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Abstract: This work proposes a hybrid heuristic algorithm to solve the bus rapid transit (BRT) intelligent 
scheduling problem, which is a combination of the genetic algorithm, simulated annealing algorithm, and 
fitness scaling method. The simulated annealing algorithm can increase the local search ability of the genetic 
algorithm, so as to accelerate its convergence speed. Fitness scaling can reduce the differences between indi-
viduals in the early stage of the algorithm, to prevent the genetic algorithm from falling into a local optimum 
through increasing the diversity of the population. It can also increase the selection probability of outstand-
ing individuals, and speed up the convergence at the late stage of the algorithm, by increasing the differences 
between individuals. Using real operational data of BRT Line 1 in a city of Zhejiang province, the new sched-
uling scheme can be obtained through algorithm simulation. The passengers’ total waiting time in a single 
way will be reduced by 40 h on average under the same operating cost compared with the original schedule 
scheme in a day.
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1  Introduction
Bus scheduling is the key to daily operational activities, and it directly affects the operational cost and pas-
senger satisfaction. The scheduling scheme, in accordance with customer traffic, can adjust the headway 
according to changes in the traffic. It will enhance the pertinence of bus services, and also reduces the pas-
senger waiting time, improves the public transport service quality, and adds attractiveness to public trans-
port. Meanwhile, bus scheduling is subject to various constraints, such as operating cost, service quality, and 
so on. Achieving intelligent bus dispatching to enable the schedule scheme to meet the traffic requirements 
and constraints in a reasonable time is an important issue.

There have been many studies on the bus scheduling problem; for example, Hadjar et al. [7] proposed a 
branch-and-bound algorithm for solving the multiple depot vehicle scheduling problem, which combines 
column generation, variable fixing, and cutting planes. Barkaoui and Gendreau [1] introduced an adaptive 
evolutionary approach for real-time vehicle routing and dispatching. Liu et al. [12] proposed a genetic algo-
rithm (GA) incorporating Monte Carlo simulation to solve the optimization model of the bus stop-skipping 
problem. Guihaire and Hao [6] proposed a model and a solution based on tabu search and neighborhood 
specifically developed to improve the quality of service for passengers through the number and quality of 
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transfers. Hao et al. [8] established a model to minimize passengers’ waiting cost and vehicles’ operation 
cost, and to optimize the headway and bus scheduling combination, and solved it by using an improved 
GA. Petersen et  al. [14] proposed a planning approach to obtain a favorable trade-off between the two 
contrasting objectives, passenger service and operation cost, by modifying the timetable. Jerald et al. [10] 
used GA to solve the synchronization problem of the arrival time between different bus lines. Bielli et al. 
[2] proposed a new method to compute fitness function values in GAs for bus network optimization. The 
goal is to design a heuristic that allows achieving the best bus network, satisfying both the demand and the 
offers of transport. Ceder proposed a visualized method [4] to obtain the departure frequency according to 
traffic law in a day, and then improved this method to approach even-load and even-headway timetables 
using different bus sizes [5], to meet the demand of regular passengers and randomly arriving passengers 
simultaneously. Tang and Yang [15] proposed an improved bus scheduling model using an ant colony algo-
rithm based on the punishment strategy. Bunte and Kliewer [3] discussed the similarities and differences 
between a variety of bus scheduling models and introduced some of the latest scheduling models and their 
basic concepts.

The optimal solution or approximate optimal solution of the bus scheduling problem can be found within 
a reasonable time using GA, which is the reason why many researchers use it to solve the bus scheduling 
problem. The proposed algorithm combines the simulated annealing (SA) algorithm and GA, and joins the 
elite reserved strategy and fitness scaling method. The individual who has the highest fitness in the popula-
tion will be copied directly to the next generation. Thus, the best individual can be protected from crossover 
or mutation operation. Fitness scaling can reduce the differences between individuals in the early stage of the 
algorithm, to prevent the GA from falling into a local optimum through increasing the diversity of the popula-
tion. It can increase the selection probability of outstanding individuals, and speed up the convergence at the 
late stage of the algorithm, by increasing the differences between individuals. After the algorithm implemen-
tation and comparison with the actual data, the algorithm can obviously improve the disadvantages of GA of 
easily falling into local optima and slow convergence to the optimal solution.

2  Establishing the Mathematical Model of BRT Scheduling
Bus scheduling is aimed at meeting the passengers’ demand as far as possible to save operating costs. These 
two conflicting objectives determine that it is a multiobjective optimization problem. Bus schedule can be 
divided into two parts: static scheduling and dynamic scheduling. Static scheduling mainly refers to formu-
lating the timetable of each line, whereas the task of dynamic scheduling is to adjust the timetable when an 
emergency occurs, such as an accident, traffic jam, and so on. In reality, static scheduling is given priority 
over dynamic scheduling. In this article, we will mainly discuss about how to use the improved hybrid heu-
ristic algorithm to solve the static scheduling problem of BRT. Owing to the influence of many factors, solving 
the bus scheduling problem is a very complex process. To study algorithms for bus scheduling, we make some 
assumptions as follows:
1.	 After BRT vehicles arrive at the station, all passengers waiting for this line get on the bus. No one is left 

waiting for the next bus.
2.	 All the passengers should buy ticket before get in the bus, so we did not take into consideration the time 

for dropping-coin or swipe ID card.
3.	 There is only one type of vehicle in the line; that is, all vehicles have the same number of seats and the 

maximum load number.
4.	 There are enough vehicles for scheduling.
5.	 BRT vehicles depart from stations according to a timetable.
6.	 The sequence of vehicles on the road tallies with the sequence of departure time. No overhead occurs on 

the road.
7.	 Minute is the smallest unit in the scheduling.
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The variables used in the model and their meaning are shown below:
–– m denotes the departure frequency in the whole scheduling cycle.
–– n denotes the total count of bus stop in one direction of the line.
–– ti denotes the i-th vehicle departure time in the scheduling cycle; its unit is minute, i  =  1, 2,…, m.
–– rj denotes the changes in arrival rate at station j over time.
–– T denotes the passengers’ total waiting time in the scheduling cycle.

The number of passengers that arrive between ti-1 and ti is equal to rj  ×  (ti - ti-1). Assuming the waiting time of 
each person is equal to (ti – ti-1)/2, then the passengers’ total waiting time T can be calculated as
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Assuming the cost of one passenger per minute waiting for the bus is ξ, then the passengers’ total waiting 
cost T′ equals to
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The cost of bus operation includes fixed costs and variable costs. However, there is little relation between 
fixed costs and bus scheduling. Therefore, we just considered the variable costs here. Assume that R denotes 
the earnings of the bus company in a scheduling cycle, P denotes the ride cost of one passenger on average, 
L denotes the length of the bus line, and C denotes the variable cost for one vehicle per kilometer. The sum of 
the passengers’ ride fee minus the total variable costs is the revenue.
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Assuming μ indicates the weight coefficient of the passengers’ waiting cost, ν denotes the weight coef-
ficient of the agency’s benefit. According to the quadratic penalty method, we can obtain the object function 
of the bus scheduling model as follows:

	 min .z T Rµ ν= × − ×′ � (4)

To make full use of the public transport resources, bus companies require that the vehicle load rate be 
higher than the expected load factor. Let Nmax denote the maximum capacity of the bus and ρ the agency’s 
excepted load rate. The constraint of load rate is shown below:
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The headway must be in a reasonable range to ensure that both the regular and random passenger can 
get on in a shorter time. Assuming Hmin indicates the minimum specified headway, whereas Hmax indicates the 
maximum specified headway, the real headway should satisfy the following constraint:

	
min 1 max 2, 3, , .i iH t t H i m−≤ − ≤ = … � (6)

Meanwhile, the difference between two adjacent headways of the BRT vehicles should not be too large, 
to avoid the discontinuity phenomenon from occurring. Assuming τ indicates the maximum difference speci-
fied by the agency,

	
1 1|( ) ( ) | 2, 3, , 1,i i i it t t t i mτ+ −− − − ≤ = … − � (7)

use the penalty functions to deal with the constrained conditions. On the basis of the above description, the 
form of the objective function is as follows:
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where min f (x) is the value of the objective function after adding the penalty functions, and ω1, ω2, ω3, and ω4 
denote the each penalty coefficient of the corresponding constrained conditions. The solution of the problem 
is a vector X of length m, with each of its component xi indicating the difference of the i-th vehicle’s departure 
time from that of the first vehicle, in minutes.

The penalty strategy can guarantee that the result is applicable in real life. The penalty of the passengers’ 
number ensures that the bus will not be too crowded, namely guaranteeing the quality of service. The penalty 
of headway ensures that the headway remains in a reasonable range, which guarantees that the resources 
will not be wasted and part of the passengers will not be waiting too long. In the optimization process, once 
the solution violates these constraints, its fitness will decrease; thus, it will be at a disadvantage in the com-
petition. Finally, it will be eliminated in optimization.

3  Improved Hybrid Heuristic Algorithm Design

3.1  Classical GA

GA is a heuristic search that imitates the process of natural evolution due to the processes of inheritance, 
mutation, selection, and crossover [9]. The main steps for solving the bus scheduling problem using GAs are 
described below. First, generate the initial population consisting of N individuals randomly and calculate the 
fitness of each individual according to the fitness function. Then, choose two individuals from the popula-
tion and perform a crossover operation between the selected individuals to generate two new individuals. 
We use the roulette wheel selection scheme to implement a selection process in which the probability of the 
individual be selected is proportional to its fitness. Hence, an individual who has a higher fitness will have a 
higher probability of contributing one or more offspring to the next generation (see, e.g., Reference [2]). The 

slot size of each individual can be calculated as 
1
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=∑  Generate a random number between 0 
and 1, rotate the wheel to this position, then perform other operations on the selected one. Finally, perform 
a mutation operation on every gene locus of the two individuals, then add these two individuals to the new 
population. Repeat these three steps, until the individual count of the new population reached N. This entire 
process is a complete one iteration of the GA. The iteration will not stop until it reaches a specified number of 
iterations or an individual with higher fitness cannot be generated.

The aim of the objective function is to obtain the minimum. To ensure that the fitness of each individual 
is greater than zero, and also to facilitate the use of the roulette selection scheme, we should transform the 
objective function into another form; the final form of the fitness function is
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3.2  Combination of the SA Algorithm and GA

The SA algorithm is derived from the principle of solid annealing (see, e.g., Reference [11]). SA is based 
on an analogy with a physical annealing process and optimization problems. Annealing is a physical 
process; when the solid is heated to a sufficiently high temperature, the particles in its interior move 
freely in a state space. As the temperature decreases, the internal particles gradually stay on the differ-
ent states. When the temperature decreases to the minimum, the particles inside reach a steady state. 
This process is similar to the problem of finding the optimal solution in the optimization process. The 
basic idea of the SA algorithm was first proposed by Metropolis et al. in 1953 [13]. In 1983, Kirkpatrick and 
Vecchi [11] successfully introduced it into the field of combinatorial optimization. The main steps of the 
SA algorithm are as follows: generate a new solution at first, then calculate the change in the objective 
function value. If the function value is higher than the old solution, then replace the previous solution 
with the new one. In other cases, accept the newly created solution with probability P. At last, perform 
the SA operation. Then, generate the next new solution. Repeat all these steps until the optimal solution 
is found.

The traditional GA is still characterized by its slow evolution and convergence in advanced issues in prac-
tical applications. The simulated annealing genetic algorithm (SAGA) is a heuristic search algorithm which 
combined the SA with GA, and it can receive some bad solutions randomly in the search process. Therefore, it 
attracts widespread attention, through which it can escape from the local optimal solution, and has a strong 
global search capability. In theory, the algorithm can overcome the shortcomings of the poor local search 
capability of the traditional GA, and can well prevent the SA algorithm from not allowing the search process 
to enter the most promising optimization area. Therefore, the improved algorithm is conducive to expand-
ing the scope of the global search and local search ability, speeding up the convergence rate and improving 
the operational efficiency of optimization. After the crossover and mutation operations in GA, compare the 
fitness of the parent and the child individual. If the fitness becomes higher, put the child individual into the 
new population. In other cases, put the child individual into the new population with probability P. The SA 
algorithm needs to set the initial temperature T0; the current temperature Tc is calculated as follows:

	 1
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where σ is a constant between 0 and 1 (not containing the endpoints), which represents the rate of tempera-
ture decrease. The greater its value, the slower the temperature decrease. Conversely, the smaller its value, 
the faster the temperature decrease. The variable g is the number of the current iterations of the algorithm. 
When the newly generated individual’s fitness decreases, the probability of accepting it is
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where F(Xnew) indicates the fitness of the new individual and F(Xold) indicates the fitness of the original 
individual.

From Figure 1, it can be concluded that when the temperature is high, the probability of accepting an 
inferior solution is high, which can ensure the diversity of the population. When the temperature is low, the 
probability of accepting a poor solution becomes smaller. Then, the algorithm often has entered into a late 
stage, which guarantees that the optimal solution will not be destroyed.

Meanwhile, adding an elitist strategy into the SAGA ensures that the most outstanding  individual of each 
population can successfully enter into the next generation to generate new individuals. After generating a 
new population, compare the fitness value of the best individual in the previous generation and the current 
generation. If the fitness of the best individual in the current generation is less than the one in the previous 
generation, then replace the worst individual in the current generation with the best individual in the previ-
ous generation. Otherwise, directly move into the next iteration.
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3.3  Improved Hybrid Heuristic Algorithm

Prematurity is one of the most serious shortcomings of the GA; many researchers have used various algo-
rithms to try to improve the GA in the last 10 years. The main reason for the prematurity of GA is selecting 
individuals according to the proportion to the total fitness. This method will lead the individual having a 
higher fitness to occupy the entire population quickly, thus weakening the individual’s ability to jump out of 
the local optimal solution. Then, make the GA converge to a local optimal solution. To solve this problem, we 
must ensure the diversity of the population in the early stage of the algorithm (the fitness varies from low to 
high); however, in the late stage of the algorithm, it must be ensured that individuals with higher fitness than 
others have an advantage in the selection.

The fitness scaling method can be used to solve this problem. The so-called stretch refers to narrow-
ing of the gap between the select probability of the individuals in the early stage of the algorithm, so that 
those individuals that have lower fitness still have a chance to enter the next generation. The diversity of 
the population will increase through this way. In the late stage of the algorithm, as the average fitness of the 
population reaches a higher level, those individuals with a higher fitness do not have an obvious advantage 
in the selection. After stretching, amplify the differences between individuals, increasing the probability of 
individuals with higher fitness to be selected, so as to accelerate the convergence rate.

The form of the fitness scaling function is as follows:
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where F(Xi) indicates the fitness of the individual Xi, F(Xi)′ is the fitness after scaling, Tc refers to the current 
temperature in SA algorithm, N denotes the size of population, and λ indicates the tensile coefficient. The 
following example displays the function of the fitness scaling method in SAGA. When Tc is equal to 5000, λ is 
equal to 200, assuming that there are 10 individuals. Their fitness values are 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 
0.9, and 1.0. The comparison of each individual’s selection probability before and after scaling is shown in 
Table 1. When Tc is equal to 50, λ is equal to 200, assuming that there are 10 individuals. Their fitness values 
are 0.71, 0.72, 0.73, 0.74, 0.75, 0.76, 0.77, 0.78, 0.79, and 0.80. The comparison of each individual’s selection 
probability before and after scaling is shown in Table 2. P1 is the probability of selection before scaling, and 
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Figure 1. y  =  exp(–1/x).
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P2 is the probability of selection after scaling. From the comparison, the following conclusions can be made: 
when the temperature is high, the difference between individuals is reduced after stretching; when the tem-
perature is low, the difference between individuals becomes larger after stretching.

As the range of the basic data types of the programming language that can be provided is limited, we 
should normalize the fitness of all individuals in the population before performing fitness scaling:

	 ,
max 

fitnessfitness
fitness

=′ � (13)

where fitness refers to the fitness of the individual, fitness′ refers to the normalized fitness, and max fitness 
refers to the fitness of the best individual in the current population.

The improved hybrid heuristic algorithm mainly consists of selection, crossover and mutation, SA, elitist 
strategy, standardization, and fitness scaling operation. Perform these operations on the individuals in the 
population Pg, and then produce a new generation of population Pg+1. The basic algorithm is as follows:
1.	 Set the value of the parameters, such as population size N, chromosome length Lc, crossover probability 

Pc, mutation probability Pm, maximum generation Gmax, initial temperature T0, annealing speed σ, and 
stretching factor λ.

2.	 Initialize the population P0, i.e., generate N feasible solutions randomly. Evaluate the fitness of each 
individual, and then standardize the fitness, and finally perform the fitness scaling operation. Set the 
current generation g to be equal to 0.

3.	 Select two individuals from the current population Pg using the roulette wheel selection scheme.
4.	 Perform the crossover operation and SA operation. Perform the crossover operation on the two selected 

individuals, p1 and p2, using single point crossover strategy according to the probability Pc; then, produce 
two new individuals, c1 and c2. If the fitness of ci is higher than that of pi, then accept ci; otherwise, accept 
it with the probability exp((F(ci) – F(pi))/Tc).

5.	 Perform the mutation operation and SA operation. Perform mutation on every offspring. If the fitness of 
the individual after the mutation is higher than that of the original one, then accept it; otherwise, accept 
it with the probability exp((F(ci) – F(pi))/Tc).

6.	 Put the new individuals to the new population Pg+1. If the count of the individuals in Pg+1 is less than N, 
then go to step 3; otherwise, go to the next step.

7.	 Calculate the new fitness of each individual in the population, and standardize the fitness.
8.	 Perform fitness scaling on the individuals in the new population.
9.	 Implement the elitist strategy, and then replace the original population with the new population.
10.	 Decrease the temperature by the annealing rate.
11.	 Update the value of g : g  =  g + 1. Judge the algorithm termination condition. If the termination condition 

is satisfied, then output the optimal solution; otherwise, go to step 3.

Table 1. Comparison of Selected Probabilities When Tc is Equal to 5000.

No.   1   2   3   4   5   6   7   8   9   10

Fitness  0.1   0.2   0.3   0.4   0.5   0.6   0.7   0.8   0.9   1.0
P1   0.0182   0.0364   0.0545   0.0727   0.0909   0.1091   0.1273   0.1455   0.1636   0.1818
P2   0.0982   0.0986   0.0990   0.0994   0.0998   0.1002   0.1006   0.1010   0.1014   0.1018

Table 2. Comparison of Selected Probability When Tc is Equal to 50.

No.   1  2  3  4  5  6  7  8  9  10

Fitness  0.71  0.72  0.73  0.74  0.75  0.76  0.77  0.78  0.79  0.80
P1   0.0940  0.0954  0.0967  0.0980  0.0993  0.1007  0.1020  0.1033  0.1046  0.1060
P2   0.0830  0.0864  0.0899  0.0936  0.0974  0.1013  0.1055  0.1098  0.1143  0.1189
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4  Case Analysis and Simulation
Select the BRT Line 1 in a city of Zhejiang province as the research object, and only consider its up-run. The 
10 bus stops on the up-run are Stop1, Stop2, Stop3, Stop4, Stop5, Stop6, Stop7, Stop8, Stop9, and Stop10, 
in order. The total length of this line is about 18 km. It takes nearly 40 min for the bus to run from the first 
bus stop to the terminal bus stop on average. The first bus departs at 6:00 am; the last bus departs at 6:30 
pm. Thus, the total operating time in a day is 750 min. The maximum headway is 17 min, and the minimum 
headway is 4 min.

Using the real value encoding method, each individual consists of m real numbers in order. Each number 
in the individual represents the departure time from the first bus in minutes, and m represents the total 
number of the departure frequency. Its value is equal to 92 here. The earliest departure time x1 is equal to 0, 
and the last departure time x92 is equal to 750. To determine the reasonable value of the parameters, such 
as crossover probability, mutation probability, termination condition, initial temperature, and so on, many 
experiments have been carried out. Table 3 shows the best fitness values of different combinations of crosso-
ver and mutation probability. According to the data in the table, the highest fitness was obtained when the 
crossover probability equals to 0.8 and the mutation probability equals to 0.1. It was also found that the 
running time changes in proportion to these two parameters, and the running time increases faster when we 
added the mutation probability (see Figure 2). Therefore, we should also take this factor into account when 
setting the values of these two parameters. Finally, the set population size N is equal to 200; crossover prob-
ability Pc is equal to 0.8; mutation probability Pm is equal to 0.1; maximum generation Gmax is equal to 500; 
initial temperature T0 is equal to 5000; annealing rate σ is equal to 0.99; stretch factor λ is equal to 900; and 
penalty function coefficient ω1 is equal to 50, ω2 is equal to 84, ω3 is equal to 132, and ω4 is equal to 120.
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Figure 2. Running Time for Different Mutation Probabilities.

Table 3. Best Fitness of Different Combinations of Crossover and Mutation Probability.

Pm   fitness (Pc  =  0.8)  fitness (Pc  =  0.9)  fitness (Pc  =  1)

0   63,240  61,140  64,560
0.01   107,460  107,580  107,460
0.05   111,180  114,120  109,560
0.1   119,100  118,140  116,700
0.2   108,780  116,100  113,400



Z. Ning et al.: A Hybrid Heuristic Algorithm for Transportation Scheduling      445

Finally, implement the algorithm in the C programming language; the algorithm will converge to a 
stable state eventually. The variation of the historical highest fitness during the optimization is shown 
in Figure 3. Compared with the average fitness of the population (Figure 4), we found that the increase 
speed of the average fitness is less than the increase speed of the highest fitness obviously at the early 
stage of the algorithm. This is due to the function of fitness scaling of reducing the differences between 
individuals.

The best individual obtained finally is X  =  0, 10, 17, 23, 27, 31, 36, 41, 46, 51, 59, 67, 72, 79, 87, 92, 97, 103, 111, 
117, 123, 131, 138, 145, 151, 157, 168, 178, 185, 196, 202, 214, 220, 232, 243, 251, 259, 266, 273, 287, 294, 303, 319, 331, 
343, 352, 361, 370, 380, 390, 402, 409, 420, 429, 441, 450, 463, 468, 478, 485, 497, 506, 518, 523, 528, 534, 547, 554, 
564, 571, 575, 584, 592, 601, 606, 615, 625, 629, 634, 639, 651, 657, 666, 671, 677, 690, 699, 707, 717, 726, 743, 750.
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The corresponding optimal timetable is as follows: 6:00 – 6:10 – 6:17 – 6:23 – 6:27 – 6:31 – 6:36 – 6:41 
– 6:46 – 6:51 – 6:59 – 7:07 – 7:12 – 7:19 – 7:27 – 7:32 – 7:37 – 7:43 – 7:51 – 7:57 – 8:03 – 8:11 – 8:18 – 8:25 – 8:31 – 
8:37 – 8:48 – 8:58 – 9:05 – 9:16 – 9:22 – 9:34 – 9:40 – 9:52 – 10:03 – 10:11 – 10:19 – 10:26 – 10:33 – 10:47 – 10:54 
– 11:03 – 11:19 – 11:31 – 11:43 – 11:52 – 12:01 – 12:10 – 12:20 – 12:30 – 12:42 – 12:49 – 13:00 – 13:09 – 13:21 – 13:30 
– 13:43 – 13:48 – 13:58 – 14:05 – 14:17 – 14:26 – 14:38 – 14:43 – 14:48 – 14:54 – 15:07 – 15:14 – 15:24 – 15:31 – 15:35 
– 15:44 – 15:52 – 16:01 – 16:06 – 16:15 – 16:25 – 16:29 – 16:34 – 16:39 – 16:51 – 16:57 – 17:06 – 17:11 – 17:17 – 17:30 
– 17:39 – 17:47 – 17:57 – 18:06 – 18:23 – 18:30.

Compared with the classical GA, the improved algorithm has a faster convergence speed. At the same 
time, the best individual’s fitness is higher, and the ability to jump out of the local optima becomes stronger. 
We used two data samples to test the GA, SAGA, and the improved method, and the results show that the opti-
mization capacity of the improved algorithm increased on a large scale compared with the other two methods 
(see Figures 5 and 6). In Figures 5 and 6, the horizontal axis represents the generation, and the vertical axis 
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Figure 5. Data Sample 1.
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Figure 6. Data Sample 2.
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represents the maximum fitness of individuals in the current population. This stems from the fact that the 
fitness scaling function amplifies the differences between individuals in the late stage. The possibility of 
individuals having a higher fitness value to be selected will increase when the difference of the individuals’ 
fitness is small. The fitness scaling method will also help the algorithm find better solutions. In addition to 
the fact that the improved method can obtain better solutions, its running time almost equals that of SAGA’s 
(see Figure 7). To carry out the SA operation, it is necessary to recalculate the fitness of the individual after 
the crossover and mutation operations; thus, SAGA is much more time consuming than GA. The scheduling 
scheme obtained by the improved hybrid heuristic algorithm can reduce the passengers’ total waiting time 
by 7.86% compared with the classical GA, and by 2.4% compared with SAGA. The total waiting time of the 
scheduling scheme obtained by classical GA is approximately 166 h. The total waiting time of the schedul-
ing scheme obtained by SAGA is roughly 157 h. However, the total waiting time of the scheduling scheme 
obtained by the improved hybrid heuristic algorithm is about 153 h (Table 4).

5  Conclusion
In summary, the integration of SAGA and the fitness scaling method has a good effect on the use of SAGA 
for solving the intelligent scheduling problems of BRT. It can find the optimal or approximately optimal 
solution to bus scheduling problems in a large solution space and at a faster rate. This also proves that the 
fitness scaling method can indeed improve the SAGA. However, in the process of designing the algorithm, 
we simplified the problem and made some assumptions. Furthermore, we also did not consider how to react 
to sudden changes of the passenger flow. Meanwhile, the passenger flow forecasting problem associated 
with bus scheduling, namely considering the weather, season, holidays, and other factors to predict the flow 
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Figure 7. Running Time of Different Methods.

Table 4. Optimal Result Comparison of Improved Hybrid Heuristic Algorithm, GA, and SAGA.

Name   Original   GA   SAGA   Improved

Wait time (h)  185   166   157   153
Reduced (%)  –   10.23   15.25   17.29
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accurately, also needs to be addressed. Theories and methods about these areas need further analysis and 
research in the future.
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