phase, the search process 
is expected to be stabilized; thus, rc can be raised together with rm to promote a fine tuning of the final solu-
tion. An exemplar rule taken from those included in the FIS controlling rm is as follows:

 δ⇒IF PHASE is initial and TREND is negative is constant,m

which is used when, in the initial phase of the search process, the GA is fruitfully converging to a set of solu-
tions with lower fitness: in this case, rc is kept constant in order to continue the exploitation of this favorable 
situation.

The main purpose of the FIS in charge of rm update is the avoidance of local minima. The basic idea within 
the design of the rm control is to detect as early as possible the occurrence of stall situations and to update rm 
in order to promote the exploration of new and possibly very different candidate solutions. The detection of 

Table 1: Summary of Approaches and Relevant Methods for the Control of Recombination Rates within GAs.

Approach   Relevant methods

Static: rc and rm constant through generations 
and often empirically determined

  Typical values: rc ∈([0.5–0.95]), rm ∈([0.001–0.05]) [16, 18]

Deterministic: rc and rm vary according to 
aforethought criteria

  Variation according to the generation number [1, 8, 13, 21]

Adaptive: rc and rm updated in response to 
some feedbacks on the actual status of the 
search

  – �rm tuned on the basis of stochastic learning related to the best individual 
fitness [24]

– �rm directly related to the fitness of the best individual of the current 
generation: the higher its fitness, the lower rm [1]

– �rc and rm jointly modified expressly to avoid local minima. If a stall situation 
is detected by analyzing the fitness of all the individuals of the current 
population, rc and rm are increased [22]

Fuzzy adaptive GAs: rc and rm tuned by 
means of a FIS that interprets the status of 
the search and accordingly modifies the GA 
parameters. The FIS rules base reproduces 
adaptive strategies whose formalization 
would be difficult otherwise [11]

  – �A FIS based on rules provided by experts involving current generation fitness 
figures (highest, variance) manages rc and rm [19]

– �Recombination rates controlled by a FIS including rules provided by experts 
and involving population diversity figures [17]

– �A meta-GA at a higher level is used for the learning of an optimal rules set for 
the control of rc and rm
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situations where the search process is stuck in a potential local minimum is performed through the use of the 
FIS that basically takes into consideration the trend of population fitness (i.e. if it is rather constant, the risk 
of a stall is high) and the search phase. The output of the FIS in these cases will lead to an improvement of rm. 
In the opposite situation, when the search is converging toward solutions with a better fitness, rm will be kept 
constant or even decreased in order to exploit the good characteristics of reached solutions and evolve new 
and better ones. In the initial phase, the behavior of this FIS is analogous to that of the other one. In fact, until 
the search is fruitful (i.e. the trend is decreasing), rm does not vary; otherwise, it is increased.

A fully detailed description of the method for the calculation of the search status indicator, the fuzzifica-
tion process, and the FIS rules can be found in Ref. [26].

4  �Testing on Classical Problems
In this section, in order to preliminarily assess the FARS approach, its performance has been analyzed on 
two classical literature problems and compared to those achieved by GAs adopting a wide set of constant 
recombination rates. In more detail, the following values for rc and rm have been used for generating 45 (rc, rm) 
combinations that have been evaluated in the tests:

:  0.5, 0.6, 0.7, 0.8, 0.9.cr

:  0.001, 0.002, 0.005, 0.01, 0.02, 0.05, 0.1, 0.2, 0.5.mr

In the constant approach, all the couples generated by the candidate rc and rm values have been assessed 
and, for each problem in this work, the best performing one in terms of number of convergences firstly (main 
criterion) and convergence generation secondly has been selected. The best (rc, rm) couple and related results 
are reported in each table summarizing the achievements of methods.

4.1  �Function Minimization

Within the classical optimization problems, the function minimization is a typical comparison field. From 
the wide ranges of function, three known minimization problems, selected from De Jong’s [5] set, have been 
considered: these functions have been selected in order to put into evidence different aspects of the improve-
ments achieved by means of FARS.

Sphere function. A 20-dimensional hypersphere [see Eq. (3)] is considered for an elemental optimization 
problem, which is characterized by a smooth gradient, the absence of local minima, and the global optimum 
point in the null value =

�� 0.x

	 =

= ∑� 2

1
( ) .

N

i
i

f x x
�

(3)

The domain of the search space for the sphere problem is the hyper-cube xi ∈[−5.12; 5.12] · ∀ i.

Rastrigin function. The Rastrigin function is defined as follows:

	
π

=

= + − ×∑ 2

1
( ) 10 ( 10 cos(2 )).

N

i i
i

f x N x x
�

(4)

Within this work, N = 10 and the search domain is defined by the hypercube determined as for the sphere 
function xi ∈[−5.12; 5.12] ∀i. The global optimum of the Rastrigin function is located in =

�� 0.x  A two-dimen-
sional representation of the Rastrigin function is shown in Figure 1. Due to the large number of local minima, 
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the Rastrigin function is a complex optimization problem for which the algorithms often converge to non-
optimal solutions [23].

Schwefel function. The Schwefel function is another typical benchmark for optimization algorithms because 
of the large number of local minima. The function is defined as follows:

	
( )

=

= − ⋅∑
1

( ) sin | | ,
N

i i
i

f x x x
�

(5)

whose global minimum is located in �x  so that ∀i xi = 420.9687. In this function, global and local minima are 
potentially distant and optimization algorithms, including GA, often converge to a non-optimal solution. 
Tests have been performed on the Schwefel function with N = 2 in the search space xi ∈[−500; 500], for i = 1, 2.

The comparison between classical GA (with constant recombination rates) and FARS method has been 
performed starting from the same configuration. In particular, the settings of the algorithms (the same used 
in Ref. [23]) are defined as follows:

–– Each individual is an array of real elements, where each chromosome represents one dimension.
–– The number of population individuals has been set equal to 30.
–– The initial population is created with candidate solutions uniformly distributed in the search space.
–– Two parent solutions are chosen for the crossover method, and their crossover is computed as the gene-

wise average of the two individuals.
–– The mutation operator, applied to preserve the population diversity, replaces the value of a randomly 

chosen gene xi of an existing individual into a mutated ˆ ix  one by adding a random value μ ∈[−M
μ
; M

μ
]: 

µ= +ˆ ,i ix x  with M
μ
 the maximum allowed gene mutation. In particular, in the tests, M

μ
 is set equal to 1.

–– The GA algorithm stops when 500 generations have been completed or if fitness (x) < 0.001.

For each optimization problem and approach, 100 tests have been performed. The results have been com-
pared to those achieved by GA with constant recombination rates (all the mentioned combinations) accord-
ing to three performance indexes: the percentage of convergence to global optimum within the maximum 
number of generations, the average number of generations to reach the convergence, and the average fitness 
of the solutions within the maximum number of generations.

The results summarized in Table 2 show that in the case of the sphere function minimization, the simplic-
ity of the problem leads to obtain 100% convergence for both recombination approaches, with an increased 
convergence speed achieved by FARS and a lower number of generations required with respect to the con-
stant recombination method, with an improvement of 26% to reach the target fitness.

Figure  2 shows an example of the evaluation of fitness function and recombination rates in function 
of the number of generations, during the minimization of the sphere function. In more detail, in the first 
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generations while the fitness function decreases, the mutation rate rm decreases in order to allow the search 
process to focus on the deep exploration of the promising zone of the search space. In successive phases, 
when the optimization seems to stall on a rather explored area, rm is increased in order to explore new zones 
of the search space to avoid convergence to a local minimum.

As far as the minimization of Rastrigin function is concerned, the results show the difficulty of reaching 
the global optimum by a constant recombination method, due to the large number of local minima and prob-
ably coupled to the low mutation rate, which makes it more difficult to escape from a local minimum once 
reached. In more detail, the constant approach converges in 7% of the tests compared to the 84% success 
obtained by FARS. Furthermore, FARS allows improving the average solution of three orders of magnitude 
compared to the constant method.

Figure 3 shows an example of the evaluation of fitness function and recombination rates in function of 
the number of generations, during the minimization of the Rastrigin function. As the case of sphere function, 
in the first generations, both fitness and the mutation rate rm decrease. The FARS method leads to adaptation 
and increases the mutation parameter while the optimization process is trapped in local minimum (see the 
zones with constant fitness); otherwise, when the fitness decreases, the algorithm focuses on the exploitation 
of the acquired knowledge in order to fine tune the solution of the optimization problem. At the end of the 
search process, the crossover parameter rc is adapted and decreased in order to keep into account the stability 
of the fitness function.

Finally, the results obtained on minimization of the Schwefel function highlight once again the limit of 
the classical recombination approach facing a function with a large number of local minima. In particular, 

Table 2: Results Obtained on the Function Minimization Problems: The Best (rc, rm) Combination for the Constant Approach is 
Reported.

 
 
 
 

Sphere  
 
 
 

Rastrigin  
 
 
 

Schwefel

Const
rm = 0.6
rm = 0.1

 
 
 

FARS Const
rc = 0.6
rc = 0.2

 
 
 

FARS Const
rc = 0.5
rc = 0.05

 
 
 

FARS

Conv. %   100   100   7   84   90   100
Conv. gen.   244   182   421   389   109   37
Average sol.   2.4E − 5  1.2E − 5   0.13   8E − 4   4.7E − 4   8E − 5
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Figure 2: Sphere Function Minimization: Trend of GA Average Population and Best Individual Fitness (Upper Figure) and Recom-
bination Rates (Lower Figure).
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the constant method does not always ensure the convergence to global minimum, with a 90% success with 
respect to the 100% achieved by FARS. In more detail, FARS converges faster than the constant recombination 
method and improves the accuracy of the solution. The reasons for the difficulties encountered by classical 
GA are attributable to the characteristics of the Schwefel function, in particular to the large distance between 
local and global minima.

For the sake of synthesis, the results obtained by FARS prove the validity of the approach used with 
respect to the classical recombination method. FARS allows obtaining more accurate results with decreased 
computation time. In more detail, the three minimization problems put into evidence three possible issues 
to be faced in problems of this type: in the sphere problem, the main objective is related to the convergence 
speed in the absence of local minima. In the Rastrigin function, the main target is represented by a large 
number of local minima with respect to the volume of search space. Finally, in the Schwefel function, the 
main issue is the large distance between local and global minima. These three issues have been faced by 
FARS with good behavior compared to the classical recombination approach.

4.2  �The Counting-Ones Problem

A typical benchmark for testing novel optimization algorithms is the “counting-ones” problem. In more 
detail, the idea is to count the number of 1-valued bits in an array of bits whose length is l. The problem cor-
responds to the maximization of the following binary function:

	 =

= ∑…1
1

( ,  ) .
l

l i
i

f a a a
�

(6)

In this work – without affecting the validity of the obtained results – the analogous problem of the minimiza-
tion of this function has been considered. This problem is rather challenging for algorithms such as GA. In 
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particular, the larger the dimension l, the more difficult the problem is due to the fact that standard recom-
bination methods, in tasks where chromosomes are binary coded, have difficulty in converging to global 
optimum in a short time and often convergence is not ensured within the prefixed maximum number of 
generations.

A set of 100 tests for the assessment of FARS performance with respect to standard GA employing con-
stant recombination rates has been performed. The configuration of the main parameters of the algorithms 
is defined as follows:

–– All tests share the same fitness function, defined in Eq. (6).
–– The search space dimension l and chromosome length are set to 300.
–– Two parent solutions are chosen for the crossover method, and their child chromosomes are computed 

by randomly picking a bit from each parent.
–– The mutation operator mutates a maximum of 2 bits of the selected chromosome.
–– The GA stops when 300 generations have been completed or the function evaluation reach the maximum 

fitness l.

Results summarized in Table 3 highlight the great difference in terms of performance between the classical 
recombination methods and FARS: the former converges only in 7% of the tests while the convergence rate 
of FARS is 50%. It is also worth noting that the average solution reached by FARS (0.74 bits wrongly set) 
is far better with respect to standard GA (3.01 bits wrongly set). In the case of the constant approach, the 
best (rc, rm) resulting from the tests is characterized by a rather low mutation rate with respect to other test 
problems.

5  �Exploitation of FARS on Industrial Problems
In this section, the successful use of FARS on three different optimization problems from the industrial field 
is shown. In the following case studies, the performances achieved by means of FARS are compared to those 
obtained through the use of standard methods such as GA in a two-fold manner: on the one hand, in terms 
of the goodness of the solution in order to put into evidence the capability of FARS of avoiding local minima 
and reaching a solution with higher fitness, and on the other hand in terms of the time required for the con-
vergence of the optimization method in order to highlight the capability of FARS of exploring the search space 
with higher efficiency.

5.1  �Estimation of Final Carbon Content at the Endpoint in a Converter

This application of the FARS approach concerns the basic oxygen furnace (BOF) plant within a steelmaking 
industry. The aim of the BOF within the steel production process is the reduction of carbon (C) content within 
a C-rich liquid steel by means of oxygen blowing. The blowing operation is performed through a sublance that 

Table 3: Results on the Counting-Ones Problem in Terms of Convergences to the Global Optimum and Generation 
of Convergence: The Best (rc, rm) Combination for the Constant Approach is Reported.

  Constant
rc = 0.7

rm = 0.002

  FARS

Convergences %   7  50
Conv. generation   319  273
Average solution   3.01  0.74
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blows the oxygen directly into the BOF. In addition, the sublance measures the temperature and carbon content 
throughout the process until 2–3 min before the end of the blowing due to technical reasons. Due to this early 
stopping of sensor measurement, the actual C content at the end of the blowing is unknown (the temperature 
is assumed to remain constant), although it is important for the management of the next phases of the manu-
facturing. For these reasons, the C content at the endpoint in the BOF is usually estimated by means of Eq. (7):

	
[C]= 10 ,

[O]

A B
c TP  

− +  ⋅
�

(7)

where [C] and [O] are the carbon and oxygen (available) content expressed in wt.%, respectively; T is the tem-
perature expressed in Kelvin degrees; Pc is a model parameter related to pressure, and its theoretical value 
must vary in the range [1, 1.5] atm; and A and B are two further parameters whose theoretical values, accord-
ing to Turkdogan [25], must lie in the ranges A ∈[1700, 2500] and B ∈[1.5, 1.9], respectively.

In this application, Eq. (7) is used to set up a model for the estimation of the final carbon content of an 
existing BOF plant. The model has been tuned by optimizing Eq. (7) on the basis of an experimental dataset 
related to >400 heats and including the measured C, O contents as well as the temperatures within the BOF 
at the endpoint. The main aim of the tuning is finding the optimal values of the parameters Pc, A, B in order 
to minimize the discrepancy between actual and estimated values of [C] expressed in terms of standardized 
root mean square error (SRMSE) depicted in Eq. (8), where M is the number of samples used for the test and 
ˆ
iy  and yi are the estimated and measured C content, respectively.
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The straightforward solution of exploiting Eq. (7) and building an overdimensioned linear system of equa-
tions (one for each input-output data sample) to be solved through pseudoinversion does not lead to an 
acceptable solution. Thus, in a first attempt, GAs have been employed for the model optimization, taking into 
account the allowed variability ranges for the parameters to tune. Several runs of GAs have been performed, 
and for each run a different result was achieved. This behavior may signal the presence of a number of local 
minima that are reached, in turn, by the different runs of the standard GA. In order to try to overcome this 
drawback, the FARS approach has been employed by using the same configuration (in terms of cardinality of 
candidate populations, number of generations, operators, etc.) as for the standard GA. A set of 100 runs for 
both the standard GAs and FARS has been performed for the optimization of the model of Eq. (7). The best 
performances achieved by each approach are reported in Table 4 together with those of the model employing 
the nominal values of the parameters according to Turkdogan [25]. In the case of standard GAs employing the 
constant recombination rate couples listed in Section 4, the best combination is reported, together with its 
performance, in the table.

Table 4 puts into evidence the parameter values, the SRMSE-based performance, and the time required 
for computation corresponding to the tested approaches. In the row related to constant recombination rates, 
the best-performing couple and its achievements are reported.

In addition, in Table 5, the variation of the model parameters and standard deviation of the performance 
throughout the 100 tests performed are reported.

Table 4: Summary of Best Achievements of the Optimized Models for the Estimation of Carbon Content at the Endpoint in a 
Converter.

Model Pc A B Time (s) ε

Nominal 1 1895 1.6 − 1.7E − 3
GA (rc = 0.5, rm = 0.2) 1.41 2228 1.57 16 1.54E − 4
FARS 1.44 2148 1.52 16 1.25E − 4



M. Vannucci et al.: Fuzzy Adaptive GA for Industrial Optimization Problems      419

Table 5: Variation Ranges of Optimized Model Parameters and Performance Standard Deviation for GAs and FARS within the 100 
Performed Optimization Runs.

Model Pc A B Std (ε)

GA (rc = 0.5, rm = 0.2) 1.37–1.49 1936–2412 1.52–1.72 0.07E − 4
FARS 1.39–1.47 2001–2410 1.60–1.79 0.03E − 4

The results reported in Table 4 put into evidence the improvement related to the use of GA-based 
approaches with respect to the model employing literature parameter values. Further, the approach based 
on FARS obtains a lower error than the model optimized with standard GAs: FARS in this case is able to avoid 
the local minima reached by the different runs of GA. In terms of performance, the error reduction attribut-
able to FARS is about 20% while the computational time is the same. The results reported in Table 5 show a 
higher stability of FARS with respect to standard GAs both in terms of the achieved solution (the parameter 
variability range is smaller) and performance.

5.2  �Mean Flow Stress (MFS) Model Optimization

A second application where FARS has been employed is related to the estimation of MFS during the hot 
rolling of steel. A correct estimation of this measure is fundamental for the efficiency of the rolling process 
and influences the final quality of the product. In the literature, it is possible to find a number of works that 
focus on MFS prediction: most of them try to put into correlation the steel chemical composition and some 
key process parameters such as temperature, strains, and strain rates during the rolling to the MFS. The 
model proposed by Siciliano et al. [20], shown in Eq. (9), estimates MFS in kgf/mm2 and involves the content 
of some chemical elements (niobium and molybdenum, in wt.%), the temperature T (in Kelvin), the applied 
strain ε, and the strain rate εs together with the α = 0.21 and β = 0.13 model parameters whose values have been 
empirically determined.
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GAs have been successfully exploited by Dimatteo et  al. [6] for the optimization of Eq. (9) by tuning the 
parameters α and β according to a dataset collected during standard industrial operations on an industrial 
rolling mill and minimizing the percent difference between the predicted and actual MFS. FARS has been 
subsequently applied in order to try to improve the performance of the model.

This problem has been used to compare the performance of the different recombination approaches. 
As there is no a priori information on the actual global minimum of the function to be minimized, only the 
fitness of the solution achieved by the different methods has been considered as a performance indica-
tor. Table  6 reports the average values and standard deviations over 100 tests of this latter indicator and 
shows evidence that FARS is able to find a better solution in terms of accuracy with respect to alternative 
approaches that include Eq. (9) employing nominal parameter values, the one tuned by means of standard 

Table 6: Performance of Literature, Standard GA, and FARS Tuned Siciliano Models [Eq. (9)] in Terms of Percent Discrepancy 
between Actual and Predicted MFS.

Model Average % Error Std % Error Time (s)

Nominal 12.9 – –
GA [6] 9.1 1.3 28
GA (rc = 0.8, rm = 0.1) 9.0 0.6 22
FARS 8.8 0.6 19
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GA by Dimatteo et al. [6], and the best performing one among constant GAs adopting the recombination rate 
couples described in this work. In terms of stability of performance, FARS is comparable to the best configura-
tion of GAs and more stable than the GA-optimized model proposed by Dimatteo et al. [6].

As shown by the results reported in Table 6, the FARS approach achieves better results with respect to 
standard GA not only in terms of average percent error [reduction in this case is 4% with respect to GA with 
(rc = 0.6, rm = 0.2) and 3% with respect to the best constant recombination rate] but also in terms of the time 
necessary for reaching the convergence (reduction in this case is 33% and 14%, respectively).

5.3  �Optimization of Metallurgical Phase Transformation Temperature Models

Dimatteo et al. [7] developed a simplified finite element model (FEM) for the prediction of the mechanical 
characteristics of steel bars for concrete reinforcement. The FEM simulates the cooling of the bar for the deter-
mination of the internal microstructure of the bar. One of the main tasks of the simulator is the estimation 
of the critical temperatures that determine the steel phase transformations into the bainitic and martensitic 
microstructures. In more detail, the temperatures of interest are the ones at which the bainitic and martensi-
tic transformations starts, indicated as Bs and Ms, respectively.

These temperatures are usually estimated by means of simple linear literature models that involve the 
steel chemical composition as reported by Kirkaldy and Venugopalan [15]. Dimatteo et al. [7] tested several 
of these linear models on an experimental dataset formed by about 200 samples that include the steel bar 
chemical compositions as well as the Ms and Bs obtained by means of laboratory tests performed on purpose. 
According to the results of these tests, the best-performing models for Bs and Ms estimation are those of Eqs. 
(10) and (11), respectively:

	 Lit 718 425 [ ] 42.5 [Mn],Bs C= − ⋅ − ⋅ � (10)

	
Lit 561 474 [C] 33 [Mn] 17 [Cr] 17 [Ni] 21 [Mo],Ms = − ⋅ − ⋅ − ⋅ − ⋅ − ⋅ � (11)

where [C], [Mn], [Cr], [Ni], and [Mo] are the concentrations in wt.% of the chemical elements and Bs and Ms 
temperatures are expressed in K.

In order to improve the accuracy of the simulator, two additional models for Bs and Ms estimation have 
been developed and tested on the same experimental dataset. The models, depicted in Eqs. (12) and (13), 
respectively, employ more variables concerning chemical composition and are non-linear. Although in this 
case, Bs and Ms models share the same structure, the values of internal parameters (including the constant 
values kBs and kMs) are different:

	 2 2 ([Mn] [Cr])
New Bs 1 2 3 4 5 6[Cu] [C] [C] [Mn] [C] [SI] [Mn] ,Bs k eα α α α α α − += + ⋅ + ⋅ + ⋅ ⋅ + ⋅ + ⋅ ⋅ + ⋅ � (12)

	 2 2 ([Mn] [Cr])
New Ms 1 2 3 4 5 6[Cu] [C] [C] [Mn] [C] [SI] [Mn] .Ms k eβ β β β β β − += + ⋅ + ⋅ + ⋅ ⋅ + ⋅ + ⋅ ⋅ + ⋅ � (13)

A set of 100 optimization runs by means of standard GAs and FARS has been performed in order to find 
the optimal values for the parameters αi, βi, kBs, and kMs. The performances achieved by these approaches have 
been compared to those obtained by the literature models of Eqs. (10) and (11) and by a slightly upgraded 
version of such models obtained by calculating the model parameters through multiple linear regression, 
minimizing the discrepancy between measured and estimated temperatures (literature optimized models). 
As far as the standard GA is concerned, all the recombination rate couples considered in this work have been 
assessed and the performances of the best ones (one for Ms and the other for Bs) are reported. The results of 
the comparison are summarized in Table 7 in terms of the mean absolute error in the temperature estimation 
(in K) and the standard deviation of this error over the 100 performed tests. The optimal values of the para-
meters cannot be reported for confidentiality reasons.

The results summarized in Table 7 put into evidence several aspects of this problem. On the one hand, 
the benefit gained from the use of optimized models is evidenced by the performance improvement of the 
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Table 7: Comparison among the Different Approaches Tested for the Bs and Ms Estimation: Time Is Expressed in Seconds, Error 
in K; The Optimal Recombination Rates for Eq. (12) GA are (rc = 0.5, rm = 0.05) and for Eq. (13) GA are (rc = 0.7, rm = 0.2).

Model Bs Ms

Err. Std Time Err. Std Time

Literature 18.5 – – 9.4 – –
Lit. opt. 11.4 – 1 8.5 – 1
Eq. (12) GA 9.8 1.4 16 – –
Eq. (13) GA – – – 6.2 0.3 14
FARS 6.4 0.2 12 6.0 0.04 12

optimized linear literature model with respect to the one exploiting nominal parameter values. On the other 
hand, it draws attention to the additional improvement due to the use of a non-linear model (that cannot 
be optimized through multiple regression). In this latter case, the use of FARS instead of plain GAs for the 
optimization task leads to a much more accurate model, likely due to the better exploration of the search 
space that this approach can perform. FARS outperforms GAs also in terms of stability of performance, as the 
standard deviation of the error is sensibly reduced by using this approach.

6  �Conclusions
In this paper, the use of a novel adaptive GA within industrial optimization tasks is presented. The method, 
referred to as FARS, has the twofold aim of speeding up the optimization process and, mainly, preventing the 
optimization from reaching a local minimum instead of a global one, as it often occurs when facing complex 
problems involving the exploitation of experimental data for model tuning. FARS is based on the control of 
GA recombination rates by means of the extraction of features describing the status of optimization. The 
extracted features are fed to a FIS that controls the GA mutation and crossover rates in order to fulfill its aims 
through a set of rules implementing suitable strategies.

Within this work, the proposed approach has been tested both on classical optimization tasks affected 
by the problem of local minima achievement and especially on three real-world applications from the steel-
making industry in order to assess FARS capabilities when facing real practical problems and datasets. The 
results achieved by FARS on classical problems demonstrated its efficiency. Moreover, the use of FARS on 
industrial problems improved the performances of the models optimized with respect to GAs employing a 
variety of constant recombination rate couples and standard methods, proving its capability of efficiently 
exploring the objective function surfaces and avoiding local minima even in the presence of industrial data-
sets and problems. Further, tests showed a reduction of the computational time required for the optimization 
that is likely due to the improvement of the exploration strategy derived by the use of FARS.

In the future, FARS will be used for controlling more GA parameters, such as the cardinality of the can-
didate population through GA generations and the types of crossover and mutation operators to employ 
according to the status of the optimization. Further, more literature and industrial problems will be utilized 
to assess the method performance.
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