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Abstract: Vehicle-activated signs (VAS) are speed-warning signs activated by radar when the driver speed 
exceeds a pre-set threshold, i.e. the trigger speed. The trigger speed is often set relative to the speed limit and 
is displayed for all types of vehicles. It is our opinion that having a static setting for the trigger speed may be 
inappropriate, given that traffic and road conditions are dynamic in nature. Further, different vehicle classes 
(mainly cars and trucks) behave differently, so a uniform trigger speed of such signs may be inappropriate to 
warn different types of vehicles. The current study aims to investigate an automatic VAS, i.e. one that could 
warn vehicle users with an appropriate trigger speed by taking into account vehicle types and road condi-
tions. We therefore investigated different vehicle classes, their speeds, and the time of day to be able to con-
clude whether different trigger speeds of VAS are essential or not. The current study is entirely data driven; 
data are initially presented to a self-organising map (SOM) to be able to partition the data into different clus-
ters, i.e. vehicle classes. Speed, time of day, and length of vehicle were supplied as inputs to the SOM. Further, 
the 85th percentile speed for the next hour is predicted using appropriate prediction models. Adaptive neuro-
fuzzy inference systems and random forest (RF) were chosen for speed prediction; the mean speed, traffic 
flow, and standard deviation of vehicle speeds were supplied as inputs for the prediction models. The results 
achieved in this work show that RF is a reliable model in terms of accuracy and efficiency, and can be used in 
finding appropriate trigger speeds for an automatic VAS.

Keywords: Vehicle-activated signs, adaptive neuro-fuzzy inference systems, random forest, self-organising 
maps, trigger speed.

1  Introduction
Speed and speed variance are two common factors affecting the frequency and severity of traffic accidents. 
Reducing speed and speed variance are key objectives for reducing both the frequency and severity of crashes. 
One way to do this is to use vehicle-activated signs (VAS), which are warning signs that display a warning 
message “reduce speed” with the posted speed limit. The trigger speed is often set relative to the speed limit 
and is displayed for all types of vehicles. Given the size, weight, and behavioural differences between motor-
cycles, cars, and trucks, having a uniform trigger speed for such sign may be inappropriate to warn different 
vehicle types. This study was conducted to examine the necessity of triggering VAS respective to the type of 
vehicle. This issue is, however, connected to the general problem in setting the appropriate speed limit on 
a road segment and the challenge of using uniform and differential speed limit (DSL) strategies. DSL is a 
speed control strategy aimed to address different speed limits for cars and trucks. A number of authorities 
have encountered this general problem and used the DSL strategies by either setting the maximum speed 
for trucks at a certain threshold value, such as 10–15 km/h lower than for cars or by requiring all trucks 
to be equipped with maximum speed limiters [9, 13, 18]. The safety effects of such settings have not been 
conclusive in previous studies. Some studies found no difference between DSL and uniform speed limit for 
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cars and trucks [7, 11, 12, 14]. Other studies found that DSL can be better policy choice [6, 10]. The differences 
between the studies could be based on the difference in the thresholds applied in the DSL, but can also be 
attributed to varying factors such as weather, traffic, and road conditions. The current study aims to investi-
gate an automatic VAS, i.e. one that could warn vehicle users with an appropriate trigger speed by taking into 
account vehicle types and road conditions. Traffic speed data were collected from four test sites in Sweden. A 
data-driven methodology has been chosen for the purpose. A data-driven model is able to mitigate the afore-
mentioned problems encountered while investigating DSL; further, such a model is immune to any external 
influences such as decisions made by authorities and so on.

A large number of input factors that impact the current traffic situations have frequently been considered 
in relevant studies [25, 26]. Such input factors, including time/day, flow of traffic (i.e. number of vehicles for 
a certain period of time), mean speeds, and standard deviation, are usually examined in the previous litera-
ture. Besides, traffic situations may change or repeat intensively depending on the time of day and day of the 
week [20]. In other words, the input factors may have similar patterns in rush/non-rush hours on different 
days of the week. Although past studies have extensively researched the above-mentioned factors relevant to 
traffic situations, fewer studies have attempted to deal with the type of vehicles in particular, applying DSL 
strategies to be able to trigger a VAS.

The first objective of this paper is to study the difference in mean speeds and standard deviations between 
all types of vehicles, particularly motorcycles, cars, trucks, and long trucks, and between the times of day 
(particularly night time and day time). Hypothesis testing was used to prove whether there were differences 
in mean speed and standard deviation within the vehicle classes and time of day [5]. A second objective is 
to present an automatic trigger speed for VAS responding automatically to traffic conditions. The automatic 
system will first use a self-organising map (SOM) to partition the input data into separate clusters that have 
similar traffic patterns and then predict the 85th percentile trigger speed within each cluster.

SOM is capable of finding features inherent to the problem without the need for prior determination 
of the output, and is therefore appropriate in a data-driven study. Two different predictive models, namely 
random forest (RF) and adaptive neuro-fuzzy system (ANFIS), were chosen to automate the trigger speed of 
the VAS.

The rest of the paper is organised as follows: Section 2 presents a description of the theoretical back-
ground of the different methodologies used in this study. Section 3 describes the data collection. Data analysis 
is reported in Section 4. The automatic trigger speed models are presented in Section 5. Section 6 summarises 
and concludes the study.

2  �Theoretical Background
A brief description of the models employed in this work has been provided for the benefit of the reader 
unfamiliar with the topic.

2.1  �Self-Organising Maps

SOM is one of the most popular neural network models used in clustering [20]. SOM has been proven useful 
in many applications [4, 24, 27, 28]. SOM is based on unsupervised learning, which means that no human 
intervention is needed during the learning process, and there is little need to know about the characteristics 
of the input data and no need to know which membership class the input class belongs to. SOM belongs to 
the category of competitive learning networks. The goal of learning in SOM is to cause different parts of the 
network to respond similarly to certain input patterns. It consists of two layers of artificial neurons: an input 
layer and an output layer. Every input neuron is connected to every output neuron by a weighting value. The 
Euclidian distance is calculated between the input vector and the incoming weighted vector for each output. 
The output neuron with the smallest distance is declared as the winner, and its weights are modified to be 
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closer to the input vector. In fact, SOM is an iterative process where the connections’ weights are modified 
according to the following equations:
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where w(t) is the connection weight at time t, x(t) is the input vector, h(t) is the neighbourhood function, α 
is the learning rate, d is the Euclidian distance between the winning unit and the current unit, and σ is the 
neighbourhood width parameter.

In this paper, an SOM was initially used to visualise and understand data properties such as the number 
of prevalent clusters. A complete discussion concerning SOM is beyond the scope of this article but can be 
found elsewhere [20].

2.2  �Adaptive Neuro-Fuzzy System

An adaptive neuro-fuzzy system is a powerful system that combines the concepts of two approaches into one 
integrated system where artificial neural network learning algorithms are used to determine the parameters 
of the fuzzy inference system to share data structures and knowledge representations. In this paper, the fuzzy 
inference system is based on the Takagi-Sugeno methodology where the output membership functions are 
constant values. After some experimentation, a bell-shaped function has been chosen as the main member-
ship function for the inputs. Bearing in mind the smooth nature and also the fact that it allows for a greater 
interval, i.e. the interval where μ(x) = 1, in this study, the membership function is given as follows:
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and a typical rule in this Sugeno method is also as follows:
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where 
iA

μ  and 
iB

μ  are membership functions for fuzzy sets A and B for node i. x is the first input; y is the 
second input; Ai and Bi are the fuzzy sets; z is the output obtained by the fuzzy rule; and ai, bi, and ci are the 
parameters of membership functions for node i called conditional parameters, and determined during the 
training process.

A typical ANFIS structure, first proposed by Jang [16, 17, 22], is a network of five layers of nodes (see 
Figure 1). A brief description of each layer is as follows:

–– Layer 1 – In this layer, every node is a fuzzy set and the output of any node corresponds to the member-
ship function in this fuzzy set.

–– Layer 2 – Every node computes the degree of activation wi of rule i where the membership functions are 
multiplied by the AND operator as follows:

	 ( ) .( )
i ii A Bw x yμ μ= � (5)

–– Layer 3 – The third layer computes the ratio of the activity degree of i rule to the sum of activation degrees 
of all rules. Wi is consequently considered as the normalised membership degree of i rule [see Eq. (6)].

	 1 2

.i
i

w
W

w w
=

+
�

(6)



1082      D. Jomaa and S. Yella: Predicting Automatic Trigger Speed for VAS

–– Layer 4 – The node function of the fourth layer computes the contribution of each i rule towards the total 
output, and the function fi defined as in Eq. (7):

	 ( .)i i i i i iW f W a x b y c= + + � (7)

–– Layer 5 – The final outputs of all nodes are derived in this final layer [see Eq. (8)].

	 .i i i i iW f w f w=∑ ∑ ∑ � (8)

The network is trained using a hybrid learning algorithm based on two steps. In the first step (forward pass), 
the premise parameters (i.e. network parameters) are kept fixed and the information is propagated forwards 
in the network using the least-square method to identify the consequent parameters for the current cycle 
through training. In the second step (backward pass), the error is propagated backwards, while the premise 
parameters are modified using the gradient descent method by keeping the consequent parameters fixed. 
The rule extraction method first uses the fuzzy c-means (FCM) clustering function known as “genfis3” to 
determine the number of rules and membership functions for the antecedents and consequents. FCM cluster-
ing techniques (genfis3) were also used to optimise the result by extracting a set of rules that model the data 
and generate an initial FIS for ANFIS training.

2.3  �Random Forest

An RF is an ensemble machine learning proposed by Leo Breiman for building tree predictors and letting 
them vote for the most popular class. The algorithm of inducing RF is based on bootstrap aggregation or 
so-called bagging. RF is a refinement of bagged trees. For bagging, given a training set X = x1, …, xn with 
response variables Y = y1, …, yn, the algorithm selects a random sample with replacement of the training 
set and fits tree regressions to these samples. After training, predictions can be made by averaging the 
predictions from all individual regression trees. The latter improves the stability and accuracy of machine 
learning algorithms, particularly used in statistical classification and regression [1]. It also reduces variance 
and helps avoid overfitting. RFs differ in only one way from the general bagging process. The algorithm uses 
a modified tree learning algorithm that selects, at each candidate split in the learning process, a random 
subset of the features. This process is also called feature bagging. The reason for this is to overcome the 
correlation of the trees from an ordinary bootstrap sample. In other words, RF tries to improve on bagging 
by “de-correlating” the trees. A detailed description can be found in Refs. [2, 15]. The RF algorithm is sum-
marised as follows:

–– Draw ntree bootstrap samples from the original data.
–– For each of the bootstrap samples, draw a random sample of m features, and those m features are consid-

ered for each tree split. Typically, m p=  or log2 p, where p is the number of features.
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Figure 1: ANFIS Structure with Five Nodes, Two Inputs, and One Single Output [16].
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–– Predict new data by aggregating the predictions of the ntree trees (i.e. majority votes for classification, 
average for regression).

–– Calculate the error rate for observations left out of the bootstrap sample. This is called the out-of-bag 
error rate.

For the implementation of the RF in this paper, the number of trees and the number of selected features were 
experimentally tuned. As the number of trees increases, the error converges to a limit where there is no pres-
ence of overfitting, as in the case of multilayer perceptron and other learning algorithms. The most important 
parameter is to decide upon the number of features to test at each split. A common practice is to start with 
a large number and then either increase or decrease the number of features until the minimum error for the 
prediction is obtained.

3  �Data
Traffic speed data were collected 24 h a day, onsite at four different locations. The first site (site-1: latitude: 
60.558988, longitude: 15.137701) was located on highway E16 between Borlänge and Djurås in central Sweden 
and was restricted to 60 km/h. The second (site-2: latitude: 60.476904, longitude: 15.464145) and third (site-3: 
latitude: 60.462058, longitude: 15.467076) sites were both restricted to 40 km/h, whereas the fourth site (site-
4: latitude: 60.497165, longitude: 15.452249) was restricted to 60 km/h. One single VAS was used to collect all 
the data from the different sites to keep costs low. Further details such as the number of observations and 
dates can be found in Table 1. At this stage, it is worth mentioning that the VAS was equipped with radar and a 
data logger to record the speed of passing vehicles 100 m before the location of the VAS. The rationale behind 
such a VAS was to build an adaptive VAS that detects and records vehicle speeds, and predicts a trigger speed 
respective to previous traffic conditions.

The collected data comprised the vehicle speed, the length of vehicle, and the date and time. To identify 
the type of the vehicle that passed the VAS, a simple classification was done based on a threshold recom-
mended by traffic engineering. According to their recommendation, four classes were mainly considered as 
follows:

–– Motorcycle class (C1): the length of this class varies between 10 and 20 dm.
–– Cars class (C2): the length of this class varies between 21 and 60 dm.

Table 1: Data Description, Number of Observations in the Original Data Set, Mean Speed, 85th Percentile, and Standard Deviation 
for Each Vehicle Class.

Site Classes Observations Mean speed (km/h) 85th percentile (km/h) Standard deviation

1 C1 34,673 59.4 74 19.1
C2 175,822 63.9 73 11.7
C3 15,258 63.4 72 11
C4 13,373 64 73 11.2

2 C1 2127 32.6 52 17.54
C2 54,116 48.5 58 9.94
C3 4019 38.5 53 15.1
C4 3494 32.7 48 14.4

3 C1 702 42.1 54 14.3
C2 50,388 47.5 56 8.82
C3 5361 46.9 56 8.81
C4 2107 44.3 52 8.45

4 C1 11,021 35.3 56 19.3
C2 158,784 53.8 61 8.32
C3 6564 52.2 59 7.5
C4 3341 49.2 56 9.18
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–– Vans and trucks class (C3): the length varies between 61 and 94 dm.
–– Long trucks and buses (C4): the length varies between 95 and 255 dm.

For further analysis, each day was split into day/night periods of time as follows:
–– Day time: between 06:00 and 19:59.
–– Night time: between 20:00 and 05:59.

Table 1 presents further details on the number of observations, mean speed, 85th percentile speed, and 
standard deviation respective to each site and to each class.

4  �Data Analysis
A careful investigation of the differences in speeds between the aforementioned classes respective to the 
time of day was carried out. For all the sites, the speed variation within classes was not clear in the boxplot; 
however, a high speed variation was observed within the night and day times (see Figures 2 and 3).

To investigate changes in speed and speed variance within different classes (C1, C2, C3, and C4) and 
within the time of the day (day and night), two statistical tests were selected, which included the paired t-test 
and F-test. The paired t-test was selected to analyse the mean samples between the paired groups, and F-test 
was used to compare two variances. Both tests were done with the assumptions regarding the normality of 
the distribution. Table 2 presents the differences between means and variances of speeds for different times 
of day [day (between 06:00 and 19:59) and night (between 20:00 and 05:49)]. Tables 3–8 present the differ-
ences between means and variances of speeds for different classes at different sites.

Hypotheses testing confirmed that there were significant differences between mean speeds and speed 
variances for different types of vehicles and at different times of the day; that is, the trigger speed of a VAS 
cannot be static and must be altered depending on the type of vehicle, time of day, and its location. At each 
site, four different traffic patterns were clustered using SOM. An SOM network was trained with three-dimen-
sional inputs based on speed, time of day, and length of vehicle.

5  �Automatic Trigger Speed
According to the analysis done in the previous section, an automatic algorithm consists of two steps. In the 
first step, the SOM network groups the data into four different clusters based on the length of vehicles and 
their speed, and then predicts the trigger speed in the next step using predictive models, adaptive neuro-
fuzzy systems, and RF.

5.1  �Traffic Pattern Clustering

In the first step, an SOM is initially used to visualise and explore the speed characteristics of the traffic data 
that have been collected. An SOM is further used to group traffic patterns into clusters that have similar speed 
characteristics. Based on the SOM algorithm described in the previous section, the SOM network is trained 
with three-dimensional inputs based on the historical data: speed, time of day, and type of vehicle. In this 
study, the type of vehicle is mainly based on the length of the vehicle detected by the radar. As shown in 
Section 4, the speed characteristics for cars are different than the speed characteristics for trucks/trailers. 
It is worth mentioning that speeds might change or might repeat depending on the time of day and day of 
the week, such as morning and evening hours or rush hours and non-rush hours, during the weekday and 
weekend.
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5.2  �Trigger Speed Prediction

Before proceeding any further, it is worth mentioning that the trigger speed of VAS has an effect on driver 
behaviour; previous work reported by the authors has shown that the trigger speed set to the 85th percentile 
speed had the desired effect of lowering the standard deviation of vehicle speeds [3, 8, 19, 21, 23]. The 85th 
percentile speed is site dependent; however, in general, this is close to the mean speed. After exploring and 
grouping the traffic speed data into an appropriate number of clusters, a prediction algorithm, which predicts 
the 85th percentile speed for each hour on the day, is investigated for each cluster.
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Figure 2: Boxplot Comparisons of the Four Classes at Four Test Sites: (A) Site-1, (B) Site-2, (C) Site-3, and (D) Site-4.
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In the current study, ANFIS and RFs were employed to predict the 85th percentile speeds for the next 
hour in the future. The output of each model was the 85th percentile speed (the 85th percentile in one step 
in the future based on previous data collected one step back into the past). Three inputs are used in the 
three models: flow (i.e. the number of vehicles per hour), standard deviation, and mean speed. The results 
achieved by the aforementioned models were evaluated using traffic speed data collected at four sites located 
in Sweden for the sake of validation. Data collected at each site were first grouped into four clusters using 
SOM, and then each cluster data was split into training and testing sets. This was done following the practical 
rule of thumb, i.e. 50% of the data are used for training and 50% for testing; the training data set was used 
for determining the network parameters, while the testing set was used for validating the performance of the 
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Table 2: Comparisons of Differences between Means and Variances Using Paired t-Test and F-test, p-Value with 95% Confidence 
Level at Different Sites between the Time of the Day [Day (between 06:00 and 19:59) and Night (between 20:00 and 05:59)].

Site   Differences in means for paired t-test 
within 95% confidence interval

  Ratio of variances for F-test 
within 95% confidence interval

  p-Value for paired 
t-test and F-test

1   −6.05, [ −6.21, −5.89]  1.37, [1.35, 1.4]  <0.01, <0.01
2   −0.81, [ −1.07, −0.55]  1.26, [1.22, 1.3]  <0.01, <0.01
3   −0.93, [ −1.14, −0.71]  1.47, [1.42, 1.52]  <0.01, <0.01
4   −0.68, [ −0.82, −0.53]  1.65, [1.62, 1.68]  <0.01, <0.01

Table 3: Comparisons of Differences between Means and Variances Using Paired t-Test and F-Test, p-Value with 95% Confidence 
Level at Different Sites for the Classes [Motorcycle (C1) and Cars (C2)].

Site   Differences in means for paired t-test 
within 95% confidence interval

  Ratio of variances for F-test 
within 95% confidence interval

  p-Value for paired 
t-test and F-test

1   4.49, [4.30, 4.69]  0.38, [0.37, 0.38]  <0.01, <0.01
2   8.59, [8.14, 9.03]  0.33, [0.31, 0.34]  <0.01, <0.01
3   5.48, [4.61, 6.34]  0.38, [0.34, 0.41]  <0.01, <0.01
4   18.51, [18.28, 8.75]  0.19, [0.18, 0.19]  <0.01, <0.01

Table 4: Comparisons of Differences between Means and Variances Using Paired t-Test and F-test, p-Value with 95% Confidence 
Level at Different Sites for the Classes [Motorcycle (C1) and Trucks (C3)].

Site   Differences in means for paired t-test 
within 95% confidence interval

  Ratio of variances for F-test 
within 95% confidence interval

  p-Value for paired 
t-test and F-test

1   4.03, [3.71, 4.35]  0.33, [0.32, 0.34]  <0.01, <0.01
2   −8.22, [ −8.67, −7.77]  0.75, [0.70, 0.81]  <0.01, <0.01
3   4.84, [3.93, 5.76]  0.38, [0.34, 0.42]  <0.01, <0.01
4   16.90, [16.52, 17.27]  0.15, [0.15, 0.16]  <0.01, <0.01

Table 5: Comparisons of Differences between Means and Variances Using Paired t-Test and F-test, p-Value with 95% Confidence 
Level at Different Sites for the Classes [Motorcycle (C1) and Long Trucks and Buses (C4)].

Site   Differences in means for paired t-test 
within 95% confidence interval

  Ratio of variances for F-test 
within 95% confidence interval

  p-Value for paired 
t-test and F-test

1   4.67, [4.33, 5.01]  0.34, [0.33, 0.35]  <0.01, <0.01
2   −10.02, [ −10.50, −0.54]  0.68, [0.63, 0.74]  <0.01, <0.01
3   2.30, [1.31, 3.30]  0.35, [0.31, 0.39]  <0.01, <0.01
4   13.91, [13.43, 14.38]  0.23, [0.21, 0.24]  <0.01, <0.01

Table 6: Comparisons of Differences between Means and Variances Using Paired t-Test and F-test, p-Value with 95% Confidence 
Level at Different Sites for the Cars (C2) and Trucks (C3).

Site   Differences in means for paired t-test 
within 95% confidence interval

  Ratio of variances for F-test 
within 95% confidence interval

  p-Value for paired 
t-test and F-test

1   −0.46, [ −0.75, −0.18]  0.88, [0.86, 0.90]  <0.01, <0.01
2   −16.81, [ −17.00, −16.61]  2.29, [2.19, 2.40]  <0.01, <0.01
3   −0.63, [ −0.96, −0.30]  1.00, [0.96, 1.04]  <0.01, <0.9
4   −1.62, [ −1.92, −1.31]  0.81, [0.79, 0.84]  <0.01, <0.01



1088      D. Jomaa and S. Yella: Predicting Automatic Trigger Speed for VAS

trained models. Note that all the data sets were normalised for further analysis and evaluation. The para-
meters of each of the models were tuned by trial-and-error method. The performance of each of the models 
was evaluated by calculating the root mean square error (RMSE) and the processing time used in each of the 
models. Tables 9 and 10 summarise the RMSE performance for the next 1 h predicted by the models on the 
previous mean speed and flows on training and test data for the four sites. It is evident from Tables 4 and 5 
that RF has performed better than ANFIS within all clusters at all the sites. Given these results, it is worth 
pointing out that RF is an adequate model to predict the trigger speed for the VAS, in terms of computational 
performance (shorter calculation time) and efficiency (lower RMSE).

The prediction accuracy of RF and ANFIS has tracked the actual speed profile rather smoothly, and the 
same can be seen in Figure 4.

Given these results, it is worth pointing out that RF was an adequate model to predict the trigger speed 
for a VAS, in terms of computational performance (shorter calculation time) and efficiency (lower RMSE).

Table 9: Performance Respective to the RMSE for the Two Models RF and ANFIS within the Four Clusters.

Site   Clusters  RF  ANFIS

1   1  0.07  0.14
  2  0.09  0.13
  3  0.14  0.20
  4  0.11  0.15

2   1  0.22  0.23
  2  0.13  0.20
  3  0.06  0.09
  4  0.11  0.13

3   1  0.29  0.31
  2  0.10  0.12
  3  0.12  0.13
  4  0.11  0.14

4   1  0.11  0.14
  2  0.07  0.10
  3  0.12  0.20
  4  0.09  0.09

Table 8: Comparisons of Differences between Means and Variances Using Paired t-Test and F-test, p-Value with 95% Confidence 
Level at Different Sites for Trucks (C3) and Long Trucks and Buses (C4).

Site   Differences in means for paired t-test 
within 95% confidence interval

  Ratio of variances for F-test 
within 95% confidence interval

  p-Value for paired 
t-test and F-test

1   0.64, [0.25, 1.03]  1.03, [1, 1.07]  <0.01, 0.05
2   −1.80, [ −2.06, −1.54]  0.91, [0.86, 0.97]  <0.01, <0.01
3   −2.54, [ −3.13, −1.95]  0.92, [0.86, 0.99]  <0.01, 0.03
4   −2.99, [ −3.50, −2.48]  1.50, [1.41, 1.59]  <0.01, <0.01

Table 7: Comparisons of Differences between Means and Variances Using Paired t-Test and F-test, p-Value with 95% Confidence 
Level at Different Sites for Cars (C2) and Long Trucks and Buses (C4).

Site   Differences in means for paired t-test 
within 95% confidence interval

  Ratio of variances for F-test 
within 95% confidence interval

  p-Value for paired 
t-test and F-test

1   0.18, [ −0.12, 0.47]  0.91, [0.88, 0.93]  0.43, <0.01
2   −18.60, [ −18.85, −18.35]  2.09, [1.99, 2.2]  <0.01, <0.01
3   −3.17, [ −3.68, −3.68]  0.92, [0.86, 0.98]  <0.01, 0.01
4   −4.61, [ −5.03, −4.19]  1.22, [1.16, 1.28]  <0.01, <0.01
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6  �Conclusion and Future Work
This study has investigated a data-driven model to predict the appropriate speed of VAS. The achieved results 
confirmed the hypotheses that the type of vehicle and the time of the day have an effect on driver mean speed 
and standard deviation. SOMs were employed to explore the data and partition the input space into four 
clusters. An automatic trigger speed model based on historical traffic speed data was investigated to predict 
the trigger speed of VAS. Finally, a comparative study between RF and ANFIS was conducted to predict an 
appropriate speed for each cluster obtained by SOM.

From the hypotheses under test, the results suggest that the trigger speed of VAS cannot be static and 
that the trigger speed must be altered depending on the type of vehicle and its location, i.e. site. A differential 
trigger speed of VAS should be considered when there is a difference in mean speed and standard deviation 
between the types of vehicle. It is clear that a safe trigger speed for trucks and heavy trucks are not thoroughly 
considered in practice, particularly when the trigger speed is based on the 85th percentile. The mean speed of 
heavy trucks is often lower than the mean speed of cars, which is usually the major class (in terms of traffic 
volume) in the traffic stream. Ignoring this particular issue might mean a failure to give the right warning in 
the right time to the right type of vehicle. The RF model was found to be an appropriate model to predict the 

Table 10: Performance Respective to the Processing Time (s) for the Two Models RF and ANFIS within the Four Clusters.

Site   Clusters  RF  ANFIS

1   1  0.34  0.40
  2  0.40  0.55
  3  0.26  0.45
  4  0.34  0.40

2   1  0.24  0.30
  2  0.78  0.90
  3  0.67  0.87
  4  0.57  0.58

3   1  0.16  0.23
  2  0.49  0.55
  3  0.48  0.52
  4  0.25  0.41

4   1  0.24  0.32
  2  0.30  0.45
  3  0.13  0.34
  4  0.34  0.40
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Figure 4: (A) Speed Prediction for the Next Hour using ANFIS. (B) RF at Site-4.
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85th percentile speed to be able to report its usage as the trigger speed of VAS. The model was trained on data 
collected at four different sites in Sweden to be able to verify and validate whether data-driven models based 
on real data can be used to predict trigger speeds or not. Further testing is therefore required and suggested 
before claiming applicability in real time. The fact that the investigation does not reflect safe driving habits or 
unanticipated and unusual road/traffic conditions further limits its applicability.

At this stage, it is worth mentioning that local traffic regulations on road segments, sign installation, and 
safety requirements, and so on, have not made it feasible to test the model in reality. One recommendation 
for the future is to carry out a before-and-after (sign installation) effect analysis to be able to gain insight into 
the safety effects of mean speeds of different vehicle classes. In this context, the results could be validated by 
triggering the sign with the 85th percentile of cars, trucks, and heavy trucks, and study the effectiveness of 
these various trigger speeds in mean speed and standard deviation of the speed. Another interesting idea is 
to embed the sign with two radars and a data logger such that the first radar can determine the appropriate 
trigger speed by collecting the traffic data at a certain distance, at least 100 m before the sign. The other radar 
can detect the speed of vehicle at a shorter distance and compare to the appropriate trigger speed. When 
activating the sign for a particular class of vehicle, it should be a clear message to the driver about the recom-
mended safe speed and to which type of vehicle the recommended speed is targeted.
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