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Abstract: In this work, the significance of combining the evidence from multita-
per mel-frequency cepstral coefficients (MFCC), linear prediction residual (LPR),
and linear prediction residual phase (LPRP) features for multilingual speaker
identification with the constraint of limited data condition is demonstrated. The
LPR is derived from linear prediction analysis, and LPRP is obtained by divid-
ing the LPR using its Hilbert envelope. The sine-weighted cepstrum estimators
(SWCE) with six tapers are considered for multitaper MFCC feature extraction.
The Gaussian mixture model-universal background model is used for modeling
each speaker for different evidence. The evidence is then combined at scoring
level to improve the performance. The monolingual, crosslingual, and multilin-
gual speaker identification studies were conducted using 30 randomly selected
speakers from the IITG multivariability speaker recognition database. The experi-
mental results show that the combined evidence improves the performance by
nearly 8-10% compared with individual evidence.
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1 Introduction

Speaker recognition is defined as a task of recognizing speakers from their voice
[3]. In speaker identification, the system identifies the most likely speaker of the
test speech signal. In speaker verification task, a user’s speech is used to clas-
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sify him as being either who he claimed to be or an impostor [10]. Depending on
the mode of operation, speaker identification can be classified as text-dependent
identification or text-independent identification. Text-dependent identification
requires the speaker to produce speech for the same text, both during training and
testing, whereas text-independent identification does not rely on a specific text
being spoken [20]. Speaker identification can be performed in the monolingual
mode (common language during training and testing), crosslingual mode (differ-
ent language for training and testing), and multilingual mode (speaker-specific
models are trained in one language and tested with multiple languages) [2].

Most state-of-the-art speaker identification systems work within a single-
language environment (English/European language) using sufficient data. People
have the ability to learn more than one language [6]. Many countries, including
India, are multilingual. In India, more than 50 languages are officially recog-
nized. A person in a multilingual country usually speaks more than one language.
For instance, criminals often switch over to another language, especially after
committing a crime [2]. Therefore, training a person’s voice in one language and
recognizing him in a different language (multilingual environment) is an issue
in many countries. In addition, data sparseness is becoming a crucial research
concern in automatic speaker recognition system. In a noncooperative scenario
such as forensic investigation, speech data may last for only a few seconds and
the task is to identify the speaker. Such an application should be able to validate
the speaker using limited amount of speech data.

Speaker characteristics in the speech signal can be attributed to the vocal tract
dimension, excitation characteristics, and the learning habits of the speakers [13].
The mel-frequency cepstral coefficient (MFCC) and linear prediction cepstral coef-
ficient (LPCC) features can accurately characterize the vocal tract configuration
of a speaker and can achieve good performance [16]. In [13, 19], it was shown that
the linear prediction residual (LPR) and linear prediction residual phase (LPRP)
signals contain speaker-specific information that is complementary to the MFCC
features. Attempts have been made to exploit the usefulness of features extracted
from excitation and vocal tract characteristics for speaker recognition [13, 19, 22].
In this direction, Murty and Yegnanarayana [13] combined the evidence from LPRP
and MFCC for improving the speaker recognition performance. The speaker veri-
fication experiments on the NIST 2003 database showed that the proposed com-
bined system yields a better equal error rate than the individual systems.

In [16], the phase information is combined with the MFCC for speaker identifi-
cation and verification tasks. The modified phase information extraction method
that normalizes the change variation in the phase according to the frame position
of the input speech was proposed. The experimental results showed that the com-
bination of the MFCC and the phase information was efficient for noisy speech
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signal. The conventional MFCC realization based on windowed (hamming) dis-
crete Fourier transform (DFT) may not yield good performance due to the high
variance of the spectrum estimation [11, 12, 17]. The window function in speech
processing smooths the spectral estimate of a frame of speech data by multiply-
ing the data frame with the window. However, windowing by a single window
has the disadvantage of producing leakage effects [21]. Kinnunen et al. [11] pro-
moted the use of multitaper MFCC features for speaker verification. Experimental
results on the NIST 2002 database indicated that multitapers outperform the con-
ventional single-window technique (MFCC). In our previous work, we attempted
to identify the speaker in the multilingual context with the constraint of limited
data (15 s) using sine-weighted cepstrum estimator MFCC (SWCE-MFCC) (K=6) as
feature [14]. It was observed in the study that the use of the multitaper MFCC
approach gives a better identification performance in all the speaker identifica-
tion experiments compared with the conventional MFCC technique.

The impact of mismatch in training and testing languages on a speaker veri-
fication system using English, Hindi, and Arunachali languages was carried out
in [4]. The speaker verification system was developed using 38-dimensional fea-
tures and the Gaussian mixture model-universal background model (GMM-UBM)
approach. A training data of 120 s and different testing data of 15, 30, and 45 s were
used. Recognition performance was observed to be greatly dependent on the train-
ing and testing languages. Further, it was observed that if the system is trained
with more than one language, the relative recognition performance of the system
degrades compared with that of the single-language scenarios (monolingual).

The features extracted from the multitaper MFCC, LPR, and LPRP are
modeled using GMM-UBM individually. The individual scores are combined to
obtain the speaker identification performance. The rest of the paper is organized
as follows: the database used for the study is described in Section 2. Section 3
presents the speaker identification studies. Monolingual, crosslingual, and mul-
tilingual experimental results are discussed in Section 4. Conclusions are given
in Section 5.

2 Database for the Study

Speaker identification experiments are carried out on the subset of the IITG
multivariability speaker recognition (IITG-MV) database, which is collected in
a setup having five different sensors, two different environments, two different
languages, and two different styles [8]. The recording was done in the office (con-
trolled environment) and in hostel rooms, laboratory, corridors, etc. (uncontrolled



244 — B.G.NagarajaandH.S.Jayanna DE GRUYTER

environments). The speech signal was sampled at 16 kHz and stored with 16-bit
resolution. The recording was done in Indian English and favorite language of
the speaker, which may be one of the Indian languages such as Hindi, Kannada,
Tamil, Oriya, Assami, Malayalam, and so on [18]. For the present work, we ran-
domly selected 30 (17 male and 13 female) speakers in the IITG-MV database
(headphone speech data).

3 Speaker Identification Studies

3.1 Feature Extraction using LPR

Speech recordings were sampled at 8 kHz with 16-bit resolution and pre-empha-
sized (0.97). A frame duration of 12 ms, with 6 ms for overlapping, was used. To
obtain the LPR, the vocal tract information is predicted from the speech signal
by 10®-order linear prediction analysis [19]. The estimated linear predictive coef-
ficients represent the vocal tract information and are suppressed from the speech
signal using an inverse filter formulation to obtain LPR [19].

3.2 Feature Extraction using LPRP

The LPRP is obtained by dividing the LPR using its Hilbert envelope [13]. Hilbert
envelope is the magnitude of the analytic signal of a given real signal. The ana-
lytic signal r (n) corresponding to the LPR r(n) is given by

r.(n)=r(n) +jr,(n), 6]

where r,(n) is the Hilbert transform of r(n) and is given by

r.(n)=fr,w)], )]
where
_—jR(w); O<sw<wm
R"(W)_{ jR(w); O>w=>—m,

where R(w) is the Fourier transform of the r(n) and f* denotes the inverse Fourier
transform. Hilbert envelope h (n) given by

h (n)=\/r’(n)+r’(n), (3)
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and the cosine of the phase of the analytic signal r (n) is given by

cos(0(n))= r(n) .

h (n) %)

e

3.3 Feature Extraction Using Multitaper MFCC

Let F=[f(0) f(1) ... fIN-1)]” denote one frame of speech (N samples) signal. The
windowed DFT spectrum estimate is given by [11, 12]

2

S(f)= ,

- —i2afn/N
g),w{n]f[n]e )

where W=[w(0) w(1) ... w(N-1)]” is the time-domain window (Hamming) func-
tion. The basic idea in multitapering is to pass the analysis frame through several
window functions and then approximate the weighted mean of individual sub-
spectra to obtain the final resultant spectrum [12]. The multitaper spectrum esti-
mation is given by [11]

2

S (] e

n=0

S()=2A()) : ©

where K represents the number of multitapers used, W= [w}.(O) wj(l) wj(N—l)]T
is the multitaper weights, and j=1,2, ..., K are used with corresponding weights
A(j). The sine tapers are defined as [1]

W,(n)=,/ 2 sin(nj(nﬂ)}n:o, .., N-1.
J N+1 N+1 7)

The weight used in the SWCE method is given by [1]
05(27;([]/_21)}1
M) =—

;[cos(zﬁ]le) J+ 1]

In this work, the SWCE multitaper is used with K=6 windows. A mel-warp-
ing is then performed using 22 triangular band-pass filters followed by a discrete
cosine transform. Figure 1 shows the block diagram representation of the multi-
taper MFCC method. A 13-dimensional (excluding 0™ coefficient) MFCC feature
vector is finally obtained. Figure 2 shows the Hamming and SWCE multitaper rep-
resentation in the frequency domain.

8)
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Figure 1. Block Diagram of Multitaper MFCC Technique.
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Figure 2. Frequency Domain for a Hamming Window and SWCE Multitaper Window.

3.4 Speaker Modeling Using GMM-UBM

To build the UBM, we have used 1 h of speech data from all the 138 speakers of the
YOHO database. The speaker-specific models were created by adapting only the
mean vectors of the UBM using the maximum a posteriori adaptation algorithm
[7]. The parameters of the GMM models (mean vector, covariance matrix, and
mixture weights) were estimated using the expectation maximization algorithm.
We have modeled speakers using GMMs with 8, 16, 32, 64, and 128 mixtures.

3.5 Speaker Testing

During testing, the frame scores of each speaker are stored as a confidence
score (C). The average confidence score for a given test signal is computed as
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c=1/ SZZICI., where S is the sum of the individual frame scores of a speaker and
M is the total number of speakers. The confidence scores C, and C, are obtained
using the multitaper MFCCs and LPRs/LPRPs, respectively. For each speaker, C,
and C, are combined using the linear weighted sum [13], given by

C.=a*C, +B*C,, ©)

where 8 =(1-«). To find the optimal weights for the linear combination, we per-
formed a simple search of the best weightings (« = 0.75).

4 Experimental Results

In this section, monolingual, crosslingual, and multilingual speaker identifica-
tion results are presented. In all our experiments, the speaker set (30 speakers)
and amount of speech data (15 s) are kept constant to make a relative comparison
of the performance of speaker identification using different techniques. (Note:
X/Y indicates training with language “X” and testing with language “Y”; “Mul-
tilanguage” includes Kannada, Telugu, Tamil, Assami, Bengali, Malayalam, and
Oriya.)

4.1 Monolingual Speaker Identification

The performance of LPR, LPRP, MFCC, and multitaper MFCC and the different
combined evidence for monolingual speaker identification are given in Table 1.
The speaker identification system trained and tested in English (E/E) gives the
highest performance of 73.33% for the combined multitaper MFCC and LPR
system. The performance of the speaker identification trained and tested in Hindi
(H/H) is 66.66% for the combined multitaper MFCC and LPRP system.

4.2 Crosslingual Speaker Identification

The performance of LPR, LPRP, MFCC, and multitaper MFCC and the different
combined evidence for crosslingual speaker identification are given in Table 2.
The combined evidence from the multitaper MFCC and LPR system and the mul-
titaper MFCC and LPRP system gives the highest recognition performance of
60% for training in English and testing in Hindi (E/H). Similarly, the combined
multitaper MFCC and LPRP system gives the highest recognition performance of
53.33% for a system trained in Hindi and tested in English (H/E).
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Table1. The Monolingual Speaker Identification Performance using LPR, LPRP, MFCC,
and Multitaper MFCC-Based Individual and Combined System. P, Represents the Maximum
Identification Performance among the Number of Gaussian Mixtures.

Train/Test  Features Gaussian Mixtures P,
8 16 32 64 128
E/E LPR 16.66 20.00 26.66 30.00 26.66 30.00
LPRP 20.00 20.00 26.66 30.00 30.00 30.00
MFCC 43.33 50.00 56.66 53.33 56.66 56.66
Multitaper MFCC 50.00 66.66 66.66 70.00 60.00 70.00
MFCC and LPR 46.66 60.00 56.66 56.66 53.33 60.00
MFCC and LPRP 50.00 60.00 50.00 60.00 56.66 60.00

Multitaper MFCC and LPR 46.66 73.33 70.00 70.00 60.00 73.33
Multitaper MFCCand LPRP  60.00 63.33 66.66 70.00 70.00 70.00

H/H LPR 10.00 20.00 23.33 26.66 30.00 30.00
LPRP 13.33 16.66 20.00 26.66 30.00 30.00
MFCC 23.33 30.00 46.66 46.66 50.00 50.00
Multitaper MFCC 26.66 43.33 46.66 56.66 50.00 56.66
MFCC and LPR 33.33 36.66 53.33 56.66 56.66 56.66
MFCC and LPRP 40.00 36.66 50.00 50.00 56.66 56.66

Multitaper MFCC and LPR 43.33 46.66 53.33 60.00 63.33 63.33
Multitaper MFCCand LPRP  40.00  46.66 56.66 60.00 66.66 66.66

Table 2. The Crosslingual Speaker Identification Performance using LPR, LPRP, MFCC,
and Multitaper MFCC-Based Individual and Combined System. P, Represents the Maximum
Identification Performance among the Number of Gaussian Mixtures.

Train/Test Features Gaussian Mixtures P,
8 16 32 64 128
E/H LPR 10.00 16.66 16.66 23.33 26.66 26.66
LPRP 20.00 20.00 16.66 23.33 23.33 23.33
MFCC 23.33 30.00 46.66 46.66 50.00 50.00
Multitaper MFCC 36.66 46.66 46.66 50.00 56.66 56.66
MFCC and LPR 16.66 33.33 26.66 53.33 53.33 53.33
MFCC and LPRP 20.00 30.00 30.00 43.33 50.00 50.00

Multitaper MFCC and LPR 33.33 36.66 50.00 60.00 56.66 60.00
Multitaper MFCCand LPRP  30.00  40.00 46.66 56.66 60.00 60.00

H/E LPR 10.00 13.33 20.00 23.33 23.33 23.33
LPRP 10.00 16.66 20.00 23.33 26.66 26.66
MFCC 26.66 23.33 33.33 36.66 40.00 40.00
Multitaper MFCC 36.66 43.33 40.00 43.33 43.33  43.33
MFCCand LPR 20.00 30.00 43.33 36.66 40.00 43.33
MFCC and LPRP 20.00 33.33 40.00 46.66 46.66 46.66

Multitaper MFCC and LPR 46.66  40.00 43.33 50.00 40.00 50.00
Multitaper MFCCand LPRP  50.00 46.66 50.00 53.33 50.00 53.33
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Table 3. The Multilingual Speaker Identification Performance using LPR, LPRP, MFCC, and
Multitaper MFCC-Based Individual and Combined System. P, Represents the Maximum Identifi-
cation Performance Among the Number of Gaussian Mixtures.

Train/Test  Features Gaussian Mixtures P,
8 16 32 64 128
E/multi LPR 10.00 10.00 16.66 20.00 23.33 23.33
LPRP 13.33 20.00 16.66 20.00 23.33 23.33
MFCC 20.00 40.00 36.66 40.00 50.00 50.00
Multitaper MFCC 30.00 36.66 50.00 46.66 60.00 60.00
MFCC and LPR 30.00 40.00 46.66 43.33 56.66 56.66
MFCC and LPRP 26.66 36.66 40.00 43.33 53.33 53.33

Multitaper MFCC and LPR 30.00 43.33 50.00 46.66 63.33 63.33
Multitaper MFCCand LPRP  36.66  40.00 46.66 56.66 60.00 60.00

H/multi LPR 6.66 13.33 13.33 20.00 16.66 20.00
LPRP 10.00 16.66 16.66 23.33 20.00 23.33
MFCC 26.66 30.00 33.33 33.33 36.66 36.66
Multitaper MFCC 23.33 26.66 30.00 36.66 36.66 36.66
MFCC and LPR 30.00 30.00 33.33 40.00 36.66 40.00
MFCC and LPRP 30.00 33.33 40.00 43.33 43.33 43.33

Multitaper MFCC and LPR 23.33 30.00 33.33 36.66 50.00 50.00
Multitaper MFCCand LPRP 30.00 36.66 43.33 50.00 53.33 53.33

4.3 Multilingual Speaker Identification

The performance of LPR, LPRP, MFCC, and multitaper MFCC and the different

combined evidence for multilingual speaker identification are given in Table 3.

The speaker identification system trained in English and tested with the multi-

languages (E/multi) gives the highest performance of 63.33% for the combined

multitaper MFCC and LPR system. The performance of the speaker identifica-
tion system trained in Hindi and tested with the multilanguages (H/multi) gives

53.33% for the combined multitaper MFCC and LPRP system.

Some of the observations we made from the monolingual, crosslingual, and
multilingual results are as follows:

— The proposed combined multitaper MFCC and LPR system and multitaper
MFCC and LPRP system yields good recognition in all the speaker identifica-
tion experiments. The performance is higher than the individual system. The
improvement in performance may be due to different speaker-specific infor-
mation (excitation and vocal tract) provided by each feature [9, 13, 15, 16].

—  The multitaper (SWCE) MFCC performs better than the usual MFCC method.
This may be due to the use of multiple windows (multitapers) that reduce
the variance of the MFCC features, thus making the spectrum less sensitive
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to noise compared with the conventional single-window (hamming) method
[11, 12].

— The weights used to combine the two systems («=0.75 and 5 = 0.25) suggest
that the multitaper MFCC-based system is more reliable than the LPR-based
one.

— It was observed that the results are better for monolingual experiments than
for the crosslingual and multilingual experiments. This may be due to the
variation in fluency and word stress when the same speaker speaks different
languages and also due to different phonetic and prosodic patterns of the
languages [5].

5 Conclusions

The main objective of the work was to increase the performance of the multilin-
gual speaker identification system in limited data condition by combining the
evidence from LPR, LPRP, and multitaper MFCC features. It was demonstrated by
conducting speaker identification experiments on 30 randomly selected speakers
from the IITG-MV database. The results showed that the information captured
by the multitaper MFCC in combination with LPR/LPRP provides good speaker
identification performance.
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