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Abstract: With the extensive application of spatial databases to various fields ranging from remote sensing to
geographical information systems, computer cartography, environmental assessment, and planning, discov-
ery of interesting and hidden knowledge in the spatial databases is a considerable chore for classifying and
using the spatial data and knowledge bases. The literature presents different spatial data mining methods
to mine knowledge from spatial databases. In this paper, spatial association rules are mined to automatic
grouping of spatial data objects using a candidate generation process with three constraint measures, such
as support, confidence, and lift. Then, the proposed multiple kernel-based probabilistic clustering is applied
to the associate vector to further group the spatial data objects. Here, membership probability based on
probabilistic distance is used with multiple kernels, where exponential and tangential kernel functions are
utilized. The performance of the proposed method is analyzed with three data sets of three different geometry
types using the number of rules and clustering accuracy. From the experimentation, the results proved that
the proposed multi-kernel probabilistic clustering algorithm achieved better accuracy as compared with the
existing probabilistic clustering.
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1 Introduction

It is critical to develop tools for the discovery of interesting knowledge from large spatial databases because
huge amounts of spatial data are gathered by remote sensing, e-commerce, and other data collection tools.
So, it is necessary to develop an automated knowledge discovery scheme, leading to a hopeful field called
data mining or knowledge discovery in databases (KDD) [10, 15, 20]. KDD is defined as the significant retrieval
of hidden, uncertain, and possibly useful information from data [3, 7]. Spatial data mining [4, 5, 8, 12, 18] is
classified depending on the types of rules to be discovered in spatial databases. A spatial association rule will
be of the form X — Y, where X and Y indicate the predicate sets and a few of them are spatial. Several associa-
tion relationships may present in a large database, but some will occur infrequently. The idea of minimum
support and minimum confidence are presented to concentrate on the frequently occurring patterns. The
support of pattern A in a set of spatial objects S is the probability that a member of S satisfies pattern A and
the confidence of A — B is the probability that pattern B occurs if pattern A occurs. The user can denote the
thresholds to enclose the strong rules to be discovered [11].
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Rules mined from the spatial database can then be used for a large number of applications such as clus-
tering, classification, feature weighting, and indexing for retrieval improvement. Spatial clustering [9, 17] is
a subset of clustering [21]. Tobler [19] stated the first law of geography: “Everything is related to everything
else, but near things are more related than distant things.” Spatial clustering is a key technique for spatial
data mining and spatial data analysis. The goal of spatial clustering is to partition spatial data into a series
of meaningful subclasses, called spatial clusters. The spatial objects in the same cluster are related to each
other, and in different clusters, the spatial objects are dissimilar. Existing spatial clustering techniques can
be classified into two categories. One category is obtained from the spatial point pattern statistical analysis
field, such as spatial autocorrelation analysis and spatial scan techniques. The second category is developed
in spatial data mining field using partitioning algorithms and hierarchical algorithms [13].

When the algorithms are applied in geospatial data, two aspects are usually considered. One is the effi-
ciency because the geospatial data are usually large. The other one is the adjustment on the algorithm to
adapt in real applications [6, 16, 22], such as geographical information systems (GISs) and so on. GISs support
a broad range of spatial queries that are used to support location-based studies. Such systems are intended
to store, retrieve, control, analyze, and map geographical data [6]. In this paper, spatial association rules are
mined to automatic grouping of spatial data objects using multiple kernel-based probabilistic clustering (PC).
The input of the proposed system is a spatial database, which is in the vector format (shape file), that contains
the geometric location with related attribute information. The spatial database is read out and passed through
a spatial association rule mining algorithm, which can mine the important spatial association rules using
support and confidence measures. The mined spatial association rules are then processed to form an associate
vector to further group the spatial data objects. Grouping of spatial data objects is done using the proposed
multiple kernel-based PC algorithm (MKPCA), which is the hybridization of multiple kernels with PC.

The organization of the paper is as follows. The problem definition and contributions of the paper is
presented in Section 2. The proposed method of mining of spatial association rules to automatic grouping of
spatial data objects using multiple kernel-based PC is presented in Section 3. In Section 4, the experimental
results and the comparative analysis with the existing methods are presented. Finally, the conclusion is pre-
sented in Section 5.

2 Literature Review and Problem Statement

The literature presents various techniques for spatial association rules mining and clustering. Here, we
present a review of different works. Koperski and Han [11] have proposed an efficient method for mining
strong spatial association rules in geographic information databases. A spatial association rule is a rule indi-
cating certain association relationships among a set of spatial and possibly some non-spatial predicates.
A strong rule indicates that the patterns in the rule have relatively frequent occurrences in the database
and strong implication relationships. Several optimization techniques were explored, including a two-step
spatial computation technique (approximate computation on large sets and refined computations on small
promising patterns), shared processing in the derivation of large predicates at multiple concept levels, etc.
This work suffered with incorporating multiple concepts into the mining algorithm without much compu-
tational overhead. Clementini et al. [3] have used objects with broad boundaries, the concept that absorbs
all the uncertainty by which spatial data were commonly affected and allow computations in the presence
of uncertainty without rough simplifications of the reality. The topological relations between objects with a
broad boundary can be organized into a three-level concept hierarchy. The progressive refinement approach
was used for the optimization of the mining process. Even though the rule mining process utilizes the optimi-
zation algorithm, the mining for accurate spatial rules is completely missed due to the random initialization.

Shyu et al. [18] have customized the data mining algorithms using visual content and potential objects
extracted from geospatial image databases with other relevant information, such as text-based annotations.
Queries utilizing the mining results were also discussed in this paper. These mining and query processing algo-
rithms play an important role in GeoIRIS (Geospatial Information Retrieval and Indexing System). The query
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processing for the multiple concept and topological relations pose manual preparation for the rule mining
processes. Laube et al. [12] have investigated the support and confidence measures for spatial and spatio-tem-
poral data mining. Using fixed thresholds to determine how many times a rule that uses proximity is satisfied
seems too limited. It allowed the traditional definitions of support and confidence but does not allow making
the support stronger if the situation is “really close,” as compared to “fairly close.” The traditional measure of
support and confidence are not suitable to mine the spatial rules if they considered the topological relations.

Ding et al. [5] have proposed an efficient approach to derive association rules from spatial data using
a Peano count tree (P-tree) structure. The P-tree structure provided a lossless and compressed representa-
tion of spatial data. Based on P-trees, an efficient association rule mining algorithm PARM with fast support
calculation and significant pruning techniques was introduced to improve the efficiency of the rule mining
process. The P-tree-based association rule mining (PARM) algorithm was implemented and compared with
the FP-growth and Apriori algorithms. Even though the tree-based mining algorithm is more effective than
Apriori, the memory requirement to store the tree structure is high as compared with the candidate-based
methods. Dao and Thill [4] have proposed a comprehensive framework and library of algorithms of spatial
analysis and visual analytics to resolve this fundamental challenge. The framework was the first attempt
in delivering a complete geospatial knowledge discovery framework using spatial association rule mining.
The spatial analytics do not consider the diversity constraints and automatic thresholding to group the data
objects. However, the requirements of significant rules and distance function are missing in this paper.

Zalik and Zalik [21] have presented an agglomerative hierarchical clustering algorithm for spatial data. It
discovered clusters of arbitrary shapes that may be nested. The algorithm uses a sweeping approach consist-
ing of three phases: sorting is done during the preprocessing phase, determination of clusters is performed
during the sweeping phase, and clusters are adjusted during the postprocessing phase. The properties of the
algorithm were demonstrated by examples. The algorithm was also adapted to the streaming algorithm for
clustering large spatial data sets. It proved poor in offering high-quality clustering solutions, in capability of
discovering concave/deeper and convex/higher regions, and in robustness to outliers and noise. Pilevar and
Sukumar [17] have proposed a clustering method, GCHL (a Grid-Clustering algorithm for High-dimensional
very Large spatial databases), by combining density-grid-based clustering with an axis-parallel partitioning
strategy to identify areas of high density in the input data space. The algorithm worked well in the feature
space of any data set. The method operated on a limited memory buffer and required at most a single scan
through the data. However, this algorithm did not consider the kernel space for clustering the data objects,
and it also utilized the traditional distance measurement for clustering.

Problem Definition:

- Let a spatial database, SDB, S; 0 <i<n, including “n” spatial objects with different attribute values.
The first challenge of finding useful information is formulated as a searching problem that two series of
thresholds should filter out the most useful information that can be discovered from the spatial database.

— The second challenge is to apply the association rules to perform spatial clustering in SDB, consisting
of n spatial data points located in p-dimensional real space of S,e R”. The challenge here is to find the k
cluster centers from n spatial data points to divide those points into k clusters.

— The third challenge taken here is to find the distance values among data points and cluster centers. In
PC, Euclidean distance is used to find the distance matrix to compute the probability of data assignment.
However, further improvement is possible when the clustering algorithm is considered kernel space
to find the probability assignment. So, redefining of distance measure is indispensable to perform the
improved spatial clustering.

Contributions of the paper: The above challenges are dealt with the following contributions made in the

research:

—  We have developed a spatial association rule mining method that is suitable for three different types of
geometries, such as point, line, and polygon, through a candidate generation process with three different
constraint measures.
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— Spatial association rules are combined with spatial attributes to perform the clustering process where
the multiple kernels are utilized to find the distance measurement among the cluster centers and data
space. Here, multiple kernel space is computed for finding the distance matrix to obtain the probability
of belonging to spatial objects through cluster centers. Through this, we developed a new clustering
algorithm called MKPCA.

3 Proposed Method of Mining of Spatial Association Rules to
Automatic Grouping of Spatial Data Objects Using Multiple
Kernel-Based PC

This paper presents a methodology for spatial association rule mining and the subsequent process of spatial
data clustering. The input of the proposed system is the spatial database that is in the vector format. The
spatial database is read out and passed through the spatial association rule mining algorithm, which can
mine the important spatial association rules using support and confidence measures. The mined spatial
association rules are then processed to form an associate vector to further group the spatial data objects.
Grouping of spatial data objects is done using the proposed MKPCA, which is the hybridization of multiple
kernels with PC. The block diagram of the proposed methodology is shown in Figure 1.

3.1 Data Preprocessing

The spatial data taken as input for the system, SDB, S; 0 <i < n, is stored in shapefile format, which is the
digital vector format to store the geometric location with related attribute information. The geometry can be
a point, line, or polygon, usually. Every spatial data object, S, = {LX, Ly, A,ALA, .. Am}, is in the form of these
geometries and its associated coordinate information, which is in the form of X and Y coordinates. Every
spatial data object will have attribute information based on the characteristic of the data. After reading the
shapefile, this information is directly converted to a transaction form that is easily minable through the rule
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Figure 1: Block Diagram.
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mining algorithm. The transaction database contains a set of features that are obtained through the unique
attribute value from every attribute. Every unique attribute value is considered as feature value, which is the
column value of the transaction database. Every row is a spatial data object and the values in the transaction
data represent the presence of feature values in the corresponding spatial data objects.

3.2 Mining of Spatial Association Rules

The transaction form of database is given as input to the association rule mining algorithm, called the Apriori
algorithm [1]. The two important phases of association rule mining are frequent itemset generation and asso-
ciation rule generation. At first, every feature value that has higher frequency among spatial data objects
is considered a frequent itemset. Here, the constraint measure, called support, is utilized to filer out the
frequent combination of feature values. In the second step, association rules are generated from the frequent
itemset based on the constraint measure, called confidence.

The standard spatial association rule has the form AR=a Na,Na, = b ,Nb,Nb,, where a, a,, a, (ante-
cedent) and b, b,, b, (consequent) are subsets of feature values in spatial database. The rule AR is given as
“ifa, a, a, exist, thenitis likely that b, b,, b_also co-exist in most of the spatial data objects.” The rule AR
maintains in the spatial database SDB with support S and confidence C, if S% of spatial data objects in SDB
contains the attribute value a, a,, a, and b, b,, b_, and C% of the spatial data objects that contain a,, a,, a,
also contain b, b,, b, .

Numberspatial objectssatisfy a,(a,Na,,

Supp(a, Na,Na )= ,
pp(a,Ma,Na,) Total number of spatial objectsin SDB

sup(a,Na,Na, Nb,Nb,Nb,)
sup(a,Na,Na,)

conf(a,Na,Na,=b Nb,Nb, )= @

In addition to support and confidence, other measures like lift are also utilized to find the importance level of
association rules. This measure is given as follows:

sup(a, Na,Na_ Nb Nb,Nb,)
sup(a,Na,Na,)xsup(b,\b,N b )

lift(a, Na, Na, =b,Nb,Nb, )= €)

3.3 Construction of Spatial Feature Matrix

A spatial feature matrix, SF, is an intermediate data space generated for clustering algorithm with the loca-
tion information and the associate vector generated from the association rules. The total attributes to be
presented in the spatial feature matrix are location information (X and Y coordinates) and associate vector,
AV. The associate vector is generated by finding the attribute value of spatial data objects presented in the
association rules. A spatial data object, S, can obtain the value in the associate vector field only if mined
association rules contain the corresponding attribute feature value. For example, the attribute value of a
spatial data object is filled with association rules and the value in the associate vector is filled out. The final
spatial feature matrix has n+1attributes like SF={A,A,, A, ... A , AV}.

1lif AR€S,

0if AReS, “)

AV(S)= {
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3.4 Proposed MKPCA for Spatial Data Clustering

This step reads out the spatial feature matrix as input, and the clustering is carried out using the three-dimen-
sional variable that contains x, y and the associate vector value. The clustering is done using the proposed
MKPCA method that is newly devised in this work. The most conventional method for clustering is k-means
clustering [14], which partitions data space into k partitions based on the iterative procedure. The problem of
finding the distance and specifying the group information by k-means algorithm provides a chance of devel-
oping a PC algorithm. PC [2] is about finding the membership probability based on the probabilistic distance.
Here, the probabilistic distance is further modified with multiple kernels, where exponential and tangential
kernel functions are utilized.

Assume that SF is the spatial feature matrix to be given as input for the proposed MKPCA. At first, initial
centroids, C= {cl, Cp Cyenn ck}, are randomly generated based on the given user input about the number of
cluster required (k). Once the centroids are randomly generated, the membership probability, P],(y), is com-
puted for every spatial data object with the centroids using the following mathematical formulae:

P,.(y)=%, j=12, ..n, )
%di(y’ c)
D(Y)zkl_li, ©6)
-]:Tlﬂ-di(y’ Ci)
d(y,c)= exp[_ED(Z’ZCf)A] +tanh(ED(y, c), @

where y indicates the spatial data objects, D(y) indicates the distance matrix of the input spatial data, and
d, is distance between spatial data objects with cluster centroids. In the above formulae, exponential and
tangential functions are utilized to convert data space into kernel space after finding the Euclidean distance
between spatial data objects and centroids.

Then, new centroids, C,, are again generated based on the following formulae:

m(y,)
C = kil ,
¢ % 3 m ) Yi ®)
_ )
mk(yi)_dk(yi, Ck)’ ©)

where m,(y) is the membership degree of the data point y, and P,(y,) is the membership probability. Based on
the new centroids, the membership probability is computed and this procedure is repeated until the current
and old centroids are the same. Figure 2 shows the pseudo-code of MKPCA. From the figure, we understand
that the cluster centroids are initialized in the first iteration, and then membership probabilities are deter-
mined using the formulae given in Egs. (5), (6), and (7), where Eq. (7) is newly developed by combining the
exponential and tangential functions. Then, based on the minimum distance, the spatial data points are
grouped. This process is repeated again after computing new centroids based on the equation given in Eq. (8),
until there is no change in the cluster centroids.
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Algorithm: MKPCA algorithm
Input: SF — Spatial feature matrix
k— Number of cluster required
Output:
C— Clusters
Begin
Start
Initialize C = {c|,cy,c3....cp}
Compute distance among C and dj (y)
Find membership probabilities F(y)
Assign dj () to relevant cluster ¢ based on minimum value
Generate new centroid Cy,
Go to step 2 until the current and old centroids are same
End
Return C
End

Figure 2: Pseudo Code of MKPCA.

4

Results and Discussion

The experimental results of the proposed method are discussed in this section, and the performance of the
method in rule mining and clustering is also discussed in detail with two different metrics.

4.1 Experimental Setup

Platform: The proposed spatial data mining method is implemented using MATLAB 8.2.0.701 (R2013b)
with a system configuration of 2 GB RAM Intel processor and 32-bit operating system.

Data sets utilized: The data sets are taken from the MATLAB tool, and the descriptions of those data sets
are given in Table 1.

Tsunami: These data are from the Global Tsunami Database, which is collected by the U.S. National Geo-
spatial Data Center with the National Oceanic and Atmospheric Administration. These data contain the
following attributes: Year, Month, Day, Hour, Minute, Second, Val_Code, Validity, Cause_Code, Cause,
Eq_Mag, Country, Location, Max_Height, [ida_Mag, Intensity, Num_Deaths, and Desc_Deaths, with the
spatial attributes like geometry, X, Y.

Concord: These data are distributed by the Massachusetts Office of Geographic and Environmental
Information to the NAD83 data. This data set was constructed by concatenating Massachusetts Highway
Department road shapefiles for the Maynard and Concord US Geological Survey quadrangles. Attributes
such as Streetname, RT_number, Class, Admin_type, and length are retained with spatial attributes like
geometry, bounding box, X, Y.

Landareas: These data are collected from the world map region. This world map (region) sets up empty
map axes with projection and limits suitable to the part of the world specified in region. The region can
be a name of continents, countries, and islands, as well as “World,” “North Pole,” “South Pole,” and
“Pacific.” The spatial attributes are geometry, bounding box, X, Y, and country name.

Table 1: Description of Data Sets.

Tsunami Concord Landareas
Number of spatial data objects 162 609 537
Geometry type Point Line Polygon

Number of attributes 21 9 5
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—  Evaluation metrics: To analyze the performance of the spatial rule mining algorithm, the number of rules
mined is utilized. To analyze the performance of spatial data clustering, the clustering accuracy, which
refers to the degree of closeness of measurement of a quantity to its actual value, is utilized. Clustering
accuracy is the measure of closeness of the cluster formed by the proposed algorithm to the required
value, which means how accurate the members of a cluster are. The clustering accuracy is computed by
using the formula below:

g

ca="3's, (10)
i1

where n is the number of spatial data points, g is the number of classes (ground truths), and S, is number
of spatial data points occurring in both cluster i and its corresponding class.

4.2 Experimental Results

This section presents the experimental results of the proposed spatial data mining method. Table 2 shows
the sample data objects of the Tsunami data. Here, spatial objects are stored as point data. Every point is
represented as x and y coordinates, which are the location of the data object. Then, the attributes belonging
to the Tsunami data of the corresponding object are explained with different attributes like year, month, and
validity. Validity is an attribute that gives information about whether the tsunami is questionable or definite.
The first object indicates that the tsunami occurred in the location of (128.3, —3.8) and the year of occurrence,
month of occurrence, validity are 1950, October, and “questionable tsunami,” respectively.

Table 3 shows the sample spatial rules mined from the Tsunami data. From the table, the rules state that
most of the spatial data objects are affected by the tsunami due to an earthquake. Also, if the spatial data
objects are closely affected by the earthquake and tsunami, then the cause code and the validity code are 1
and 4, respectively. If spatial data objects are nearer to cause code 1, then most of the spatial data objects face
an earthquake and tsunami.

Figure 3 represents the visualization of input data and the clustering results. Figure 3A shows the visuali-
zation of Tsunami data, and the clustered results are shown in Figure 3B. Here, two clusters are indicated with
diamond and circle symbols. Figure 3C gives the visualization of the Concord data and in Figure 3D, the clus-
tered results of Concord data are shown. Here, two cluster outputs are shown using turquoise and red colors.

Table 2: Sample Data Set (Tsunami).

Geometry X Y Year Month Validity

Point 128.300000000000 -3.80000000000000 1950 10 “Questionable tsunami”
Point -156 19.5000000000000 1951 8 “Definite tsunami”
Point 157.950000000000 -9.02000000000000 1951 12 “Questionable tsunami”
Point 143.850000000000 42.1500000000000 1952 3 “Definite tsunami”
Point -155 19.1000000000000 1952 3 “Definite tsunami”

Table 3: Sample Rule Mined from the Tsunami Data.

{Validity|definite tsunami} = > {Cause|Earthquake}{Val_Code|4}
{Cause|Earthquake} — {Validity|definite tsunami}
{Cause|Earthquake}{Validity|definite tsunami} — {Cause_Code|1}{Val_Code|4}
{Val_Code|4}{Validity|definite tsunami} — {Cause_Code|1}{Num_Deaths|0}
{Cause_Code|1}Val_Code|4} —{Desc_Deaths|0}{Validity|definite tsunami}
{Val_Code|4}{Validity|definite tsunami} — {Cause_Code|1}{Cause|Earthquake}
{Cause_Code|1}Val_Code|4} — {Cause|Earthquake}{Validity|definite tsunami}
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Figure 3: Visualization of Input Data and the Clustering Results.
(A) Visualization of Tsunami data. (B) Clustering results of Tsunami data. (C) Visualization of Concord data. (D) Clustering results
of Concord data. (E) Visualization of Landareas data. (F) Clustering results of Landareas data.

Figure 3E shows the visualization of the Landareas data, and in Figure 3F the clustered results of Landareas
data are shown. Here, two cluster outputs are shown using turquoise and red colors.

4.3 Performance Analysis of Spatial Rule Mining

The performance analysis of the proposed spatial rule mining method is discussed in this section. Here, two
input data, such as Tsunami and Concord, are given as input to the proposed method. The results are obtained
for various values of the support threshold. Figure 4A shows the rules mined for Tsunami data. Here, thresh-
olds are varied from 0.2 to 0.5, and the results are analyzed with two different confidence thresholds. For the
confidence of 0.2, the proposed method obtained 656 rules while the 580 rules are obtained for the confidence
of 0.4 in Tsunami data. When we increase the support threshold, more important rules are obtained by the
proposed method. Figure 4B shows the rules mined for Concord data. Similarly, for Concord data, we obtained
only four concise rules for all the thresholds, which we took for performance comparison. This shows that the
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Figure 4: Spatial Rules Mined from Input Data.
(A) Rules mined for Tsunami data. (B) Rules mined for Concord data.

frequent occurrence of spatial data objects for different features level is very low. Also, the co-occurrence of
patterns for Landareas is very small, so the rules are not obtainable even for the smaller thresholds.

4.4 Performance Analysis of Spatial Clustering

The performance analysis of the proposed MKPC spatial data clustering method is discussed here. The perfor-
mance of the proposed MKPC is compared with that of PC [2], sweep-line clustering [21], and grid clustering
[17]. Here, three input data, such as Tsunami, Landareas, and Concord, are given as inputs to the proposed
method, and the results obtained are plotted in Figure 5A, B, and C, respectively. From Figure 5A, the pro-
posed MKPC method obtained 66.6%, while the 41.9% is obtained by the PC method when the number of
clusters is three. For the same input number of clusters, the sweep-line and grid clustering methods obtained
an accuracy of 56.7%. When we increased the number of clusters, the proposed method showed the same
accuracy value. From Figure 5B, for Concord data, we obtained accuracies of 63.7% and 47.2% for the pro-
posed and existing methods when we fixed the number of clusters to three. Here, the existing sweep-line and
grid clustering obtained an accuracy of 52.7% and 31.5%, respectively. From Figure 5C, for Landareas data,
we obtained an accuracy of 100% for both the proposed and existing methods when we fixed the number
of clusters to two. For the same number of clusters, the sweep-line and grid clustering methods obtained an
accuracy of 84.9% and 82.9%, respectively. From Figure 5, we prove that the proposed MKPC algorithm pro-
vided better accuracy as compared with PC.

5 Conclusion

This paper presented a spatial data mining method for spatial association rule mining and further carried out
spatial clustering. Initially, a spatial database that is in the format of a shape file is taken for spatial association
rule mining algorithm, where support, confidence, and lift measures are applied to constrain the rules genera-
tion process. Once the spatial rules are generated, an associate vector is formed to further group the spatial
data objects. Here, the MKPCA algorithm is newly developed by extending the PC with the help of a multiple
kernel-based distance measure. The finding of the membership probability was further modified with multiple
kernels, where exponential and tangential kernel functions are utilized. For the experimentation, three data
sets from three geometry types, such as point, line, and polygon, are taken from the MATLAB tool, and the
performance of the proposed method is analyzed according to the number of rules and the clustering accuracy.
The experimental outcome proved that the proposed MKPCA achieved better accuracy as compared with the
existing method. In the future, an optimization algorithm can be integrated with the proposed algorithm for
rapid estimation of cluster centroids for improving the performance of the clustering process.
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Figure 5: Clustering Accuracy of Three Input Data Sets.
(A) Accuracy for Tsunami data. (B) Accuracy for Concord data. (C) Accuracy for Landareas data.
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