Home Performance Study of Harmony Search Algorithm for Multilevel Thresholding
Article Open Access

Performance Study of Harmony Search Algorithm for Multilevel Thresholding

  • Salima Ouadfel EMAIL logo and Abdelmalik Taleb-Ahmed
Published/Copyright: August 1, 2015
Become an author with De Gruyter Brill

Abstract

Thresholding is the easiest method for image segmentation. Bi-level thresholding is used to create binary images, while multilevel thresholding determines multiple thresholds, which divide the pixels into multiple regions. Most of the bi-level thresholding methods are easily extendable to multilevel thresholding. However, the computational time will increase with the increase in the number of thresholds. To solve this problem, many researchers have used different bio-inspired metaheuristics to handle the multilevel thresholding problem. In this paper, optimal thresholds for multilevel thresholding in an image are selected by maximizing three criteria: Between-class variance, Kapur and Tsallis entropy using harmony search (HS) algorithm. The HS algorithm is an evolutionary algorithm inspired from the individual improvisation process of the musicians in order to get a better harmony in jazz music. The proposed algorithm has been tested on a standard set of images from the Berkeley Segmentation Dataset. The results are then compared with that of genetic algorithm (GA), particle swarm optimization (PSO), bacterial foraging optimization (BFO), and artificial bee colony algorithm (ABC). Results have been analyzed both qualitatively and quantitatively using the fitness value and the two popular performance measures: SSIM and FSIM indices. Experimental results have validated the efficiency of the HS algorithm and its robustness against GA, PSO, and BFO algorithms. Comparison with the well-known metaheuristic ABC algorithm indicates the equal performance for all images when the number of thresholds M is equal to two, three, four, and five. Furthermore, ABC has shown to be the most stable when the dimension of the problem is too high.

1 Introduction

Image segmentation is a low-level image processing task that aims at partitioning an image into well-separated regions such that each one contains pixels with similar proprieties like gray level, color, texture, etc. Many image segmentation techniques have been reported in the literature [26]. Among them, thresholding is one of the simplest techniques for performing image segmentation. According to the number of thresholds, it can be as bi-level thresholding and multilevel thresholding. Bi-level thresholding divides the image into two regions, while multilevel thresholding divides the pixels into several regions.

Thresholding methods can be classified into parametric and nonparametric methods [28]. In the parametric approaches, the statistical parameters of the classes in the image are estimated. They are computationally expensive, and their performance may vary depending on the initial conditions. In the nonparametric approaches, the thresholds are determined by maximizing some criteria, such as between-class variance or entropy measures.

The application of entropic measures to image thresholding was first proposed by [27] and improved by Kapur [17]. Recent developments of statistical mechanics based on a concept of non-extensive entropy, also called Tsallis entropy, have intensified the interest of investigating a possible extension of Shannon’s entropy to information theory [32]. Tsallis entropy generalizes the Boltzmann/Gibbs’s traditional entropy to non-extensive physical systems by introducing a new parameter to measure the degree of nonextensivity [39]. In this paper, we use three objective functions: between-class variance, Kapur and Tsallis entropy as a criterion to select the optimal thresholds.

Most of the existing bi-level thresholding methods are easily extendable to multilevel thresholding as well. However, when the number of thresholds increases, complexity of the thresholding problem also will increase, and the traditional method requires more computational time. However, the computational complexity increases exponentially as the number of thresholds increases. For K thresholds, and L gray levels, the time complexity grows up to (L + K)!/L!K! [5]. It might be very difficult to derive a systematic and analytic solution when the number of thresholds increases.

Hence, in recent years, researchers have been attracted to bio-inspired metaheuristics for solving the multilevel thresholding problem. In this context, various thresholding algorithms are proposed, which use different metaheuristics. In this field, we can cite the genetic algorithms (GA) [10, 14, 37], particle swarm optimization (PSO) [11, 21, 38], differential evolution (DE) [9, 25, 30], artificial bee colony (ABC) [15, 16, 39], firefly algorithm (FA) [15]; bacterial foraging (BF) algorithm [31]; cuckoo search (CS) algorithm [4, 29]; bat algorithm [3, 23]. These methods give satisfactory performance when used to solve multilevel thresholding problem and use different objective functions.

The harmony search (HS) algorithm is an evolutionary algorithm proposed by Geem et al. [13].

Unlike current metaheuristic algorithms that imitate natural phenomena, i.e. physical annealing in simulated annealing, human memory in Tabu search, and evolution in evolutionary algorithms, HS algorithm is inspired from the improvisation process by which the musicians adjust their individual tones of their instruments through variation resulting in a better harmony. Musical performances seek to find pleasing harmony (a perfect state) as determined by an aesthetic standard, just as the optimization process seeks to find a global solution (a perfect state) as determined by an objective function. The pitch of each musical instrument determines the aesthetic quality, just as the objective function value is determined by the set of values assigned to each decision variable [36].

Since its introduction in year 2000, the HS algorithm has been successfully applied to solve many optimization problems [1, 2, 68, 18, 19, 23, 33].

The purpose of this paper is to study the performance of HS algorithm to select the optimal thresholds in the image by maximizing between-class variance, Kapur and Tsallis entropy. Initially, each harmony (candidate solution) is built by taking random thresholds from a feasible search space inside the image histogram. The quality of the solutions has been evaluated using the objective function that is employed by the between-class variance, the Kapur or Tsallis method. Guided by these objective values, the set of candidate solutions are evolved using the harmony search operators until the optimal solution is found. Experimental results over a number of real images have validated the efficiency of the harmony search algorithm and its robustness against GA, PSO, and BFO algorithms. Comparison with the well-known metaheuristic ABC algorithm indicates the equal performance for all images when the number of thresholds M is equal to two, three, four, and five. When the number of thresholds is too high (M = 10, 15, 20), the ABC algorithm yields better results and better stability.

The rest of the paper is as follows: in Section 2, the multilevel thresholding problem is formulated using between-class variance, Kapur and Tsallis entropy. In Section 3, we describe the proposed HS algorithm for multilevel image thresholding. Experimental results are conducted in Section 4. A conclusion is given in Section 5.

2 Multilevel Thresholding Problem Formulation

Given a gray level image I to be segmented into meaningful regions, let there be L gray level values lying in the range {0, 1, 2, …, (L − 1)}. For each gray level i, we associate h(i), which represents the number of pixels having the ith gray level as a value. Therefore, the probability Pi of the ith gray level is defined as Pi = h(i)/N, where N denotes the total number of pixels in the image.

Suppose image I is composed of (M + 1) classes. Hence, M thresholds, {t1, t2, …, tM} are required to achieve the subdivision of the image into classes: C0 for [0, …, t1 − 1], C1 for [t1, …, t2 − 1], …, CM for [tM, …, L − 1], such that t1 < t2 … < tM − 1 < tM. The thresholding problem consists in choosing the set of optimal thresholds (t1,t2,....,tM) that maximizes the objective function f(t).

Optimal thresholds can be obtained by maximizing some desired criterion such that between-class variance Kapur and Tsallis entropy.

2.1 Between-Class Variance

Thresholding based on the between-class variance is a nonparametric segmentation method that divides the whole image into classes so that the variance of the different classes is maximum [24].

Optimal thresholds are obtained by optimizing the following function:

(1)f(t)=i=0mσi

where

σ0=ω0(μ0μT)2σ1=ω1(μ1μT)2σ2=ω2(μ2μT)2σj=ωj(μjμT)2σm=ωm(μmμT)2

and

μ0=i=0t11ipiωi,μ1=i=t1t21ipiωi,μ2=i=t2t31ipiωi,μj=i=tjtj+11ipiωi,μm=i=tmL1ipiωi,

2.2 Kapur’s Entropy

Using Kapur’s entropy [17], optimal thresholds can be found using the following objective function:

(2)max : f([t1,t2,....,tM])=k=0MHk,

where

Hi=i=titi+11PjωjlnPjωj,    ωi=j=titi+11Pj

with t0 = 0 and tM + 1 = L.

2.3 Tsallis Entropy

The Tsallis entropy is a generalization of the Boltzmann/Gibbs traditional entropy to nonextensive physical systems [32]. In image segmentation, the nonextensivity of a system can be justified by the presence of correlations between pixels of the same object in the image. These correlations can be regarded as the long-range correlations that present pixels strongly correlated in luminance levels and space fulfilling [39].

The objective function f(t) can be expressed as:

(3)f(t)=i=0MSqCi(t)+i=0M(1q)SqCi(t)

where q is an entropic index,

ω(Ci)=j=titi+11Pj,SqCi(t)=1j=titi+11(Pj/ω(Ci))qq1    

with t0 = 0 and tM + 1 = L.

The optimal thresholds are chosen in a way the corresponding objective function is maximized. Performing exhaustive search needs to evaluate all the values of the thresholds and chooses the ones that give the best objective function value. Despite the simplicity and the straightforwardness of such a process, the computational time will increase sharply when the number of thresholds increases. In this paper, we use the global search capability of a nature-inspired metaheuristic: the harmony search algorithm to select the optimal threshold values by maximizing the objective function defined by equations (1), (2), or (3).

3 Adapted HS Algorithm for Multilevel Thresholding

The HS algorithm is an evolutionary algorithm inspired from the improvisation process by the musicians of the orchestra of jazz music [13].

In music improvisation, each player sounds any pitch within the possible range, together making one harmony vector. If all the pitches make a good harmony, that experience is stored in each player’s memory, and the possibility to make a good harmony is increased next time. Similarly, in engineering optimization, each decision variable initially chooses any value within the possible range, together making one solution vector. If all the values of decision variables make a good solution, that experience is stored in each variable’s memory, and the possibility to make a good solution is also increased next time. In real optimization, each musician can be replaced with each decision variable, and its preferred sound pitches can be replaced with the preferred value of each variable [20].

In the HS algorithm, each individual solution is a D dimensional vector and represents a harmony. First, an initial population of harmony memory solution (HMS) is generated randomly and is stored within a harmony memory (HM). A new candidate harmony is thus generated from the elements in the HM by using a memory consideration operation or by a random selection. In addition, a pitch adjustment operator is performed if the new solution is generated by the memory consideration operator. The new solution is then compared with the worst harmony solution stored in the HM. The worst harmony solution is replaced by the new generated solution if the latter provides a better fitness value. The above steps are repeated until a termination criterion is met.

The HS algorithm incorporates the structure of current metaheuristic optimization algorithms. It preserves the history of past vectors (HM) similar to the Tabu search and PSO. It considers several vectors simultaneously in a manner similar to the GA. However, the major difference between the GA and the HS algorithm is that the latter generates a new vector from all the existing vectors (all harmonies in the HM), while the GA generates a new vector from only two of the existing vectors (parents) [20].

For the multilevel thresholding problem, a population (x1, x2, …, xhms) of solutions is created. Each individual solution xi in generation G is formulated using equation (4).

(4)xi(G)=(ti,1,ti,2,,ti,M)T, subject to 1ihmsand0<ti,1<ti,2<ti,M<L.

The details of the adapted HS algorithm for the multilevel thresholding problem are given bellow.

Step 1: The position of each individual solution or harmony of the population is initialized using equation (5), then store them in the harmony memory (HM) such that HM = (x1, x2, …, xhms)T

(5)ti,j=gmin+rand(0,1)(gmaxgmin)  (i=1,, hms and  j=1,,M)

where M parameters in the vector representation correspond to the M multiple thresholds, gmin and gmax are the minimum and the maximum gray levels in the image, respectively, and hms is the size of the population.

Step 2: for each solution xii = 1 … hms, we generate a new solution xinew using one of the two processes: memory consideration and a possible additional modification, or a random selection. In the memory consideration process, each threshold value ti,jnew  j=1M of the new solution is set to the corresponding threshold value of one of the harmonies stored in the HM with the probability of harmony memory considering rate (HMCR). Otherwise, with a probability 1-HMCR, each threshold value of the new solution is generated randomly between the search bound [gmin, gmax].

(6)ti,jnew={ts,j where s=int(rand(0,1)hms)+1    with probablity HMCRgmin+(gmaxgmin)rand(0,1)         with probablity 1-HMCR  

In addition, if the new solution comes from the memorization process, an additional modification of the threshold value of the new solution is performed with pitch adjust rate (PAR) probability.

(7)ti,jnew={ti,jnew+ rand(0,1)BW                 with probability PARti,jnew           with probability 1-PAR  

where BW is the bandwidth factor to control the local search around the selected elements of the HM.

Step 3: evaluate the new solution using equation (2) or (3). If the new solution xinew is better than the worst solution xworst in HM, replace xworst withxinew.

Step 4: repeat step 2 and step 3 until the maximum number of generation Max_gen is attained.

The outline of the HS algorithm for multilevel image thresholding is given in Algorithm 1.

4 Results and Discussions

To test the performance of the proposed HS algorithm for multilevel image thresholding, 12 real images taken from the Berkeley Segmentation Dataset [22] have been used as illustrated in Figure 1.

Figure 1: Real Images Used in the Paper.
Figure 1:

Real Images Used in the Paper.

The results obtained by the HS algorithms have been compared with those generated by the state-of-the-art thresholding methods like (GA), bacterial foraging optimization (BFO), PSO algorithm, and artificial bee colony algorithm (ABC). All the algorithms have been used in their standard versions and have been employed separately. CPU time is also considered to examine the efficiency of the algorithms. Three different fitness criteria have been used such as Kapur’s entropy, between-class variance, and Tsallis entropy.

All metaheuristics used in this study have two common control parameters: the size of the population and the maximum number of generation Max_gen. The number of generations cannot be accepted as a time measure since the algorithms perform a different amount of work in their inner loops. For this reason, we use in this paper, the function evaluation number (Max_FEN) instead of the maximum number of generations. As the values of these two control parameters have a great impact on the convergence and on the computing time, they were chosen to be the same for all experiments in this paper. The size of the population was fixed to 50 and Max_FEN was fixed to 20,000.

The other parameters of the HS algorithm are:

hmcr = the rate of choosing a value from the harmony memory. It generally varies from 0.7 to 0.99. In this paper, hmcr was fixed to 0.8 for all experiments

PAR = the rate of choosing a neighboring value. It generally varies from 0.1 to 0.5. In this paper, the value of PAR was fixed to 0.4.

The parameter values of the GA, ABC, PSO, and BFO algorithms, which give the best results in terms of fitness values, are gathered in Table 1.

Table 1

Parameter Settings for the GA, PSO, and ABC Algorithms.

AlgorithmParametersValue
GACrossover probability Pc0.5
Mutation probability Pm0.1
PSO algorithmMaximum inertia weight (wmax)0.9
Minimum inertia weight (wmin)0.4
Maximum velocity (Vmax)+5.0
Minimum velocity (Vmin)−5.0
Cognitive coefficient (C1)1.429
Cognitive coefficient (C2)1.429
ABC algorithmLimit50
BFO algorithmNumber of chemotactic steps Nc15
Swimming length Ns4
Number of reproduction steps Nre4
Number of elimination of dispersal events Ned6
Probability of elimination and dispersal ped0.25

In order to have a fair comparison, an exhaustive search method has also been conducted to derive the optimal solution for each number M of thresholds using Kapur’s entropy, between-class variance, and Tsallis entropy. All the methods are validated through numerical simulations in Matlab on a computer having an Intel Core Duo processor (1.66 GHz) and 2 GB memory.

Quantitatively speaking, the quality of the segmented images has been evaluated using the two popular performance measures: SSIM and FSIM indices.

SSIM given by equation (8) evaluates the visual similarity between the original image and the reconstructed image [34]:

(8)SSIM(I, Seg)=(2μIμSeg+c1)(2σI,Seg+c2)(μI2+μSeg2+c1)(σI2+σSeg2+c2)

where μI is the mean intensity of the image I, μSeg is the mean of the image Seg, σI2 represents the variance of I, σSeg2 represents the variance of Seg, σI, Seg is the covariance of I and Seg, c1 and c2 are two constants, such that c1 = (k1L)2 and c2 = (k2L)2, k1 = 0.01, k2 = 0.03, and L is the dynamic range of the pixel values. A higher value of SSIM shows better performance.

The FSIM is used to calculate the similarity between two images [40]. It is calculated as:

(9)FSIM=XΩSL(X)PCm(X)XΩPCm(X)whereSL(X)=SPC(X)SG(X);SPC(X)=2PC1(X)PC2(X)+T1PC12(X)+PC22(X)+T1;SG(X)=2G1(X)G2(X)+T2G12(X)+G22(X)+T2

and T1 and T2 are constants. Here, we choose T1 = 0.85 and T2 = 160. G represents the gradient magnitude (GM) of an image and is defined as:

G=Gx2+Gy2PC  is  the phase congruence  and is defined as:PC(X)=E(X)(ε+nAn(X))

An(X) is the local amplitude on scale n, and E(X) is the magnitude of the response vector at position X on scale n. ε is a small positive constant. A higher value of FSIM implies better performance.

The ground truth data obtained by the exhaustive search using Kapur’s entropy, between-class variance, and Tsallis entropy are summarized in Table 2 where the values of the thresholds along with the corresponding fitness function values and CPU time are given. It is apparent from Table 2 that the computation time of the exhaustive search method grows in many orders of magnitude with the number of required thresholds. When the number of thresholds is over 4, the consumption of CPU time of the exhaustive search becomes unbearable. For this reason, when the number of thresholds is >4, there are no correlative values for the exhaustive search listed in our experiments.

Table 2

The Optimal Thresholds, The Corresponding Best FITNESS, and the CPU Time Obtained by the Exhaustive Search Method using Kapur’s Entropy, Between-Class Variance, And Tsallis Entropy for Real Images.

ImageMBetween-class varianceKapur’s entropyTsallis entropy
Threshold valuesFitness valuesCPU time (s)Threshold valuesFitness valuesCPU time (s)Threshold valuesFitness valuesCPU time (s)
101085295 1692755.807806070.21890 17212.847081911.0770.8888845488 1421.918
360 113 1822960.7719405718.59574 127 18015.9633710387.4381.2962762651 99 147212.162
452 92 139 1973063.499638571184.60940 88 138 18919.013665562155,0711.6542773151 88 125 1612234.413
Wherry2110 1883083.794184310.203105 16312.177692041,0920.8888730585 1222.69
3103 158 2163326.6783030217.472100 148 19115.1417116089,9801.2962348382 114 145219.212
485 121 161 2173390.479285301108.10654 105 148 19118.004651383245,2341.6541787473 98 122 1494456.318
Snake287 1341110.020173160.20387 17112.385162373.2340.8888823989-1714.821
377 114 1531219.8483287017.08281 146 19515.569117803234,2341.2962792475-122-179358.288
470 101 129 1661274.291041421067.07875 121 164 20418.505781634325.3451.6542823071-111-151-1955785.216
Zebra294 141817.642915210.20393 16912.258459781.2340.8888812393 1692.173
390 125 173915.1030429713.3789 134 17915.33831416154.9871.2962686291 132 176164.231
482 110 136 183964.93591533781.79949 93 136 17918.179247684456.4451.6542468374 102 134 1765437.723
Butterfly285 1543519.369255890.305110 17412.683959092.020.88888526113 1742.54
380 137 1893646.0199675116.1374 123 17615.80176741198.1231.2962841476 123 174209.154
467 103 150 1963712.05714618991.46474 121 171 21718.804219935023.6781.6542851274 118 159 2005534.506
Bird290 1602535.450498900.15691 16812.088436941.0890.8888709966 1172.106
379 135 1792611.8772978911.41965 116 17315.19896385123.4561.2962532659 102 156146.543
459 99 143 1812649.68644784640.0155 98 144 18317.982623585065.1071.6542432950 83 117 1645567.347
Landscape256 1464419.790621130.21296 14811.551304251,910.8888505896 1372.02
349 109 1734721.1885355513.23496 161 19614.51573911223.4561.2961860395 126 155246.466
444 89 129 1804783.78331215542.2175 123 162 19617.329206545287,1981.6541346995 127 161 1965897.323
Ostrich274 1321035.428098600.156119 17112.372876572.920.88888197122 1713.08
367 98 1441099.3828537711.41973 122 17115.46615176234.4561.2962760875 122 171255.530
462 89 124 1761139.97065299640.3172 119 155 19718.139021865678.0021.6542569660 86 123 1715894.302
860162121 1681236.707999260.156100 14511.516533741.020.8888776699 1421.17
3105 145 1741289.9418907411.65798 139 17314.21639503109.1231.29624958100 138 173117.158
492 127 157 1781321.74260380640.4584 112 142 17616.704121975478.1871.6542129787 112 139 1735784.222
Baboon297 1491539.846056760.15681 14412.196133192.450.8888838892 1473.02
386 125 1611629.3779505017.12351 103 15415.22309422312.2091.2962769072 112 156345.213
472 106 137 1681682.67011109640.3543 83 122 16318.014459234045.4211.6542730466 101 135 1674372.546
Lake288 1553741.345417150.15694 16312.450087813.2340.8888840594 1564.337
379 139 1933876.9462474918.34575 121 16915.46366271420.2241.2962799874 119 166492.249
469 112 158 1973943.26884069740.1272 113 156 19418.244970255768.7681.6542788466 101 135 1706034.892
Woman282 1472604.638195480.15696 16812.661608971.980.8888860497 1682.01
375 127 1762780.7791125819.23476 126 17715.73843511423.2981.2962849676 125 175453.328
466 106 142 1822851.78602355967.4161 100 142 18518.546033785098.4981.6542905560 97 137 1815238.567

4.1 Multilevel Thresholding Results and Efficiency of Different Methods, With M = 2, 3, 4, 5

Results acquired for various test images using Kapur’s entropy, between-class variance, and Tsallis entropy are presented in Tables 35. Tables 35 tabulated the number of thresholds, objective values, and corresponding optimal threshold values obtained by GA, PSO, BFO, ABC, and HS methods for each objective function.

Table 3

The Best Thresholds and the Corresponding Best Fitness Obtained from the Kapur-Based Methods for Real Images.

ImageMGAPSOBFOHSABC
Fitness valueThreshold valuesFitness valueThreshold valuesFitness valueThreshold valuesFitness valueThreshold valuesFitness valueThreshold values
101085212.8467831188 17212.8470819190 17212.8470819190 17212.8470819190 17212.8470819190 172
315.9623961574 126 18015.9631189376 128 18015.9542533678 134 18015.9633710374 127 18015.9633710374 127 180
418.9533067140 95 133 18219.0101921540 88 135 18919.0057046840 90 136 18519.0136655640 88 138 18919.0136655640 88 138 189
521.6998066240 83 115 162 19921.7292470940 88 128 164 20021.7052595437 76 119 161 20221.7447554237 83 122 161 19621.7447554237 83 122 161 196
Wherry212.17769204105 16312.17769204105 16312.17769204105 16312.17769204105 16312.17769204105 163
315.12987155105 148 19115.1412828299 148 19015.14168887100 148 19015.14171160100 148 19115.14171160100 148 191
417.9299161854 104 152 20418.0011252954 109 148 18917.9373582249 111 148 19518.0046513854 105 148 19118.0046513854 105 148 191
520.6613535356 110 159 204 23820.6773796948 84 118 148 19220.6167826173 113 156 201 23820.6963383648 85 120 152 19320.6963383648 85 120 152 193
Snake212.3851623787 17112.3851623787 17112.3851623787 17112.3851623787 17112.3851623787 171
315.5589301582 150 19515.5691178081 146 19515.5614719981 144 19115.5691178081 146 19515.5691178081 146 195
418.4754873870 121 160 19918.5034612072 117 163 20418.5048872272 119 163 20418.5057816375 121 164 20418.5057816375 121 164 204
521.1848197471 113 146 177 20921.2150000962 98 136 175 21121.1782074868 115 150 184 21521.2231888965 103 142 177 21221.2231888965 103 142 177 212
Zebra212.2584597893 16912.2584597893 16912.2584597893 16912.2584597893 16912.2584597893 169
315.3337076688 135 17915.3383141689 134 17915.3071089193 145 18815.3383141689 134 17915.3383141689 134 179
418.1650384349 93 133 17718.1688143849 92 135 18118.1792476849 93 136 17918.1792476849 93 136 17918.1792476849 93 136 179 0
520.8746473349 93 145 176 21020.9708952350 90 131 167 20620.8988416149 93 134 162 20920.9967433749 93 132 169 20420.9967433749 93 132 169 204
Butterfly212.68395909110 17412.68395909110 17412.68395909110 17412.68395909110 17412.68395909110 174
315.7994571676 122 17615.8010322175 123 17615.8017674174 123 17615.8017674174 123 17615.8017674174 123 176
418.7644236771 127 171 21818.7981558475 123 172 21718.7614783976 123 170 21118.8042199374 121 171 21718.8042199374 121 171 217
521.3807424367 99 133 179 22421.4671196057 97 134 173 21721.3667313456 84 128 169 20821.4825431860 96 133 174 21721.4825431860 96 133 174 217
Bird212.0884369491 16812.0884369491 16812.0884369491 16812.0884369491 16812.0884369491 168
315.1928508365 117 17415.1989615765 117 17315.1989638565 116 17315.1989638565 116 17315.1989638565 116 173
417.9811447155 97 141 18117.9824266956 98 144 18317.9624058752 92 133 17317.9826235855 98 144 18317.9826235855 98 144 183
520.5577816341 77 107 148 18320.5789802947 79 115 149 18120.5216455659 96 126 155 18320.6040569446 79 113 151 18320.6040569446 79 113 151 183
Landscape211.5513042596 14811.5513042596 14811.5513042596 14811.5513042596 14811.5513042596 148
314.5060205096 159 19614.5114992296 160 19614.4681514577 128 19614.5157391196 161 19614.5157391196 161 196
417.2854627781 120 162 19617.3179219475 120 162 19617.2142982391 124 161 19517.3292065475 123 162 19617.3292065475 123 162 196
519.8885443525 59 99 161 19619.8570696924 57 115 162 19619.7588840829 57 111 157 19919.9117899325 59 106 161 19619.9117899325 59 106 161 196
Ostrich212.37287657119 17112.37287657119 17112.37287657119 17112.37287657119 17112.37287657119 171
315.4661517673 122 17115.4655018073 119 17115.4571494773 122 17715.4661517673 122 17115.4661517673 122 171
418.1300139873 119 154 19718.1288791777 119 155 19718.1309592728 74 122 17418.1390218672 119 155 19718.1390218672 119 155 197
520.7224161928 64 113 148 19020.7686881728 69 120 165 20420.6985739057 90 119 152 19220.8051822028 74 119 155 19720.8051822028 74 119 155 197
86016211.51653374100 14511.51653374100 14511.51653374100 14511.51653374100 14511.51653374100 145
314.2163950398 139 17314.2163950398 139 17314.2163950398 139 17314.2163950398 139 17314.2163950398 139 173
416.6993051283 111 142 17316.7003543984 113 142 17716.6934296686 115 146 17916.7041219784 112 142 17616.7041219784 112 142 176
519.0384547063 98 128 153 17919.0154706763 88 113 139 17419.0158544381 107 133 154 18419.0497482563 90 118 146 17719.0497482563 90 118 146 177
Baboon212.1961331981 14412.1961331981 14412.1961331981 14412.1961331981 14412.1961331981 144
315.2221286656 106 15615.2230682251 103 15315.2226062356 105 15515.2230942251 103 15415.2230942251 103 154
417.9827299644 92 129 16318.0138952243 81 121 16317.9773639542 74 110 15318.0144592343 83 122 16318.0144592343 83 122 163
520.6145498033 74 105 136 17120.6383936037 70 104 142 17520.6278934938 72 103 133 16620.6540706138 72 106 139 17220.6540706138 72 106 139 172
Lake212.4500878194 16312.4500878194 16312.4500878194 16312.4500878194 16312.4500878194 163
315.4588465079 124 17015.4635971875 120 16915.4636627175 121 16915.4636627175 121 16915.4636627175 121 169
418.2354388674 115 159 19318.2419094071 111 155 19218.1879350975 125 165 19418.2449702572 113 156 19418.2449702572 113 156 194
520.8682931465 97 132 169 19720.8509531166 93 128 165 19720.7669689349 83 120 157 19220.8811411566 99 133 166 19720.8811411566 99 133 166 197
Woman212.6616089796 16812.6616089796 16812.6616089796 16812.6616089796 16812.6616089796 168
315.7349310372 124 17715.7383259675 126 17715.7384351176 126 17715.7384351176 126 17715.7384351176 126 177
418.5302759757 93 136 18118.5448357359 98 141 18518.5270337357 95 143 18918.5460337861 100 142 18518.5460337861 100 142 185
521.1529922261 100 138 179 20721.2092935861 96 133 174 21121.1767691766 95 132 171 21021.2233720958 95 133 172 21021.2233720958 95 133 172 210
Table 4

The Best Thresholds and the Corresponding Best Fitness Obtained from the Between-Class Variance Based Methods for Real Images.

ImageMGAPSOBFOHSABC
Fitness valueThreshold valuesFitness valueThreshold valuesFitness ValueThreshold valuesFitness valueThreshold valuesFitness valueThreshold values
10108522755.8078060795 1692755.8078060795 1692755.8078060795 1692755.8078060795 1692755.8078060795 169
32959.8093589360 113 1862960.7306294761 114 1832960.7719405760 113 1822960.7719405760 113 1822960.7719405760 113 182
43059.6911030753 95 144 2083063.4794602952 92 140 1973055.2823107951 98 136 1893063.4996385752 92 139 1973063.4996385752 92 139 197
53112.2545343547 82 114 153 2053115.0466015643 70 106 147 2013109.9241217846 77 116 162 2203115.7535516844 73 108 150 2023115.7535516844 73 108 150 202
Wherry23083.79418431110 1883083.79418431110 1883083.79418431110 1883083.79418431110 1883083.79418431110 188
33326.36233191104 157 2173326.63346304102 158 2163326.67830302103 158 2163326.67830302103 158 2163326.67830302103 158 216
43390.3801797784 120 161 217 03390.2402596585 120 162 2183385.2528270587 123 156 2103390.4792853085 121 161 2173390.4792853085 121 161 217
53420.6600229387 119 148 174 2183422.1631588282 116 149 179 2253416.5200710280 111 149 180 2123422.8785165883 118 149 179 2223422.8785165883 118 149 179 222
Snake21110.0201731687 1341110.0201731687 1341110.0201731687 1341110.0201731687 1341110.0201731687 134
31219.1998217378 114 1511219.8483287077 114 1531219.8483287077 114 1531219.8483287077 114 1531219.8483287077 114 153
41274.0941642370 102 129 1671274.2520142369 101 129 1661274.2910414270 101 129 1661274.2910414270 101 129 1661274.2910414270 101 129 166
51296.7596328361 88 114 132 1601303.1274874264 90 111 136 1711300.5245108757 84 108 136 1751303.7939096064 91 114 139 1731303.7939096064 91 114 139 173
Zebra2817.6429152194 141817.6429152194 141817.6429152194 141817.6429152194 141817.6429152194 141
3915.1030429790 125 173915.1030429790 125 173915.0748431990 125 172915.1030429790 125 173915.1030429790 125 173
4964.9318796981 109 135 182964.6807219581 110 137 186956.5866745874 102 127 167964.9359153382 110 136 183964.9359153382 110 136 183
5984.8093668278 107 123 152 195989.4756797575 100 121 146 194987.0145000479 105 127 152 189990.0481547475 99 119 142 187990.0481547475 99 119 142 187
Butterfly23519.3692558985 1543519.3692558985 1543519.3692558985 1543519.3692558985 1543519.3692558985 154
33645.6137403779 135 1883646.0199675180 137 1893646.0199675180 137 1893646.0199675180 137 1893646.0199675180 137 189
43710.7496998365 103 153 1983711.0905593369 107 152 1953710.2909166574 115 159 2013712.0571461867 103 150 1963712.0571461867 103 150 196
53751.6277261664 97 127 164 1953759.0031230157 89 126 168 2013754.4590737062 90 135 179 2123760.3390454559 90 128 169 2053760.3390454559 90 128 169 205
Bird22535.4504989090 1602535.4504989090 1602535.4504989090 1602535.4504989090 1602535.4504989090 160
32611.2968748477 136 1782611.8772978979 135 1792611.8772978979 135 1792611.8772978979 135 1792611.8772978979 135 179
42649.6122940263 104 145 1822649.6235522459 100 142 1812649.4319055962 102 143 1822649.6864478459 99 143 1812649.6864478459 99 143 181
52667.4934221353 92 131 167 1902668.0424262457 94 135 173 1942667.5471215355 95 138 168 1892668.3410431357 96 136 170 1922668.3410431357 96 136 170 192
Landscape24419.7906211356 1464419.7906211356 1464419.7906211356 1464419.7906211356 1464419.7906211356 146
34720.6513874649 111 1734721.1500088449 108 1724721.1885355549 109 1734721.1885355549 109 1734721.1885355549 109 173
44782.3142153747 96 136 1884783.6432896444 90 130 1824783.1043076647 95 133 1844783.7833121544 89 129 1804783.7833121544 89 129 180
54823.2906369342 80 106 139 1874823.2772760841 79 107 136 1814823.7881383642 80 107 139 1824823.8042657442 80 108 139 1824823.8042657442 80 108 139 182
Ostrish21035.4280986074 1321035.4280986074 1321035.4280986074 1321035.4280986074 1321035.4280986074 132
31099.3160627868 99 1451099.3738040867 98 1451099.3738040867 98 1451099.3828537767 98 1441099.3828537767 98 144
41139.8411319163 90 123 1751139.6749236764 91 125 1741137.1682048358 83 121 1811139.9706529962 89 124 1761139.9706529962 89 124 176
51168.6481448152 75 98 129 1781167.5967327654 76 96 127 1781162.6914402759 77 99 133 1931168.7197673051 74 98 129 1791168.7197673051 74 98 129 179
8601621236.70799926121 1681236.70799926121 1681236.70799926121 1681236.70799926121 1681236.70799926121 168
31289.70039209108 147 1741289.94189074105 145 1741289.86634556106 146 1741289.94189074105 145 1741289.94189074105 145 174
41320.7254266393 128 161 1801321.5987580191 125 157 1781319.6859929391 133 160 1791321.7426038092 127 157 1781321.7426038092 127 157 178
51336.2441135793 126 149 165 1821337.1277298291 121 149 168 1831335.2176287690 126 153 172 1881337.3492866690 121 149 167 1831337.3492866690 121 149 167 183
Baboon21539.8460567697 1491539.8460567697 1491539.8460567697 1491539.8460567697 1491539.8460567697 149
31629.3779505086 125 1611629.3003213986 126 1621629.3779505086 125 1611629.3779505086 125 1611629.3779505086 125 161
41680.8353637877 106 137 1671682.1257359172 105 135 1681682.1385917874 108 139 1701682.6701110972 106 137 1681682.6701110972 106 137 168
51707.4641119167 97 124 146 1741707.4686593363 95 122 146 1731706.7222951670 97 126 148 1731708.2100266468 99 125 149 1741708.2100266468 99 125 149 174
Lake23741.3454171588 1553741.3454171588 1553741.3454171588 1553741.3454171588 1553741.3454171588 155
33875.9030992283 142 1933876.9452252380 140 1933876.9144660879 139 1923876.9462474979 139 1933876.9462474979 139 193
43942.3660213269 112 157 1943942.9655759371 115 160 1983942.9586160170 113 157 1963943.2688406969 112 158 1973943.2688406969 112 158 197
53973.3706114953 77 116 161 1983976.3508221056 87 129 166 1983969.7685801368 106 137 165 1973977.3440421260 90 128 166 1993977.3440421260 90 128 166 199
Women22604.6381954882 1472604.6381954882 1472604.6381954882 1472604.6381954882 1472604.6381954882 147
32780.7629808875 128 1762780.7791125875 127 1762780.7791125875 127 1762780.7791125875 127 1762780.7791125875 127 176
42849.0651659569 113 146 1852851.6596993966 107 142 1812846.3365945958 99 136 1762851.7860235566 106 142 1822851.7860235566 106 142 182
52882.9461307060 86 113 147 1872886.3074622656 86 117 147 1832885.0013349752 84 118 149 1862886.4519557057 88 118 148 1842886.4519557057 88 118 148 184
Table 5

The Best Thresholds and the Corresponding Best Fitness Obtained from the Tsallis Based Methods for Real Images.

ImageMGAPSOBFOHSABC
Fitness valueThreshold valuesFitness valueThreshold valuesFitness valueThreshold valuesFitness valueThreshold valuesFitness valueThreshold values
10108520.8888845488 1420.8888845488 1420.8888845488 1420.8888845488 1420.8888845488 142
31.2962762651 99 1471.2962762651 99 1471.2962762551 97 1471.2962762651 99 1471.2962762651 99 147
41.6542734953 95 131 1651.6542768151 87 124 1611.6542689751 94 130 1711.6542773151 88 125 1611.6542773151 88 125 161
51.9957896732 58 98 133 1651.9957947833 67 101 131 1641.9957856940 69 100 133 1731.9957958540 74 105 135 1661.9957958540 74 105 135 166
Wherry20.8888730585 1220.8888730585 1220.8888730585 1220.8888730585 1220.8888730585 122
31.2962323479 113 1481.2962348382 114 1451.2962281576 104 1411.2962348382 114 1451.2962348382 114 145
41.6541660986 120 150 1751.6541766076 100 122 1481.6541730772 96 122 1571.6541787473 98 122 1491.6541787473 98 122 149
51.9956339376 96 126 150 1741.9956437174 97 125 152 1731.9956077248 84 118 150 1731.9956586373 98 122 148 1731.9956586373 98 122 148 173
Snake20.8888821291 1710.8888821291 1710.8888821291 1710.8888821291 1710.8888821291 171
31.2962786077 124 1791.2962786775 122 1771.2962785075 122 1801.2962786877 122 1771.2962786877 122 177
41.6542798370 109 147 1911.6542802672 111 147 1951.6542807571 111 151 1951.6542807571 111 151 1951.6542807571 111 151 195
51.9958031059 89 118 154 2021.9958084763 101 132 166 2041.9958091662 95 128 164 1981.9958098764 98 130 165 2021.9958098764 98 130 165 202
Zebra20.8888812393 1690.8888812393 1690.8888812393 1690.8888812393 1690.8888812393 169
31.2962685889 132 1761.2962686291 132 1761.2962670588 132 1701.2962686291 132 1761.2962686291 132 176
41.6542461672 101 134 1761.6542462274 102 136 1761.6542461476 105 136 1761.6542468374 102 134 1761.6542468374 102 134 176
51.9957269669 93 122 155 1961.9957429674 100 132 167 1981.9957179271 104 127 169 1931.9957470974 102 132 162 1941.9957470974 102 132 162 194
Butterfly20.88888526113 1740.88888526113 1740.88888526113 1740.88888526113 1740.88888526113 174
31.2962839674 121 1711.2962841476 123 1741.2962841476 123 1741.2962841476 123 1741.2962841476 123 174
41.6542840374 117 163 2011.6542845079 121 160 2011.6542833879 125 169 2041.6542851274 118 159 2001.6542851274 118 159 200
51.9958107564 101 133 168 2081.9958157164 95 136 171 2041.9958005658 89 123 154 1851.9958167465 97 134 169 2041.9958167465 97 134 169 204
Bird20.8888709966 1170.8888709966 1170.8888709966 1170.8888709966 1170.8888709966 117
31.2962526462 109 1621.2962532158 100 1561.2962531859 100 1541.2962532659 102 1561.2962532659 102 156
41.6542419050 87 132 1721.6542429449 82 117 1681.6542409849 81 116 1591.6542432950 83 117 1641.6542432950 83 117 164
51.9957484146 75 102 147 1811.9957492245 75 100 140 1721.9957396348 72 97 143 1731.9957518246 75 102 141 1731.9957518246 75 102 141 173
Landscape20.8888505896 1370.8888505896 1370.8888505896 1370.8888505896 1370.8888505896 137
31.2961857196 126 1551.2961856495 127 1551.2961747188 124 1551.2961860395 126 1551.2961860395 126 155
41.6541219991 127 161 1951.6541298195 134 162 1961.6541067895 141 166 1961.6541346995 127 161 1961.6541346995 127 161 196
51.9955451283 110 140 162 1921.9955745577 107 134 162 1961.9955238374 100 127 148 1961.9955800575 104 134 162 1961.9955800575 104 134 162 196
Ostrich20.88888197122 1710.88888197122 1710.88888197122 1710.88888197122 1710.88888197122 171
31.2962760574 122 1711.2962760875 122 1711.2962750072 125 1721.2962760875 122 1711.2962760875 122 171
41.6542559261 88 129 1711.6542555460 87 131 1711.6542566660 88 123 1711.6542569660 86 123 1711.6542569660 86 123 171
51.9957583564 89 123 148 1811.9957668962 87 120 149 1871.9957536860 88 123 171 2001.9957716960 86 119 150 1881.9957716960 86 119 150 188
8601620.8888776699 1420.8888776699 1420.8888776699 1420.8888776699 1420.8888776699 142
31.2962491997 138 1731.29624958100 138 1731.29624958100 138 1731.29624958100 138 1731.29624958100 138 173
41.6542108388 113 142 1761.6542124487 111 139 1721.6542111988 113 142 1721.6542129787 112 139 1731.6542129787 112 139 173
51.9956429281 102 126 158 1791.9956596886 108 128 154 1791.9956422489 112 132 159 1821.9956669584 107 130 154 1771.9956669584 107 130 154 177
Baboon20.8888838892 1470.8888838892 1470.8888838892 1470.8888838892 1470.8888838892 147
31.2962768872 111 1551.2962768872 112 1571.2962768872 112 1571.2962769072 112 1561.2962769072 112 156
41.6542719666 98 136 1691.6542722471 103 136 1671.6542661057 99 140 1711.6542730466 101 135 1671.6542730466 101 135 167
51.9957882651 83 114 143 1711.9957875151 77 110 140 1691.9957727258 95 119 144 1701.9957901255 83 111 141 1701.9957901255 83 111 141 170
Lake20.8888838895 1560.8888838895 1560.8888838895 1560.8888838895 1560.8888838895 156
31.2962785979 123 1681.2962786177 121 1681.2962785579 124 1681.2962786177 122 1681.2962786177 122 168
41.6542744267 104 140 1701.6542758367 102 136 1701.6542714074 110 153 1931.6542759569 103 136 1701.6542759569 103 136 170
51.9957911267 100 130 155 1941.9957924866 99 138 168 1971.9957970269 102 132 163 1961.9957974566 97 128 160 1951.9957974566 97 128 160 195
Woman20.8888860497 1680.8888860497 1680.8888860497 1680.8888860497 1680.8888860497 168
31.2962849377 126 1751.2962849676 125 1751.2962848281 129 1771.2962849676 125 1751.2962849676 125 175
41.6542885959 102 146 1841.6542902861 98 137 1781.6542903259 97 138 1841.6542905560 97 137 1811.6542905560 97 137 181
51.9958159159 86 113 148 1881.9958203056 87 123 156 1911.9958155756 89 118 148 1961.9958221456 88 120 152 1901.9958221456 88 120 152 190

The results in these three tables indicate that all the methods performed equally when the number of thresholds M is equal to two. When the number M increases, numerical results indicate that HS and ABC metaheuristics have equal performance and outperforms the GA, BFO, and PSO algorithms for all real images and for the number of thresholds.

Apart from quality measurement, feature measurement assessment (FSIM and SSIM) obtained by each algorithm for the three objective functions are also checked and presented in Tables 68. It can be evidently realized from these tables that HS and ABC achieve the same quality of solutions in terms of FSIM and SSIM.

Table 6

SSIM, FSIM Metrics, and CPU Time of Real Images Segmented with the Thresholds Yielding the Best Kapur Entropy.

ImageMSSIMFSIMCPU Time (s)
GApsoBFOHSABCGAPSOBFOHSABCGAPSOBFOHSABC
10108520.56200.56200.56200.56200.56200.66060.66060.66060.66060.66061.9259323.1817867.5007853.1664843.014616
30.65420.67530.66610.67610.67610.73630.74160.73920.74180.74181.9512183.2442627.8193563.2474703.025735
40.75080.77650.77250.77720.77720.81260.82790.82380.82990.82992.0225513.2608138.0708793.5390063.026400
50.79940.80580.80090.82210.82210.85940.86270.86180.87380.87382.1611123.2853468.4601213.5628603.183831
Wherry20.67950.67950.67950.67950.67950.74900.74900.74900.74900.74901.7961983.1538367.1078073.0735052.942544
30.70160.70390.70390.71350.71350.78370.78650.78680.78830.78831.8141203.2004897.8216413.1406632.948493
40.71890.71930.71930.72670.72670.79700.80490.80130.80740.80741.8211433.2237667.8403063.2400362.968170
50.74710.78630.78440.79380.79380.83280.84180.84150.86760.86761.8508653.2594207.8593573.3026732.972394
Snake20.58270.58270.58270.58270.58270.65410.65410.65410.65410.65411.7712913.2237766.2024393.1061363.780838
30.67540.70250.69180.70250.70250.74040.76160.75440.76160.76161.7908903.2770986.6339863.1854523.785939
40.79310.79360.79400.79600.79600.83570.83570.83700.83860.83861.8158543.2463157.4762303.3039353.815253
50.82360.83490.83460.84010.84010.86310.87940.87130.88310.88311.8288973.2496518.1455823.3275803.854868
Zebra20.60640.60640.60640.60640.60640.69300.69300.69300.69300.69301.7692253.1399526.1745343.0497032.919237
30.72840.75170.74670.75170.75170.78850.79950.79800.79950.79951.8004873.1719356.3322123.1436382.927716
40.75980.76430.76430.76910.76910.81730.81950.81990.81990.81991.8111503.1922636.4699813.2192942.935833
50.73740.79010.78990.79640.79640.80980.83990.83950.84250.84251.8487243.2473376.7075753.3206252.954885
Butterfly20.73190.73190.73190.73190.73190.70840.70840.70840.70840.70841.8075853.1855667.5524553.0789962.952397
30.84300.84300.84320.84320.84320.80610.80730.81020.81020.81021.8202233.2258768.6452393.1930722.954164
40.88770.89530.89490.89600.89600.87160.87310.87190.87350.87351.8576223.2288339.7516823.2718462.968446
50.91340.92030.91620.92090.92090.89090.90480.90390.91060.91061.8903103.26910610.3928163.3454373.001206
Bird20.87080.87080.87080.87080.87080.82330.82330.82330.82330.82331.7687403.1171596.6443873.0392702.896517
30.89140.89200.89240.89240.89240.87920.87980.88000.88000.88001.7724883.1670306.7952713.1333872.902262
40.88900.88910.88900.90270.90270.89320.89430.89430.90130.90131.8109743.1911517.0550273.2482482.932165
50.89350.89530.89490.90000.90000.89640.90710.90660.91060.91061.8482003.2393747.5127483.2509572.937233
Landscape20.63140.63140.63140.63140.63140.75660.75660.75660.75660.75661.7487723.1234016.4382423.0463162.890496
30.68020.68110.68020.69540.69540.79230.79980.79980.80020.80021.7905203.1795726.5713383.1127602.903656
40.69400.70380.70220.70490.70490.80640.81090.81020.82210.82211.8274483.1896467.1573813.1973452.930407
50.78510.79010.78830.79560.79560.86080.87170.86530.87290.87291.8652163.2294297.9320493.2796162.943174
Ostrish20.66000.66000.66000.66000.66000.68910.68910.68910.68910.68911.7867783.1951107.2945993.0593992.912949
30.75180.75220.75220.75410.75410.75410.75410.75410.75680.75681.8153943.2176087.7610643.1199832.934800
40.75440.76870.76870.77550.77550.76320.77480.77480.78410.78411.8059313.2383899.0967873.2100602.937893
50.75960.77210.76070.78450.78450.77060.78580.77580.81270.81271.8633773.44802810.0457203.2872022.965421
8601620.60260.60260.60260.60260.60260.71610.71610.71610.71610.71611.6350542.9924767.2082452.9422712.762586
30.71550.71550.71550.71550.71550.79260.79260.79260.79260.79261.6444863.0431417.9547423.0051132.766385
40.75240.75970.75900.77140.77140.84050.84460.84460.84760.84761.6693773.0857858.3561143.0957272.799333
50.75210.77620.77730.80370.80370.84410.84480.85030.88310.88311.6862413.1037988.8005513.1584082.810344
Baboon20.78490.78490.78490.78490.78490.85260.85260.85260.85260.85261.7173693.1050959.1292543.1097273.271364
30.82640.82730.82730.83270.83270.88310.88400.88400.88850.88851.7516913.1134139.1525203.1242473.251666
40.83900.86170.86000.87010.87010.89270.90790.90650.90840.90841.7668953.1195349.8982933.1729443.316692
50.88930.89900.89650.90120.90120.91960.92810.92490.93120.93121.7915913.13669210.1394593.2848853.330640
Lake20.78650.78650.78650.78650.78650.82900.82900.82900.82900.82901.7304463.0859937.5886673.1316623.165144
30.82630.83490.83530.83530.83530.86520.87300.87320.87320.87321.7779403.1336408.5117883.1794963.257353
40.86770.87650.87270.87730.87730.89470.90090.89780.90150.90151.7810423.1545798.8656373.2331493.312249
50.89240.90240.90070.90440.90440.92290.92440.92300.92670.92671.8118953.2032559.7453943.4572263.389604
Women20.72140.72140.72140.72140.72140.77940.77940.77940.77940.77941.7517023.0913858.3265823.0802933.223500
30.80890.80890.81040.81040.81040.84390.84390.84750.84750.84751.7882923.1515228.3896173.2490693.273957
40.85490.85610.85610.85660.85660.88180.88220.88210.88240.88241.7958233.1740999.1597233.4298033.303330
50.87890.88390.87930.88490.88490.89720.90470.90400.90600.90601.8212743.1750969.2827273.5673323.344907
Table 7

SSIM, FSIM Metrics, and CPU Time of Real Images Segmented with the Thresholds Yielding the Best Between-Class Variance.

ImageMSSIMFSIMCPU time (s)
GAPSOBFOHSABCGAPSOBFOHSABCGAPSOBFOHSABC
10108520.54400.54400.54400.54400.54400.66030.66030.66030.66030.66031.0209952.3144383.0445732.3952772.095347
30.71160.71390.71570.71570.71570.75730.76280.76470.76470.76471.0799552.3265603.0710982.5792522.107340
40.77830.79520.78350.79550.79550.82260.83440.82630.83680.83681.0783662.3683583.1451672.6150612.149461
50.83280.84480.83760.84780.84780.86900.87170.87130.87450.87451.0900712.4051473.3270752.7512412.161365
Wherry20.64980.64980.64980.64980.64980.74030.74030.74030.74030.74030.9958612.3063783.0574722.3906892.079305
30.70710.70950.71390.71390.71390.78770.78800.78840.78840.78841.0464022.3168613.1621982.5433402.123097
40.78310.78610.78550.79310.79310.83570.83840.83840.83930.83931.0548912.3685613.2544862.5624962.129340
50.80580.81710.81520.81760.81760.85370.86210.86190.86240.86241.1210712.4028873.4672692.7577982.149760
Snake20.59630.59630.59630.59630.59630.66230.66230.66230.66230.66230.9792162.3262123.0129242.5016552.464317
30.73590.74230.74230.74230.74230.76390.77270.77270.77270.77271.0126812.3409473.0150322.6189462.535711
40.82450.82450.82540.82540.82540.84030.84030.84250.84250.84251.0321522.3680833.0683642.7674602.642108
50.83760.86420.86230.86820.86820.85200.87940.87480.88760.88761.0652492.4788853.3535972.9329052.889510
Zebra20.63870.63870.63870.63870.63870.70650.70650.70650.70650.70650.9662882.3349423.0258592.4279182.068493
30.76020.76240.76020.76240.76240.79410.79500.79410.79500.79501.0023852.3670293.1468842.6004792.133261
40.81440.82300.81810.82380.82380.84810.84910.84910.85020.85021.0476482.4002613.1397552.6578242.138341
50.86310.86570.86420.87800.87800.87600.88080.87990.88670.88671.0570382.5620873.2331583.0328222.140552
Butterfly20.78670.78670.78670.78670.78670.74080.74080.74080.74080.74080.9837652.3358713.0174442.4067992.076239
30.84550.84620.84620.84620.84620.81580.81770.81770.81770.81771.0001962.3510393.1336382.5895252.116139
40.87500.87860.87860.88750.88750.86130.86740.86620.87350.87351.0347712.3620613.1686922.5906812.133415
50.90020.91860.91430.92050.92050.87480.90710.90250.91130.91131.0633892.4556813.2836412.7394512.174935
Bird20.87570.87570.87570.87570.87570.82940.82940.82940.82940.82940.9615712.3271733.0278412.3777222.084553
30.87920.88130.88130.88130.88130.86230.86340.86340.86340.86341.0223072.3538643.0586562.5650412.128395
40.89080.89330.89100.89340.89340.89000.89360.89060.89370.89371.0287392.3777523.1251912.6070202.134124
50.89210.89600.89700.89760.89760.89470.89920.89520.89980.89981.1051462.4133943.1297392.7528882.137203
Landscape20.64650.64650.64650.64650.64650.77120.77120.77120.77120.77120.9641392.3069943.0334012.4181632.085491
30.75480.75550.75560.75560.75560.83810.83910.83950.83950.83951.0012582.3128513.0667682.4985542.129161
40.78050.78200.78200.79650.79650.86530.86550.86550.87150.87151.0397102.3438493.1211562.5743022.131255
50.83300.83450.83450.83720.83720.89210.89310.89310.89530.89531.0677772.4062573.1495232.7237632.137777
Ostrich20.68480.68480.68480.68480.68480.69250.69250.69250.69250.69250.9959932.3233282.9976502.3630142.079943
30.70930.70930.70990.71330.71330.74340.74340.74340.74610.74611.0058752.3616643.1063132.5748532.111293
40.77300.77390.77300.77730.77730.79230.79350.79230.79600.79601.0400342.3906923.1314432.6317782.134214
50.79460.79910.79570.80220.80220.82950.83270.83040.83290.83291.2070872.4108733.1590662.7659042.140974
8601620.61920.61920.61920.61920.61920.71520.71520.71520.71520.71520.9632352.2987553.0303012.4205752.081054
30.70720.71580.71370.71580.71580.76080.77580.77190.77580.77581.0167192.3019013.0638302.5615432.119711
40.79850.79920.79850.80370.80370.83760.83850.83760.84000.84001.0257602.3596103.0936132.6547632.125234
50.83830.84710.84550.85880.85880.85830.86970.86810.88950.88951.0813442.3902923.1491132.7479212.141562
Baboon20.80100.80100.80100.80100.80100.85010.85010.85010.85010.85010.9635662.2511993.0058782.5639032.525971
30.85080.85080.85360.85360.85360.88390.88390.88610.88610.88611.0208102.3083183.0548472.7780202.715676
40.88310.88740.88740.89020.89020.90220.90990.90990.91130.91131.0344412.3370153.1204032.8959922.857749
50.90570.90740.90670.90880.90880.91870.92340.92270.92420.92421.0606752.3721133.2889413.024602.943297
Lake20.79770.79770.79770.79770.79770.83530.83530.83530.83530.83531.0000622.2790803.0159102.7048252.643478
30.83780.84180.84110.84240.84240.86740.87170.87120.87220.87221.0207292.3132393.0811822.7315922.693297
40.87930.88300.88140.88400.88400.90610.90950.90760.91110.91111.0309862.3305753.1308623.0183112.918836
50.89610.90920.90690.91090.91090.91990.93540.93540.93820.93821.0634952.3655753.1684013.0875203.010329
Women20.72360.72360.72360.72360.72360.76430.78350.78350.78350.78350.9844412.2696563.0095362.3057612.280917
30.80920.80930.80930.80930.80930.84510.84530.84530.84530.84531.0190852.3466403.0924792.5036202.464204
40.85120.85390.85350.85420.85420.87800.87940.87940.88040.88041.0308192.3785063.1069202.6699352.641057
50.88000.88090.88070.88130.88130.89820.90160.90140.90490.90491.0574072.4092703.1397442.8809462.716838
Table 8

SSIM, FSIM Metrics, and CPU Time of Real Images Segmented with the Thresholds Yielding the Best Tsallis Entropy.

ImageMSSIMFSIMCPU time (s)
GAPSOBFOHSABCGAPSOBFOHSABCGAPSOBFOHSABC
10108520.54850.54850.54850.54850.54850.63040.63040.63040.63040.63042.6264212.7956458.4480973.7486623.745046
30.72490.72490.71870.72490.72490.74730.74730.74550.74730.74732.6346303.2222768.5781003.7971513.830164
40.77240.78450.78130.78720.78720.80450.80560.80450.82080.82082.6466733.9696738.6087133.9038884.086058
50.80830.81730.81540.84410.84410.83500.83640.83630.85700.85702.7668254.1791019.5230083.9909524.258310
Wherry20.55810.55810.55810.55810.55810.68240.68240.68240.68240.68242.5322953.8305929.2228873.7547333.570691
30.61840.69990.67070.69990.69990.74150.77770.76360.77770.77772.5355113.3460979.2677313.6309783.574615
40.72570.73420.73420.77970.77970.78900.79520.79520.81070.81072.5648973.9287879.4408483.6666553.602458
50.78180.80380.80140.80490.80490.81990.82500.82440.82680.82682.7620892.9857159.9531933.8000653.610382
Snake20.59900.59900.59900.59900.59900.66060.66060.66060.66060.66062.4341352.8947427.3386843.5103953.458902
30.74540.75210.75150.75360.75360.79240.79470.79470.79640.79642.4881263.1146137.3399453.5980883.487053
40.81500.81500.81500.81980.81980.85140.85200.85200.85570.85572.4958813.4204658.4141423.6464383.585258
50.85140.85550.85440.85770.85770.89030.89200.89190.89330.89332.5156183.5362098.5438533.7498743.946437
Zebra20.60640.60640.60640.60640.60640.69300.69300.69300.69300.69302.4394632.5859878.6167903.4708263.530787
30.75660.76500.75800.76500.76500.80290.80450.80330.80450.80452.4670313.2185968.7250993.6041653.550097
40.81200.81640.81460.82130.82130.85430.85500.85500.86020.86022.4732413.8186038.7534833.6493423.554340
50.82230.84080.83950.85330.85330.85630.87680.87510.88560.88562.5076063.8412208.8003433.7507953.623589
Butterfly20.72350.72350.72350.72350.72350.69820.69820.69820.69820.69822.5364362.9278248.0790853.5519073.618250
30.83890.84100.84100.84100.84100.79730.80100.80100.80100.80102.5495863.1340048.4818253.7573103.644737
40.88490.88660.88660.88870.88870.85480.86480.86050.86760.86762.5585203.9085049.0364583.9660963.673664
50.88240.91550.91450.91670.91670.85780.89560.89300.89730.89732.5735023.9244508.9862904.0434773.755942
Bird20.85360.85360.85360.85360.85360.82900.82900.82900.82900.82902.4308673.0469167.1443253.5043293.512970
30.89860.89920.89890.89930.89930.88460.88520.88460.88670.88672.4325053.2305467.7055843.5963683.530190
40.90390.90580.90500.90590.90590.90170.90360.90290.90410.90412.4531293.7429938.2838353.6751923.682864
50.89980.90780.90140.90900.90900.90790.90970.90930.91100.91102.4730803.8198538.8107693.7517243.734316
Landscape20.64020.64020.64020.64020.64020.77220.77220.77220.77220.77222.4145262.7498727.5407663.5014673.504882
30.65870.68060.68060.68360.68360.77290.78590.78540.78740.78742.4164653.1715978.4797763.5868813.505638
40.71420.72960.72220.73060.73060.82510.83180.82510.83190.83192.4526943.8410728.7524733.6936023.541409
50.73690.76250.76120.76550.76550.82850.84610.84470.84810.84812.4784593.8608458.7890893.7543903.554945
Ostrish20.65380.65380.65380.65380.65380.68460.68460.68460.68460.68462.4702053.2597088.6277863.5435333.541746
30.74770.75400.75350.75400.75400.74910.75790.75500.75790.75792.4715573.8230408.7118033.6227183.558267
40.75700.76350.77340.77550.77550.78280.78890.79210.79260.79262.4940433.8612838.7428843.7255353.567410
50.77990.79580.79330.80030.80030.80340.81820.81210.81890.81892.5103262.9164858.9120173.7625403.587248
8601620.59670.59670.59670.59670.59670.71020.71020.71020.71020.71022.1168863.4986447.8310903.2730183.199819
30.71080.71660.71660.71660.71660.78700.79680.79680.79680.79682.1196363.4992447.9280253.3607763.289376
40.74080.74420.74420.75820.75820.82760.83070.82850.83600.83602.1434382.8150327.9977563.4424613.298251
50.80680.80730.80690.82170.82170.85670.86050.85880.87270.87272.1611493.0897048.1412723.4860673.307082
Baboon20.79680.79680.79680.79680.79680.85310.85310.85310.85310.85312.3187192.7543267.2013274.7766353.346769
30.83590.83800.83800.83930.83930.88530.88670.88670.88830.88832.3390033.6778297.2182204.8124193.569012
40.88560.88650.88650.88840.88840.90900.91290.91290.91770.91772.4690033.7087667.7534934.8390043.606355
50.89670.89860.89750.89920.89920.91940.92390.92300.92460.92462.4808833.1832588.5976074.9490583.760195
Lake20.78630.78630.78630.78630.78630.82470.82470.82470.82470.82472.3947762.7012487.0790914.5190103.509786
30.82960.83390.82990.83390.83390.86530.86950.86540.86950.86952.4310633.0494468.4784104.6721463.643058
40.85240.85270.85240.87290.87290.88660.89020.88660.89570.89572.5436653.2331928.6028354.8347733.646600
50.89190.89540.89580.90200.90200.91270.91580.91580.92500.92502.8930603.2983478.8446124.9425813.798441
Women20.72000.72000.72000.72000.72000.77790.77790.77790.77790.77792.4530583.1403297.1590464.7978523.479849
30.80490.80700.80670.80700.80700.83860.84190.84100.84190.84192.4603203.1991598.3737624.8221583.630156
40.85210.85440.85680.85760.85760.87950.88170.88170.88240.88242.5747403.2697728.6990884.8732563.659901
50.87750.88000.87970.88070.88070.89980.90290.90250.90370.90372.6346723.3207698.7645214.9414153.819691

For visual evaluation, five segmented images by HS algorithm and their gray level histograms labeled with the best thresholds are given in Figures 26.

Figure 2: Results of Snake Image Using HS Algorithm.(A) Original snake image, (B) histogram of original image, (C–F) two-level to five-level thresholding-based segmented image with the best thresholds obtained from HS algorithm using Kapur’s entropy criterion, (G–J) two-level to five-level corresponding histogram labeled with the best threshold values obtained from HS algorithm based on the between-class variance criterion, (K–N) two-level to five-level thresholding-based segmented image with the best thresholds obtained from the HS algorithm using Tsallis entropy criterion.
Figure 2:

Results of Snake Image Using HS Algorithm.

(A) Original snake image, (B) histogram of original image, (C–F) two-level to five-level thresholding-based segmented image with the best thresholds obtained from HS algorithm using Kapur’s entropy criterion, (G–J) two-level to five-level corresponding histogram labeled with the best threshold values obtained from HS algorithm based on the between-class variance criterion, (K–N) two-level to five-level thresholding-based segmented image with the best thresholds obtained from the HS algorithm using Tsallis entropy criterion.

Figure 3: Results of Butterfly Image Using the HS Algorithm.(A) Original butterfly image, (B) histogram of original image, (C–F) two-level to five-level thresholding-based segmented image with the best thresholds obtained from the HS algorithm using Kapur’s entropy criterion, (G–J) two-level to five-level corresponding histogram labeled with the best threshold values obtained from the HS algorithm based on the between-class variance criterion, (K–N) two-level to five-level thresholding-based segmented image with the best thresholds obtained from the HS algorithm using Tsallis entropy criterion.
Figure 3:

Results of Butterfly Image Using the HS Algorithm.

(A) Original butterfly image, (B) histogram of original image, (C–F) two-level to five-level thresholding-based segmented image with the best thresholds obtained from the HS algorithm using Kapur’s entropy criterion, (G–J) two-level to five-level corresponding histogram labeled with the best threshold values obtained from the HS algorithm based on the between-class variance criterion, (K–N) two-level to five-level thresholding-based segmented image with the best thresholds obtained from the HS algorithm using Tsallis entropy criterion.

Figure 4: Results of Bird Image Using the HS Algorithm.(A) Original bird image, (B) histogram of original image, (C–F) two-level to five-level thresholding-based segmented image with the best thresholds obtained from the HS algorithm using Kapur’s entropy criterion, (G–J) two-level to five-level corresponding histogram labeled with the best threshold values obtained from the HS algorithm based on the between-class variance criterion, (K–N) two-level to five-level thresholding-based segmented image with the best thresholds obtained from the HS algorithm using Tsallis entropy criterion.
Figure 4:

Results of Bird Image Using the HS Algorithm.

(A) Original bird image, (B) histogram of original image, (C–F) two-level to five-level thresholding-based segmented image with the best thresholds obtained from the HS algorithm using Kapur’s entropy criterion, (G–J) two-level to five-level corresponding histogram labeled with the best threshold values obtained from the HS algorithm based on the between-class variance criterion, (K–N) two-level to five-level thresholding-based segmented image with the best thresholds obtained from the HS algorithm using Tsallis entropy criterion.

Figure 5: Results of 86010 Image Using the HS Algorithm.(A) Original 86010 image, (B) histogram of original image, (C–F) two-level to five-level thresholding-based segmented image with the best thresholds obtained from the HS algorithm using Kapur’s entropy criterion, (G–J) two-level to five-level corresponding histogram labeled with the best threshold values obtained from the HS algorithm based on the between-class variance criterion, (K–N) two-level to five-level thresholding-based segmented image with the best thresholds obtained from the HS algorithm using Tsallis entropy criterion.
Figure 5:

Results of 86010 Image Using the HS Algorithm.

(A) Original 86010 image, (B) histogram of original image, (C–F) two-level to five-level thresholding-based segmented image with the best thresholds obtained from the HS algorithm using Kapur’s entropy criterion, (G–J) two-level to five-level corresponding histogram labeled with the best threshold values obtained from the HS algorithm based on the between-class variance criterion, (K–N) two-level to five-level thresholding-based segmented image with the best thresholds obtained from the HS algorithm using Tsallis entropy criterion.

Figure 6: Results of Woman Image Using the HS Algorithm.(A) Original woman image, (B) histogram of original image, (C–F) two-level to five-level thresholding-based segmented image with the best thresholds obtained from the HS algorithm using Kapur’s entropy criterion, (G–J) two-level to five-level corresponding histogram labeled with the best threshold values obtained from the HS algorithm based on the between-class variance criterion, (K–N) two-level to five-level thresholding-based segmented image with the best thresholds obtained from the HS algorithm using Tsallis entropy criterion.
Figure 6:

Results of Woman Image Using the HS Algorithm.

(A) Original woman image, (B) histogram of original image, (C–F) two-level to five-level thresholding-based segmented image with the best thresholds obtained from the HS algorithm using Kapur’s entropy criterion, (G–J) two-level to five-level corresponding histogram labeled with the best threshold values obtained from the HS algorithm based on the between-class variance criterion, (K–N) two-level to five-level thresholding-based segmented image with the best thresholds obtained from the HS algorithm using Tsallis entropy criterion.

As the real-time applications need less running time in addition to high performance, the CPU time of each algorithm using Kapur’s entropy, between-class variance, and Tsallis entropy has been examined. The computation time for each evolutionary algorithm are listed in Tables 68, respectively. As indicated in these tables, computation time increases significantly as the threshold level increases. From these tables, it can be seen that algorithms based on between-class variance give the lowest CPU time. The results suggest that the BFO algorithm converges slowly, and the GA algorithm is the faster over all algorithms. We show also that the HS algorithm is scalable and that the running times of the algorithm seem to grow at a linear rate as the problem size increases.

4.2 Stability of Different Optimal Methods, With M = 2, 3, 4, 5

To analyze the efficiency and the stability of the algorithms, the mean and standard deviations of 35 runs for each objective function are presented in Tables 911. The mean μ and standard deviation σ are defined as:

Table 9

The Best, Mean, and Standard Deviation of Fitness Function Values Obtained by Kapur-Based Optimization Algorithms.

ImageMGAPSOBFOHSABC
Mean valuesSTD valuesMean valuesSTD valuesMean valuesSTD valuesMean valuesSTD valuesMean valuesSTD values
101085212.820521992.8359e−0212.845831233.0054e−0312.845172893.9222e−0312.847081919.0115e−1512.847081919.0115e−15
315.895908687.4504e−0215.953158761.3965e−0215.938370013.3002e−0215.960812665.4299e−0315.963352197.9894e−05
418.796973671.0375e−0118.947903889.0562e−0218.938788111.1407e−0119.013665563.6046e−1519.013665563.6046e−15
521.468393121.5845e−0121.587678262.2328e−0121.610400881.1957e−0121.741155362.6491e−0321.744219537.1273e−04
Wherry212.153039083.7110e−0212.176049587.9397e−0312.177261367.4561e−0412.177692041.0814e−1412.177692041.0814e−14
315.046147765.7512e−0215.124373862.1218e−0215.113486563.7017e−0215.141449811.5085e−0315.141711609.0115e−15
417.805402006.4345e−0217.905409338.1410e−0217.842875329.6233e−0218.004492875.6352e−0418.004651380.0000
520.460412441.3367e−0120.479247261.7394e−0120.472570251.1209e−0120.694654762.1249e−0320.696144356.0005e−04
Snake212.355088894.2193e−0212.384587868.9086e−0412.383614162.5109e−0312.385162379.0115e−1512.385162379.0115e−15
315.466182039.5839e−0215.559332841.0088e−0215.548841741.8697e−0215.569117801.2616e−1415.569117801.2616e−14
418.335242201.3709e−0118.463985575.0500e−0218.434508381.0573e−0118.505636951.3089e−0418.505767543.5025e−05
520.974820751.7652e−0121.016790662.3593e−0121.009948091.2891e−0121.219355642.6519e−0321.222134391.1098e−03
Zebra212.190844056.4763e−0212.255534123.1873e−0312.242940021.4160e−0212.258459781.8023e−1512.258459781.8023e−15
315.216415488.8548e−0215.315215443.8442e−0215.287157221.5450e−0215.338314163.6046e−1515.338314163.6046e−15
417.979808121.2115e−0118.083454687.1347e−0218.122841016.0147e−0218.168870009.6622e−0318.179247683.6046e−15
520.572667101.9029e−0120.767492831.7872e−0120.772688381.0913e−0120.996707902.0986e−0420.996743377.2092e−15
Butterfly212.658699664.2193e−0212.682806531.0218e−0312.678498636.1895e−0312.683959099.0115e−1512.683959099.0115e−15
315.700164239.5839e−0215.793768669.0072e−0315.788250392.8347e−0215.801514062.9681e−0415.801767411.8023e−15
418.589601981.3709e−0118.749516988.3358e−0218.720556298.1618e−0218.804219937.2092e−1518.804219937.2092e−15
521.181510411.7652e−0121.282608602.1134e−0121.295885305.7040e−0221.477481824.2979e−0321.482275378.1304e−04
Bird212.067447066.4763e−0212.088026394.6864e−0412.085967676.4333e−0312.088361042.8089e−0412.088436945.4069e−15
315.076687038.8548e−0215.187386131.4975e−0215.180960401.6986e−0215.198963850.000015.198963850.0000
417.819013461.2115e−0117.956163832.7384e−0217.948908671.4248e−0217.981330781.0827e−0317.982595118.2385e−05
520.305847231.9029e−0120.371423892.4438e−0120.374463611.8397e−0120.603590955.4523e−0420.604011831.3332e−04
Landscape211.510061574.0292e−0211.549168186.7495e−0311.550855401.1155e−0311.551304259.0115e−1511.551304259.0115e−15
314.373396051.1754e−0114.450461424.7811e−0214.449307592.0120e−0214.515568531.0092e−0314.515711431.6376e−04
417.054311451.0296e−0117.187099391.2675e−0117.128972591.0431e−0117.329206540.000017.329206540.0000
519.501115641.8341e−0119.524389262.7615e−0119.563731271.5296e−0119.903521211.1960e−0219.911752262.2288e−04
Ostrich212.272991083.7674e−0212.351500726.3101e−0212.339676148.3363e−0212.372876577.2092e−1512.372876577.2092e−15
315.276427617.7389e−0215.451802871.6694e−0215.399772689.7116e−0215.466106251.2854e−0415.466151769.0115e−15
417.965009331.2190e−0118.027870481.2412e−0118.100487712.8778e−0218.137020982.3884e−0318.138983332.2795e−04
520.500019122.2370e−0120.573718581.5991e−0120.559203899.9762e−0220.799181381.7680e−0220.804739867.6301e−04
86016211.476723548.6621e−0211.516070755.9495e−0411.515576671.6505e−0311.516533743.6046e−1511.516533743.6046e−15
314.116834811.0990e−0114.210059637.0464e−0314.203512832.3007e−0214.216395037.2092e−1514.216395037.2092e−15
416.577051391.1601e−0116.642478168.8696e−0216.672834905.3986e−0216.702580601.8107e−0316.704121977.2092e−15
518.860656801.6979e−0118.908550931.2688e−0118.940084349.8987e−0219.037429471.2062e−0219.049669031.6809e−04
Baboon212.174194382.5380e−0212.195734431.6782e−0312.195350144.5921e−0312.196119871.8710e−0512.196133195.4069e−15
315.149626416.3201e−0215.216690671.8323e−0215.198937173.9751e−0215.222905661.8593e−0415.223094223.6046e−15
417.886351947.0055e−0217.970085076.8945e−0217.898359049.6202e−0218.013486849.3131e−0418.014383332.8964e−04
520.389593802.2099e−0120.511264591.3561e−0120.551990557.5954e−0220.653603448.0151e−0420.653976412.3340e−04
Lake212.426734242.7331e−0212.449621854.7934e−0412.448244211.0103e−0212.450087815.4069e−1512.450087815.4069e−15
315.359493196.9135e−0215.455396181.2938e−0215.453368862.3068e−0215.463662719.0115e−1515.463662719.0115e−15
418.087096361.0080e−0118.184193519.6761e−0218.146774182.7678e−0218.244388736.3402e−0418.244937151.6980e−04
520.621791651.4702e−0120.663856582.3620e−0120.729857623.4766e−0220.879099504.8462e−0320.880888824.4570e−04
Women212.629141774.0400e−0212.660306054.4834e−0312.661213821.0905e−0312.661608971.8023e−1512.661608971.8023e−15
315.651403516.2439e−0215.727267212.9291e−0215.733751765.6686e−0315.738377684.7575e−0515.738435111.2616e−14
418.404135651.0430e−0118.492254118.7040e−0218.488324313.5122e−0218.544734152.3362e−0318.546004546.6336e−05
521.006835791.1359e−0121.011247632.8521e−0121.093206525.1418e−0221.220088474.8344e−0321.223192213.4335e−04
Table 10

The Best, Mean and Standard Deviation of Fitness Function Values Obtained by Between-Class Variance-Based Optimization Algorithms.

ImageMGAPSOBFOHSABC
Mean valuesSTD valuesMean valuesSTD valuesMean valuesSTD valuesMean valuesSTD valuesMean valuesSTD values
10108522747.417759378.0044e+002755.599696078.7606e−012753.229293838.3490e+002755.807806071.3842e−122755.807806071.3842e−12
32933.621901361.8614e+012959.574897472.8494e+002956.776945131.0433e+012960.763266107.1861e−032960.771940571.3842e−12
43038.599544011.4014e+013055.305998151.3010e+013049.071274757.4326e+003063.499039063.5467e−033063.499638574.6139e−13
53090.237509501.8063e+013105.261553641.1863e+013101.358717088.6588e+003115.462826473.4656e−013115.735285702.8522e−02
Wherry23062.631686002.5984e+013082.218919636.2883e+003083.619277757.4872e−013083.794184312.3069e−123083.794184312.3069e−12
33294.097304043.4371e+013322.358699638.4946e+003311.314865723.7967e+013326.678303020.00003326.678303020.0000
43362.802402242.1296e+013384.752226911.1162e+013370.599415471.1761e+013390.477745806.1928e−033390.479285301.3842e−12
53397.344664831.4069e+013404.544570811.5054e+013401.916834788.4337e+003422.618282036.3124e−013422.869626792.0165e−02
Snake21100.084923171.0442e+011109.805328074.6743e−011109.998889174.7743e−021109.976052904.6139e−131110.020173166.9208e−13
31204.639616981.2847e+011218.200585773.4950e+001217.717390553.5976e+001219.848328708.0743e−131219.848328702.3069e−13
41255.370075011.2502e+011268.101077138.7244e+001270.258264031.0780e+011274.276316541.1580e−021274.291041421.1535e−12
51281.462614811.2303e+011291.806756941.1693e+011291.389268569.2023e+001303.629018621.6921e−011303.757972173.5298e−02
Zebra2805.437683181.4347e+01817.309140651.2563e+00816.022358823.6195e+00817.642915211.8455e−12817.642915214.6139e−13
3896.301397371.7342e+01911.739534781.1489e+01910.124971267.1447e+00915.103042971.2370e−02915.103042978.0743e−13
4948.905558411.1229e+01956.688149191.3499e+01951.617179545.2185e+00964.931850538.1686e−01964.935800026.8215e−04
5973.481052428.9206e+00978.782114471.3223e+01982.716007074.2504e+00989.848545552.7180e−02990.026877762.6965e−02
Butterfly23501.129961831.9504e+013519.167663703.0427e−013518.450134863.6278e+003519.369255891.2747e−123519.369255891.8455e−12
33618.535204432.0398e+013642.965554908.5487e+003642.319409391.2444e+013646.007421660.00003646.019967510.0000
43694.218739991.0996e+013698.498439972.0868e+013707.992532773.3170e+003711.329770882.8215e−023712.049212731.5745e−02
53729.689945461.7317e+013738.908653831.6254e+013745.940949741.0035e+013760.319321539.6896e−013760.332803581.1099e−02
Bird22524.917394511.5737e+012535.413555106.5092e−022534.741167033.8534e+002535.438969871.8455e−122535.450498904.6139e−13
32600.330618817.7778e+002610.643079693.1857e+002607.809847958.2055e+002611.877297890.00002611.877297890.0000
42636.501522858.4040e+002644.056176789.4044e+002643.760301793.9022e+002649.661374346.8165e−022649.686447840.0000
52655.600782328.6270e+002658.085943681.0564e+012664.700844292.4394e+002667.722635256.7924e−032668.306789842.5704e−02
Landscape24404.211997551.5824e+014419.731057901.1659e−014415.780535969.7574e+004419.790621132.3069e−134419.790621131.8455e−12
34680.255197782.9967e+014718.180063499.7768e+004718.907495241.2832e+004721.188535556.0303e−024721.188535550.0000
44764.416233851.7009e+014778.946131341.2416e+014780.141965843.1896e+004783.750308954.5076e−014783.783312153.6911e−12
54799.334061441.5701e+014814.053570971.4490e+014817.763278217.4472e+004823.802263551.8507e−014823.804265743.6911e−12
Ostrich21019.035678562.0916e+011035.216393978.3050e−011035.398277259.7406e−021035.428098604.6139e−131035.428098602.3069e−13
31083.352238982.1069e+011096.441265355.4144e+001093.738812399.9347e+001099.345438675.7429e−021099.382853779.2277e−13
41128.887363659.9764e+001131.031067771.2328e+011129.928522669.3165e+001139.836371742.0638e−021139.968125987.3686e−03
51149.810731461.1479e+011155.503627781.3927e+011153.042098576.8833e+001168.569665152.4331e−011168.698338582.8236e−02
8601621227.829857391.0181e+011236.520272656.7109e−011236.692851327.8639e−021236.707999263.4879e−081236.707999264.6139e−13
31280.938375349.4973e+001289.386891889.7991e−011287.113249347.6140e+001289.927956082.5285e−021289.941890746.9208e−13
41312.935115306.7801e+001318.133061705.8807e+001315.184838124.6107e+001321.721651411.2137e−021321.742603804.6139e−13
51327.553070566.4192e+001331.241277036.4873e+001331.216882264.3156e+001337.101359698.3182e−021337.336428242.7948e−02
Baboon21529.855934151.2920e+011539.437863001.7374e+001539.475090132.1947e+001539.798371142.3069e−121539.846056761.1535e−12
31618.006280331.0895e+011628.455252458.9986e−011623.793183669.4415e+001629.351690001.7050e−021629.377950500.0000
41662.759422301.3284e+011673.767684461.3519e+011677.814657975.5326e+001682.649639343.9298e−021682.669344004.5382e−03
51688.935714241.4031e+011697.841744029.6949e+001696.412153877.8716e+001707.902318003.6480e−021708.192093792.9005e−02
Lake23730.648350911.6479e+013741.238244871.6949e−013741.312557008.5346e−023741.313655062.3069e−123741.345417151.3842e−12
33853.785806821.7915e+013875.477912954.1545e+003875.359637093.0227e+003876.946072252.3069e−123876.946247491.3842e−12
43919.907270961.8419e+013936.963569871.2028e+013937.027034248.8277e+003943.255612802.3629e−013943.268840692.3069e−12
53954.842406611.3661e+013960.859529711.7562e+013960.794585697.1800e+003977.280482042.7131e−033977.343582029.8343e−04
Women22604.6381952.1537e+012604.146144982.1231e+002604.437308018.2807e−012604.638195481.8455e−122604.638195481.8455e−12
32780.7629812.6052e+012778.121865849.4845e+002777.125573459.6898e+002780.779112581.3842e−122780.779112581.3842e−12
42849.0651661.6122e+012844.440488381.1638e+012839.553019555.6739e+002851.721036508.5253e−022851.781382631.9963e−02
52882.9461311.6031e+012868.662375101.7940e+012877.320558891.2368e+012886.280529073.4555e−012886.426045103.5532e−02
Table 11

The Best, Mean, and Standard Deviation of Fitness Function Values Obtained by Tsallis-Based Optimization Algorithms.

ImageMGAPSOBFOHSABC
Mean valuesSTD valuesMean valuesSTD valuesMean valuesSTD valuesMean valuesSTD valuesMean valuesSTD values
10108520.888883401.5189e−060.888884491.3128e−070.888884501.2522e−070.888884540.0000000.888884540.0000
31.296269854.7905e−061.296275698.5467e−071.296275691.2244e−061.296276262.0534e−091.296276264.5057e−16
41.654258781.6277e−051.654272955.7070e−061.654256181.6011e−051.654277312.3359e−081.654277319.0115e−16
51.995712516.2935e−051.995747847.4098e−051.995732381.1691e−041.995795442.2544e−071.995795711.4426e−07
Wherry20.888867405.3247e−060.888872892.5928e−070.888872968.7936e−080.888873050.0000000.888873050.000000
31.296201594.3955e−051.296231893.2039e−061.296218241.0368e−051.296234836.7586e−161.296234836.7586e−16
41.654110925.3992e−051.654157052.9189e−051.654142894.0287e−051.654177141.7788e−061.654178736.6898e−08
51.995437431.8458e−041.995489521.9044e−041.995510891.6146e−041.995656965.9424e−061.995658601.0684e−07
Snake20.888881813.3345e−070.888882112.1207e−080.888882063.6556e−080.888882123.3793e−160.888882123.3793e−16
31.296274443.7883e−061.296278139.4122e−071.296277577.3879e−071.296278689.0115e−161.296278689.0115e−16
41.654269289.6244e−061.654274681.0835e−051.654276334.3316e−061.654280732.7678e−081.654280751.5770e−15
51.995773772.3209e−051.995785333.9213e−051.995794161.0011e−051.995809315.8628e−071.995809809.7110e−08
Zebra20.888879272.2132e−060.888881149.7922e−080.888881054.5131e−070.888881236.7586e−160.888881236.7586e−16
31.296255531.1570e−051.296267511.3878e−061.296264435.4213e−061.296268624.5057e−161.296268624.5057e−16
41.654216182.1955e−051.654234181.3341e−051.654219341.9017e−051.654246102.6210e−061.654246834.5057e−16
51.995623199.6830e−051.995685407.2716e−051.995688692.8146e−051.995745981.7186e−061.995747088.1398e−08
Butterfly20.888884944.3446e−070.888885224.5792e−080.888885181.2222e−070.888885262.1098e−080.888885263.3793e−16
31.296277936.9310e−061.296283772.5366e−071.296283491.3947e−061.296284140.0000001.296284140.000000
41.654273101.0294e−051.654278371.2865e−051.654273601.0379e−051.654284868.8394e−071.654285124.5057e−16
51.995742487.6556e−051.995788105.2309e−051.995781292.8925e−051.995816371.3700e−061.995816733.9199e−08
Bird20.888869561.5951e−060.888870991.5864e−080.888870461.2285e−060.888870992.2529e−160.888870992.2529e−16
31.296247365.3968e−061.296252638.3063e−071.296252646.8679e−071.296253262.8086e−101.296253266.7586e−16
41.654221882.0183e−051.654233331.7750e−051.654238388.0094e−061.654242924.9124e−071.654243296.7586e−16
51.995669811.0552e−041.995700218.0978e−051.995720152.3724e−051.995751076.1590e−071.995751523.8657e−07
Landscape20.888845795.6849e−060.888850231.3611e−060.888849205.7021e−060.888850581.1264e−160.888850581.1264e−16
31.296162051.5625e−051.296180206.3769e−061.296168841.3362e−051.296186036.7586e−161.296186036.7586e−16
41.654055176.9574e−051.654093652.1020e−051.654074125.2155e−051.654132051.0698e−051.654134692.7631e−09
51.995276852.5657e−041.995417322.4740e−041.995421591.9204e−041.995579921.9889e−071.995580051.2605e−08
Ostrich20.888879981.6353e−060.888881722.6141e−070.888881536.6187e−070.888881970.0000000.888881970.000000
31.296263531.4416e−051.296274811.4311e−061.296269821.1177e−051.296276084.5057e−161.296276084.5057e−16
41.654230492.1910e−051.654242831.9686e−051.654250378.1890e−061.654255861.4422e−061.654256964.5057e−16
51.995652326.1718e−051.995707158.2812e−051.995736401.9323e−051.995771602.6914e−071.995771692.5633e−08
8601620.888875752.2775e−060.888877627.4559e−080.888877551.6397e−070.888877663.3793e−160.888877663.3793e−16
31.296234181.5029e−051.296245637.1138e−061.296247941.8802e−061.296249580.0000001.296249580.000000
41.654165213.5282e−051.654182755.0246e−051.654197801.4510e−051.654212979.0115e−161.654212979.0115e−16
51.995517041.1625e−041.995532751.4827e−041.995616002.2566e−051.995665892.3373e−061.995666953.2370e−08
Baboon20.888883299.5040e−070.888883872.4052e−080.888883873.9486e−090.888883884.5057e−160.888883884.5057e−16
31.296270321.0629e−051.296276535.7277e−071.296275322.0892e−061.296276906.7586e−161.296276906.7586e−16
41.654258891.1422e−051.654265201.2979e−051.654255821.0554e−051.654272988.8313e−081.654273041.2521e−08
51.995715486.7792e−051.995750637.4421e−051.995763011.0776e−051.995789833.3858e−071.995790077.3425e−08
Lake20.888883593.5804e−070.888883871.2823e−080.888883867.6242e−080.888883883.3793e−160.888883883.3793e−16
31.296272376.3097e−061.296277951.7305e−061.296277975.2360e−071.296278616.7377e−091.296278614.5057e−16
41.654262041.0584e−051.654269566.2208e−061.654261702.7868e−051.654274971.2837e−061.654275954.9646e−09
51.995720755.1393e−051.995738791.0328e−041.995767072.7981e−051.995797224.7955e−071.995797425.9907e−08
Women20.888885684.2045e−070.888886023.5371e−080.888886001.3501e−070.888886045.6322e−160.888886045.6322e−16
31.296280734.5012e−061.296284651.1870e−061.296284061.2240e−061.296284961.5216e−101.296284966.7586e−16
41.654279719.1184e−061.654287496.5003e−061.654285231.5216e−051.654290462.3453e−071.654290552.2901e−09
51.995769133.3826e−051.995786983.6372e−051.995800151.4672e−051.995821417.9136e−071.995822095.5821e−08
(10)μ=i=1kσik,σ=1ki=1k(σiμ)2

where k is the number of runs for each stochastic algorithm (k = 30), σi is the best objective value obtained by the ith run of the algorithm.

From Tables 911, it can be seen that the variance values increase with the increasing numbers of the threshold; that is to say, the stability of the algorithms declines with the increasing number of the threshold. We can observe that the variance of HS and ABC are smaller than the variance of BFO, GA, and PSO algorithms for all the number of thresholds and for all images. The numerical results in Tables 911 indicate that for some images, the HS algorithm seems to be more sensible to the increase in the number of thresholds than the ABC algorithm.

A nonparametric statistical test known as the Wilcoxon’s rank sum test for independent samples [12, 35] has been conducted, with a 5% significance level to test if the algorithms used in this study have equal median values using between-class variance, Kapur or Tsallis entropy.

In the first experiment, the HS algorithm was chosen as the control algorithm and was compared with the GA, PSO, and BFO algorithms in terms of the mean value for each objective function. The number of cases investigated is 48 × 35 runs have been analyzed in total.

Table 12 reports the p-values produced by Wilcoxon’s test for the pair-wise comparison of three groups. Such groups are constituted by HS vs.GA, HS vs. PSO, and HS vs. BFO. As a null hypothesis, it is assumed that there is no significant difference between mean values of the four algorithms. The alternative hypothesis considers a significant difference between the four algorithms.

Table 12

Statistical Analysis of 35 Runs for each of 12*4 Cases for the Experiments on Each Criterion.

ImageMBetween-class varianceKapur’s entropyTsallis entropy
HS vs. GAHS vs. PSOHS vs. BFOHS vs. GAHS vs. PSOHS vs. BFOHS vs. GAHS vs. PSOHS vs. BFO
p-ValueHp-ValueHp-ValueHp-ValueHp-ValueHp-ValueHp-ValueHp-ValueHp-ValueH
10108520.00000010.00000010.00017810.00000010.00000010.00000010.00000010.00000010.0114691
30.00000110.00000110.00000010.00000010.00000110.00000010.00000010.00000110.0000001
40.00000010.00000010.00000010.00000010.00000010.00000010.00000010.00000010.0000001
50.00000010.00000010.00000010.00000010.00000010.00000010.00000010.00000010.0000001
Wherry20.00000010.00000010.16029600.00000010.00000010.00008410.00000010.00000010.0000001
30.00000110.00000110.00000010.00000010.00000110.00000010.00000010.00000110.0000001
40.00000010.00000010.00000010.00000010.00000010.00000010.00000010.00000010.0000001
50.00000010.00000010.00000010.00000010.00000010.00000010.00000010.00000010.0000001
Snake20.00000010.00000010.04241110.00000010.00000010.00008210.00000010.00000010.0003891
30.00000110.00000110.00000010.00000010.00000110.00000010.00000010.00000110.0000001
40.00000010.00000010.00000010.00000010.00000010.00000010.00000010.00000010.0000081
50.00000010.00000010.00000010.00000010.00000010.00000010.00000010.00000010.0000001
Zebra20.00000010.00000010.00000810.00000010.00000010.00000010.00000010.00000010.0000001
30.00000110.00000110.00000010.00000010.00000110.00000010.00000010.00000110.0000001
40.00000010.00000010.00000010.00000010.00000010.00063210.00000010.00000010.0000001
50.00000010.00000010.00000010.00000010.00000010.00000010.00000010.00000010.0000001
Butterfly20.00000010.00000010.00000310.00000010.00000010.00000010.00000010.00000010.0000001
30.00000110.00000110.00000010.00000010.00000110.00000210.00000010.00000110.0000001
40.00000010.00000010.00547410.00000010.00000010.00000010.00000010.00000010.0000001
50.00000010.00000010.00000010.00000010.00000010.00000010.00000010.00000010.0000001
Bird20.00000010.00000010.00000410.00000010.00000010.00006310.00000010.00000010.0000021
30.00000110.00000110.00000010.00000010.00000110.00000010.00000010.00000110.0000001
40.00000010.00000010.00000010.00000010.00000010.00000010.00000010.00000010.0000001
50.00000010.00000010.00000010.00000010.00000010.00000010.00000010.00000010.0000001
Landscape20.00000010.00000010.33517900.00000010.00000010.02198210.00000010.00000010.0000291
30.00000110.00000110.00000010.00000010.00000110.00000010.00000010.00000110.0000001
40.00000010.00000010.00000010.00000010.00000010.00000010.00000010.00000010.0000001
50.00000010.00000010.00000010.00000010.00000010.00000010.00000010.00000010.0000001
Ostrich20.00000010.00000010.00000010.00000010.00000010.00017710.00000010.00000010.0000001
30.00000110.00000110.00000010.00000010.00000110.00000010.00000010.00000110.0000001
40.00000010.00000010.00000010.00000010.00000010.00000010.00000010.00000010.0000001
50.00000010.00000010.00000010.00000010.00000010.00000010.00000010.00000010.0000001
8601620.00000010.00000010.00000410.00000010.00000010.00147010.00000010.00000010.0000001
30.00000110.00000110.00000010.00000010.00000110.00000010.00000010.00000110.0000001
40.00000010.00000010.00000010.00000010.00000010.00000010.00000010.00000010.0000001
50.00000010.00000010.00000010.00000010.00000010.00000010.00000010.00000010.0000001
Baboon20.00000010.00000010.00000010.00000010.00000010.21794200.00000010.00000010.0000001
30.00000110.00000110.00000010.00000010.00000110.00000010.00000010.00000110.0000001
40.00000010.00000010.00000010.00000010.00000010.00000010.00000010.00000010.0000001
50.00000010.00000010.00000010.00000010.00000010.00000010.00000010.00000010.0000001
Lake20.00000010.00000010.00000310.00000010.00000010.02209310.00000010.00000010.0000001
30.00000110.00000110.00000010.00000010.00000110.00000010.00000010.00000110.0000001
40.00000010.00000010.00000010.00000010.00000010.00000010.00000010.00000010.0000001
50.00000010.00000010.00000010.00000010.00000010.00000010.00000010.00000010.0000001
Women20.00000010.00000010.16029600.00000010.00000010.01146910.00000010.00000010.0059061
30.00000010.00000010.00008510.00000010.00000010.00672110.00000010.00000010.0000001
40.00000010.00000010.00000010.00000010.00000010.00000010.00000010.00000010.0000001
50.00000010.00000010.00000010.00000010.00000010.00000010.00000010.00000010.0000001

p, probability of the statistic; H = 0 indicates null hypothesis cannot be rejected.

From Table 12, we can observe that the p-values reported in the Table 12 are <0.05 (5% significance level), which is a strong evidence against the null hypothesis, indicating that there is a significant difference between the median values of the HS algorithm and the three other nature-inspired metaheuristics.

In the second experiment, the same statistical analysis was performed with the HS and ABC algorithms using between-class variance, Kapur and Tsallis entropy. Table 13 reports the p-values produced by Wilcoxon’s test for the pairwise comparison. Table 13 states that the two algorithms come from distributions with equal medians provided that the number of thresholds is two and three. The ABC algorithm provided better results for some images provided that M = 4 and 5.

Table 13

Statistical Analysis of 35 Runs for each of 12*4 Cases for the Experiments on each Criterion.

ImageMKapur’s entropyBetween-class varianceTsallis entropy
ABC vs. HSABC vs. HSABC vs. HS
p-ValueHp-ValueHp-ValueH
101085NaN0NaN0NaN0
NaN00.0000001NaN0
0.33133500.33133500.3313350
0.00000010.00014810.0000001
WherryNaN0NaN0NaN0
NaN0NaN0NaN0
0.00000210.00000110.0000021
0.00639710.00005310.0063971
SnakeNaN00.0000761NaN0
NaN0NaN0NaN0
0.01144210.00000010.0114421
0.00002710.00000610.0000271
ZebraNaN0NaN0NaN0
NaN0NaN0NaN0
0.00007910.00000610.0000791
0.00001310.00000010.0000131
Butterfly0.3313350NaN00.3313350
NaN00.0000011NaN0
0.00008210.00000210.0000821
0.00406110.05128800.0040611
BirdNaN00.0000061NaN0
NaN0NaN0NaN0
0.00008310.00000010.0000831
0.00302110.00000110.0030211
LandscapeNaN0NaN0NaN0
NaN0NaN0NaN0
0.00000410.00000010.0000041
0.00059810.08175400.0005981
OstrichNaN0NaN0NaN0
NaN00.0003641NaN0
0.00007710.00000010.0000771
0.03622310.00000110.0362231
86016NaN0NaN0NaN0
NaN00.1602520NaN0
NaN00.0000011NaN0
0.13438200.00000010.1343820
BaboonNaN00.0000061NaN0
NaN00.0000001NaN0
0.00033610.00259710.0003361
0.00000010.00000010.0000001
LakeNaN00.0000821NaN0
0.02198210.01136510.0219821
0.00000010.00007610.0000001
0.00103810.00000010.0010381
WomenNaN0NaN0NaN0
NaN0NaN0NaN0
0.00006110.00000010.0000611
0.00009910.00019110.0000991

p, probability of the statistic; H = 0 indicates null hypothesis cannot be rejected.

For the between-class variance method, the ABC algorithm produced better results in 30 cases out of 48 total cases. For Kapur’s entropy, the HS algorithm produced better results in 26 cases out of 48 total cases, and for Tsallis entropy, it produced better results in 27 cases out of 48 total cases.

4.3 Ability to Conquer “the Curse of Dimensionality,” With M = 10, 15, 20

To further verify the searching ability of each population-based method on high dimensionality, we test the HS, BFO, PSO, and ABC metaheuristics on each image with K = 10, 15, 20. As the exhaustive search cannot get the results in an acceptable computation time, it does not need to be compared in this test. Tables 1416 show the best, the average fitness value, and the standard deviation obtained by each population-based algorithm. From these tables, we observe that the HS algorithm shows the best performance and stability on a high dimension in comparison to BFO and PSO algorithms. The gap between HS and the two population-based algorithms becomes increasingly larger with increasing dimension. With the number of thresholds increasing, the performance of the HS algorithm is obviously better than the BFO and PSO algorithms. However, numerical results tabulated in Tables 1416 indicate also that the HS algorithm is more sensible to the increase in the number of thresholds than the ABC algorithm as its variance is a little higher.

Table 14

The Best, Mean, and Standard Deviation of Fitness Function Values Obtained by Tsallis-Based Optimization Algorithms for M = 10, 15, 20.

ImageMBFOPSOHSABC
BestMeanStdBestMeanStdBestMeanStdBestMeanStd
101085103.6657893.6651698.1379e−043.6653273.6616263.3349e−033.6658773.6658631.9480e−053.6658863.6658691.1100e−06
155.3294325.3275951.5774e−035.3262355.2988563.1015e−025.3302775.3301651.0545e−045.3303525.3309718.7913e−05
206.9904416.9855792.8989e−036.9571766.8849446.8367e−026.9919736.9916792.4978e−046.9919866.9916913.6503e−05
Wherry103.6649783.6645233.6348e−043.6644783.6573078.1115e−033.6652693.6651431.0833e−043.6652863.6651973.4450e−05
155.3288105.3252048.3420e−035.3234605.2925282.3202e−025.3294405.3292501.1880e−045.3295015.3293051.0475e−05
206.9893956.9770771.4215e−026.9541496.8096501.3959e−016.9911106.9905913.9742e−046.9913056.9907183.8931e−05
Snake103.6660333.6659764.7998e−053.6655723.6630423.2854e−033.6663993.6661339.5993e−063.6664063.6661527.1663e−06
155.3307465.3302374.2250e−045.3248085.3013412.5394e−025.3310585.3308141.2307e−045.3312815.3308226.9620e−05
206.9925136.9901992.7283e−036.9684776.7745581.7792e−016.9930986.9920559.2540e−046.9932906.9928843.1161e−05
Zebra103.6659673.6657502.2244e−043.6649473.6590056.0650e−033.6656953.6656573.3012e−053.6656963.6656601.2806e−05
155.3303485.3291201.9265e−035.3249875.2830333.5928e−025.3295055.3293141.3793e−045.3295625.3293171.0625e−05
206.9918316.9862444.2893e−036.9672696.7265471.7474e−016.9893616.9888963.9710e−046.9889996.9888974.9633e−05
Butterfly103.6654933.6649742.9270e−043.6657013.6629942.8689e−033.6660133.6659922.2821e−053.6660143.6659961.0321e−06
155.3284585.3275419.5137e−045.3256835.2785416.2716e−025.3306645.3305546.2135e−055.3306795.3305818.7062e−06
206.9875416.9847322.0461e−036.9464236.7913391.2184e−016.9927846.9923252.7373e−046.9928016.9924162.9882e−05
Bird103.6639313.6632167.5512e−043.6649583.6619192.3045e−033.6655753.6655247.2418e−053.6655823.6655342.0132e−06
155.3257995.3223724.1766e−035.3248965.2909652.4914e−025.3291635.3289581.3482e−045.3292695.3289691.0816e−05
206.9794566.9696707.0094e−036.9674196.8401181.1049e−016.9896926.9889355.2113e−046.9897346.9889654.7894e−05
Landscape103.6655573.6651415.4413e−043.6639923.6569745.8163e−033.6644443.6643621.2133e−043.6644553.6643695.2167e−06
155.3293345.3155926.0377e−025.3197745.2691963.2712e−025.3271305.3267672.9114e−045.3273705.3267771.8240e−05
206.9879826.9572508.2366e−026.9351546.7645111.6081e−016.9852836.9841567.8528e−036.9858876.9851697.5116e−04
Ostrich103.6644623.6634567.8709e−043.6646543.6608023.4425e−033.6656033.6655772.9684e−043.6656933.6655791.6338e−05
155.3245645.3189654.4755e−035.3260355.2326051.1360e−015.3296145.3294751.1936e−045.3296835.3295721.3485e−05
206.9742786.9346288.3672e−026.9417836.7011841.4169e−016.9899056.9892763.9530e−036.9899266.9893286.7816e−04
86016103.6661973.6661266.4870e−053.6629813.6517191.2711e−023.6646353.6645975.4237e−053.6646463.6646011.9455e−06
155.3312665.3299633.1644e−035.3143465.2280998.6416e−025.3259645.3255573.0691e−045.3259715.3255672.1221e−06
206.9934746.9870045.8286e−036.8980606.5580662.2554e−016.9798506.9791054.4939e−036.9799686.9799488.9363e−04
Baboon103.6649863.6643987.6554e−043.6655823.6610698.4328e−033.6657233.6658131.2560e−053.6658233.6657431.1760e−06
155.3257145.3202975.5199e−035.3249905.2604481.0035e−015.3598895.3298317.4563e−045.3299895.3298217.6543e−05
206.9783076.9559591.8629e−026.9507986.6861241.7289e−016.9893466.9896902.2345e−046.9903666.9897803.4935e−05
Lake103.6658743.6655384.7491e−043.6653713.6585151.1830e−023.6659143.6658993.2380e−053.6659723.6659151.1760e−06
155.3298625.3279901.5011e−035.3245935.2774748.0343e−025.3304365.3303599.9975e−055.3305485.3309937.6543e−06
206.9895066.9526779.9814e−026.9668086.7210271.7370e−016.9919246.9915453.1851e−046.9919826.9920663.4935e−05
Women103.6659983.6659444.8218e−053.6657923.6627592.8914e−033.6660073.6659998.8664e−063.6660363.6660276.2364e−06
155.3306005.3301283.2116e−045.3294695.2762736.5866e−025.3307195.3306361.0057e−045.3308025.3306647.7800e−05
206.9915536.9889883.2951e−036.9618196.7267951.8052e−016.9923816.9920881.9948e−046.9921876.9921202.8519e−05
Table 15

The Best, Mean, and Standard Deviation of Fitness Function Values Obtained by Otsu-Based Optimization Algorithms for M = 10, 15, 20.

ImageMPSOBFOHSABC
BestMeanStdBestMeanStdBestMeanStdBestMeanStd
101085103197.1539103182.5511431.0070e+013196.1029803186.3019149.4449e+003202.5761363197.8915211.8443e+003205.3344593205.0515851.5653e−01
153217.5956413208.5278745.4700e+003218.9453753214.9448183.2207e+003221.6674663218.8617161.1467e+003225.4928523225.0548652.0321e−01
203225.8552873220.8130423.1329e+003228.9764623227.1691881.6682e+003229.4454793227.5462237.8540e−013232.7643973232.4248141.3336e−01
Wherry103470.8134093459.6543946.2705e+003464.3343423460.5365424.8343e+003473.8761203471.5619671.0953e+003477.5081533477.1784012.5686e−01
153487.2142943479.5394594.6498e+003485.2948553482.4048952.1531e+003488.7148873486.8248989.7571e−013492.4137373492.0006141.7020e−01
203492.4201093486.9589963.2605e+003492.4030413490.5025701.6737e+003494.9218733493.3993094.6675e−013497.9011713497.5764451.3996e−01
Snake101350.4602361337.2069817.2231e+001345.1564691341.0366515.0061e+001350.7857151349.0285711.1424e+001353.8684261353.6803051.2617e−01
151361.1220571352.9221044.5110e+001359.7418591355.5508053.7934e+001363.7489011361.3906321.0353e+001365.4975421365.3104231.1828e−01
201365.2904551361.7388702.6853e+001365.8888601364.1411571.5656e+001367.5374091366.3034825.1073e−011370.0737251369.8871751.1778e−01
Zebra101031.4639421021.9780445.9131e+001025.3119281022.0287252.5309e+001034.2634901031.1084661.0271e+001035.4712051035.2643621.4379e−01
151042.1575581036.9447193.0096e+001040.0118321037.9578692.1294e+001044.5828201042.4494497.3793e−011046.6867151046.4779791.0168e−01
201046.4562831042.7437262.3772e+001047.5734251045.4430881.7324e+001048.9546981047.6317945.5561e−011050.8706141050.7097098.8556e−02
Butterfly103825.2696853809.9815039.8469e+003818.2235273815.2366452.8349e+003828.4449803825.4426231.6489e+003832.5400033832.2005312.1344e−01
153843.6371143835.0435105.5806e+003843.3704033840.3826082.7247e+003845.4986303843.6595388.8444e−013849.8480653849.5601001.8355e−01
203850.5838193845.7526633.2581e+003851.2596523850.0998561.2074e+003853.4108463851.6044916.8779e−013856.5614733856.2098021.5456e−01
Bird102701.0771742693.1876895.5297e+002701.3587782699.4552311.6233e+002705.4229872703.8735217.0539e−012708.1240342707.9051601.5613e−01
152712.4242662708.0532482.6985e+002714.6659522712.2995412.5202e+002715.2480182713.7293545.9513e−012717.2794552717.0340021.3472e−01
202717.7701852713.9065422.2659e+002716.5483492715.7062864.7002e−012719.2710622718.2069823.6662e−012721.0456112720.8905608.6733e−02
Landscape104854.4059804843.7600835.0247e+004849.9438094848.2831082.3647e+004855.3254244853.8740517.5275e−014857.5513494857.4315628.0683e−02
154862.1224044857.1776412.9061e+004860.9947294859.8216381.4979e+004864.0142284862.7906456.6846e−014866.3434224866.0885911.4989e−01
204866.9528374863.6560732.0814e+004865.8682924865.2768315.0819e−014868.2584784867.0510334.5848e−014870.1665664869.9740591.0040e−01
Ostrich101207.3304591196.4628195.5494e+001200.3871821196.2957866.8261e+001208.3608701206.2102839.8768e−011210.3067461210.0809901.4873e−01
151215.1674651210.0239683.5618e+001213.0380911210.4524022.5628e+001218.1140161216.6539467.4037e−011220.6321401220.4434231.2914e−01
201222.0070621216.3812632.3330e+001220.8117601219.2442591.1723e+001223.0496361221.2514965.8206e−011224.5709231224.3505511.1574e−01
86016101361.1981261355.9588443.2256e+001360.8125831358.5190422.0040e+001363.6196381362.0596076.2298e−011364.8014611364.6972696.8575e−02
151367.6881661363.5641272.5402e+001368.9714211367.8881577.5478e−011369.5338741368.9367213.6607e−011371.4850181371.3548876.7405e−02
201372.2159221368.3271282.1033e+001372.3262881371.3412348.1439e−011372.8096391372.1041943.4662e−011374.1829411374.0315228.1379e−02
Baboon101750.7388281739.3213675.4499e+001747.7703061743.2062803.2078e+001753.6806881751.2477109.0818e−011755.8563691755.7050509.0838e−02
151761.7165021755.3195884.0486e+001759.2702681757.8654391.1688e+001765.6123811763.0271299.2690e−011767.3963461767.1672331.0811e−01
201769.2190181762.8144753.4564e+001766.1591331764.7954361.8723e+001769.5157251768.1303305.4397e−011771.8681381771.6313391.1384e−01
Lake104024.1468124014.3504316.6258e+004018.7399754015.5008282.6071e+004027.4348984025.0727591.1599e+004030.6489204030.4625401.1619e−01
154039.2580504030.5690264.3251e+004036.6215724034.9467701.3245e+004040.3096554038.5359288.0911e−014043.4992704043.2600041.2681e−01
204043.1396954039.0283032.6928e+004043.3689684041.8099767.1631e−014045.8280364044.5283355.1000e−014048.4735384048.1971001.1309e−01
Women102941.1933862931.1954647.6516e+002942.0555482935.9372873.2167e+002945.5213642942.5607001.3194e+002948.3913322948.1078631.6664e−01
152958.0745592950.4088485.2200e+002959.8832532955.4216064.5591e+002959.3698362957.5647378.6943e−012963.0479922962.8460131.3123e−01
202965.7304202958.4520293.3431e+002963.1976472961.9707949.5220e−012966.2931812964.4895266.9109e−012968.6965702968.5179371.0416e−01
Table 16

The Best, Mean, and Standard Deviation of Fitness Function Values Obtained by Tsallis-Based Optimization Algorithms for M = 10, 15, 20.

ImageMBFOPSOHSABC
BestMeanStdBestMeanStdBestMeanStdBestMeanStd
101085103.6657893.6651698.1379e−0043.6653273.6616263.3349e−033.6657943.6656258.8301e−053.6658863.6658691.1100e−06
155.3294325.3275951.5774e−0035.3262355.2988563.1015e−025.3293775.3274117.4130e−045.3303525.3309718.7913e−05
206.9904416.9855792.8989e−0036.9571766.8849446.8367e−026.9829366.9783402.9083e−046.9919866.9916913.6503e−04
Wherry103.6649783.6645233.6348e−0043.6644783.6573078.1115e−033.6650653.6648461.1518e−053.6652863.6651973.4450e−06
155.3288105.3252048.3420e−0035.3234605.2925282.3202e−025.3281355.3263717.6621e−045.3295015.3293051.0475e−04
206.9893956.9770771.4215e−0026.9541496.8096501.3959e−016.9820916.9744974.0113e−036.9913056.9907183.8931e−04
Snake103.6660333.6659764.7998e−0053.6655723.6630423.2854e−035.3293973.6658555.9525e−053.6664063.6661527.1663e−06
155.3307465.3302374.2250e−0045.3248085.3013412.5394e−026.9843585.3284764.9747e−045.3312815.3308226.9620e−05
206.9925136.9901992.7283e−0036.9684776.7745581.7792e−013.6656496.9806082.2365e−036.9932906.9928843.1161e−04
Zebra103.6556673.6553502.2244e−0043.6649473.6590056.0650e−033.6659823.6653841.1589e−043.6656963.6656601.2806e−05
155.3103485.3191201.9265e−0035.3249875.2830333.5928e−025.3270355.3251629.5297e−045.3295625.3293171.0625e−04
206.9418316.9362444.2893e−0036.9672696.7265471.7474e−016.9814896.9697254.2791e−036.9889996.9888974.9633e−04
Butterfly103.6654933.6649742.9270e−0043.6657013.6629942.8689e−033.6659153.6657786.9020e−053.6660143.6659961.0321e−05
155.3284585.3275419.5137e−0045.3256835.2785416.2716e−025.3294485.3279826.1556e−045.3306795.3305818.7062e−05
206.9875416.9847322.0461e−0036.9464236.7913391.2184e−016.9849876.9790023.1506e−036.9928016.9924162.9882e−04
Bird103.6639313.6632167.5512e−0043.6649583.6619192.3045e−033.6654593.6651671.5037e−043.6655823.6655342.0132e−05
155.3257995.3223724.1766e−0035.3248965.2909652.4914e−025.3275635.3255638.1512e−045.3292695.3289691.0816e−04
206.9794566.9696707.0094e−0036.9674196.8401181.1049e−016.9774426.9719763.0949e−036.9897346.9889654.7894e−04
Landscape103.6635573.6631415.4413e−0043.6639923.6569745.8163e−033.6641473.6637162.0613e−043.6644553.6643695.2167e−05
155.3293345.3155926.0377e−0025.3197745.2691963.2712e−025.3240675.3214991.0591e−035.3273705.3267771.8240e−04
206.9879826.9572508.2366e−0026.9351546.7645111.6081e−016.9710936.9611115.1171e−036.9858876.9851697.5116e−04
Ostrich103.6644623.6634567.8709e−0043.6646543.6608023.4425e−033.6654583.6653031.0202e−043.6656933.6655791.6338e−05
155.3245645.3189654.4755e−0035.3260355.2326051.1360e−015.3272925.3257027.1249e−045.3296835.3295721.3485e−04
206.9742786.9346288.3672e−0026.9417836.7011841.4169e−016.9779656.9707033.8993e−036.9899266.9893286.7816e−04
86016103.6661973.6661266.4870e−0053.6629813.6517191.2711e−023.6645353.6640462.3655e−043.6646463.6646011.9455e−05
155.3312665.3299633.1644e−0035.3143465.2280998.6416e−025.3213855.3183371.8712e−035.3259715.3255672.1221e−04
206.9934746.9870045.8286e−0036.8980606.5580662.2554e−016.9603946.9426297.4799e−036.9799686.9799488.9363e−04
Baboon103.6649863.6643987.6554e−043.6655823.6610698.4328e−033.6557763.6657908.8036e−053.6658233.6657431.1760e−05
155.3257145.3202975.5199e−035.3249905.2604481.0035e−015.2789295.3285677.4413e−045.3299895.3298217.6543e−05
206.9783076.9559591.8629e−026.9507986.6861241.7289e−016.8205536.9839724.7295e−036.9903666.9897803.4935e−04
Lake103.6658743.6655384.7491e−0043.6653713.6585151.1830e−023.6657473.6655958.1719e−053.6659723.6659151.1760e−06
155.3298625.3279901.5011e−0035.3245935.2774748.0343e−025.3288805.3271438.6830e−045.3305485.3309937.6543e−05
206.9895066.9526779.9814e−0026.9668086.7210271.7370e−016.9810556.9749053.8252e−036.9919826.9920663.4935e−04
Women103.6659983.6659444.8218e−0053.6657923.6627592.8914e−033.6660083.6658427.0709e−053.6660363.6660276.2364e−06
155.3306005.3301283.2116e−0045.3294695.2762736.5866e−025.3294195.3283934.8992e−045.3308025.3306647.7800e−05
206.9915536.9889883.2951e−0036.9618196.7267951.8052e−016.9847216.9778333.1951e−036.9921876.9921202.8519e−04

5 Conclusion

In this paper, we have tested the performance of the HS algorithm for multilevel image thresholding. The search ability of the HS algorithm is used to select the optimal thresholds by maximizing between-class variance, Kapur and Tsallis entropy. The performance of the HS algorithm has been tested with 12 real images and has been compared with that of the GA, PSO, BFO, and ABC algorithms.

The experimental results show that HS has better global search capability and can achieve a higher solution accuracy in terms of stability, SSIM, and FSIM indices than the GA, PSO, and BFO algorithms. Both ABC and HS have equal performance for all images and for the number of thresholds M with more stability of the ABC algorithm for some images. In order to compare the searching ability of each stochastic algorithm on a high dimension, we test each metaheuristic on each image with M = 10, 15, 20. The experimental results show that with the number of thresholds increasing, the performance of the HS algorithm is again obviously better than the GA, PSO, and BFO algorithms. The numerical results indicate also that the ABC algorithm yields better performance than the HS algorithm with the growth of search space dimensionality.


Corresponding author: Salima Ouadfel, Computer Science Department, College of Engineering, Constantine 2 University, 25000 Constantine, Algeria, e-mail:

Bibliography

[1] O. Alia, M. M. A. Al-Betar, R. Mandava and A. T. Khader, Data clustering using harmony search algorithm, in: Swarm, Evolutionary, and Memetic Computing, pp. 79–88, Springer, Berlin Heidelberg 2011.10.1007/978-3-642-27242-4_10Search in Google Scholar

[2] O. M. Alia, R. Mandava, D. Ramachandram and M. E. Aziz, Dynamic fuzzy clustering using harmony search with application to image segmentation, in: 2009 IEEE International Symposium on Signal Processing and Information Technology (ISSPIT), pp. 538–543, 2009, December 14–17, Ajman, UAE.10.1109/ISSPIT.2009.5407590Search in Google Scholar

[3] A. Alihodzic and M. Tuba, Bat algorithm (BA) for image thresholding, in: Recent Researches in Telecommunications, Informatics, Electronics and Signal Processing, 2013, Baltimore, MD, USA, September 17–19, WSEAS.Search in Google Scholar

[4] I. Brajevic, M. Tuba and N. Bacanin, Multilevel image thresholding selection based on the Cuckoo search algorithm, in: Advances in Sensors, Signals, Visualization, Imaging and Simulation, pp. 217–222, 2012, Sliema, Malta, September 7–9, WSEAS.Search in Google Scholar

[5] H. D. Cheng, Y. H. Chen and Y. Sun, A novel fuzzy entropy approach to image enhancement and thresholding, Signal Process75 (1999), 277–301.10.1016/S0165-1684(98)00239-4Search in Google Scholar

[6] C. Cobos, E. León and M. Mendoza, A harmony search algorithm for clustering with feature selection, Revista Facultad de Ingeniería55 (2013), 153–164.Search in Google Scholar

[7] E. Cuevas, Block-matching algorithm based on harmony search optimization for motion estimation, Appl. Intell.39 (2013), 165–183.10.1007/s10489-012-0403-7Search in Google Scholar

[8] E. Cuevas, N. Ortega-Sánchez, D. Zaldivar and M. Pérez-Cisneros, Circle detection by harmony search optimization, J. Intell. Robot. Syst.: Theory and Applications 66(2013), 359–376.10.1007/s10846-011-9611-3Search in Google Scholar

[9] E. Cuevas, D. Zaldivar and M. Pérez-Cisneros, A novel multi-threshold segmentation approach based on differential evolution optimization, Exp. Syst. Appl.37 (2010), 5265–5271.10.1016/j.eswa.2010.01.013Search in Google Scholar

[10] S. Fan and Y. Lin, A multi-level thresholding approach using a hybrid optimal estimation algorithm, Pattern Recognit. Lett. 285 (2007), 662–669.10.1016/j.patrec.2006.11.005Search in Google Scholar

[11] H. Gao, W. B. Xu, J. Sun, and Y. L. Tang, Multilevel thresholding for image segmentation through an improved quantum-behaved particle swarm algorithm, IEEE Trans. Instrum. Mea.59 (2010), 934–946.10.1109/TIM.2009.2030931Search in Google Scholar

[12] S. Garcia, D. Molina, M. Lozano and F. Herrera, A study on the use of non-parametric tests for analyzing the evolutionary algorithms’ behaviour: a case study on the CEC’2005 special session on real parameter optimization, J. Heuristics15 (2008), 617–644.10.1007/s10732-008-9080-4Search in Google Scholar

[13] Z. W. Geem, J. H. Kim and G. V. Loganathan, A new heuristic optimization algorithm: harmony search, Simulation76 (2001), 60–68.10.1177/003754970107600201Search in Google Scholar

[14] K. Hammouche, M. Diaf and P. Siarry, A multilevel automatic thresholding method based on a genetic algorithm for a fast image segmentation, Comput. Vis. Image Underst. 109 (2008), 163–175.10.1016/j.cviu.2007.09.001Search in Google Scholar

[15] M. H. Horng and R. J. Liou, Multilevel minimum cross entropy threshold selection based on the firefly algorithm, Exp. Syst. Appl. 38 (2011), 14805–14811.10.1016/j.eswa.2011.05.069Search in Google Scholar

[16] M.-H. Horng, Multilevel thresholding selection based on the artificial bee colony algorithm for image segmentation, Exp. Syst. Appl. 38 (2011), 13785–13791.10.1016/j.eswa.2011.04.180Search in Google Scholar

[17] J. N. Kapur, P. K. Sahoo and A. K. C. Wong, A new method for gray-level picture thresholding using the entropy of the histogram, Comput. Vis. Graphics Image Process. 29 (1985), 273–285.10.1016/0734-189X(85)90125-2Search in Google Scholar

[18] J. H. Kim, Z. W. Geem and E. S. Kim, Parameter estimation of the nonlinear Muskingum model using harmony search, J. Am. Water Resour. Assoc.37 (2001), 1131–1138.10.1111/j.1752-1688.2001.tb03627.xSearch in Google Scholar

[19] D. Kumar, Harmony search algorithm for feature selection in face recognition, in: Computational Intelligence and Information Technology, pp. 554–559, Springer, Berlin Heidelberg, 2011.10.1007/978-3-642-25734-6_95Search in Google Scholar

[20] K. S. Lee and Z. W. Geem, Comput. Methods Appl. Mech. Eng.194 (2005), 3902–3933.10.1016/j.cma.2004.09.007Search in Google Scholar

[21] M. Maitra and A. Chatterjee, A hybrid cooperative-comprehensive learning based PSO algorithm for image segmentation using multilevel thresholding, Exp. Syst. Appl. 34 (2008), 1341–1350.10.1016/j.eswa.2007.01.002Search in Google Scholar

[22] D. Martin, C. Fowlkes, D. Tal and J. Malik, A database of human segmented natural images and its application to evaluating segmentation algorithms and measuring ecological statistics, in: Proceedings of the 8th International Conference on Computer Vision, vol. 2, pp. 416–423, Vancouver, Canada, July 2001.Search in Google Scholar

[23] D. Oliva, E. Cuevas, G. Pajares, D. Zaldivar and M. Perez-Cisneros, Multilevel thresholding segmentation based on harmony search optimization, J. Appl. Math.2013 (2013), 24.10.1155/2013/575414Search in Google Scholar

[24] N. Otsu, A threshold selection method from gray level histograms, IEEE Trans. Syst. Man Cybern.SMC-9 (1979), 62–66.10.1109/TSMC.1979.4310076Search in Google Scholar

[25] S.Ouadfel and S. Meshoul, Bio-inspired algorithms for multilevel image thresholding, Accepted in Int. J. Comput. Appl. Technol., Special Issue on Computational Optimization and Engineering Applications. 49 (¾) (2014), Indersicence publisher.10.1504/IJCAT.2014.062358Search in Google Scholar

[26] N. R. Pal, On minimum cross-entropy thresholding, Pattern Recognit.29 (1996) 575–580.10.1016/0031-3203(95)00111-5Search in Google Scholar

[27] T. Pun, Entropy thresholding: A new approach, Comput. Vis. Graphics Image Process.16 (1981), 210–239.10.1016/0146-664X(81)90038-1Search in Google Scholar

[28] P. K. Sahoo, S. Soltani and A. K. C. Wong, A survey of thresholding techniques, Comput. Vis. Graphics Image Process.41 (1988), 233–260.10.1016/0734-189X(88)90022-9Search in Google Scholar

[29] A. Sanjay, P. Rutuparna, B. Sudipta and B. K. Panigrahib, Tsallis entropy based optimal multilevel thresholding using cuckoo search algorithm, Swarm Evol. Comput.11 (2013), 16–30.10.1016/j.swevo.2013.02.001Search in Google Scholar

[30] S. Sarkar, R. Gyana and S. A. Das, Differential evolution based approach for multilevel image segmentation using minimum cross entropy thresholding, SEMCCO1 (2011), 51–58.10.1007/978-3-642-27172-4_7Search in Google Scholar

[31] P. D. Sathya and R. Kayalvizhi, Modified bacterial foraging algorithm based multilevel thresholding for image segmentation, Eng. Appl. Artif. Intell.24 (2011), 595–615.10.1016/j.engappai.2010.12.001Search in Google Scholar

[32] C. Tsallis, C. Anteneodo, L. Borland and R. Osorio. Nonextensive statistical mechanics and economics, Physica A: Statistical Mechanics and its Applications, 324 (2003), 89–100.10.1016/S0378-4371(03)00042-6Search in Google Scholar

[33] A. Vasebi, M. Fesanghary and S. M. T. Bathaee, Combined heat and power economic dispatch by harmony search algorithm, Int. J. Elec. Power29 (2007), 713–719.10.1016/j.ijepes.2007.06.006Search in Google Scholar

[34] Z. Wang, A. C. Bovik, H. R. Sheikh and E. P. Simoncelli, Image quality assessment: from error visibility to structural similarity, IEEE Trans. Image Process.13 (2004), 600–612.10.1109/TIP.2003.819861Search in Google Scholar

[35] F. Wilcoxon, Individual comparisons by ranking methods, Biometrics1 (1945), 80–83.10.1007/978-1-4612-4380-9_16Search in Google Scholar

[36] X.-S. Yang, Nature-Inspired Metaheuristic Algoirthms, 2nd edition, Luniver Press, 2010.Search in Google Scholar

[37] P.-Y. Yin, A fast scheme for optimal thresholding using genetic algorithms, Signal Process72 (1999), 85–95.10.1016/S0165-1684(98)00167-4Search in Google Scholar

[38] P. I. Yin, Multilevel minimum cross entropy threshold selection based on particle swarm optimization, Appl. Math. Comput. 184 (2007), 503–513.10.1016/j.amc.2006.06.057Search in Google Scholar

[39] Y. Zhang and L. Wu, Optimal multi-level thresholding based on maximum Tsallis entropy via an artificial bee colony approach, Entropy13 (2011), 841–859.10.3390/e13040841Search in Google Scholar

[40] L. Zhang, L. Zhang, X. Mou, D. Zhang, FSIM: a feature similarity index for image quality assessment, IEEE Trans. Image Process20 (2011), 2378–2386.10.1109/TIP.2011.2109730Search in Google Scholar PubMed

Received: 2014-10-9
Published Online: 2015-8-1
Published in Print: 2016-10-1

©2016 Walter de Gruyter GmbH, Berlin/Boston

This article is distributed under the terms of the Creative Commons Attribution Non-Commercial License, which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

Downloaded on 21.9.2025 from https://www.degruyterbrill.com/document/doi/10.1515/jisys-2014-0147/html
Scroll to top button