Abstract
This paper establishes a stability estimate for the inverse problem of identifying the time-dependent source function in parabolic equations, where coefficients vary with space and time, by employing the Carleman estimate technique.
Funding statement: This research was supported by Vietnam National Foundation for Science and Technology Development (NAFOSTED) under grant number 101.02-2024.12. Parts of this work have been done during the stay of the first author at Vietnam Institute for Advanced Study in Mathematics in Summer 2025.
References
[1] M. Bellassoued and M. Yamamoto, Carleman Estimates and Applications to Inverse Problems for Hyperbolic Systems, Springer Monogr. Math., Springer, Tokyo, 2017. 10.1007/978-4-431-56600-7Suche in Google Scholar
[2] A. Benabdallah, Y. Dermenjian and J. Le Rousseau, Carleman estimates for the one-dimensional heat equation with a discontinuous coefficient and applications to controllability and an inverse problem, J. Math. Anal. Appl. 336 (2007), no. 2, 865–887. 10.1016/j.jmaa.2007.03.024Suche in Google Scholar
[3] V. T. Borukhov and P. N. Vabishchevich, Numerical solution of the inverse problem of reconstructing a distributed right-hand side of a parabolic equation, Comput. Phys. Commun. 126 (2000), 32–36. 10.1016/S0010-4655(99)00416-6Suche in Google Scholar
[4] M. Boulakia, C. Grandmont and A. Osses, Some inverse stability results for the bistable reaction-diffusion equation using Carleman inequalities, C. R. Math. Acad. Sci. Paris 347 (2009), no. 11–12, 619–622. 10.1016/j.crma.2009.03.022Suche in Google Scholar
[5] A. L. Bukhgeĭm, Multidimensional inverse problems of spectral analysis, Dokl. Akad. Nauk SSSR 284 (1985), no. 1, 21–24. Suche in Google Scholar
[6] P. Cannarsa, G. Floridia, F. Gölgeleyen and M. Yamamoto, Inverse coefficient problems for a transport equation by local Carleman estimate, Inverse Problems 35 (2019), no. 10, Article ID 105013. 10.1088/1361-6420/ab1c69Suche in Google Scholar
[7] P. Cannarsa, P. Martinez and J. Vancostenoble, Carleman estimates for a class of degenerate parabolic operators, SIAM J. Control Optim. 47 (2008), no. 1, 1–19. 10.1137/04062062XSuche in Google Scholar
[8] P. Cannarsa, P. Martinez and J. Vancostenoble, Global Carleman estimates for degenerate parabolic operators with applications, Mem. Amer. Math. Soc. 1133 (2016), 1–209. 10.1090/memo/1133Suche in Google Scholar
[9] F. W. Chaves-Silva, L. Rosier and E. Zuazua, Null controllability of a system of viscoelasticity with a moving control, J. Math. Pures Appl. (9) 101 (2014), no. 2, 198–222. 10.1016/j.matpur.2013.05.009Suche in Google Scholar
[10] M. M. Eller and V. Isakov, Carleman estimates with two large parameters and applications, Differential Geometric Methods in the Control of Partial Differential Equations (Boulder 1999), Contemp. Math. 268, American Mathematical Society, Providence (2000), 117–136. 10.1090/conm/268/04310Suche in Google Scholar
[11] G. Floridia and H. Takase, Inverse problems for first-order hyperbolic equations with time-dependent coefficients, J. Differential Equations 305 (2021), 45–71. 10.1016/j.jde.2021.10.007Suche in Google Scholar
[12] X. Fu, Q. Lü and X. Zhang, Carleman Estimates for Second Order Partial Differential Operators and applications, SpringerBriefs Math., Springer, Cham, 2019. 10.1007/978-3-030-29530-1Suche in Google Scholar
[13] A. V. Fursikov and O. Y. Imanuvilov, Controllability of Evolution Equations, Lect. Notes Ser. 34, Seoul National University, Seoul, 1996. Suche in Google Scholar
[14] P. Gaitan and H. Ouzzane, Inverse problem for a free transport equation using Carleman estimates, Appl. Anal. 93 (2014), no. 5, 1073–1086. 10.1080/00036811.2013.816686Suche in Google Scholar
[15] C. Gandolfi, A. Krasewski and R. S. Sessa, River water quality modeling, Environmental Hydraulics, Springer, Dordrecht (1996), 245–288. 10.1007/978-94-015-8664-1_8Suche in Google Scholar
[16] F. Gölgeleyen and M. Yamamoto, Stability for some inverse problems for transport equations, SIAM J. Math. Anal. 48 (2016), no. 4, 2319–2344. 10.1137/15M1038128Suche in Google Scholar
[17] D. N. Hào, Methods for Inverse Heat Conduction Problems, Methoden Verfahren Math. Phys. 43, Peter Lang, Frankfurt am Main, 1998. Suche in Google Scholar
[18] D. N. Hào, N. T. Thành, N. V. Duc and N. V. Thang, A coefficient identification problem for a system of advection-reaction equations in water quality modeling, Comput. Math. Appl. 148 (2023), 126–150. 10.1016/j.camwa.2023.08.005Suche in Google Scholar
[19] D. N. Hào, N. T. Thành, N. V. Duc and N. V. Thang, A coefficient identification problem for a system of advection-diffusion-reaction equations in water quality modeling, J. Inverse Ill-Posed Probl. 33 (2025), no. 1, 31–52. 10.1515/jiip-2024-0030Suche in Google Scholar
[20] D. N. Hào, N. T. Thành, N. V. Duc and N. V. Thang, Estimating two time-varying reaction coefficients in a water quality model from inexact initial and boundary data, Evol. Equ. Control Theory 14 (2025), no. 2, 246–274. 10.3934/eect.2024053Suche in Google Scholar
[21] D. N. Hào, P. X. Thanh, D. Lesnic and M. Ivanchov, Determination of a source in the heat equation from integral observations, J. Comput. Appl. Math. 264 (2014), 82–98. 10.1016/j.cam.2014.01.005Suche in Google Scholar
[22] L. Hörmander, The Analysis of Linear Partial Differential Operators. I–IV, Grundlehren Math. Wiss. 275, Springer, Berlin, 1985. Suche in Google Scholar
[23] X. Huang, O. Y. Imanuvilov and M. Yamamoto, Stability for inverse source problems by Carleman estimates, Inverse Problems 36 (2020), no. 12, Article ID 125006. 10.1088/1361-6420/aba892Suche in Google Scholar
[24] O. Y. Imanuvilov and M. Yamamoto, Lipschitz stability in inverse parabolic problems by the Carleman estimate, Inverse Problems 14 (1998), no. 5, 1229–1245. 10.1088/0266-5611/14/5/009Suche in Google Scholar
[25] V. Isakov, Inverse Source Problems, Math. Surveys Monogr. 34, American Mathematical Society, Providence, 1990. 10.1090/surv/034Suche in Google Scholar
[26] V. Isakov, Carleman type estimates in an anisotropic case and applications, J. Differential Equations 105 (1993), no. 2, 217–238. 10.1006/jdeq.1993.1088Suche in Google Scholar
[27] V. Isakov, Inverse Problems for Partial Differential Equations, 3rd ed., Appl. Math. Sci. 127, Springer, Cham, 2017. 10.1007/978-3-319-51658-5Suche in Google Scholar
[28] A. Katchalov, Y. Kurylev and M. Lassas, Inverse Boundary Spectral Problems, Chapman & Hall/CRC Monogr. Surveys Pure Appl. Math. 123, Chapman & Hall/CRC, Boca Raton, 2001. 10.1201/9781420036220Suche in Google Scholar
[29] M. V. Klibanov, Global uniqueness of a multidimensional inverse problem for a nonlinear parabolic equation by a Carleman estimate, Inverse Problems 20 (2004), no. 4, 1003–1032. 10.1088/0266-5611/20/4/002Suche in Google Scholar
[30] M. V. Klibanov, Estimates of initial conditions of parabolic equations and inequalities via lateral Cauchy data, Inverse Problems 22 (2006), no. 2, 495–514. 10.1088/0266-5611/22/2/007Suche in Google Scholar
[31] M. V. Klibanov, Carleman estimates for global uniqueness, stability and numerical methods for coefficient inverse problems, J. Inverse Ill-Posed Probl. 21 (2013), no. 4, 477–560. 10.1515/jip-2012-0072Suche in Google Scholar
[32] M. V. Klibanov and S. E. Pamyatnykh, Lipschitz stability of a non-standard problem for the non-stationary transport equation via a Carleman estimate, Inverse Problems 22 (2006), no. 3, 881–890. 10.1088/0266-5611/22/3/009Suche in Google Scholar
[33] M. V. Klibanov and S. E. Pamyatnykh, Global uniqueness for a coefficient inverse problem for the non-stationary transport equation via Carleman estimate, J. Math. Anal. Appl. 343 (2008), no. 1, 352–365. 10.1016/j.jmaa.2008.01.071Suche in Google Scholar
[34] M. V. Klibanov and A. Timonov, Carleman Estimates for Coefficient Inverse Problems and Numerical Applications, Inverse Ill-posed Probl. Ser., VSP, Utrecht, 2004. 10.1515/9783110915549Suche in Google Scholar
[35] J. Le Rousseau, Carleman estimates and controllability results for the one-dimensional heat equation with BV coefficients, J. Differential Equations 233 (2007), no. 2, 417–447. 10.1016/j.jde.2006.10.005Suche in Google Scholar
[36] Y.-J. Ma, C.-L. Fu and Y.-X. Zhang, Identification of an unknown source depending on both time and space variables by a variational method, Appl. Math. Model. 36 (2012), no. 10, 5080–5090. 10.1016/j.apm.2011.12.046Suche in Google Scholar
[37] S. Rinaldi, R. Soncini-Sessa, H. Stehfest and H. Tamura, Modeling and Control of River Quality, McGraw-Hill, New York, 1979. Suche in Google Scholar
[38] D. Tataru, Carleman estimates and unique continuation for solutions to boundary value problems, J. Math. Pures Appl. (9) 75 (1996), no. 4, 367–408. Suche in Google Scholar
[39] N. V. Thang and N. V. Duc, Stability estimate for a time-dependent coefficient identification problem in parabolic equations, J. Math. Anal. Appl. 554 (2025), Article ID 129054. 10.1016/j.jmaa.2024.129054Suche in Google Scholar
[40] N. V. Thang and N. V. Duc, Stability estimates for an inverse problem of determining time-dependent coefficients in a system of parabolic equations, J. Inverse Ill-Posed Probl. 33 (2025), no. 2, 253–267. 10.1515/jiip-2024-0063Suche in Google Scholar
[41] J. Wloka, Partial Differential Equations, Cambridge University, Cambridge, 1987. 10.1017/CBO9781139171755Suche in Google Scholar
[42] M. Yamamoto, Carleman estimates for parabolic equations and applications, Inverse Problems 25 (2009), no. 12, Article ID 123013. 10.1088/0266-5611/25/12/123013Suche in Google Scholar
[43] F. Yang and C.-L. Fu, A simplified Tikhonov regularization method for determining the heat source, Appl. Math. Model. 34 (2010), no. 11, 3286–3299. 10.1016/j.apm.2010.02.020Suche in Google Scholar
© 2025 Walter de Gruyter GmbH, Berlin/Boston