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Abstract: This article presents a novel control approach, hybrid neuro-fuzzy 
(HNF), for the load frequency control (LFC) of a four-area interconnected power 
system. The advantage of this controller is that it can handle nonlinearities, and 
at the same time, it is faster than other existing controllers. The effectiveness of 
the proposed controller in increasing the damping of local and inter-area modes 
of oscillation is demonstrated in a four-area interconnected power system. Areas 
1 and 2 consist of a thermal reheat power plant, whereas Areas 3 and 4 consist of a 
hydropower plant. Performance evaluation is carried out by using fuzzy, artificial 
neural network (ANN), adaptive neuro-fuzzy inference system, and conventional 
proportional and integral (PI) control approaches. Four different models with dif-
ferent controllers are developed and simulated, and performance evaluations are 
carried out with said controllers. The result shows that the intelligent HNF con-
troller has improved dynamic response and is at the same time faster than ANN, 
fuzzy, and conventional PI controllers.
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1  Introduction
Many developments have taken place in the structure of the power system since 
its inception. All over the world, most of the power utilities have been operat-
ing in interconnected fashion due to numerous economical, technical, and envi-
ronmental considerations. The power transmission network plays an important 
role in transporting electrical power in bulk from one power pool to other and to 
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distantly located load centers. The main objective of automatic generation control 
(AGC) is to balance the total system generation against system load losses so that 
the desired frequency and power interchange with the neighboring system is 
maintained. Any mismatch between generation and demand causes the system 
frequency to deviate from the nominal value. This high-frequency deviation may 
lead to partial or complete system collapse. AGC is comprises an interconnected 
load frequency control (LFC) loop and an automatic voltage regulator (AVR) 
loop power systems, which regulate power flows and frequency. In a multi-area 
interconnected power system, the objectives of the LFC are to provide generator 
load control via frequency zero steady-state errors of frequency deviations and 
to provide optimal transient behavior [7]. LFC is being used as part of the AGC 
scheme in electric power systems for several years now [5, 14, 16, 34].

Literature survey shows that most of the earlier works in the area of LFC pertain 
to interconnected thermal system and relatively lesser attention has been devoted 
to the LFC of multiarea interconnected hydro-thermal system [2]. A control strat-
egy that not only maintains a constant frequency and desired tie-power flow but 
also achieves zero steady-state error and inadvertent interchange is needed. Among 
the various types of load frequency controllers, the most widely used is the con-
ventional proportional and integral (PI) controller. The PI and proportional inte-
gral and derivative (PID) controllers are very simple to implement and gives better 
dynamic response, but their performance deteriorates when the complexity in the 
system increases due to disturbances such as load variation boiler dynamics [2, 33]. 
Therefore, there is need for a controller that can overcome this problem, and arti-
ficial intelligence controllers such fuzzy and neural control approaches are more 
suitable in this respect. The fuzzy system has been applied to the LFC problems 
with rather promising results [1, 8, 17, 18, 21–23]. The salient feature of these tech-
niques is that they provide a model-free description of control systems and do not 
require model identification [11, 22, 24, 30]. The artificial neural network (ANN) has 
been applied by Demiroren et al. [4], Shayeghi and Shayanfar [29], and Panna-Ram 
[24]. The results of ANN control approaches are better than fuzzy and conventional 
PI controllers, but it has some limitations in the training of network data. Farhangi 
et al. [6] presented a load frequency control of interconnected power system using 
emotional learning-based intelligent controller, whereas Khuntia and Panda [13] 
presented a simulation study for the AGC of a multiarea power system using the 
neuro-fuzzy inference system approach and Singh Parmar et al. [31] presented the 
LFC of a realistic power system with multisource power generation.

In this article, an attempt has been made to apply hybrid a neuro-fuzzy (HNF) 
controller for the automatic LFC for a four-area interconnected power system. 
A class of an adaptive network that is functionally equivalent to a fuzzy infer-
ence system has been proposed. The proposed architecture is referred to as the 
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adaptive neuro-fuzzy inference system (ANFIS). The performance of the HNF con-
troller is compared with fuzzy, ANN, and conventional PI controllers to show its 
superiority. The results of the ANFIS controller are compared with the published 
results of Farhangi et al. [6], Khuntia and Panda [13], and Singh Parmar et al. [31], 
and then the dynamic performance obtained with the above control strategy, i.e., 
ANFIS-based controller, is analyzed.

2  Power System Investigated
An interconnected power system consists of many control areas connected by 
tie lines. A power system has complex and multivariable structures. In addition, 
they consist of many different controls blocks. Most of them are nonlinear time 
variant and/or nonminimum phase systems. All the generators are supposed to 
constitute a coherent group in each control area. The power system experiment 
shows that each area needs to control its system frequency and tie-line power 
flow. Frequency control is accomplished by two different control actions in an 
interconnected four-area power system: primary speed control and supplemen-
tary or secondary control actions. The primary speed control makes the initial 
coarse readjustment of the frequency. Through its action, the various generators 
in the control area track a load variation and share it in proportion to their capaci-
ties. The speed of the response is limited only by the natural time lags of the 
turbine and the system itself. The secondary loops take over the fine adjustment 
in frequency by resetting the frequency error to zero through integral action. The 
relationship between speed and load can be adjusted by changing a load refer-
ence set point input. In practice, the adjustment of the load reference set point is 
accomplished by operating the speed changer motor. The output of each unit at a 
given system frequency can be varied only by changing its load reference, which, 
in effect, moves the speed droop characteristics up and down. This control is con-
siderably slower and goes into action only when the primary control has done 
its job. For power and load sharing among generators connected to the system, 
speed regulation or droop characteristic must be provided [19]. The speed droop 
or regulation characteristic may be obtained by intelligent controllers.

In this article, the performance evaluation based on ANN, fuzzy, and ANFIS 
control techniques for a four-area interconnected thermal-hydro power plant is 
proposed. The sliding concept arises due to a variable structure concept. The 
objective of VSC has been greatly extended from stabilization to other control 
functions. The most distinguished feature of VSC is its ability to result in very 
robust control systems and external disturbances [10, 15]. The four-area hydro-
thermal power system interconnected with tie lines is shown in Figure 1.
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The aims of the control areas are twofold:
–– Each control area should as much as possible supply its own load demand, 

and the power transfer through tie line should be on mutual agreement.
–– Each control area should be controllable by the frequency control [25].

In an isolated control area case, the incremental power (ΔPG–ΔPD) was accounted 
for by the rate of increase of stored kinetic energy and increase in area load 
caused by the increase in frequency. The four-area hydro-thermal reheat power 
system simulated model is shown in Figure 1.

The stat variable for each of areas is ΔPi (i = 1, …, 4), and the state space equa-
tions related to the variables are different for each area.

	 ΔP1(k) = ΔP12(k)+a41ΔP41(k)� (1)

	 ΔP2(k) = ΔP23(k)+a12ΔP12(k)� (2)

	 ΔP3(k) = ΔP34(k)+a23ΔP23(k)� (3)

	 ΔP4(k) = ΔP41(k)+a34ΔP34(k)� (4)

A tie-line bias control is used to eliminate steady-state errors in frequency 
in a tie-line power flow. This states that each control area must contribute to fre-
quency control in addition to their own net interchange.

Let ACE1 = area control error of area 1,

ACE2 = area control error of area 2,

ACE3 = area control error of area 3

ACE4 = area control error of area 4.

In this control, ACE1, ACE2, and ACE3 are made linear through the combination of 
frequency and tie-line power error [14].

	 ACE1 = ΔP12+b1Δf1,� (5)

	 ACE2 = ΔP23+b2Δf2,� (6)

	 ACE3 = ΔP34+b3Δf3,� (7)

	 ACE4 = ΔP41+b4Δf4,� (8)

where the constants b1, b2, b3, and b4 are the area frequency bias of areas 1–4, 
respectively, and ΔPR1, ΔPR2, ΔPR3, and ΔPR4 are the mode integrals of ACE1, ACE2, 
ACE3, and ACE4, respectively. The control methodology used is discussed in the 
following sections.
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3  Automatic Controller
The task of load frequency controller is to generate a control signal Ui that main-
tains system frequency and tie-line interchange power at predetermined values. 
The PI control scheme is shown in Figure 2 [3].

	
∆ ∆=− =− +∫ ∫ tie,

0 0

(ACE ) d ( ) d
T T

i i i i i i iU K t K P B F t
�

(9)

Taking the derivative of Eq. (9) yields

	 Ui = –Ki(ACEi) = –Ki(ΔPtie,i+BiΔFi).� (10)

4  Intelligent Control Approach

4.1  Artificial Neural Network Controller

ANN is an information-processing system where the element called neurons pro-
cesses the information. The signals are transmitted by connecting links. The links 
process an associated weight that is multiplied along with the incoming signal 
(net input) for any typical neural net. The output signal is obtained by applying 
activations to the net input. The field of neural networks is very broad [9, 20].

A neural network architecture with a multilayer perceptron as the unknown 
function to be approximated is shown in Figure 3. The parameters of the network 
are adjusted so that it produces the same response as the unknown function if the 
same input is applied to both systems. The unknown function could also repre-
sent the inverse of a system being controlled; in this case, the neural network can 
be used to implement the controller [9]. Feed-forward networks often have one 
or more hidden layers of sigmoid neurons followed by an output layer of linear 

Integral control
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Bi

ACEi+

+

Control
area (i)

∆PTiei

∫
∆Ft

∆PDl
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-K1

Figure 2. Conventional PI Controller Installed on the ith area.
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neurons. Multiple layers of neurons with nonlinear transfer functions allow the 
network to learn nonlinear and linear relationships between input and output 
vectors. The linear output layer lets the network produce values outside the –1 to 
1 range. Meanwhile, if it is required to constrain the outputs of a network (such 
as between 0 and 1), then the output layer should use a sigmoid transfer func-
tion (such as logsig). For multiple-layer networks in neuron model and network 
architectures, the number of layers is used to determine the superscript on the 
weight matrices. This network can be used as a general function approximator as 
shown in Figure 3.

4.2  Nonlinear Autoregressive Moving Average L2 Controller

The ANN controller architecture used here is a nonlinear autoregressive model 
reference adaptive controller. This controller requires the least computation of the 
three architectures. This controller is simply a rearrangement of the neural network 
plant model, which is trained offline in batch form. It consists of a reference, a plant 
output, and a control signal. The controller is adaptively trained to force the plant 
output to track a reference model output. The model network is used to predict the 
effect of controller changes on plant output, which allows the updating of control-
ler parameters. In the study, the frequency deviations, tie-line power deviation, and 
load perturbation of the area are chosen as the neural network controller inputs 
[9]. The outputs of the neural network are the control signals, which are applied 
to the governors in the area. The data required for the ANN controller training is 
obtained from designing the reference model neural network and applying a step 
response load disturbance to the power system. After a series of trial and error and 
modifications, the ANN architecture provides the best performance. It is a three-
layer perceptron with 5 inputs, 13 neurons in the hidden layer, and 1 output in the 
ANN controller. In addition, in the ANN plant model, it is a three-layer perceptron 

Output

-

+

+
Error

AdaptationPredicted
output

Neural
network

Unknown
function

Input

Figure 3. Neural Networks as Function Approximator.
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with 4 inputs, 10 neurons in the hidden layer, and 1 output. The activation function 
of the networks neurons is the trainlm function; 300 training samples have been 
taken to train 300 epochs. The proposed network has been trained using learning 
performance. The learning algorithms cause an adjustment in the weights, so that 
the controlled system gives the desired response [4].

One standard model that is used to represent general discrete time nonlinear 
systems is the nonlinear autoregressive moving average model:

	 u(k) = G[y(k), y(k–1), …, y(k–n+1), yr(k+d), u(k–1), …, u(k–m+1)],� (11)

where u(k) is the system input and y(k) is the system output. For the identifi-
cation phase, the neural network can be trained to approximate the nonlinear 
function N. This is the identification procedure used for the neural network pre-
dictive controller. If the system output is required to follow a reference trajectory 
y(k+d) = yr(k+d), the next step is to develop a nonlinear controller of the form

	 y(k+d) = N[y(k), y(k–1), …, y(k–n+1), u(k–1)], …, u(k–n+1)].� (12)

The problem with this controller is that if it is required to train a neural network 
to create function G in order to minimize mean square error, a dynamic back-
propagation is needed. This model is in companion form, where the next con-
troller input u(k) is not contained inside the nonlinearity. The advantage of 
this form is that it can be solved for the control input that causes the system 
output to follow the reference y(k+d) = yr(k+d). The resulting controller would 
have the form

( ) [ ( ), ( 1), , ( 1), ( 1), , ( 1)]
[ ( ), ( 1), , ( 1), ( 1), , ( 1)] * ( )

y k d f y k y k y k n u k u k m
g y k y k y k n u k u k m u k

+ = − − + − − +
+ − − + − − +

… …
… … �

(13)

+ − − … − + − … − +
=

− … − + − … − +
( ) [ ( ), ( 1), , ( 1), ( 1), , ( 1)]

( ) .
[ ( ), ( 1), , ( 1), ( 1), , ( 1)]

ry k d f y k y k y k n u k u k n
y k

g y k y k y k n u k u k n
�

(14)

4.3  Fuzzy Logic Controller

Fuzzy logic is a thinking process or problem-solving control methodology incor-
porated in control system engineering to control systems when inputs are either 
imprecise or the mathematical models are not present at all. Fuzzy logic can 
process a reasonable number of inputs, but system complexity increases with the 
increase in the number of inputs and outputs; therefore, distributed processors 
would probably be easier to implement. Fuzzification is the process of turning 
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a crisp or precise quantity into a fuzzy one [28]. They carry considerable uncer-
tainty. If the form of uncertainty arises because of imprecision, ambiguity, or 
vagueness, then the variable is probably fuzzy and can be represented by a mem-
bership function (MF).

Defuzzification is the conversion of a fuzzy quantity to a crisp quantity. There 
are many methods of defuzzification, of which the smallest of the maximum 
method is applied in making a fuzzy inference system. The fuzzy logic control 
(FLC) consists of three main stages: namely the fuzzification interface, the infer-
ence rules engine (Table 1), and the defuzzification interface[8, 18]. For LFC, the 
process operator is assumed to respond to variables error (e) and change of error 
(ce). The Momdani model is used to investigate the LFC.

The final output of the model is the aggregation of outputs from all rules 
using the max operator:

	
1 1 1

C C 1 C 2 C 1( ) max{ ( ), ( ), , ( )}.y y y yµ µ µ µ= …
� (15)

Output C is a fuzzy set that can be defuzzified into a crisp output [28]. The 
fuzzy logic controller with error and change in error is shown in Figure 4.

Table 1. FUZZY Inference Rule for Fuzzy Logic Controller.

Input e(k)

ce(k) NB NM NS ZO PS PM PB
NB PB PB PB PB PM PM PS
NM PB PM PM PM PS PS PS
NS PM PM PS PS PS PS ZO
ZO NS NS NS ZO PS PS PS
PS ZO NS NS NS NS NM NM
PM NS NS NM NM NM NB NB
PB NS NM NB NB NB NB NB

Output

Input

Fuzzy logic
controller

Feedback gain

-+

++1
2

1
z

Figure 4. Model of Fuzzy Logic Controller.
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The variable error is equal to the real power system frequency deviation (Δf). The 
frequency deviation Δf is the difference between the nominal or scheduled power 
system frequency (fN) and the real power system frequency (f). Taking the scaling 
gains into account, the global function of the FLC output signal can be written as

	 ΔPc = F[nce(k), ncece(k)],� (16)

where ne and nce are the error and the change in error scaling gains, respectively, 
and F is a fuzzy nonlinear function. FLC is dependent on its inputs’ scaling gains 
[8]. A label set corresponding to the linguistic variables of the input control signals, 
e(k), and ce(k), with a sampling time of 0.01 s is given. Seven triangular MFs, namely 
negative big (NB), negative medium (NM), negative small (NS), zero (ZO), positive 
small (PS), positive medium (PM), and positive big (PB), were examined. The range 
of input (error in frequency deviation and change in frequency deviation), i.e., uni-
verse of discourse, is –0.25 to 0.25 and –0.01 to 0.01, and there are 49 rules.

4.4  Adaptive Neuro-Fuzzy Inference System

The ANFIS controller combines the advantages of fuzzy controller as well as the 
quick response and the adaptable nature of ANN. Fundamentally, an ANFIS can 
take a fuzzy inference system (FIS) and tune it with a back-propagation algorithm 
based on a collection of input–output data. This allows the fuzzy systems to 
learn. A network structure facilitates the computation of the gradient vector for 
parameters in a fuzzy inference system. Because ANFIS is much more complex 
than the fuzzy inference systems discussed so far, the available fuzzy inference 
system options cannot be used. Specifically, ANFIS only supports Sugeno systems 
subject to the following constraints:

–– First-order Sugeno-type systems
–– A single-output derived by weighted average defuzzification,
–– Unity weight for each rule
–– AND method: prod
–– OR method: max
–– Implication method: prod
–– Aggregation method: max

Meanwhile, users can provide ANFIS with their own number of MFs (numMFs) 
for both the input and the output of the fuzzy controller, the number of training 
and checking data sets (numPts), the type of MF (mfType), and the optimization 
criterion for reducing the error measure (usually defined by the number of the 
squared difference between the actual and the linearized N curve) [13, 23].
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4.4.1  Sugeno Model

Assume that the fuzzy inference system has two inputs x and y and one output z. 
The first-order Sugeno fuzzy model has the following rules (Figure 5):

–– Rule 1: If x is A1 and y is B1, then f1 = p1x+q1y+r1.� (17)

–– Rule 2: If x is A2 and y is B2, then f2 = p2x+q2y+r2.� (18)

The best advantage of the neuro-fuzzy design method, compared with the fuzzy 
design method, is the small number of input and output MFs (usually 2–4) needed, 
which implies the same maximum number of rules. Thus, the rule base and the 
occupied memory become small. The ANFIS architecture is shown in Figure 6.

From the proposed ANFIS architecture, it is observed that given the values of the 
premise parameters, the overall output can be expressed as a linear combination of 
the consequent parameters. More precisely, output f in this figure can be rewritten as

A1

A2 B2

B1

X Y

YXx
f1=p1x+q1y+r1 f2=p2x+q2y+r2

w1 . f1+w2 . f2
w1+w2

f =

y

w1

w2

Figure 5. Rules of Sugeno Model.

Layer1 Layer2

A1

A2

B1

B2

Prod

Prod

Norm
w1

w2

w1f1

w1f2
x y

x y

f

Norm

y

x

Layer3 Layer4 Layer5

Sum

Figure 6. Architecture of ANFIS.
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= + = + = + + +
+ +

+ +

1 2
1 2 1 1 2 2 1 1 1 1 1 1 2 2

1 2 1 2

2 2 2 2

( ) ( ) ( ) ( )

( ) ( ) ,

w w
f f f w f w f w x p w y q w r w x p

w w w w
w y q w r

�
(19)

where wi is the normalized firing strength from layer 3 and pi, qi, and ri are the 
parameter set of this node. These are referred to as consequent parameters. The 
ANFIS architecture has following three layers of operation:

–– fuzzification layer,
–– fuzzy rule layer, and
–– defuzzification layer [12].

An adaptive network is a superset of all kinds of feed-forward neural networks 
with supervised learning capability. An adaptive network, as its name implies, 
is a network structure consisting of nodes and directional link through which 
the nodes are connected. Moreover, a part or all of the nodes are adaptive, which 
means their outputs depend on parameter(s) pertaining to these nodes and the 
learning rule specifies how these parameters should be changed to minimize a 
prescribed error measure. Because the basic learning rule is based on the gradi-
ent method, which is notorious for its slowness and tendency to become trapped 
in local minima, a hybrid learning rule, which can speed up the learning process 
substantially, is proposed [12].

4.4.2  Steps for Designing the ANFIS Controller

The basic steps for designing the ANFIS controller in MATLAB/Simulink are 
outlined:

–– Draw the Simulink model with a fuzzy controller and simulate it with the 
given rule base.

–– Collecting training data while simulating the model with the fuzzy 
controller.

–– The two inputs, i.e., ACE and d(ACE)/dt, and the output signal gives the train-
ing data.

–– Use ANFISEDIT to create the ANFIS FIS file.
–– Load the training data collected in Step (ii) and generate the FIS with gbell 

MFs.
–– Train the collected data with the generated FIS up to a particular number of 

epochs.
–– Save the FIS file, which is the neuro-fuzzy-enhanced ANFIS file.
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4.5  Training and Checking: ANFIS

The number of epoch is determined according to the above-mentioned param-
eters and the excepted error measure fixed by the user. The training and check-
ing data are the following: number of nodes, 53, number of linear parameters, 
16; number of nonlinear parameters, 24; total number of epoch, 40; number 
of training data pairs, 51; number of checking data pairs, 51; number of fuzzy 
rules, 16. Errors ranged from 0.000527979 to 0.00470353 and from 0.000611368 
to 0.00492588. The gbell MFs is taken. The frequency deviation Δf is the differ-
ence between the nominal or scheduled power system frequency (fN) and the real 
power system frequency (f).

5  Result And Discussion
An HNF AGC is designed using the procedure presented earlier. The proposed 
scheme utilizes the Sugeno-type fuzzy inference system controller, with the 
parameters inside the fuzzy inference system decided by the neural network back-
propagation method. The ANFIS is designed by taking ACE and rate of change of 
ACE as input. The parameters used for simulation are given in the appendix. Four 
types of Simulink models are developed using PI, fuzzy, ANN, and ANFIS control-
lers to obtain better dynamic behavior. The frequency deviation plots for thermal 
and hydro cases are obtained separately for the 1% step-load change in system 
frequency and tie-line power as shown in Figures 7–21, respectively.

The model developed with the PI controller has been simulated, and the 
responses obtained, shown in Figures 7–9 reveal that the PI controller reduces 
steady-state error in frequency deviation and maximum peak overshoot. The set-
tling time in case of frequency deviation is limited to 64 s for the thermal plant and 
70 s for the hydro plant. The deviation in the tie-line power is also limited to 70 s.

Figures 10–13 reveal that the fuzzy controller further reduces the steady-state 
error in frequency deviation and maximum peak overshoot. The settling time in 
case of frequency deviation is limited to 45 s for the thermal plant and 48 s for the 
hydro plant. The deviation in the tie-line power is also limited to 45 s. The settling 
time and peak overshoot are much lesser than the in the PI controller.

A 1% step-load perturbation is considered in an area and simultaneously 
in all the areas. Figures 14–17 reveal that the ANN controller further reduces the 
steady-state error in frequency deviation and maximum peak overshoot. The set-
tling time in case of frequency deviation is limited to 40 s for both thermal and 
hydro plants. The deviation in the tie-line power is also limited to 30 s. The settling 
time and peak overshoot are much lesser than in the PI and fuzzy controllers.
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Figure 7. Change in Frequency (Hydro-Thermal Plant): With PI Controller.
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Figure 8. Change in Tie-Line Power (Hydro-Thermal Plant): With PI Controller.
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Figure 9. Change in Tie-Line Power (Thermal-Hydro Plant): With PI Controller.
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Figure 10. Change in Frequency (Thermal Plant): With Fuzzy Controller.
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Figure 11. Change in Frequency (Hydro Plant): With Fuzzy Controller.
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Figure 12. Change in Tie-Line Power (Thermal Plant): With Fuzzy Controller.
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Figure 14. Change in Frequency (Thermal Plant): With ANN Controller.
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Figure 15. Change in Frequency (Hydro Plant): With ANN Controller.
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Figure 13. Change in Tie-Line Power (Hydro Plant): With Fuzzy Controller.
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Figure 16. Change in Tie-Line Power (Hydro-Thermal Plant): With ANN Controller.
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Figure 17. Change in Tie-Line Power (Thermal-Hydro Plant): With ANN Controller.
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Figure 18. Change in Frequency (Thermal Plant): With ANFIS Controller.
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Figure 20. Change in Tie-Line Power (Hydro Plant): With ANFIS Controller.
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Figure 21. Change in Tie-Line Power (Thermal Plant): With ANFIS Controller.

The model developed with the ANFIS controller has been simulated, and 
the responses obtained above in Figures 18–21 reveal that the ANFIS controller 
further reduces the steady-state error in frequency deviation and maximum peak 
overshoot. The settling time in case of frequency deviation is limited to 18 s for 
the thermal plant and 17 s for hydro plant. The deviation in the tie-line power is 
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Figure 19. Change in Frequency (Hydro Plant): With ANFIS Controller.
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also limited to 15 s for the thermal plant and 27 s for the hydro plant. The settling 
time and peak overshoot are much lesser than the PI, fuzzy, and ANN controllers.

The system settles very quickly, the number of oscillation is also reduced, 
and the overshoot of frequency and tie-line power are within the tolerance limits, 
whereas in the case of PI, fuzzy, and ANN, the settling time is longer and the 
system settles after a large number of sustained oscillations.

The above simulation results shows that the proposed ANFIS-based control-
lers track the load changes and achieve good robust performance than conven-
tional PI and other intelligent control (fuzzy and ANN) approach, with 1% load 
variation in the power system. The conventional PI and intelligent (fuzzy and 
neuro-fuzzy) control approach, with the inclusion of slider gain, provides a better 
dynamic performance and reduces the steady-state error and oscillation of the 
frequency deviation and the tie-line power flow in each area of the hydro-ther-
mal combination four-area interconnected power system. The settling time and 
maximum peak overshoot in the transient condition for both changes in system 
frequency and change in tie-line power are given in Tables 2 and 3, respectively.

The 1% step-load perturbation is considered in an area and simultaneously 
in all the areas, which is in fact a novel study. Tables 2 and 3 shows that a large 
number of oscillations are found and the settling time is longer when conventional 
PI controller is used. When the fuzzy controller is applied for the same condition, 
the settling time is reduced, and it is further reduced when the ANN controller 

Table 2. Comparative Study of Settling Time.

Controllers Δf (s) ΔPtie (s)

Area 1 Area 2 Area 3 Area 4 Thermal-thermal Hydro-thermal

PI 64 64 70 65 65 70
Fuzzy 45 45 45 48 40 45
ANN 40 40 40 40 30 35
ANFIS 18 18 17 17 15 27

Table 3. Comparative Study of Peak Overshoots.

Controllers Δf (Hz) ΔPtie (pu)

Area 1 Area 2 Area 3 Area 4 Thermal-thermal Hydro-thermal

PI –0.055 –0.055 –0.067 0.066 –0.0145 –0.05
Fuzzy –0.059 –0.06 –0.068 –0.065 0.005 –0.012
ANN –0.038 –0.038 –0.055 –0.051 –0.006 –0.013
ANFIS –0.061 –0.061 –0.054 –0.054 –0.052 –0.045
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is used for the same condition and disturbances to control the deviation in load 
frequency and tie-line power. However, in contrast, the ANFIS controller results 
are found to be more satisfactory, having a small overshoot, and also, the system 
settles very early in each area irrespective of the disturbance location as com-
pared with conventional PI, fuzzy, and ANN controllers. The simulation results 
of Farhangi et al. [6], Khuntia and Panda [13], and Singh Parmar et al. [31], show 
that their system settles after a large number of sustained oscillation and having a 
large peak overshoot of frequency as well as tie-line power as compared with our 
proposed method even in a four-area hydro-thermal complex system. Therefore, 
the comparative study of all kind of controller reveals the superiority of the HNF 
ANFIS controller. The settling time is shorter in the frequency deviation and tie-
line power deviation as well because ANFIS combines the advantages of fuzzy as 
well as ANN, and it provides a good inference system and hybrid learning rules.

6  Conclusion
In this article, the AGC of a four-area interconnected hydro-thermal power system 
is investigated. To demonstrate the effectiveness of the proposed method, a control 
strategy based on neuro-fuzzy, ANN, and conventional PI technique is applied. 
The performance of the proposed controller is evaluated through simulation. The 
results are given in Tables 2 and 3. Analysis reveals that the proposed technique 
gives good results, and this method reduces peak deviation of frequencies, tie-line 
power, time error, and inadvertent interchange. It can be concluded that the ANFIS 
controller with sliding gain provides a better settling performance than the fuzzy, 
ANN, and conventional PI controllers. Therefore, the intelligent control approach 
using the neuro-fuzzy concept is more accurate and faster than the fuzzy, ANN, 
and PI control scheme even for a complex dynamic system. The superiority of the 
ANFIS controller is evident from the simulation results for all types of perturba-
tion location. Moreover, the ANFIS controller is found to be more suitable in the 
present-day power system where complexity is gradually increasing daily.

Nomenclature
I	 Subscript referring to area (i = 1, …, 4)
F	 Nominal system frequency
Hi	 Inertia constant
ΔPDi	 Incremental load change
ΔPgi	 Incremental generation change
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∆=
∆

 Di
i

PD
fi

Tg	 Steam governor time constant
Kr	 Reheat constant
Tr	 Reheat time constant
Tt	 Steam turbine time constant
Ri	 Governor speed regulation parameter
Bi	 Frequency bias constant
Tpi	 2Hi/fDi

Kpi	 1/Di

Kt	 Feedback gain of FLC
Tw	 Water starting time
ACE	 Area control error
P	 Power
E	 Generated voltage
V	 Terminal voltage
δ	 Angle of voltage (V)
Δδ	 Change in angle
ΔP	 Change in power
Δf	 Change in supply frequency
ΔPc	 Speed changer position
R	 Speed regulation of the governor
KH	 Gain of speed governor
TH	 Time constant of speed governor
Kp	 1/B = power system gain
Tp	 2H/B f0 = power system time constant

Received October 15, 2012; previously published online May 16, 2013.

Appendix
Parameters
f  = 50 Hz, R1 = R2 = R3 = R4 = 2.4 Hz/per unit (pu) MW
Tgi = 0.08 s
Tpi = 20 s
Ptie,max = 200 MW
Tr = 10 s, Kr = 0.5
H1 = H2 = H3 = H4 = 5 s
Pri = 2000 MW, Tti = 0.3 s
Kp1 = Kp2 = Kp3 = Kp4 = 120 Hz pu/MW
Kd = 4.0
Ki = 5.0, Tw = 1.0 s
Di = 8.33 × 10–3 pu MW/Hz
B1 = B2 = B3 = B4 = 0.425 pu MW/Hz
ai = 0.545, a = 2piT12 = 2piT23 = 2piT34 = 2piT41 = 0.545
delPdi = 0.01
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