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Abstract: Among the data clustering algorithms, the k-means (KM) algorithm is one of the most popular clus-
tering techniques because of its simplicity and efficiency. However, KM is sensitive to initial centers and it has 
a local optima problem. The k-harmonic means (KHM) clustering algorithm solves the initialization problem 
of the KM algorithm, but it also has a local optima problem. In this paper, we develop a new algorithm for 
solving this problem based on a modified version of particle swarm optimization (MPSO) algorithm and KHM 
clustering. In the proposed algorithm, MPSO is equipped with the cuckoo search algorithm and two new 
concepts used in PSO in order to improve the efficiency, fast convergence, and escape from local optima. 
MPSO updates the positions of particles based on a combination of global worst, global best with personal 
worst, and personal best to dynamically be used in each iteration of the MPSO. The experimental result on 
eight real-world data sets and two artificial data sets confirms that this modified version is superior to KHM 
and the regular PSO algorithm. The results of the simulation show that the new algorithm is able to create 
promising solutions with fast convergence, high accuracy, and correctness while markedly improving the 
processing time.
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1  Introduction
Data clustering is a popular data mining technique that is applied for extracting the reasonable organization 
of objects in a given data set. This technique classifies similar objects into different groups, or more precisely, 
the partitioning of a data set into subsets, so that each part (subset) has some similarities and common 
characters. In fact, a set of patterns are gathered into clusters based on the similarity among each cluster. 
Clustering is an important technique applied in many application domains, including document clustering 
[18], fraud detection [17], flow shop scheduling [29], machine learning [3], wireless mobile sensor networks 
[31], biomedical data [12], image processing [49], demand forecast [26], and financial classifications [34]. 
Many data clustering algorithms have been presented in the previous literatures with different approaches.

Clustering algorithms can be generally divided into two groups: hierarchical algorithms and partitional 
algorithms. Hierarchical algorithm finds nested clusters either in agglomerative or in divisive [19], and par-
titional algorithm divides the data sets into some clusters whose members have nothing in common with 
each other [16, 24, 43]. The most popular and extensively used algorithm among partitioning algorithms is 
the k-means (KM) algorithm. It easily clusters a large data set with the best runtime. However, the results 
of the KM algorithm are very sensitive to positions of the initial cluster centers in the problem space [50]. It 
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also has a local optimum problem [20] and does not have any criterion for computing the number of clus-
ters. K-harmonic means (KHM) is an alternative algorithm to solve the sensitivity to initialization problem 
of KM methods [51]. This algorithm minimizes the harmonic average from all points in N to all centers in K. 
This approach proposes more robust results than KM with different initial configurations. KHM solves the 
problem of initialization using a built-in boosting function [48]. However, it easily runs into local optima like 
the KM algorithm. To overcome the shortcomings of the KM and KHM algorithms, some heuristic algorithms 
have been combined with these methods. Recently, evolutionary and meta-heuristics like genetic algorithm 
(GA) [13], ant colony optimization (ACO) [39, 40], artificial bee colony [23, 46], particle swarm optimization 
(PSO) [7], bacterial foraging optimization [37], cuckoo search (CS) optimization [45], and other optimization 
algorithms have been hybridized with standard and basic clustering algorithms, including KM, fuzzy KM, 
and KHM to reach the required quality and performance in clustering processes. These algorithms try to solve 
the weaknesses of the KM and KHM algorithms. However, they also have several limitations. For example, 
Tabu search and simulated annealing algorithms suffer from low-quality results and low convergence speed 
problems [14].

Xin-She and Deb proposed the CS algorithm via Levy flight in 2009 [45]. CS via Levy flights is based on the 
interesting breeding behavior such as brood parasitism of certain species of cuckoos. The basic ideas applied 
are the aggressive reproduction strategy of cuckoo and usage of Levy flights. The CS algorithm is being widely 
used in engineering optimization problems [17] with exceptionally good results. In addition, PSO and ACO 
have convergence problems. PSO is a versatile population-based stochastic optimization technique. The algo-
rithm maintains a population of particles where each particle represents a potential solution to an optimiza-
tion problem. In the regular PSO [25], the diversity loss is mainly due to the strong desirability of the global 
best particle, which results in that all the particles quickly converge on a local or global optimum where the 
global best particle locates [42].

To solve PSO weaknesses, we propose a modified version of PSO with better convergence that is combined 
with KHM, called KHM–MPSO, to meet the common factors. Generally, in most clustering algorithms, the 
main goals are to meet the required quality in clusters, such as processing time, stdev parameters, F-measure, 
and hError and kError [28]. In this paper, the following performance metrics are used in the comparative 
analysis: (i) the accuracy of final clustering results and (ii) the speed of convergence. The test suit chosen 
for this paper consists of eight real data sets and two artificial data sets (see Table 1). On the basis of the 
experimental results, it is found that the proposed KHM–MPSO performs cluster analysis with better quality 
and performance in comparison to PSO, KHM, and PSOKHM algorithms.

The rest of this paper is organized as follows. Section 2 briefly presents the current related works in clus-
tering analysis and PSO. The CS via Levy flight, regular PSO, and KHM algorithm is presented in Section 3. In 
Section 4, the proposed KHM–MPSO clustering algorithm is explained. Section 5 shows the described experi-
ment setting and results. Finally, the conclusion is presented in Section 6.

2  Related Works
The PSO has been used for clustering in many studies. An efficient hybrid clustering based on fuzzy PSO, 
ACO, and KM algorithms, called FAPSO–ACO–K, is presented in Ref. [36]. The results obtained from this tech-
nique are very notable in performance improvement of information clustering. The PSOKHM data clustering 
algorithm proposed a hybrid algorithm based on KHM and PSO [48]. This algorithm solves the KHM’s local 
optima problem and PSO’s slow convergence speed. The MOIMPSO clustering algorithm is a hybrid of mul-
tiobjective clustering algorithm and PSO that was presented to obtain a single best solution from the Pareto 
optimal archive [35]. By combining two genetic and PSO algorithms, Kao and Zahara invented a new method 
in which it has benefitted from jump and junction operator for genetic [21]. This approach could solve dif-
ferent problems of continual functions. In addition, significant changes have been obtained in finding the 
response to general optimization and convergence ratio. They also combined the KM algorithm, Nelder–Mead 
simplex search, and PSO, called K–NM–PSO [22]. The K–NM–PSO searches for cluster centers of an arbitrary 
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data set as does the KM algorithm, but it can effectively find the global optima. They used the KM algorithm 
alone to generate one particle in the initial population. It implemented a Nelder–Mead search only on the 
best m + 1 particles in each iteration, where m is the number of attributes, and then the rest of the population 
is moved toward the best particle of the whole population and toward the best neighbor. Van Der Merwe and 
Engelbrecht used PSO algorithm to solve the KM clustering problem. The algorithm is extended to use KM 
clustering to seed the initial swarm [44].

FC–MOPSO is another research that combined the multiobjective particle swarm (MOPSO) approach 
with the fuzzy clustering (FC) technique [4]. In FC–MOPSO, the migration concept is used to exchange 
information between different subswarms and to ensure their diversity. A new approach based on PSO and 
radial basis function neural networks, PSO–OSD, has been developed in Ref. [11]. PSO–OSD used the PSO 
algorithm, which is not sensitive to the initial values of the cluster centers. Chuang et al. combined chaotic 
map PSO (CPSO) with an accelerated convergence rate strategy, and introduced this accelerated CPSO 
(ACPSO) in their research [8]. ACPSO searches through arbitrary data sets for appropriate cluster centers. 
Yang et al. introduced a hybrid method (called PSOKHM) based on combining PSO and KHM to enhance the 
global search ability of their algorithm [48]. PSOKHM repeats KHM four times in each generation for which 
it employs eight generations to improve particles within the population. Furthermore, the PSO algorithm 
repeats eight times in each generation. A new approach for clustering based on a particle swarm optimizer 
for dynamic optimization problems, CPSO, is presented in Ref. [6]. CPSO employs a hierarchical clustering 
method to track multiple peaks based on a nearest neighbor search strategy. Kiranyaz et al. proposed a PSO 
algorithm and fractional global best formation technique for multidimensional search in dynamic environ-
ment [27]. The GAI–PSO method is the combination of PSO, GA, and KM algorithm to find global optimum 
and fast convergence [1]. The GAI–PSO algorithm searches the solution space to find the optimal initial 
cluster centroids for the next phase. The next phase is a local refining stage utilizing the KM algorithm that 
can efficiently converge to the optimal solution. The GSOKHM algorithm is another method that has been 
presented to improve the efficiency of KHM using the PSO algorithm and GA [10]. Xin-She and Deb [45] has 
applied the CS algorithm for clustering. They have evaluated CS with GA and PSO using standard bench-
mark functions. In their study, the CS algorithm is used with Levy flight and is found to be performing better 
compared to the other two methods. ICAKHM is a novel method on the basis of a hybrid KHM algorithm and 
a modified version of the imperialist competitive algorithm (ICA) [2]. This version of the ICA method uses 
the genetic operators of crossover and mutation to prevent the premature convergence, helping KHM to 
evade the local optima problem similar to many other evolutionary algorithms. The evaluation result of the 
ICAKHM method [33] reveals that its results are often suitable. However, this algorithm usually is unstable, 
and its result may or may not be improved. We have compared our proposed algorithm with the ICAKHM 
method in Section 5. In addition, Ref. [33] presents a survey of the relevant literature in this field.

3  The Regular Cuckoo, PSO, and KHM Clustering Algorithms
Data clustering is aimed at finding out a reasonable organization for the objects of a given data set by identi-
fying and quantifying similarities or dissimilarities among the objects [32]. In fact, clustering includes some 
qualities based on which a data set can be divided into parts (cluster) so that the components of each part 
have the most similarity with each other and the least similarity with members of the other parts. The goal of 
data clustering is to minimize the objective function, in this case a squared error function [41].

The cluster centers are represented by Eq. (2).
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where k  =  1, 2, …, K is the number of clusters, f(k) is the objective function, xi, i  =  1, 2, …, nk are the patterns 
in the kth cluster, and Ck is center of the kth cluster.

Before the explanation of our proposed hybrid method (KHM–MPSO) for clustering, Lévy flight, regular 
PSO, and KHM algorithms are briefly discussed for immediate reference.

3.1  CS via Lévy Flight

The CS algorithm is a novel meta-heuristic technique [45]. The algorithm mimics the breeding behavior of 
cuckoos (to lay their eggs in the nests of other birds). CS is based on three idealized rules: (i) each cuckoo lays 
a single egg into a randomly chosen host nest from among n nests; (ii) the nests with better-quality eggs will 
join the next generation; (iii) the number of available hosts’ nests is fixed, and the host bird discovers the egg 
laid with a probability pa ∈ [0,1].

On the basis of these three rules, the basic steps of CS can be summarized as the pseudo-code shown in 
Figure 1. When generating new solutions ( 1)t

ix
+  from the old one ( )( ),t

ix  Lévy flight is performed for a cuckoo 
ith with the parameter 1  <  λ  <  3 as follows:

	 ( 1) ( ) Lévy( ),t t
i ix x α λ+ = + ⊕ � (3)

	 Lévy ~   1 3,u t λ λ−= < < � (4)

where α  >  0 is the step size that should be related to the scales of the problem of interests. In most cases, we 
can use α  =  1. The product ⊕ means entry-wise multiplications. This entry-wise product is similar to those 
used in PSO, but here the random walk via Lévy flight is more efficient in exploring the search space as its 
step length is much longer in the long run. The Lévy flight essentially provides a random walk while the 
random step length is drawn from a Lévy distribution [Eq. (4)].

3.2  Particle Swarm Optimization

PSO was first introduced by Kennedy and Eberhart [25]. PSO incorporates the swarming behavior observed in 
flocks of birds, schools of fish, or swarms of bees, and even human social behavior. It is a population-based 

Cuckoo search algorithm 

Input: CN as stopping criterion 

Output: optimal fitness value 

1. Objective function f(x), T
dxxxx ),...,,( 21=  

Generate initial population of n host nests x i (i = 1, 2,..., n) 
(One of the host nests is produced by the KHM at the first time) 

2. Set cycle to 1 
3. Repeat  

a. Get a cuckoo randomly by Levy flights 
b. Randomly select a cuckoo by Levy flight using Eq.3 
c. Calculate its fitness value (Fc) by the objective function  
d. Randomly select a nest 
e. Calculate its fitness value (Fn) by the objective function 
f. If (Fc <Fn) then Replace the nest with the cuckoo 
g. A fraction pa of nest are replaced by new nests 
h. Calculate fitness and keep best nests 
i. Rank the solutions and find the current best 
j. Store the best nest as optimal fitness value 

4. Cycle=Cycle+1 
5. Until Cycle ≤CN 

Figure 1: Pseudo-code of Levy Flight Cuckoo Search Algorithm.
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optimization tool and can be implemented and applied easily to solve various optimization problems. In 
PSO, a swarm of particles “fly” through the search space. Each particle follows the previous best position 
found by its neighbor particles and the previous best position found by itself [33]. Particles move through 
an n-dimensional search space. Each particle i maintains a record of the position of its previous best perfor-
mance in a vector called pbest. The initial positions and velocities of the particles are chosen randomly. Each 
particle’s position is updated at each iteration step according to its own personal best position and the best 
solution of the swarm. When a particle takes the entire population as its topological neighbors, the best value 
is a global best and is called gbest. All particles can share information about the search space. Representing 
a possible solution to the optimization problem, each particle moves in the direction of its best solution and 
the global best position discovered by any particles in the swarm. The evolution of the swarm is governed by 
the following equation:

	 1 1 2 2( 1) ( ) ( ( ) ( )) ( ( ) ( )),i i i i iv t v t c rand pbest t x t c rand gbest t x tω+ ← + − + − � (5)

where xi (t) is the position of the ith particle at the t moment and vi (t) is the velocity of the ith particle at the t 
moment. The factor ω is the inertia weight that denotes a proportion of the previous velocity, pbest is the best 
position of the particle, and gbest is the global best position of the swarm that has been found by the whole 
population thus far. In addition, rand1 and rand2 are variables ranging in random values between 0 and 1. 
The constants c1 and c2 are positive constants that determine the impact of the personal best solution and the 
global best solution on the search process, respectively.

The new position of a particle is calculated using the following equation:

	 ( 1) ( 1) ( )).i i ix t v t x t+ ← + + � (6)

The updating of the particle position is performed with Eq. (6). Both Eqs. (5) and (6) are iterated until conver-
gence of the search process is reached. The PSO algorithm is very fast, simple, and easy to understand and 
implement. Nevertheless, it has some shortcomings. PSO gives good results and accuracy for single objective 
optimization; however, for a multiobjective problem, it is stuck in the local optima. Another PSO problem is 
its nature of a fast and premature convergence in mid-optimum points [38].

3.3  KHM algorithm

KHM is a center-based data algorithm that has been developed to solve the clustering problem [51]. This 
algorithm uses the harmonic average of distance from each data point to the cluster center instead of the 
minimum distance in the KM algorithm. The basic KHM algorithm is shown as follows:

X  =  (x1, …, xn): the data to be clustered.
C  =  (c1, …, ck): the set of cluster centers.
m(cj|xi): the membership function defining the proportion of data point that belongs to center cj.
�w(xi): the weight function defining how much influence data point xi has in recomputing the center 
parameters in the next iteration.

Steps:
1.	 Initialize the algorithm with guessed centers C, i.e. randomly choose the initial centers.
2.	 Calculate the objective function value according to the following equation:
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where p is an input parameter and typically p  ≥  2.
3.	 For each data point xi, compute its membership m(cj|xi) in each center cj according to Eq. (8):
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4.	 For each data point xi, compute its weight w(xi) according to Eq. (9):
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5.	 For each center cj, recompute its location from all data points xi according to their memberships and 
weights using Eq. (10):
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6.	 Repeat steps 2–5 with a predefined number of iterations or until KHM(X,C) does not change significantly.
7.	 Assign data point xi to cluster j with the biggest m(cj|xi).

The objective function of the KHM algorithm introduces the conditional probability of cluster center to data 
points and dynamic weights of data points at each iteration. Due to employing the membership function 
m(cj|xi), the KHM algorithm is particularly useful when the boundaries of clusters are not well separated and 
ambiguous. The KHM algorithm alleviates the weakness of the KM algorithm, which is sensitive to the initial 
values. However, KHM still converges to the local optimum.

4  The Proposed Clustering Algorithm
In this section, we describe an improved clustering algorithm based on a modified version of the PSO (MPSO) 
algorithm and KHM, called KHM–MPSO. We have combined KHM and MPSO to form a hybrid clustering algo-
rithm that maintains the qualities of MPSO and KHM and solves their convergence and sensitivity problems. 
The MPSO provides a partition of data points without any prior knowledge. Meanwhile, the KHM algorithm 
can obtain high-quality initializations from the MPSO, and provide better input to MPSO to accelerate its 
convergence.

In the MPSO algorithm, we use a one-dimensional array to encode cluster centers as particles. Every par-
ticle or candidate solution in the population consists of a one-dimensional array with length of d  ×  k cells to 
show all cluster centers. KHM–MPSO tries to find an optimal partition of k optimal number of compactness 
and well-separated clusters. The proposed algorithm is built based on two main steps where at each step, 
only one type of move is done by particles. The first step is to escape from local optimums and migrate away 
from unsuitable places in the search space. The second stage is to converge to the global optimum. These two 
steps are repeated alternately until the termination criteria are satisfied (e.g. maximum number of iteration 
achieved or no change occur in certain number of iterations). KHM–MPSO applies KHM to the particles in 
the swarm every 10 generations such that the fitness value of each particle is improved. In the proposed algo-
rithm, CS via Levy flight has been used, which is efficient to find new suitable neighbors and better solutions 
[47]. Sometimes, the best particle of PSO is selected by Levy flight CS instead of the PSO algorithm if the objec-
tive function of the generated PSO solution is weaker than that generated by the Levy flight Cuckoo solution. 
Besides, in comparison to basic or regular PSO, there are two new concepts in the modified version: (i) gworst: 
the worst point in the current population or “global worst” and (ii) pworst: the worst point in the memory 
of each particle or “personal worst.” The global worst is the fitness value of that candidate solution that has 
the worst value for objective function (maximum value in minimization problems). This value is found by all 
particles in the swarm. The second concept is the worst place that every particle of the population has seen 
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during their move. This concept has been used differently in our previous research work with different impact 
and objective functions [15]. In the MPSO, the positions of particles depend on their own current worst solu-
tion and their group’s previous worst. In our proposed algorithm, the gbest with gworst and pbest with pworst 
can dynamically be used instead of each other. For each particle, the worst fitness values, pworst, and for the 
whole swarm, gworst, are computed in each iteration. A particle is shown as Figure 2.

The best previous position of the particle in ith iteration is calculated as

,1 ,2 ,( ) [ , , , ]   is the number of solutions.t t t
i i i i mpworst t pworst pworst pworst m= …

In regular PSO, we had global best and personal best, which were the best values for objective function 
found by all particles in the swarm and the best values for objective function found by every particle thus 
far. At each iteration, after finding these specific positions, the particles move in the presence of two distinct 
steps. The logic of movements considered is first “escaping from bad points and areas” and then convergence 
to appropriate places. At the first step, which we call acceleration step, particles find the suitable area of 
search by moving away from unsuitable areas. In fact, this move causes particles to spread in the search 
space and search for good solutions in a wide area, and in case of entering local optima they can bypass it. 
At the next step, which we also call the convergence step, all particles try to move toward the global optimum 
based on their personal memory and best particle. The fitness function of the KHM–MPSO clustering is the 
objective function of the KHM algorithm. From the mathematical inference of PSO, a larger inertia weight 
performs more efficient global search and a smaller one means a more effective local search. Thus, Saatchi 
and Hung [40] used Eq. (11), which decreases inertia weight with increasing the number of iterations linearly:
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This equation has also been used in MPSO. The main steps of the proposed MPSO algorithm are summa-
rized as the pseudo-code in Figure 3.

In this algorithm, xi(t) and vi(t) respectively show the position and the velocity of particle i at time or 
iteration t. ωvi(t + 1) and Svi(t + 1) respectively calculate the velocity of particle i based on pworst and pbest 
solutions. Pbesti(t) is the best position found by particle i that keeps the fitness value of the best candidate 
solution encountered by the considered particle thus far. Gbesti(t) is the best position found by the whole 
swarm thus far, and ω is an inertia weight scaling the previous time step velocity. Pworsti(t) is the worst posi-
tion found by particle i that keeps the fitness value of the worst candidate solution. The c1 and c2 coefficients 
are two constant coefficients [0, 2] that control the influence of the best personal position of the particle 
(pbesti(t)) and the best global position (gbesti(t)), where c1+ c2   ≤   4. rand1 and rand2 are random values in 
the range [0, 1]. K is a constriction factor for updating the particle’s flying velocity. Through the constriction 
factor, the algorithm can have better convergence and stability. ωmax and ωmin are the maximum and minimum 
of the inertia weights, respectively, and t is the iteration counter.

Our proposed hybrid algorithm (KHM–MPSO) maintains the merits of KHM and PSO and cuckoo algo-
rithms. The pseudo-code of the proposed KHM–MPSO algorithm is represented in Figure 4.

5  Experimental Design
We test our proposed algorithm on seven data sets and compare it with other well-known algorithms. These 
data sets are eight real data sets and two artificial data sets that are named as Iris, Wine, Wisconsin breast 

X11 X12 … X1d … Xk1 Xk2 … Xkd

Figure 2: Representation of a Particle.
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cancer (denoted as Cancer), contraceptive method choice (denoted as CMC), and Ripley’s glass with different 
number of clusters, data objects, and features for every data object [5]. These data sets cover low, medium, 
and high dimensions. A brief description of these data sets is explained below.

5.1  The Datasets

–– ArtSet1 (n  =  300, d  =  2, k  =  3): This is an artificial data set. It is a two-featured problem with three 
unique classes. A total of 300 patterns are drawn from three independent bivariate normal distributions, 
where classes are distributed according to
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and μ being the mean vector and Σ is the covariance matrix.
–– ArtSet2 (n  =  300, d  =  3, k  =  3): This is an artificial data set with three features and three classes and 

300 patterns, where every feature of the classes is distributed according to Class1∼Uniform (10, 25), 
Class2∼Uniform (25, 40), Class3∼Uniform (40, 55).

Algorithm: Pseudo-code for modified PSO 
1. Initialize n particles (one of the particles is produced by KHM algorithm at the first time).

- Set psize (population size), ω (the inertia factor), c1, c2 (the weight between the attraction to Pbest and Gbest).

2. Repeat  
a. Calculate fitness of each particle by the objective function 
b. Select the best particle of PSO (global best position) based on best fitness value(Fbest_pso_particle) 
c. Find a best nest by Cuckoo search optimization (algorithm in Fig.1) 
d. If  (Fbest_pso_particle<F best_Cuckoo_nest) Then  // Use the PSO  generation

i. Select solution from PSO 
ii. Store this solution as a best nest for Cuckoo search. 

e. else      // Use the Cuckoo  generation 
i. Select solution of best nest by Cuckoo search algorithm 

ii. Store this solution as a best particle of PSO 
f. Global best position is the best fit particle 
g. Update the velocity and position for each particle ith based on following steps: 
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t
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vii. For each particle if (fitness of current position < fitness of personal best) then personal best = current position 

viii. Update )(tPbesti , )(tPworsti , )(tGbesti , and )(tGworsti if  the new values are better than the old ones. 

3. Until stopping criteria met 
4. Global best position is retained (as a cluster centre to KHM algorithm). 

Figure 3: Pseudo-code of the Modified PSO Algorithm.
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–– Iris data set (n  =  150, d  =  4, k  =  3): This is perhaps the best-known database to be found in the 
pattern recognition literature. Fisher’s paper is a classic in the field and is referenced frequently to 
this day. The data set contains three classes of 50 instances each, where each class refers to a type of 
iris plant. One class is linearly separable from the other two; the latter are not linearly separable from 
each other.

–– Wine data set (n  =  178, d  =  13, k  =  3): These data are the results of a chemical analysis of wines grown 
in Institute of Pharmaceutical and Food Analysis and Technologies in Italy but derived from three differ-
ent cultivars. The analysis determined the quantities of 13 constituents found in each of the three types 
of wines.

–– Wisconsin breast cancer data set (n  =  683, d  =  9, k  =  2): In this data set, features are computed from 
a digitized image of a fine needle aspirate of a breast mass. They describe the characteristics of the 
cell nuclei present in the image. A few of the images can be found at http://www.cs.wisc.edu/~street/
images/.

–– Ripley’s glass data set (n  =  214, d  =  9, k  =  6): The study of classification of types of glass was motivated 
by a criminological investigation. At the scene of the crime, the glass left can be used as evidence, if it is 
correctly identified.

–– The CMC data set (n  =  1473, d  =  10, k  =  3): The samples consist of married women who were either 
not pregnant or not sure of their pregnancy at the time the interviews were conducted. It predicts the 
choice of the current contraceptive method (no contraception has 629 objects, long-term methods have 
334 objects, and short-term methods have 510 objects) of a woman based on her demographic and socio-
economic characteristics.

–– The thyroid gland data set (n  =  215, d  =  3, k  =  6): This data set contains three categories of human 
thyroid diseases, namely euthyroidism, hypothyroidism, and hyperthyroidism. In the thyroid gland data 
set, there are 215 samples with five attributes that were evaluated with various laboratory tests.

–– Vowel data set (n  =  871, d  =  5, k  =  3): This data set consists of 871 patterns. There are six overlapping 
vowel classes and three input features.

–– The Ecoli data set (n  =  336, d  =  8, k  =  8). The Ecoli data set, which contains 336 data objects, has eight 
clusters. The sizes of the eight clusters are 143, 77, 52, 35, 20, 5, 2, and 2, respectively.

Algorithm: Pseudo-code for KHM-MPSO hybrid algorithm
1. Set the initial parameters as follows: 

a. Set Max-Itr: maximum number of iterations (It often set to 10) 
b. Set psize (population size).

2. Initialize a population of size Psize.
3. Set iterative count count1= 0; 
4. Set iterative counts count2=0, count3=0; 
5. Execute the classic KHM algorithm for the first time 

a. Choosing the initial centers randomly 
b. Apply KHM algorithm (in section 3.3) 
c. Assign the result as one of the particles for PSO and one of the host nests for Cuckoo. 

(Other particles and host nests are initialized randomly) 
6. Use the Modified PSO (MPSO) algorithm in Fig.2 to: 

a. Apply the MPSO operator to update the psize objects.  
b. count2 = count2 + 1. If count2 < 8, go to Step 6.1 

7.  (KHM Method) For each object i
a. Take the result of MPSO algorithm as the initial cluster centers of the KHM algorithm. 
b. Recalculate each cluster center using the KHM algorithm. 
c. count3 = count3 + 1. If count3 < 4, go to Step 7.2. 

8. count1 = count1 + 1. If count1 < Max-Itr, go to Step4. 

9. Assign data point xi to cluster j with the biggest m(cj|xi). 

Figure 4: Pseudo-code of the Proposed KHM–MPSO Algorithm.

http://www.cs.wisc.edu/~street/images/
http://www.cs.wisc.edu/~street/images/
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5.2  Simulation Setups

We compare the performance of the proposed algorithm on the selected data sets with traditional PSO, KHM, 
PSOKHM, and ICAKHM algorithms. The quality of solutions is compared by the sum of the intracluster dis-
tances, i.e. the distances between data objects within a cluster and its center. It is clear that the smaller the 
sum of the distances is, the higher the quality of clustering. The parameters of the proposed algorithm are 
adjusted based on Table 2.

In the simulation process, C1 and C2 are adjusted with different values between [1, 2]; and ωmin, ωmax are set 
with different values between [0, 1]. For instance, Table 2 shows the various assigned values for these param-
eters. These parameters have just been tested on the Iris and Wine data sets to find appropriate values. The 
obtained results show that in all PSO-based algorithms, the best setup for these parameters is c1  =  2, c2  =  2, 
ωmin  =  0.4, and ωmax  =  0.9. Therefore, in the following comparisons, we evaluate our proposed algorithm 
(KHM–MPSO) with other algorithms based on this mentioned setting. These algorithms are implemented 
using Matlab 2012, and evaluated based on the following measures:
1.	 The most common quality measurement for clustering algorithms is the F-measure criterion [9]. The 

F-measure uses the ideas of precision and recall from information retrieval [9]. In other words, the 
F-measure is provided to show the clustering accuracy of the algorithms. The higher the F-measure, the 
better the clustering due to the higher accuracy of the resulting clusters mapping to the original classes. 
Each class i (as given by the class labels of the used benchmark data set) is regarded as the set of ni items 
desired for a query; each cluster j (generated by the algorithm) is regarded as the set of nj items retrieved 
for a query; nij gives the number of elements of class i within cluster j. For each class i and cluster j 
F-measure, precision (p), and recall (r) are defined as follows:

	 2 2( , ) (( 1) ( , ) ( , )) / ( ( , ) ( , )),F i j b P i j r i j b P i j r i j= + ⋅ ⋅ + � (12)

Table 2: Simulation Setups for PSO Parameters.

C1  C2  ωmin  ωmax

1  1  0.4, 0.3  0.9, 1
1.5  1  0.4, 0.5  0.9, 1

1  1.5  0.4  0.9, 1
2  1  0.4  0.9, 1
2  2  0.4  1, 0.9, 0.8, 0.7
2  2  0.3  1, 0.9, 0.8
2  2  0.2  1, 0.9, 0.8

Table 1: Properties of Eight Real Data Sets from UCI Data Repository and Two Artificial Data Sets.

  Number of 
attributes

  Number of 
classes

  Missing 
data

  Number of 
instances

ArtSet1   2  3  No   300
ArtSet2   3  3  No   300
Iris   4  3  No   150
Wine   13  3  No   178
Wisconsin breast cancer   30  2  No   569
Ripley’s glass   9  6  No   214
CMC   9  3  No   1437
Thyroid   3  6  No   215
Vowel   5  3  No   871
Ecoli   8  8  No   336
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where b   =   1 to obtain equal weighting for P and r

	 ( , ) ( / ),ij jp i j n n= � (13)

	 ( , ) ( / ),ij jr i j n n= � (14)

	
max { ( , )}  ( overall -measure).i

ji

n
F F i j F

n
= ∑

�
(15)

Clearly, the larger value for F-measure reveals the better quality for a clustering algorithm.
2.	 The average stdev is another criterion measure that is defined as follows:

	
1

1 ( ) ,cn
ii

stdev v
c

σ
=

= ∑ � �
�

(16)

where c is the number of clusters and vi is the center of cluster ith.
3.	 Objective function value in best, average, and worst values: Best is the minimum objective function value 

among all runs, average is the average objective function value of all runs, worst is the maximum value 
among all times. The smaller the value for the objective function is, the higher the quality of the cluster-
ing algorithm.

6  Experimental Results
To compare the performance of our algorithm with those of other approaches, each algorithm is 100 times for 
each of the data sets and averaged at the end. The simulation results are demonstrated in Table 3.

The simulation results given in Table 3 show that KHM–MPSO and PSOKHM are very precise, and on 
average, KHM–MPSO is more precise than PSOKHM. Furthermore, in all other data sets, our algorithm has 
a small stdev compared to the other algorithms except the cancer data set (for PSOKHM). For instance, the 
results obtained on the Iris data set show that KHM–MPSO converges to the global optimum of 96.6228 in most 
of the runs, whereas the best solutions of KHM, PSO, ICAKHM, and PSOKHM are 97.8396, 98.7741, 96.6362, 
and 96.6301, respectively. Additionally, the obtained best, average, and worst solutions of the KHM, PSO, 
PSOKHM, and KHM–MPSO algorithms indicate that KHM–MPSO is the best one for all data sets, except the 
cancer data set. Nevertheless, the obtained results for best and average solutions by the PSOKHM algorithm 
are good and close to KHM–MPSO’s results, whereas the worst solution of KHM–MPSO is of higher quality 
than that of other algorithms. In short, KHM–MPSO has minimum values of the KHM function in Iris, Wine, 
CMC, and Glass data sets.

On the other hand, the simulation results of Table 3 shows that the F-measure of the proposed algorithm 
absolutely is better than those of obtained by others in all data sets. It reveals that the clusters are spatially 
well separated by the KHM–MPSO algorithm.

The stdev of the proposed algorithm is less than that of the other algorithms. It means that KHM–MPSO can 
find optimal solutions in most of the cases, while other algorithms may be trapped in local optima. Moreover, it 
often can find high-quality solutions compared to the other algorithms. The best stdev in the Iris data set (with 
low dimension) belongs to ICAKHM and our proposed KHM–MPSO algorithm. The stdev of the fitness function 
for these algorithms is 0.01055 in the Iris data set, which is significantly less than that of the other methods. 
However, ICAKHM does not have a better stdev in all other data sets. For the Cancer data set (with high dimen-
sion), the PSOKHM and KHM–MPSO algorithms have better stdev than the other algorithms. Furthermore, the 
KHM–MPSO algorithm has better stdev than the other algorithms in Wine, CMC, and Glass data sets.

In general, the simulation results shown in Table 3 indicate that the proposed KHM–MPSO algorithm 
converges to the global optimum with an improved stdev and less function evaluations. This leads logically 
to the end that KHM–MPSO is a feasible and a robust clustering algorithm.
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Owing to the close similarity between PSOKHM and the proposed algorithm, we compare them consider-
ing more details that are presented in Tables 4 and 5. Tables 4 and 5 are the results of the objective function 
KHM(X,C), F-measure, and runtime criteria, which are in accordance with different p values, p  =  2.5, p  =  3, 
and p  =  3. The tables show the means and stdev (in brackets) for 100 independent runs. Boldface indicates 
the best result out of the two algorithms.

Owing to the reduction of the value of the KHM(X,C) function and the increase of the F-measure, the 
KHM–MPSO algorithm generates better clustering quality than the PSOKHM algorithm. In other words, KHM–
MPSO improves the F-measure, runtime, and KHM(X,C) measures in most of the runs with different p values. 
The proposed KHM–MPSO has best runtimes in most of evaluations with different p values. The evaluations 
shown in Tables 4 and 5 clearly show that the KHM–MPSO algorithm has a small runtime in comparison with 

Table 3: Simulation Results of 100 Runs of the Following Clustering Algorithms (p  =  2.5).

Data set   Criteria   KHM  PSO  ICAKHM  PSOKHM  KHM–MPSO

Iris   Best solution   97.8396  98.7741  96.6362  96.6301  96.6228
  Average   102.235  99.1629  96.6664  96.6355  96.6323
  Worst solution  108.4184  102. 9339  96.6919  96.6630  96.6382
  stdev   13.2517  0.3882  0.01055  0.09128  0.01055
  F-measure   0.8853  0.8861  0.356710  0.8891  0.8924

Wine   Best solution   16,552.38  16,344.38  16,293.9  16,297.17  16,293.15
  Average   18,057.74  16,415.51  16,295.6  16,302.59  16,293.43
  Worst solution  18,560.84  16,560.82  16,296.94  16,314.37  16,293.69
  stdev   789.998  82.55  1.002372  0.62  0.49
  F-measure   0.669  0.6781  0.6802  0.671  0.6885

Cancer   Best solution   2989.72  2964.50  2962.42  2961.98  2962.10
  Average   3233.46  3029.21  3022.81  3024.47  3024.49
  Worst solution  3545.81  3338.66  3150.15  3149.82  3148.90
  stdev   250.1  108.11  0.396  0.380  0.380
  F-measure   0.9617  0.9339  0.841  0.9617  0.9647

CMC   Best solution   5847.88  5701. 53  5699.2183  5698.73  5691.16
  Average   5899.48  5822.94  5705.1485  5700.04  5694.41
  Worst solution  5942.06  5918.93  5721.1779  5702.11  5695.72
  stdev   47.16  46. 96  1.268275  0.92  0.81
  F-measure   0.45034  0.4633  0.4446  0.4524  0.4731

Glass (Ripley’s glass)   Best solution   215.23  271.63  199.86  199.47  199.425
  Average   234.95  276.85  202.41  199.503  199.438
  Worst solution  257.541  284.912  209.778  199.549  199.452
  stdev   12.465  4.551  0.26  0.141  0.139
  F-measure   0.6637  0.6429  0.6695  0.6648  0.6835

Vowel   Best solution   149,423.30  163,882.00  149,201.63  148,886.44  148,896.17
  Average   153,301.24  168,527.29  161,431.04  151,153.37  148,919.28
  Worst solution  159,099.82  173,821.58  165,804.67  158,725.91  149,004.82
  stdev   1272.67  3711.25  2746.041  2881.346  125.7
  F-measure   0.650  0.650  0.650  0.652  0.658

Thyroid   Best solution   1789.511  1978.570  1326.92  1385.926  1341.426
  Average   1803.328  3216.488  2164.466  1418.779  1393.080
  Worst solution  1928.0428  4354.114  4945.92  1501.239  1484.718
  stdev   13.146  235.046  53.119  12.062  1.159
  F-measure   1.577  1.477  1.485  1.585  1.58616

Ecoli   Best solution   207,231,226  201,485,217  123,692,659  124,338,350  123,198,852
  Average   216,737,953  216,231,820  214,496,232  127,560,119  127,127,784
  Worst solution  224,846,445  240,547,078  233,929,599  129,560,105  130,521,720
  stdev   3,326,399  3,631,463  7,334,211  4,959,607  1,010,064
  F-measure   0.793949  0.853926  0.8626622  0.937064  0.954263
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Table 4: Obtained Results for PSOKHM Clustering on Eight Real Data Sets for p  =  2.5, p  =  3, and p  =  3.5 Based on KHM(X,C), 
F-Measure, and Runtimes (for 100 Independent Runs).

PSOKHM algorithm

  PSOKHM (p  =  2.5)  PSOKHM (p  =  3)  PSOKHM (p  =  3.5)

ArtSet1      
 KHM(X,C)   703.509 (0.050)  741.3861 (0.0023)  806.644 (0.0074)
 F-measure   1.000 (0.000)  1.000 (0.000)  1.000 (0.000)
 Runtime   0.7054 (0.0097)  0.7052 (0.0048)  0.7043 (0.0044)

ArtSet2      
 KHM(X,C)   109,525.941 (0.152)  256,953.240 (13.183)  679,549.738 (283.234)
 F-measure   1.000 (0.000)  1.000 (0.000)  1.000 (0.000)
 Runtime   0.7461 (0.00440)  0.7411 (0.00532)  0.7363 (0.00443)

Iris      
 KHM(X,C)   149.521122 (0.220046)  126.356025 (0.051715)  111.496432 (0.371611)
 F-measure   0.889365 (0.001704)  0.891125 (0.000616)  0.890476 (0.000822)
 Runtime   0.776514 (0.008286)  0.785798 (0.008178)  0.782373 (0.013236)

Wine      
 KHM(X,C)   75,642,795.261 (123,127.311)  1,075,350,475.505 (5,934,548.867)  15,938,236,000.160 (375,608,578.016)
 F-measure   0.678695 (0.008791)  0.647009 (0.008415)  0.631343 (0.007597)
 Runtime   1.198114 (0.006380)  1.199792 (0.008373)  1.200532 (0.009848)

CMC      
 KHM(X,C)   96,730.543291 (205.878047)  187,530.512796 (209.278023)  385,242.257966 (1077.221514)
 F-measure   0.464650 (0.003114)  0.454853 (0.003122)  0.455401 (0.004125)
 Runtime   7.942413 (0.013390)  7.892877 (0.033972)  8.032246 (0.034444)

Cancer      
 KHM(X,C)   57,167.360619 (0.626255)  113,703.834625 (6.098736)  232,149.835544 (25.711355)
 F-measure   0.961290 (0.000216)  0.964719 (0.000)  0.965644 (0.000188)
 Runtime   2.846137 (0.014304)  2.848792 (0.026659)  2.860135 (0.012080)

Glass      
 KHM(X,C)   1242.219883 (9.641556)  1741.945932 (19.074922)  2251.847572 (90.469432)
 F-measure   0.647040 (0.019853)  0.663190 (0.017553)  0.672230 (0.016469)
 Runtime   2.176758 (0.023808)  2.194541 (0.011367)  2.175558 (0.011030)

Vowel      
 KHM(X,C)   149,430.2360 (0.8277)  149,015.2967 (1.5638)  148,967.8820 (1.8665)
 F-measure   0.648 (0.0598)  0.650 (0.0038)  0.652 (0.0021)
 F-measure   16.59 (0.02332)  16.58 (0.0649)  17.72 (0.1130)

Thyroid      
 KHM(X,C)   1907.240771 (20.687668)  1596.359443 (17.436539)  1413.150447 (11.094568)
 F-measure   1.594384 (0.013395)  1.589108 (0.005559)  1.593293 (0.009469)
 F-measure   5.093505 (0.107767)  5.242260 (0.058426)  4.944705 (0.021232)

Ecoli      
 KHM(X,C)   4,096,255.0352 (16,613.315)  32,410,697.522434 (174,022.118)  127,650,199.201421 (721,762.6053)
 F-measure   0.880411 (0.029102)  0.887144 (0.035657)  0.908949 (0.035395)
 Runtime   0.757109 (0.014003)  0.739773 (0.005437)  0.728822 (0.005773)

the PSOKHM algorithm in all data sets, except the Cancer data set. Consequently, the accuracy, correctness, 
and convergence of our proposed algorithm are more satisfactory and robust than the PSOKHM and other 
compared algorithms.

Finally, an execution of KHM–MPSO and other mentioned algorithms on Artset2 data set is shown in 
Figure 5.

The analysis of this figure also proves the improved quality of clustering by the proposed algorithm. It 
can be seen that KHM–MPSO can cluster objects more clearly with the best F-measure and KHM(X,C) values. 
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Table 5: Obtained Results for the Proposed KHM–MPSO Clustering on Eight Real Data Sets for p  =  2.5, p  =  3, and p  =  3.5 Based 
on KHM(X,C), F-Measure, and Runtimes (for 100 Independent Runs).

Proposed KHM–MPSO Algorithm

  KHM–MPSO (p  =  2.5)  KHM–MPSO (p  =  3)  KHM–MPSO (p  =  3.5)

ArtSet1      
 KHM(X,C)   668.703 (0.0061)  711.365 (0.2372)  762.157 (0.301)
 F-measure   1.000 (0.000)  1.000 (0.000)  1.000 (0.000)
 F-measure   0.7503 (0.0071)  0.7142 (0.0046)  0.6959 (0.0040)

ArtSet2      
 KHM(X,C)   108,046.437 (0.1762)  256,469.498 (9.686)  646,197.154072 (198.852)
 F-measure   1.000 (0.000)  1.000 (0.000)  1.000 (0.000)
 F-measure   0.7397 (0.00466)  0.7411 (0.0053)  0.7325 (0.00493)

Iris      
 KHM(X,C)   149.046166 (0.047562)  126.279684 (0.062980)  111.496936 (0.472)
 F-measure   0.892268 (0.001425)  0.891129 (0.000616)  0.891775 (0.000)
 F-measure   0.294792 (0.007)  0.281934 (0.004)  0.301901 (0.008)

Wine      
 KHM(X,C)   74,944,203.249 (121,621.908)  1,066,602,515.373 (3,911,744.742)  15,668,540,757.021 (263,948,606)
 F-measure   0.678521 (0.009)  0.647854 (0.010)  0.631675 (0.006)
 F-measure   0.908909 (0.005)  0.9061102 (0.007)  1.044160 (0.019)

CMC      
 KHM(X,C)   96,569.572990 (125.758)  187,350.068520 (132.273)  383,568.825231 (329.816)
 F-measure   0.464754 (0.003)  0.464096 (0.002978)  0.462089 (0.002998)
 F-measure   5.861913 (0.012)  5.910834 (0.020)  6.093088 (0.077)

Cancer      
 KHM(X,C)   57,167.366038 (0.625)  113,716.138 (4.578)  232,137.293652 (24.844)
 F-measure   0.961290 (0.000)  0.964719 (0.000)  0.965901 (0.000)
 F-measure   2.088459 (0.013)  2.0761 (0.012)  2.283777 (0.035)

Glass      
 KHM(X,C)   1241.6486 (9.659926)  1740.79643 (18.84145)  2251.524907 (90.139592)
 F-measure   0.6471302 (0.019853)  0.672816 (0.016377)  0.67172101 (0.017489)
 F-measure   2.03842 (0.017369)  1.904374 (0.01027)  2.00720816 (0.010112)

Vowel      
 KHM(X,C)   148,999.8251 (0.82813)  148,995.2032 (1.58331)  148,976.0010 (1.82935)
 F-measure   0.648 (0.056)  0.651 (0.002)  0.652 (0.001)
 F-measure   16.03 (0.02215)  16.11 (0.0623)  17.23 (0.1102)

Thyroid      
 KHM(X,C)   1863.913382 (25.397029)  1587.730451 (10.719377)  1381.654997 (14.112486)
 F-measure   1.595105 (0.009447)  1.602765 (0.005239)  1.596271 (0.005473)
 F-measure   4.932390 (0.008502)  5.018692 (0.063792)  4.903797 (0.007211)

Ecoli      
 KHM(X,C)   4,082,027.0541 (11,661.250)  22,732,800.045764 (162,511.3850)  90,873,569 (501,099.769)
 F-measure   0.998500 (0.044583)  0.965545 (0.043558)  0.928575 (0.018024)
 Runtime   0.728618 (0.004084)  0.730831 (0.008129)  0.737341 (0.006761)

The main drawback for KHM–MPSO, ICAKHM, and PSOKHM is their running time in comparison to the KHM 
algorithm. The KHM algorithm has the best running time. However, KHM–MPSO has a better running time 
than ICAKHM and PSOKHM.

In the end, to indicate a significant difference between the results of the proposed KHM–MPSO algorithm 
with other algorithms, statistical analysis was carried out. We applied the Friedman test to realize whether 
there are substantial differences in the results of the clustering algorithms. In this test, the α was set to 0.05 
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(α  =  0.05) as the level of confidence in all cases. Table 6 reveals the obtained results of mean ranking of these 
algorithm by Friedman’s test based on best and average KHM() function as well as F-measure. Table 7 shows 
the statistical test in the Friedman test. As shown in the table, the proposed KHM–MPSO algorithm is ranked 
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Figure 5: An Execution of KHM, PSO, PSOKHM, and KHM–MPSO Clustering Algorithms on Artset2 Data Set.

Table 6: Results of Friedman Tests Based on the Best and Average KHM() as well as 1/F-Measures.

Ranks

Method 
name

  Mean rank  
(based on best KHM)

  Mean rank  
(based on average KHM)

  Mean rank  
(based on 1/F-measure)

KHM–MPSO  1.38  1.25  1.00
PSOKHM   2.13  2.13  2.56
ICAKHM   2.50  2.88  3.75
PSO   4.50  4.38  3.75
KHM   4.50  4.38  3.94

Table 7: Test Statistics in the Friedman Test.

  N  df  χ2  p-Value  Hypothesis

Based on best KHM   8  4  26.100  0.000030  Rejected
Based on average KHM   8  4  24.400  0.000060  Rejected
Based on (1/F-measure)  8  4  20.464516  0.000404  Rejected



16      A. Bouyer and N. Farajzadeh: Optimized KHM Algorithm with MPSO and Cuckoo Search Algorithm

first, followed by PSOKHM, ICAKHM, PSO, and KM, successively. Furthermore, the Friedman test indicates 
that the proposed KHM–MPSO algorithm has a significant difference in the results of algorithms.

7  Conclusion
This paper proposed the KHM–MPSO algorithm, a hybrid clustering algorithm, by combining KHM and MPSO 
using CS via Levy flight algorithm. The MPSO used cuckoo optimization and two new concepts, pworts and 
gworts, in regular PSO algorithm. Therefore, the combination of the MPSO algorithm with KHM utilized the 
advantages of KHM and solved the KHM’s shortcomings. It overcame the initialization sensitivity of KHM and 
achieved the global optima effectively. The new proposed algorithm was tested on several real and artificial 
data sets. The experiments confirmed that the proposed algorithm was accurate and robust compared to the 
PSO, KHM, PSOKHM, and ICAKHM algorithms. The proposed KHM–MPSO algorithm not only improved the 
F-measure and stdev parameters, but it also helped KHM escape from local optima. In the KHM–MPSO algo-
rithm, because of obtaining high-quality initializations from the MPSO, the KHM algorithm provided better 
output and performance. Our proposed algorithm clustered large data sets faster and more accurately than 
other algorithms. Yet, it should be mentioned that one drawback of KHM–MPSO is its runtime compared to 
KHM. KHM has a better running time than other algorithms. As a future work, we investigate on combining 
PSO and artificial bee colony into KHM to reach a faster convergence, accuracy, and runtime.
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