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Abstract: The main purpose of this paper is to develop further the integrated theory of the probe and singular
sources methods (IPS) which may work for a group of inverse obstacle problems. Here as a representative and
typical member of the group, an inverse obstacle problem governed by the Helmholtz equation with a fixed
wave number in a bounded domain is considered. It is assumed that the solutions of the Helmholtz equation
outside the set of unknown obstacles satisfy the homogeneous Dirichlet or Neumann boundary conditions on
each surface of obstacles. This is the case when two extreme types of obstacles are embedded in a medium.
By considering this case, not only a concise technique for IPS is introduced but also a general correspondence
principle from IPS to the probe method is suggested. Besides, as a corollary it is shown that the probe method
together with the singular sources method reformulated in terms of the probe method has the Side B under a
smallness conditions on the wave number k, which is the blowing up property of a sequence computed from
the associated Dirichlet-to-Neumann map.
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1 Introduction

Both the probe method of Ikehata [7, 8] (later reformulated in [11]) and singular sources method of Potthast [19,
20] now become well-known classical analytical methods for reconstruction issue of inverse obstacle problems
governed by partial differential equations. This paper is concerned with the integrated theory of the probe and
singular sources methods (IPS), which is initiated by the author himself in [16, 17]. In particular, we focus on the
role of IPS in deriving the probe and singular sources methods together with introducing a technique to treat
some kind of inverse obstacle problems governed by partial differential equations. For the purpose we consider
a prototype inverse obstacle problem governed by the Helmholtz equation with a fixed wave number.

Now let us formulate the prototype problem. Let Q be a bounded domain of R® with Lipschitz-boundary [6].
We denote by D a mathematical model of discontinuity embedded in the background medium Q. We assume
that D takes the form D = D, U Dy, where D,, and Dy are open subsets of R? with Lipschitz-boundary with
Dp,NDg =0,D,UDy c Qand that Q\ (D, UDy) is connected. We denote by v the unit outward normal vector
tonot only aQ but also dD. On the surfaces of D, and D4 two boundary conditions of different type are imposed
as specified below.
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Let k > 0. Given an arbitrary f € H? (0Q), let u = u(x) in HY(Q \ D) be the weak solution of

Au+ku=0, xeQ\D,
4 =0, xeaDy,
u=0, xeodDgy,

X € 0Q.

<

@1

u

This means that, u = f on dQ, u = 0 on 8Dy in the sense of the trace and, for all p € H(Q \ D) with @ =00n0Q
and ¢ = 0 on dDg in the sense of the trace, we have

- J Vu- Ve dx + J k*ug dx = 0.
Q\D Q\D

Then the bounded linear funct10nal |39 cH: (0Q) is well defined via the formula

<—|asz, > J Vu-Vodx - J Kup dx, ge H7(3Q),
Q\D Q\D
where ¢ € H'(Q \ D) such that ¢ = g on 9Q and ¢ = 0 on dDg in the sense of the trace. Note that unless other-
wise specified the functions appearing in this paper are always real-valued; the symbol v denotes the unit
outward normal vector field on 0Q and D = dD,, U dDg.
In this paper, by considering the prototype inverse obstacle problem mentioned below, we further develop
a technique to the integrated theory of the probe and singular sources methods.

Problem. Extract information about the geometry of D, and D, from the aulag corresponding to infinitely
many f.

For the problem to have meaning we impose a restriction on k:
Assumption 1. The boundary value problem (1.1) with f = 0 has only a trivial solution.

Under Assumption 1 it is well known that the weak solution u of (1.1) exists and unique. Then the map
Ap : HE(3Q) — H™2(3Q)

is well defined by

This is called the Dirichlet-to-Neumann map. So Problem becomes the extraction problem of information about
the geometry of D, and D, from the graph of the Dirichlet-to-Neumann map Ap or its partial knowledge.
It follows from the definition we have the symmetry: for all f € H 2(0Q) and geH 1(8Q),

(Apf, &) = (Apg. .

Besides, if f € HZ(dQ) and both 4Q and D are C2, then u € H2(Q \ D) and thus Apf = ag € H?(3Q) in the
sense of the trace [6]. Then, integration by parts (e.g., [6, Lemma 1.5.3.7]) yields the surface integral expression
of (Apf, g) forall f € H?(9Q) and g € HZ(3Q),

(Apf.g) = j Apfi2)g(2) dS(2).

0Q

In this paper, we always consider k such that Assumption 1 is satisfied and, unless otherwise stated the
C?-regularity of 0Q and dD are assumed. Note that k = 0 satisfies Assumption 1

In [16] by considering the case that Dy = ¢ in (1.1) and k = 0, the author introduced the integrated theory of
the probe and singular sources methods. In [17] IPS has been applied to an inverse obstacle problem governed
by the Stokes system. Therein a technique to treat a system is introduced. In this paper we pursuit IPS further by
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considering the case when Dy + 0 and k > 0. Especially, with application to elastic bodies in mind, it would be
interesting to consider such a case. It is expected that this situation causes some problems due to the coexistence
of two different boundary conditions and k # 0. Besides, it cannot be said that the IPS concept was thoroughly
developed in [16, 17] in the sense that the treatment of the probe method therein is independent from IPS. This
time we would like to show that not only the singular sources method but also the probe method itself is derived
from IPS.

It should be pointed out that, using the original probe method [9], this type of problem itself has been con-
sidered by Cheng, Liu, Nakamura and Wang [2]. However, they do not have the view point of the IPS developed in
this paper. See also Remark 3.4 for more detailed comparison. Note that, for mixed obstacles placed in the whole
space there are some applications of the factorization method [3, 5, 18], monotonicity method [1] and both [4].

1.1 The IPS function

The IPS in this paper starts with introducing a family of singular solutions for the back ground medium.
Let § = {G(-, X)}xeq be a family of distributions in Q indexed with x € Q having the form

G(y,x) =Gy - x) + H(y, x), 1.2)
where Ky -
cos -X
Gy =x) = 4|y - x|

and H(-, x) € H*(Q) is a real-valued solution of the Helmholtz equation in Q such that, for each € > 0,

sup ||H( °y X)"HZ(Q) < 00. (13)
xeQ, dist(x,0Q)>€
Note that G(- — x) coincides with the real part of the standard (complex-valued) fundamental solution of the
Helmholtz equation
eik[y—xl
T anly — x|’
Since the imaginary part of ®(- — x) has the unique extension to the whole space as the entire solution of the
Helmholtz equation, the function G(y — x) also satisfies

d(y - x)

AG(- —x)+K*G(- =x)+8(- —=x) =0
as the distribution of y € R for each fixed x € R3.
Definition 1.1. Given Gand x € Q \ D,let W = W, (y; §) = W(y) in H%(Q \ D) be the solution of

AW + K*W =0, yeQ\D,
ow 0
W = —EGO},X), DS aDn,
W =-G(y, x), Yy € 0Dy,

W = G(y, x), y € oQ.

(1.4)

We call the function Q \ D 3 x — Wy(x; §) the IPS function based on § for obstacle D.

Hereafter we simply write Wy(y; ) = Wx(y). Needless to say, Assumption 1 ensures the unique solvability of
equations (1.4) in the class H%(Q \ D). The sudden appearance of the system (1.4) seems strange, however, it
is a natural extension of the corresponding one firstly introduced in [16] in the case when Dg = ¢ and k = 0.
Besides, we will see in Section 3 that the IPS function generates the indicator function (see Definition 3.2) for the
probe method.

Since the system (1.4) is linear, we have the natural and trivial decomposition of the solution as

W) = wx(y) + wy(y), y € Q\D, (15)
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where wy = wy(y; §) = w(y) in H%(Q \5) solves

Aw + K2w =0, yeQ\D,
ow 0
v - —EG(y, X), Y€ 0Dy,
w = -G(y, X), y € 0Dy,
w = 0, y € aQ,

and wl = wl(y; §) = w(y) in H*(Q \ D) solves

Aw + kK*w =0, yeQ\D,
ow
W, 3Dy,
v Yy € 0Dn
w =0, yEaDd,

w=G(y,Xx), yeoQ.

(1.6)

@7

The unique solvability of the boundary value problems (1.6) and (1.7) are also a consequence of Assumption 1.

Needless to say, from (1.5) we have
Wy(X) = we(X) + Wi(x), xeQ\D.

We call this the outer decomposition or natural decomposition of IPS function.
The IPS for Problem is based on the discovery of the following two representation formulae.

Theorem 1.1. Let x €  \ D.
(1) We have the expression focused on the Neumann obstacle

Wx(0) = IVG(-, 02 ) = KNG, 070 + IVWx + (€002, 5 = Ko lwx + (€l

L2(Q\D) L2(Q\D)
0 12 20110,1 12 2
- j G(2,X)5-6(2,%0 dS(@) + IVl g 5 = KIWIE, o 5 = V(€I g 5
a9
+ K€ 0,5 = IVGC Ol p,y + KNG 0Nz,
where (€x)n = (€x)n(y; G) = €(y) in H(Q \ D) solves
Ae + k%e =0, yeQ\D,
€ = 0, y € aDn,
€e=G(y,x), yeodDg,
e=0, y € oQ.

(2) We have the expression focused on the Dirichlet obstacle

2 2

Wx(0) = =IVG(-, 0lI7 ) + KNG, 0132y = IV(Wx + (€x)a) + K [w + (ex)dll

L2(Q\D) L2(Q\D)
0 12 2011,1 012 2
- J G(Z,X)EG(Z,X) as(z) + ||VWXI|LZ(Q\5) -k ||WXI|L2(Q\5) + ||V(€x)d||L2(Q\5)
a0
2 2 2 2 2
-k ||(€x)dIILZ(9\5) + IIVG(-,X)IILZ(DH) -k IIG(',X)IILZ(DH),

where (ex)q = (€x)a(y; G) = €(y) in H*(Q \ D) solves

[Ae + K2e =0, yeQ\D,
oe 0
v EG(y, X), Yy € 0Dy,
oe
— =0 0Dg,
v s ye d

e=0, y € oQ.

(1.8)

(1.9)

(1.10)

(1.11)

(1.12)
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Introducing the functions (ex), and (ex)q helps us to write the IPS function in terms of energy integrals (1.9)
and (1.11). We call this technique the method of complementing function. A clear advantage is that: roughly speak-
ing, we can immediately see that (ex), is bounded in H 2@\ D) if xis close to a point on 0Dp; (€x)q is bounded
in H%(Q \ D) if x is close to a point on 9D.

It shoulder be pointed out that the two expressions (1.9) and (1.11) contain the common terms of integrals

- J G(z, x)%G(z, ) dS(2) + IVWLIZ, g 5 = KEIWHIE, o 5
a0

Except for those, the expression of the right-hand side on (1.11) coincides with the one on (1.9) multiplied by (-1)
and replaced (n, d) with (d, n).

The following corollary is a direct consequence of the facts listed below:
(@) the well-posedness of the boundary value problems (1.6), (1.7), (1.10) and (1.12),
(b) the expressions (1.9) and (1.11),
(c) the property that for any finite cone V with vertex at the origin x = 0

J IVG(z - x)|* dz = co.

v
Corollary 1.1. The IPS function Wy(x) satisfies (1), (ii) and (iii) listed below:
(@) limy_geap, Wx(x) = oo.
(i) limy_peap, Wx(x) = —0c0.
(iii) For eache; >0,i=1,2,

sup [Wy(X)] < oo.
xeQ\D, dist(x,0D)>€q, dist(x,0Q2)>€,

Proof. In what follows we denote by C1, Cy, ... positive numbers independent of x. Using (1.9), from (a) and (b)
together with (1.2) and (1.3) we have: as x — a € dDy,

Wy(x) > |[VG(-, X)IIiZ(Dn) - 2"2"W"22(9\5) -G

Here, by Lemma 2 in Appendix we have, as x — a € 0Dy,
Wx(x) 2 IVG(-, 07, = C1 = Ca.
Then (c) together with Fatou’s lemma yields (i). Next consider the case when x — b € dDg. It follows from (1.11)

~Wx(x) 2 IVG(-, 0llfz p,, = 2KAIWIE, g, 5, = Cs-

Again, Lemma 2 yields, as x — b € 0Dy,
~Wx(x) 2 C4lVG(-, 032, = C3 = Cs.
This yields the validity of (ii). The validity of statement (iii) is almost clear. O

Therefore, using the asymptotic behavior of IPS function Wy(x) as x approaches dD, one can distinguish the
soft obstacle D4 and hard obstacle D,. In particular, we know that IPS function does not have a definite sign
unlike a single type of obstacle case [16].

Remark 1.1. In this paper, about the choice of the family {H(-, x)}xcq in (1.2) we consider only the two cases.
The first is the case when H(y, x) = 0. In this case we denote G by §°. Then G(-, x) coincides with G(- — x). The
second is: we impose the boundary condition

cos kly — x|

00y X

Under the assumption that k? is not a Dirichlet eigenvalue for the minus Laplacian —A in , for each x € Q the
H(y, x) exists and is unique, and satisfies (1.3). The function G(-, x) is nothing but the Green function for the
domain Q with the source point at x € Q. In this case we denote § by §*. Then Wy =0 on 9Q for x € Q \5
and wl = 0. Hereafter unless otherwise stated, we always impose the condition on k? mentioned above when
considering G*.

€ 0Q. (1.13)

Theorem 1.1 yields the following corollary.
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Corollary 1.2. Choose G = G°. Let wy = wy(-;S%) and wl = wk(-;30).
(i) We have the expression focused on the Neumann obstacle

Wx(x) = IVG(- =07, —k2||G( =2,y + IVWx + (€012, o 5 = KoIWx + (€x)nll?

L2(Q\D) L2(Q\D)
_ 2 12
JG(Z x) G(z x)dS(z)+||VW IILZ(Q\D) k "WX"LZ(Q\D)
aQ
2 2 2 2 2 2
=~ IVl 05, + Ko IEORI2, g 5 = IVGC = 0Nz + KAIGC- =Xl

where (€x)n = (€x)n(+; %)
(ii) We have the expression focused on the Dirichlet obstacle

Wx(x) = =IVG(- =72,y + KNG = 0Nz, = IV(Wx + (€I + K2l (wx + (ex))lI?

12(Q\D) L2(2\D)
j G(z - x)—G(z X) dS(2) + 1YWl g5 = KIWalE, 015
Ele)
+IV(eal, g5, = K€l g5, + IVEC =01z = KIGC =Xz,
where (€x)d = (ex)a(-; S°)-
Remark 1.2. In particular, if k = 0, then for all x € @ and y € Q one can rewrite
- J G(z - x)%G(z -y)dS(z) = J VG(z-x)-VG(z-y)dz. (1.14)

0Q R3)\Q
Note that the integrand of this right-hand side is absolutely integrable. Thus, the formulae in Corollary 1.2

become
Wy(x) = [VG(- X)”LZ(D)+||V(WX+(€X)H)" +[IVG(- - x)|*

L2(Q\D) LY(R3\Q)

2 2 2
FIVWIZ, o 5 = V€02, g 5 ~ IVGC =02,
and )
Wx(X) = =IVG(- =Xz, = IVWx + €I, g5 + VG =012, 1 5

+ [V(ex)all®

+ VWi o)

o) +IVG( -0l

And also we have:

Corollary 1.3. Choose G = G*. Then wk(-;G*) = 0 and Wy(-;G*) = wy(-; G*).
(i) We have the expression focused on the Neumann obstacle

Wx(x) = IVG(-, 072,y = KENGC, 07y + 1YWy + (€)1

— IV(exnll?

where (€x)n = (€x)n(+;5%).
(ii) We have the expression focused on the Dirichlet obstacle

Wx() = =IVG(-, 072y + KNG, OlF2 ) = IV(Wx + (€)1

L2(Q\D)
+IV(ex)all? ~ K*ll(ex)all® +[VG(-, x)IILZ(Dn) - K*1G( ';X)”iz(pn):
where (€x)q = (€x)a(-;5%).

L@y~ KIwx + (€0n)l}

”VG( ) X)”LZ(Dd) + kZHG( T X)"Lz(Dd)’

L2(Q\D)

+ Kl (e)nl*

L2(Q\D) L2(Q\D)

+ K (wy + (€0)a)l?

12(Q\D)

L2(Q\D) L2(Q\D)

1.2 IPS function to DN map

In this section, we assume that Assumption 1 for the case D = 0 is also satisfied. We denote Ap by Ag if D = 0. In
the probe method the form

((Ao = Ap)(vlag), Vleg) = J(Ao - Ap)(vlae)(2) v(z) dS(2) (1.15)
a0
plays the central role, where v is an arbitrary solution of the Helmholtz equation Av + k?v = 0 in Q.
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The idea of the method of complementing function mentioned above suggests us the decomposition formu-
lae for the form (1.15) stated below.

Theorem 1.2. Let v € H*(Q) satisfy the Helmholtz equation Av + k*v = 0 in Q. We have

(Ao = Ap)(Vlag), Vlag) = IVVIEa ) = KEIVIZz(p,y + IVOW + €07, g 5 = KANW + €n)I2, g, 5 w6
. = IVenl?, g5 + KAllenl2a g5 = 19V 120, + KEIVIZ: 5, '
(8o = Ap)(Vlag), Vlae) = ~IVVIEx p,) + KEIVIZzp,) = IVOW + €017, o 5 + KNW + €I, 6 5 .
+1Veal?, g5 = Koleal, g5 + 19VI220,) = KEIVIZ2 5, - '

where w, €, and €q are given by the solutions wy, (€x), and (ex)q of (1.6), (1.10) and (1.12) with G(y, x) replaced
by v(y), respectively.

The formulae (1.16) and (1.17) are new and useful for establishing the probe method for Problem. Those should
be considered as the generalization of the well known decomposition formula in the case when D4 = @ or
D, = 0, see [9] for the Helmholtz equation case. And also note that the expression of the right-hand side on (1.17)
coincides with the one on (1.16) multiplied by (-1) and replaced (n, d) with (d, n).

It should be emphasized that the proof of Theorem 1.2 given in Section 3.2 is independent of IPS. Besides,
the decomposition formulae (1.16) and (1.17) themselves would be valid also in the context of the weak solution.
However, formulae (1.16) and (1.17) should be considered as a byproduct of introducing the IPS function at first.
Without seeking the energy decomposition of IPS as done in [16] one could never find the idea of the method of
complementing functions to form (1.15).

Organization of the paper. In Section 2 the proof of Theorem 1.1 is given. The proof is based on integration by
parts and clarifies the meaning of introducing the complementary functions (ex), and (ex)q4. Section 3 is devoted
to the integrated theory of the probe and singular sources methods. In Section 3.1 a representation formula
(3.2) of the indicator function for the probe method as a limit of the indicator sequence (see Definition 3.1) in
terms of the IPS function is established. It is Theorem 3.1. This together with Theorem 1.1 yields the Side A of
the probe method which is concerned with blowing up of the indicator function on the surface of obstacles. In
Section 3.2 first the proof of Theorem 1.2 together with its corollary is given. Besides, In Section 3.3 it is shown that
Theorem 1.2 yields the Side B of the probe method which is concerned with blowing up of indicator sequence
of the probe method and stated as Theorem 3.2. In Section 3.4 we will see that the singular sources method is
included in the IPS theory and in Section 3.5 it is shown that the singular sources method has the same side
as the Side B of the probe method. Section 3.6 is devoted to a set of additional remarks related to the natural
decomposition (1.5). In the last section the conclusion and some possible applications are briefly mentioned.

In Appendix we describe two lemmas which yield the upper estimate of the L?-norm of the reflected solution
wy and are used in the proof of Corollary 1.1.

2 Proof of Theorem 1.1

First we show that the wy(y) which is the solution of (1.6) has two expressions. In what follows we always assume
that (x,y) € (Q \ D)%

Lemma 2.1. It holds that
Wye(y) = J %wx(z)c;(z, ) dS(z) + I VG(z,X) - VG(z,y) dz - j 12G(z, )G (z,y) dz
0Q D, Dy
+ J Vwy(z) - Vwy(z) dz - J K wy(2)wy(z) dz — J VG(z,x)-VG(z,y) dz
Q\D Q\D Dq

+ J kZG(z,x)G(z,y) dz + J (wy(z)%wx(z) + Wx(z)%wy(z)> dS(z)

Dy 0Dg

2.1
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and

wx(y) = I %wx(z) (z,y)dS(z) - I VG(z,x)-VG(z,y)dz + J sz(z, x)G(z,y)dz

0Q

Dd Dd

- j Vwy(z) - Vwy(z) dz + J K:wy(z)wy(z) dz + I VG(z,x)-VG(z,y) dz

Q\D

Q\D Dn

5 5
- J K*G(z,%)G(z,y) dz — J (1@ wa(@) + We(2) 5o wy(2) ) dS(2).

Dy

aD,

Proof. We start with the standard expression

) = [ (Swa(262.3) -

We(2) 2-G(2.)) dS@) - [ (Sown(@)6(z.y) -

0
Wi(2)5-G(z,)) dS(2)

DE GRUYTER

(2.2)

ov ov
09 S aD, 23)
- j (5wx(@6@.y) - wx<z) 6(2.)) dS(2).
aDy
Applying the boundary conditions on dQ, D4 and 0D, to (2.3), we obtain
) = [ 2ow@6 ) a5 + [ (5560 06(,3) - wil2) 5 ,(2)) dS@)
EJe) aD, 2.4)
+ j (iw (2)wy(2) - G(z, x) Gz, y)) ds(z).
oy Y
aDy
Since x and y outside both D4 and D, we have, for = = d, n
J %G(Z,X)G(Z,y) ds(z) = J AG(z,x)G(z,y) dz + J VG(z,x)-VG(z,y)dz
oD, D, D,
= j VG(z,x)-VG(z,y)dz - I k2G(z,Xx)G(z,y) dz.
D. D,
Thus (2.4) becomes
0
wx(y) = J —wx(z)G(z y)dS(z) + j VG(z,x)-VG(z,y)dz - J VG(z,x)-VG(z,y)dz
0Q D, Dq
- J k’G(z,x)G(z,y) dz + J k*G(z,x)G(z,y) dz 25)
D, Dq
0 0
+ I Wy(z)awx(z) as(z) - J wx(z) Wy(z) das(z).
0Dy 0Dy
Besides, we have
0
- J wx(z)awy(z) as(z) - J wx(z) wy(z) as(z) = J Wy (2)Awy(z) dz + J Vwy(z) - Vwy(z) dz
aD, aDq Q\D Q\D
2.6)

= J Vwy(z) - Vwy(z) dz - J Kwy(z)wy(z) dz

Q\D Q\D

and

3} 0
- J wy(z)awx(z) as(z) - J wy(z)ﬁwx(z) as(z) = J Vwy(z) - Vwy(z) dz - J
D, 0Dq Q\D

Kwy(z)wy(z) dz. (2.7)

Q\D
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From (2.6) one has

- J WX(Z) Wy(Z) as(z) = J Vwyx(z) - Vwy(z) dz - J kzwx(z)wy(z) dz + I WX(Z) Wy(Z) as(z). (2.8)

oD, o\D Q\D 0Dy

From (2.7) one has

J Wy(Z) WX(Z) dS(z) = J Vwy(z) - Vwy(z) dz + j kzwx(z)wy(z) dz - J Wy(Z) 9 WX(Z) ds(z). (2.9)
0Dg o\D o\D 0Dy

Thus one obtains the two representation of a single integral as follows.
From (2.8) we have

5}
j Wy(Z)an(Z) as(z) - J WX(Z) wy(z)dS(z)
0Dy 0Dy

0 p) (2.10)
. j (y(2) 3o wal2) + wy(2) 5oy (2)) dS(2) + J VWy(2) - Vivy(2) dz - j Kwy(2)wy(2) dz.
0Dy Q\D Q\D
From (2.9) we have
0 0
| m@gm@ase - | wiwy@ s
aDq oD,
0 0 (2.11)
- J (@) 5o wx(2) + wi(2) 5wy (2)) dS(2) - j VW (2) - Vwy(2) dz + J K wy(2)wy(2) dz.
aD, o\D Q\D
Substituting (2.10) and (2.11) into (2.5), we obtain (2.1) and (2.2). O
Next we show that the w! has the following expression.
Lemma 2.2. We have
wi(y) = I Vwy(2) - Vwy(z) dz - j K*w) (z)wy(z) dz
Q\D Q\D , 2.12)
J G(z, x) G(z y)dS(z) - J G(z, x)awy(z)dS(z).
) EY)

Proof. To explain the reason for the introduction of the function wl step by step, let us forget the set of boundary
conditions on (1.7).
First same as (2.3) we start with the standard expression

wi(y):j(%wi(zm(z,y) wh) o 6(z,9) ) dS(2) - j(iwi(zm(z,y) whD) 2 6(,3) ) dS(2)

ov
80 ; ; oD, 2139
| (5mi@6@y -wi@ 6.y ds@.
oDy
Here we impose the boundary conditions
o]
EW (z) z € 0Dy, 2.14)
Wi(z) = G(z,X), ze€odQ.
Then (2.13) becomes
1 9 1,1 9 1., 9
o) = [ (swH@ W@ - 6.0 2-6zy))ds@) + [ we)1- 6y ds(z)
o 5 5 o (2.15)
| (5wt 62y - whar5-G6a.y)) dsta)

0Dy
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Here we have

J%W}((z) wy(z) dS(z) = J %w}((z)w)l,(z) ds(z) + J %w}((z) wy(2) dS(z) + I Awy(z) wy(z) dz
29 oDy 0Dq Q\D

+ J Vwy(2) - Vwy(z) dz
Q\D
= I Vwy(z) - Vwy(z) dz - I Kwy (z)wy(z) dz + j %W}((z) wy(2) dS(z).
o\D o\D oDa

Thus (2.15) becomes

wiy) = J Vwy(2) - Vwy(z) dz - J Kwy (2)wy(z) dz

Q\D Q\D
) )
- J’ G(z, X)EG(z,y) ds(z) + J w}((z)EG(z,y) dS(z) (2.16)
0Q oD,
) ) )
v [ Zwl@ui@dase - | (wi@6ey - wie56e.y) ) dSe).
aDd aDd

Here using the boundary condition of wy on 8D, one has

d d
J wi(z)ac(z, y)dsS(z) = - j W}((z)awy(z) ds(z)

aD, 0Dy
= J wl(z)Awy(z) dz - J w}((z)%wy(z) ds(z) + J W}((z)%wy(z) ds(z)
Q\D oQ Dy

+ J Vwl(z) - Vwy(z) dz
Q\D
0 0
=- J G(z, x)awy(z) as(z) + J W}((z)awy(z) das(z)
Ele) aDq
+ J Vwl(z) - Vwy(z) dz - J K:wi(z)wy(z) dz.

Q\D Q\D

Besides we have

J Vwi(z) - Vwy(z)dz = - J iw}((z) wy(z) dS(z) - J Awi(z)wy(z) dz

ov
Q\D 0Dq Q\D
- J %W}((z) G(z,y) dS(z) + J K2w(2)wy(z) dz.
Dy Q\D
That is,
J Vwi(z) - Vwy(z) dz - J K*wi(z)wy(z) dz = J %W}((z) G(z,y) dS(z). (2.17)
Q\D Q\D 9Dy

Note that we made use of the first boundary condition on 6D, of (2.14) and the boundary condition for wy, on
0Dy of (1.6). Thus one gets

J w}((Z)%G(Z,y) as(z) = - j G(Z’X)%Wy(z) as(@) + j W’l‘(z)%wy(z) e
oD, 90 0Dy
v | o) 6.y dsta).

ov
aDq
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Therefore (2.16) becomes

wi(y) = J Vwy(2) - Vwy(z) dz - J Kwy(z)wy(z) dz - J G(z, x) ,G(2,) dS(2)

Q\D Q\D Q ;
J G(z, x) wy(z) ds(z) + J (z) Wy(Z) ds(z) + J 5W}((z) G(z,y)dS(z)
a0 aDg aDy
P P
+ J wl(z) wh(2) dS(z) - I <5W}((z) 6(2.y) - wi(2)5-G(z, y))dS(z)
aDd aDd

_ L Vwl(z) - vwl(2) dz - J Kwlz)wl(z) dz - j G(z,x)%G(z,y) ds(z)

Q\D o\D 0Q

JG(z X) 5o y(2) dS(2) + J x(z) -y (2)dS(2) + I %w}((z)w},(z)dS(z)

a9 dDq 0Dq

+ J w}(z)%c;(z, y) dS(z). (2.18)
aDy
Here we impose the boundary condition of w} and w} on d0Dy:
wy(z) = wy(2) =0, z € aDy. (2.19)
Thus (2.18) yields (2.12). O
Note that the set of boundary conditions (2.14) and (2.19) coincides with that of (1.7).
From (2.1), (2.2) and (2.12) we immediately obtain the following two expressions for W,(y).
Proposition 2.1. It holds that
Wy(y) = J VG(z,x)-VG(z,y)dz - j k’G(z,x)G(z,y) dz + j Vwy(z) - Vwy(z) dz

Dy Dy

o\D
- I kzwx(z)wy(z) dz - I G(z,x)%G(z,y) as(z) + J wa(z) vw (z) dz
Q\D 0Q o\D
- j KPwlz)wl(z)dz + I G(z y)iw (z)dS(z) - J G(z, x) Wy (2) dS(2)
X y gy X y (2.20)
Q\D 0Q 2Q
- I VG(z,X)-VG(z,y)dz + I k?G(z,x)G(z,y) dz
Dd Dd
— [ (6. 3w + 62,005y 2) ) dS@)
aDy
and
Wy(y) = - J VG(z,x)-VG(z,y)dz + J sz(z, x)G(z,y)dz - J Vwy(z) - Vwy(z) dz
Dq Dq o\D
+ I kzwx(z)wy(z) dz - J G(z, x) G(z y)dS(z) + J wa(z) vw (z) dz
Q\D 0Q o\D
0
- j KEwl(z)wl(2) dz + j G(z,y)5,wx(2)dS(z) - j Gz, x) L Wy(2)ds(z) 2.21)

QD a0 aQ

+ J VG(z,x)-VG(z,y)dz - j k?G(z,x)G(z,y) dz
D, Dy

+ J (Wy(z)%G(z,x) + Wx(z)%G(z,y)) as(z).

0D,
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Now let us explain the role of introducing the solutions of (1.10) and (1.12). It is concerned with the last terms on
(2.20) and (2.21). We call this technique the method of complementing function.

Lemma 2.3. We have

0 0
J G(z,y)awx(z) ds(z) + J G(z,x)awy(z) dS(z)
3D,1 aDd

2.22)
- j (V(ey)n(2) - VWi(2) + V(en(2) - Vwy(2)) dz + j K2((ey)n(2)Wx(2) + (ex)n(2)Wy(2)) dz
Q\D Q\D
and
0 0
J Wy(z)EG(z,x) ds(z) + J Wx(z)aG(z,y) dS(z)
oD, oD,
2.23)
- j(VWy(z>-V(ex>d<z)+VWx(z)-V(ey)d(z>)dz+ j K2 (Wy (2)(€)a(2) + Wx(2)(&)a(2)) dz.
Q\D Q\D

Proof. First we rewrite the integral
0
| seyngsm@asa.
aDq

Using the equation (1.10), we have

0 0 0
j 6(2,y)5-Wx(2) dS(2) = j(eymz)awx(z) ds(z) + j(ey)n(zmwx(z)dsm
0Dy dDy 0D,

- [ @ g w2 dsta
oQ

=- J(ey)nAwX(z) dz - j V(ey)n - Vwx(z) dz

Q\D Q\D

=- j V(ey)n - Vwy(z) dz + J K (ey)n(z)wy(2) dz.

Q\D Q\D

Interchanging x and y, we obtain the expression (2.22).
Second we rewrite the integral

5}
J Wx(Z)aG(Z, X) dS(z).
oD,

Using the equation (1.12), we have

| Wo(2) o G(2,) dS(2) = | Wo(2) o ()a(2) dS(2) + | Wo(2) o (6)a(2) dS(2)
aD, 0D, 0Dy

0
- j Wx(2) 5=(6)a(2) AS(2)
o0Q

—- | wbea@ dz- | Ywi2)- Ve dz

Q\D Q\D

=- J Vwy(2) - V(ey)a(z) dz + J K*wy(2)(€y)a(2) dz.

Q\D Q\D

Interchanging x and y, we obtain the expression (2.23). O
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Thus (2.20) together with (2.22) yields
Wy(y) = I VG(z,x)-VG(z,y)dz - J k*G(z, x)G(z,y)dz + J Vwy(z) - Vwy(z) dz

Dy Dy Q\D
- J kzwx(z)wy(z)dz—J G(z, x) 5G(2,y)dS(2) + J Vwy(2) - Vwy(z) dz
Q\D 0Q o\D
_ J Kw) (z)wy(z) dz + J G(z, y)%wx(z) das(z) - J Gz, 05> wy(z)dS(z)
Q\D oQ 2Q

- J VG(z,x)-VG(z,y)dz + J k2G(z,Xx)G(z,y) dz
Dd Dd
+ J (V(ey)n(2) - Vwy(2) + V(ex)n(2) - Vwy(2)) dz
Q\D
- j K2 ((€,)n(2)Wx(2) + (€)n(2)Wy (2)) dz
Q\D
And (2.21) together with (2.23) yields

Wy(y) = - J VG(z,x)-VG(z,y)dz + J kK*G(z, x)G(z,y)dz - J Vwy(z) - Vwy(z) dz

Dy Dy Q\D
+ j kzwx(z)wy(z)dz—J G(z,x)%G(z,y) ds(z) + J VW}((z)-VW},(z) dz
Q\D oQ o\D
- j KPwlz)ywl(z)dz + J G(z y)iw (z)dS(z) - J G(z, x) W (z) dS(z)
X y oy X Y
Q\D 0Q 0Q

+ J VG(z,x) - VG(z,y)dz — J k*G(z,x)G(z,y) dz
Dy Dy

- j (Vy(2) - V(en)a(z) + VWy(2) - V(ey)a(2)) dz

Q\D
v [ 1Ry @ena@) + wa2)ena(@) dz
Q\D
Letting x = y in (2.24) and (2.25), we obtain
Wx(0) = IVG(-, 0lI7ap, - kzuc(-,x)nizw VWAL, g5 = KIWalD, 15
J G(z, x) - G(z,X) dS(2) + VW3l 005 = KWL 015

0Q
2 2 2
- ||VG( ,X)"LZ(Dd) +k ||G( : ’X)”LZ(Dd)

2 j V(en(z) - Vwy(z) dz - 2 j K wy(2)(ex)n(2) dz

o\D Q\D
and 2 2 2 2 2 2
Wx(X) = =IVG(-, )12 p,y + KNG Ol — ”VWX"LZ @p T k IIWXIIL2 @\D)
2
j G(z, x)—G(Z x)dS(z) + IIVW ||L2<Q\D) - k*|\Vw X”LZ(Q\D)

0Q
+IVG(-, 07,y = KNG, 0132

-2 J Vwy(z) - V(ex)d(z)dz + 2 J Kw,(2)(ex)a(z) dz.

Q\D Q\D

(2.24)

(2.25)

(2.26)

2.27)
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Here rewrite

2 _ 2 _ 2
IVWxl, g5 + 2 j V(e - Vx(2) dz = [V(wx + (€I, g5 = IV(E0nl o 5 (2.28)
Q\D
and
2 _ 2 _ 2
VWAl g +2 | Vi ViEna(@) dz = IVwe + €00l g ) = IVl g 229
Q\D
Rewrite also as
2 _ 2 _ 2
||Wx||L2(Q\5) +2 J (ex)nWx(z) dz = [|wx + (GX)""LZ(Q\B) "(GX)""LZ(Q\E) (2.30)
Q\D
and
2 _ 2 _ 2
il gy +2 [ Wx(E0a(@) dz = I+ (€0ally g ) = €0l g 5 231)
Q\D

Then from (2.26), (2.27), (2.28), (2.29), (2.30) and (2.31) we obtain (1.9) and (1.11) of Theorem 1.1.
Remark 2.1. Assume that Dy = 0. This the purely Neumann obstacle case. Then the equation (2.17) becomes
I vwl(z) - Vwy(2) dz - I Kwl(2)wy(z) dz = 0. (2.32)
Q\D Q\D
It is easy to see that equation (2.32) combined with (i) of Corollary 1.2 makes the representation of IPS function
so0 simple:

Wy (0 = IVWillD, .5 = KWl g5y + IVGC = 0l = KNG = 0l
0
- | G(z-x)=—G(z-x)dS(z).
| 6z-06-xas@
0Q

This is an extension of the expression of IPS function given in [16, Remark 1.7] to the case k + 0. It seems, in the
case Dy # @ one cannot expect such a simple expression.

3 Integrated theory

3.1 IPS to Side A of probe method

In this subsection we derive the probe method via the integrated theory of the probe and singular sources
methods. We fix an arbitrary G = {G(-, X)}xeq given by (1.2) unless otherwise specified.

First we recall the notion of a needle. Given x € Q let Ny denote the set of all non-self intersecting piecewise
linear curves ¢ connecting a point on 0Q and x such that other points on ¢ are in Q. We call each member in
Ny a needle with a tip at x.

Definition 3.1. Given x € Q and ¢ € Ny a sequence {v,} of H*(Q) functions is called a needle sequence for
(x, 0) based on § if each v, satisfies the Helmholtz equation Av + kv = 0 in Q and {v,} converges to G(-, x)
in H2 (@ \ o). Then the sequence given by

loc
((Ag — Ap)(vnlag), Vnlag) = J(Ao = Ap)(vnlag)(z)vn(z) dS(z)
Ele)
is called the indicator sequence for the probe method.

Note that, hereafter, unless otherwise specified we assume that Assumption 1 for the case D = ¢ is also satisfied.
This ensures not only the well-definedness of Ay but also the existence of the needle sequence for an arbitrary
needle [9].

The Side A of the probe method starts with the convergence property of the indicator sequence as described
below.
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Theorem 3.1. Letx € @\ Dand o € Ny. Let {v,} be an arbitrary needle sequence for (x, o) basedon G.If 6 n D=9,
then we have

Aim ((Ag = Ap)(vnloo), Vnla) = I(X), 3D
where
0
I(x) = Wx(x) = (Ap(G(-, 0)a0), G(-, X)|ag) + J EG(L X)G(z, x) dS(z). (3.2)
Pl

Proof. Fixx € Q\ D. First we show that the limit of the left-hand side on (3.1) exists and its limit has the expres-
sion

. d
Aim ((Ag = Ap)(Vnlag, Vnlag) = Wx(X) — I 3y W26z, x) dS(2). 33)
oQ
Define
Gn(z,x) = G(z,x) —vp(2), ze€Q. (3.4)

The form of G, (-, x) together with Green’s theorem yields an expression of w, = w(z) at z = x, which is the
solution of

Aw + K2w =0, zeQ\D,
ow  9dvp
Fi zZ € 0Dy,
W= -V, z € 0Dg,
w =0, Z € 0Q.
That is,
a0 = | 2 wn@6Ga(2, 0@ | (2 wa@)Ga(z, 20 - Wal2) o Ga(z, ) ) dS(2)
nX—J'aV n\Z)Gn(Z, X Z—J v n(Z)Gn(Z, X) — nzavnz’x z
09 5 oD, 5 3.5)
- J <awn(z)6n(z,x)—Wn(Z)EGn(Z,X)) as(z).
aDy

By Definition 3.1 and the assumption o n D =0, we have, as n — oo, Gn(-,x) = 0 in H%(D) and the well-
posedness, we have w, — wy in H*(Q \ D). Therefore it follows from these and the Sobolev embedding, letting
n — oo of (3.5), we obtain

ow

3y vn(2) dS(z)). (3.6)

Wx(x) = HILIT(}O J %WH(Z)G,[(Z,X) as(z) = nllrgo( J- aav:)/" G(z,x)dS(z) - I

oQ 0Q 0Q

";”f," — "a”f; in H2(8Q), the first term of the right-hand side on (3.6) is convergent and the limit is given by

Since

oWy
J X602, dS(@).
0Q

Therefore the second term of the right-hand side on (3.6) is also convergent and its limit satisfies

Wi(xX) = J aav"j" G(z,x) dS(z) - lim j aavf} n oy (2)dS(2).

o0Q 0Q

Using this and the trivial expression

0 n(@) = ~(ho - Ap)Valoo)(@), € B,

ov
we obtain
ow .
Wy(X) = J 3 X (2) G(z,x) dS(z) + lim ((Ag — Ap)(Valag), Valag)-
v n—oo
aQ

This is nothing but (3.3).
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Next we show that the right-hand side of the formula (3.3) coincides with that of formula (3.2). Recalling
(2.12) of Lemma 2.2 with x = y, we have

0 _d 2 2 2
_ J G(z, x)awx(z) dS(z) = wy(x) - ||Vw ||LZ(Q\D) +k ||W ||LZ(Q\D) J G(z, x) G(z X) dS(z). 3.7
a9 a9

Besides from equation (1.7) we have

d
(ApG(-, X)lag, G(+,X)lag) = j 3y WK Wi(2) dS(2) = 1YW, o 5 = KEIWRIL, g - (3.8)
0Q
From (3.7) and (3.8) together with (1.8) we see that
w0~ [ w260 ds(z)
o
= W (%) + Wi (0 = IVWlIE, o o+ KEIWRIL, o5, J G(z, x) ;62,0 ds(2) (3.9)

39

Wx(x) = (ApG(+, X)lae, G(-, X)laa) + I G(z, X) , 62, x) dS(2).
oQ

A combination of (3.3) and (3.9) yields the desired conclusion. O

Definition 3.2. The function I(x) appeared as the limit (3.1) and expressed as (3.2) is called the indicator function
for the probe method bhased on §.

The formula (3.1) should be understood as a computation formula of the indicator function by using A — Ap.
Besides, this shows that IPS function Wy(x) can be calculated from Ap (and Ay which can be calculated in
advance) acting on the needle sequences from the surface 0Q to inside.

The second and third terms of the right-hand side on (3.2) are bounded when x is away from 0, by virtue
of (1.2) and (1.3). Thus it follows from Corollary 1.1 and (3.2) that
(i) limy_geop, I(X) =
(ii) limy—peap, 1(X) = -
Then it follows from Theorem 1.1, (3.2) and (3.8) that the I(x) has two expressions:

100 = IVG(-, 022, ~ KNG 02 ) + 19y + (€00, 150 — KolWy + (€nll

L2(Q\D) L2(Q\D) (310)
~ IV(Enl, g5 *+ K202, g 5 = IVGC-, Xl + KHIGC, 0N,
and
100 = =IVG(-, 0lifap,y + KIGC 02, = IV + (€012, g 5 + Ko IWx + (0l g 5 o)
+IV(€Dal L2 g5 = KN E€0alT, g5 + IVGC 0N ) = KNG Ol p, - '
Then we can easily check that, for each €; > 0,i =1, 2,
sup [I(x)| < oo. (3.12)

xeQ\D, dist(x,0D)>e1, dist(x,0Q)>€;

So the convergence of the indicator sequence (3.1), blowing up property of the I(x) mentioned (i) and (ii)
above and (3.12) establish the Side A of the probe method for the mixed obstacle case.

The point that should be emphasized is: from IPS we obtained that I(x) as the limit of the indicator sequence
takes the expressions (3.10) and (3.11). Is should be also pointed out that, the expression (3.11) coincides with
(-1)-times the expression (3.10) replaced with (n, d) with (d, n).

Remark 3.1. If G = §°, from the well-posedness of boundary value problems (1.6), (1.10) and (1.12) one can relax
(3.12) as: for each € > 0,

sup [I(x)| < c0.
xeQ\D, dist(x,0D)>e
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Definition 3.3. For an arbitrary point x € Q \ D define

I'(x) = (Ap(G(+, 0)la), G(+, X)|aq) — j %G(z, x)G(z, x) dS(z). B13)
Ele)
In principle, it is possible to calculate I'(x) in advance from given Ap without probing. Besides, if § = g9, it
follows from (3.8) we have the energy integral expression of (3.13):

I'(x) = [Vwh|? - K*lw])?

0
12@\D) EG(Z, X)G(z,x)dS(z).

L2(Q\D) J
0Q

In particular, if k = 0, then by (1.14) this becomes

+IVG(- = x)|1? x € Q\D.

L2(Q\D) L2(R3\Q)’
Finally, by (3.2) and (3.13) we have the inner decomposition of IPS function:

I'(x) = [Vwl]?

Wi(x) = 1(x) + I'(x), xeQ\D. (3.14)
The equations (1.8) and (3.14) give us two ways of decomposition of IPS function.

Remark 3.2. The two types of the decompositions (3.10) and (3.11) suggest the replacement:
G( Ty X) -V,

where v is an arbitrary solution of the Helmholtz equation in Q. Theorem 1.2 can be considered as an example
of the validity of this replacement.

3.2 Proof of Theorem 1.2 and a corollary

Proof of Theorem 1.2. First we prove the validity of (1.16). We have

= [Vw|?

2
~ IVenl 2 o)

2
19w + el 2 o)

@D +2 J Ven - Vw dx

Q\D
B ow 2012 ow 2
__J 2 was+ KW, o 5 - zj en o dS +2 J Kew dz
aD oD Q\D
B ow ov ow (3.15)
‘Ja vds + Javwds Zjvavds
0Dy 0D, 0Dg4

2 2 20 12
+ KW +enll, o5 — K llenll], o 5,

B ov ow 2
_< J o wds - J a—vd8)+k 1w+ e
oD, 0Dy

- Kllenl?

L2(Q\D) L2(Q\D)"

Besides we have

ow
((Ao = Ap)(V]aa), Vleg) = - j ¥ vdS
a9
=- J Vw-Vvdz + J kzwvdz—J Z—V:Vds
Q\D Q\D aD

ov ow
- J Wy 45 - J P (3.16)
aD aD
:—J vﬂd8+ I wﬂdS— J’ a—WvdS+ J ﬂvdS
ov ov
4Dy aDq aD,

:<j ds-l[ v—dS) (J %wdS—J %vdé‘).

Dy oD, 0Dy
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Here we have

ov
2 201,112
Vo820, = R,y = | 5o v s,
o N 3.17)
2 2014112 _
Vo820, = RV, = | 5o v,
aDq
Now from (3.15), (3.16) and (3.17) we obtain (1.16).
Next we have
2 2 _ 2 _ .
—IVw + €I}, o 5 + IVeall}, g 5, = ~IVWIL, o5, = 2 j Veq-Vwdz
Q\D
_ [ ow 9 200012 2
= J v wdS+2 J RedwdS— k ||w||L2(Q\5) -2 J kieqwdz
oD oD Q\B
0 0 0
=—J Wy ds - j —de8+zj 2 vwds (3.18)
ov ov ov
aDq aD, oD,
2 2 2 2
- k*llw + edIILz(g@) +k I|€dIILZ(Q\5)
_ ov ow 2 2 200 112
- ( J = was- j = vds) —Klw + eall?, g o+ Kl g5
oD, 0Dy
Thus from (3.16), (3.17) and (3.18) we obtain (1.17). O

Note that once we have found the equation to prove, the proofis just a calculation. The point of Theorem 3.1 is
the introduction of complementing functions €, and €4 in such a way that the integral
ov ow
J —wdS - J —vdS

ov ov
oD, 0Dg

has two energy integral expressions given by (3.15) and (3.18).
As a direct corollary, we obtain:

Corollary 3.1. Let x € Q and o € Ny. Let {vy,} be an arbitrary needle sequence for (x, a) based on G. We have

(Ao = Ap)(Vmlao), inlog) = IVVmllF p ) = K2 IVimliZ2p o + IV(Wim + (€m))I?

L2(Q\D)
= KW + (€mnll}, .5 = IVEmnlT, g5 + KN EMlT g5 (319)
= IVVmlZap,y + KoNVmIZ 2,
and
(o = Ap)(Vmla0), Vimlag) = ~IVVmlfzp, + KVl 72 p, = IVOWm + (€m)a)l}, g,
+ KW + (€m)dllf, g5 + IVEmal}, o 5~ Kl Emlal}, g5 (3:20)

+ ”VVmH%Z(Dn) - kz”"m”%zw"),

where Wy, (€m)n and (€m)q are given by wy, (€x)n and (€x)q with G(y, x) in (1.6), (1.10) and (1.12) replaced by v, (y),
respectively.

It should be emphasized that the point is the idea or the principle of the derivation of the things to be proved, like
(1.16) and (1.17) or, (3.19) and (3.20). It is not a trivial fact as we have already seen. It is based on the correspondence
principle mentioned below.

Principle. Replace the singular solution G(z, x) appeared in some identity, say (3.10) and (3.11), involving wy,
(ex)n and (ex)q with {vy,} based on G. Then one gets a corresponding identity for {vp,} (to be proved indepen-
dently), say (3.19) and (3.20).

Note that conversely (3.19) and (3.20) yield immediately (3.10) and (3.11) by taking the limit and the formula (3.1),
respectively.
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3.3 Side B of probe method

The Side B of the probe method is concerned with the blowing up property of the indicator sequence. It is based
on Theorem 1.2 or Corollary 3.1 and the blowing up property of the needle sequence stated below.

Proposition 3.1. Given an arbitrary point x € Q and needle € Ny let {vy,} be an arbitrary needle sequence for
(x, o) based on G.
(@) Let V be an arbitrary finite cone with vertex at x. Then we have

. 2 _
ﬂ}l—r}go ||vvm||L2(VﬂQ) = 0.

(b) Let z € Q be an arbitrary point on ¢ \ {x} and B open ball centered at z. Then we have
. 2 _
r&grloo "va”LZ(BﬂQ) = 00.

This fact has been already established in [11].
Once we have (3.19), (3.20) and Proposition 3.1, one gets the following theorem which states the Side B of the
probe method.

Theorem 3.2. Letk = 0. Let x € Qand g € Ny. Assume that one of the two cases (a) and (b) listed below is satisfied:
(@) xeD,

(b) xeQ\DandonD +0.

Then for any needle sequence {vp} for (x, o) based on G we have

00 ifoﬂD_dzﬂ,

lim ((Ao — Ap)(Vmlag), Vmlag) = i —
m-oo -0 ifanDy=0.

Proof. We describe only the case when g n Dy = 0. In this case we have x € Q \ Dy and the convergence
Vm — G(-,x) in H*(Dy) yields the boundedness of the sequence {(en),} in H2(Q\ D). Thus it follows from
(3.19) that

((Ao = Ap)(Vmla), Vimlae) = IVVmllL2p,y — C,

where C is a positive constant. Here, by Proposition 3.1 under (a) and (b) above we have [[Vvp|2p,) — oo. This
completes the proof. O

Remark 3.3. Note that Theorem 3.2 does not cover all the possible cases for (x, o). For example, if both of the
conditions 0 N Dy # 0 and x € D, are satisfied, it would be difficult to state something about the behavior of the
indicator sequence.

The problem is the case when k # 0. For this, even in the case when D; = ¢ we have only a result in [11] under
a smallness condition on k. See also [15, Section 2.3.1] for a concise explanation.

Here, applying the idea described therein to formulae (3.19) and (3.20), we show a result.

We assume that D, and D4 have the form

N M
Dy =|JDn; Da=|JDas,
j=1 =1

where Dy, j,j=1,...,N, and Dg,;, | = 1, M, are connected components of D, and Dy, respectively and satisfy
Dp,jN Dp,jr = 0ifj :/:]";Dd,l NDgp=0ifl+ .
The assumption on k is as follows: k satisfies all the inequalities listed below:

C(Q\D)*k* <1, (3.21)

max 8C(Dnj)*k* <1, (3.22)
j=1,...N

max 8C(Dq;)*k* < 1. (3.23)
=1,..M

Here the constants C(Q \ D), C(Dp,;) and C(Dg,;) denote the Poincaré constants [21] in the following sense,
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respectively:
(i Constant C(Q \ D) satisfies, for all w € HX(Q \ D) with w = 0 on 8%,

IWl2@5) < C@\DIVWI20\5)-
(ii) Constant C(Dy,) satisfies, for all v € H! (Dp,j) with ID,[,, vdz =0,
Vi, < CORPIVVIL2(D,))-
(iii) Constant C(Dg,) satisfies, for all v € H! (Dg,1) with de’l vdz =0,
IVliz2pgy) < CDaDIVVIz2D, -

Theorem 3.3. Allthe statements of Theorem 3.2 for k + 0 are valid under the smallness condition (3.21), (3.22) and
(3.23).

Proof. Consider the case o satisfy o n D4 = 0. Applying the inequality (3.21) to the function w = wp, + (€)n, we
have

V(wm + (em)n)”iz(g\ﬁ) - kznwm + (em)n”iz(g\ﬁ) > 0.
Thus (3.19) yields
(A = Ap) (Vo). Vinlog) = (IVVlZa ) = KVimnlZaqp, ) + Rims (324)
where
2 2
Ry = —"V(em)n”Lz(Q\ﬁ) - "va”LZ(Dd)'

By the convergence property of {v,} in H2(Dy), we have {e,,} is bounded in H*(Q \ D). Therefore the sequence
{Rm}is bounded. Besides, applying the same argument in [11] (and also see [15]) to the first term of the right-hand
side on (3.24), we obtain

Vvl = K2Vl = C1lVVMIZ, ) | = Co,
L*(Dy) L2(Dy) L%(Dy)

here C; and C; are positive constants independent of m, however, depends on g, D, and k satisfying (3.22).
Thus the blowing up property of the indicator sequence is reduced to that of ||va||i2 that is covered by
Proposition 3.1.

The treatment of the case when ¢ N D,, = 0 is the same except for the use of (3.23) and (3.20) instead of (3.22)
and (3.19), respectively. O

(Dn)’

Remark 3.4. It should be noted that in [2] they considered the probe method [7, 9] for the Helmholtz equation
Au + k*u = 0 in the mixed obstacle case. However, in their paper only the Side A of the probe method is con-
sidered and their argument is based on a combination of that of [9] and a detailed singularity analysis of the
reflected solution. There is no description about the Side B of the probe method, which has been introduced
in [11] and developed in [12]. Besides, even the case when the wave number k = 0 their result does not cover
Theorem 3.2. This is due to the lack of formulae (1.16) and (1.17) or (3.19) and (3.20).

3.4 Singular sources method included in IPS

The singular sources method consists of three parts listed below.
(@) Given x € Q \ D and o € Ny let {v,} be an arbitrary needle sequence for (x, o) based on G. Then we have
formula (3.6), that is,

wx(x) = = lim < (Ag = Ap)(Vnlag), (G(+, X) = Vn)lag > - (3.25)

(b) It holds that:
() limy_geop, Wx(X) = 00,
(i) limy_peap, Wx(X) = —co.
(c) Foreache;>0,i=1,2,

sup [wy(X)| < oo. (3.26)
xeQ\D, dist(x, dD)>ey, dist(x, 0Q)>e€;,

The statements (b) and (c) are the direct consequence of Corollary 1.1, outer decomposition (1.8), (1.3) and (1.7).
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Note that Remark 3.1 works also for (3.26) in the case when G = G°. That is, the condition dist(x, dQ) > e, in
(3.26) is dropped.

Remark 3.5. If § = G*, then G(-, x) = 0 on 0Q and by (3.25) one gets
wx(x) = lim {(Ao — Ap)(Vnlag), Vnloo)
provided o n D = 0. From this together with (3.1) and (3.2) we obtain
Wx(x) = I(x) = Wx(x).

So this is the completely integrated version of the probe and singular sources methods. By Theorem 3.2 this
version also has the Side B. To distinguish from other cases we denote wy(x) = I(x) = Wx(x) by wi (x) =I*(x) =
Wix)if g = g*.

3.5 Side B of singular sources method

Given x € Q and o € Ny let {v‘,’l} be the needle sequence for (x, o) based on § = G0 that is,
v = G(- - x)

; 2
in Hloc

(Q\ o). Let H(z) = H(z, x) solve
AH + K*H =0, zeQ,
{ H(z)=-G(z-Xx), zedQ.
It is clear that the H( -, x) satisfies (1.3). The function
vn(z) =V%(z2) + H(z,x), z€Q,
satisfies the Helmholtz equation in Q and that the sequence {v,} satisfies
vp — G(- —x)+ H(-,x)

in HIZOC(SZ \ 0). This means that sequence {v,} is a needle sequence for (x, o) based on G = G* (see also

Remark 1.1). Thus, if 6 N D = @, then by Remark 3.5 we have

wy(x) =I"(x) = Wy(x)

= lim ((Ao - Ap)(Vnla), Vnlao)-
Here note that we have
vn(z) =V%(z) - G(z - X), z € dQ.
Therefore we obtain
wy (x0) =I"(x) = W (x)
= lim (Ao ~ Ap)((V) = G(- = X))lag), (Vy = G(- = X0))lag).-

Besides, as a corollary of Theorem 3.2 we obtain
Corollary 3.2. Let k = 0. Let x € Q and g € Ny. Assume that one of the two cases (a) and (b) listed in Theorem 3.2
is satisfied. Then for any needle sequence {V9,} for (x, o) based on G = §° we have
o ifan Dg=0,

lim ((Ag - Ap)((VS = G(+ = X))]aa), (V) = G(- = x))lag) = { ol
=00 —c0 ifanDy =0.
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And also as a corollary of Theorem 3.3 we have:
Corollary 3.3. Let k > 0 satisfy (3.21), (3.22) and (3.23). Then the same conclusions as Corollary 3.2 are valid.
Let wO(y) = wy(y; §°). The w9 solves

Aw + K*w =0, yeQ\D,

ow 0
W = —EG()) —X), DS aDn,

W=_G(y_x)1 yeaDd:

w =0, yeoQ.
The function Q \ D > x — w9(x) is a natural extension of the indicator function for the singular sources method
discussed therein to the case D4 # 0. See also [16, Section 1.3] for an explanation of why w9(x) is called the indica-

tor function for the singular sources method in relation to its original singular sources method of Potthast [20].
NowletonD = 0. By (3.4) and (3.25) in the case G = G0 we have

wi(x) = = im (Ao = Ap)Vplag, Gn(-, Nlog),

where
Gn(z,x) = G(z — X) = V3(2).

Here we have the trivial decomposition
(Ao = Ap)G(- = X)lag, G(+ = X)lag) = (Ao — Ap)Valag, Vilao) + (Ao — Ap)Gr(+, Xlag, Gn(-, X)la0)

+ ((Ag = Ap)V2 50, Gn(-, X)]og)
+{(Ag = Ap)(Gn(+, )lag), Valag)-

This together with the symmetry of Dirichlet-to-Neumann maps Ag and Ap yields the expression

1
~((Ao = Ap)VSa0, Ga( -, X)lag) = 5 (o - Ap)V3lag, Valag) + ((Ag — Ap)Gn(+, ¥)lag, Gn(+, X)lag))
(3.27)

1
- §<(A0 - Ap)G(- = X)|ag, G(- = X)|a@)-

Therefore, using Theorem 3.2 for the choice § = G%and Corollary 3.2, we obtain the side B of the singular sources
method formulated in [16].

Corollary 3.4. Let k = 0. Let x € Q and o € N,. Assume that one of the two cases (a) and (b) listed in Theorem 3.2
is satisfied. Then for any needle sequence {9} for (x, o) based on G = G° we have

: 0o ifonDg =0,
— lim ((Ag - Ap)V:aa, (G(- = x) = V9)lag) = : _
n—eo —o00 ifanDy=0.
And also from Theorem 3.3 and Corollary 3.3 we have:
Corollary 3.5. Let k > 0 satisfy (3.21), (3.22) and (3.23). Then we have the same conclusions as Corollary 3.4.

Corollaries 3.4 and 3.5 could never be obtained using a single methodology, and show us the greatest advantage
of the integrated theory.

Remark 3.6. It follows from (3.27) and the existence of the needle sequence which is a consequence of the Runge
approximation property for the Helmholtz equation in Q we have the expression

1
wh(x) = E(IO(X) +I"(0) = (Ao = Ap)G(+ = X)lag, G(- = X)lo)),

where the I°(x) denotes the I(x) given by (3.2) (or both of (3.10) and (3.11)) with the case when G = 9, that is,
G(-,x) =G(- —x).
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3.6 Additional remarks

3.6.1 Lifting

First for general G, from Lemma 2.1 we obtain

a 5}
wx(y) - J’ EWX(Z)G(Z,y) dS(z) = wy(x) - J RWY(Z)G(Z,X) ds(z). (3.28)
EJe) a9
So define 5
I(x,y) = wx(y) - j 5WX(Z)G(ny) dS(z), (x,y) € (Q\D)~ (3.29)
a9

Then (3.28) yields the symmetry
I(x,y) = I(y, x).
Besides, by (3.1) and (3.3), we have another expression for the indicator function:
100) = wy(x) - J % Wy(2)G(z, X) dS(z).
a9
This together with (3.29) yields I(x) = I(x, y)|y=x and in this sense, the I(x, y) is called the lifting of I(x).
The inner decomposition (3.14) itself has the lifted version. For general G, by (2.12) we have

wi(y>=11<x,y>—j G(z,x)%wym s(z), (x,y) € (Q\D), (3.30)
0Q
where
I'(x,y) = J Vwy(z) - Vwy(z) dz - J Kwy(z)wy(z) dz - J %G(z, ¥)G(z, x) dS(2).
Q\D Q\D Q
A similar computation to (3.8) yields
(Ap(G(-,Ylao). G(-, Vlao) = | Vwh(2) - Vwk(z)dz -~ | Kowl(zwiiz) dz.
Q\D Q\D
Thus we have
I'(x,y) = (Ap(G(-, Y)lae), G(+, X)lae) — I %G(z,y)G(z, x) dS(z). (3.31)
o
By (3.13), this yields I' (x) = I'(X, y)ly-x. Thus, I*(x, y) gives a lifting of I'(x).
Next rewrite (3.29) as
W) = T03) + [ G2,y) g wa() dS(2).
oQ
This together with (3.30) yields

Wy(y) =I(x,y) + Il(x,y) + j G(z,y)%wx(z) ds(z) - J G(z, x)%wy(z) ds(z). (3.32)
a9 a0
This is the lifted version of inner decomposition (3.14). Note also that we have twisted decomposition

wy(X) + wiy) = I(x,y) + I'(x, y). (3.33)

3.6.2 Uniqueness

We consider only two cases: G = G% G* From (3.29) we have
0 .
)~ [ Swi(D6(z-y)ds@) 5=,
I(x,y) = a0 (3.34)
wy(y) ifGg=9".
Note that wy(y) depends on G and the symmetry of I(x, y) yields the symmetry wy(y) = wy(x) in the case § = §*.
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The expression (3.34) together with symmetry of I(x, y) yields:
« foreachfixedx € Q\D,

AyI(x, y) + K*I(x,y) =0, yeQ\D,

« foreachfixedy € Q\ D,
AI(x,y) + K*I(x,y) =0, xeQ\D.

Here the symbols Ay, and Ay denote the Laplacian with respect to y and x, respectively.

By the unique continuation property of the Helmholtz equation, one concludes: indicator function I(x),
x € @\ D is uniquely determined by I(x, y) given at all (x, y) € U x V, where U and V are arbitrary nonempty
open subsets of Q \ D, typically in a small neighborhood of Q. Besides, using the argument for the proof of (3.3),
we obtain also the computation formula of the lifting

Ix,y) = nli_)H(}o((Ao - Ap)(Vnlag), Vnlag),

where vy, is the same as that of (3.3) and vy, is an arbitrary needle sequence for (y, ¢’) based on G and ¢’ € Ny,
satisfying o’ N D = 0. So in principle or theoretically, it suffices to use only the needle sequences for the needles
with tips in U x V, say with U = V and U is given by the intersection of a small open ball centered at a point on
0Q with Q. In that case we can use only the straight needles explicitly constructed in [13].

Summing up, we have obtained the following uniqueness theorem by using needles localized, say in a small
neighborhood of 49 in Q.

Proposition 3.2. Let G = G, G*. Let U be an arbitrary nonempty open subset of Q \ D. Assume that we have the
data Ap(vnlag) for all x € U and a needle o € Ny with \ 0Q c U, and a needle sequence {vy} for (x, o) based
on S. Then the obstacles D and D, are uniquely determined by the data.

The key of the proofis to put the calculation process of the lifting I(x, y) for all (x, y) € U? in between. This result
could never have been found using a single methodology alone.

3.6.3 Symmetry of I'(x, y) and implications

For general G from (3.32) we obtain

Wx(y) + Wy(X)

I'(x,y) +I'(y, x)
. P Sl Ll

5 (3.35)

= I(X,)’) +

Note that for general G the I'(x, y) is not necessary symmetric with respect to variables x and y. Here we note
that the I'(x, y) is symmetric for G = G*, §°. In fact, if G = G*, then G(-, x) = 0 on 9 for each x € Q \ D. Thus
(3.31) yields I'(x, y) = 0 = I'(y, x).

For general G, a similar argument for the proof of the symmetry of Green’s function, we have, for (x, y) € Q2
with x #y,

J %G(z,y)G(z,x) dS(z) = -G(y, x) + J VG(z,y)-VG(z,x)dz - j sz(z,y)G(z, X)dz.
EYe) Q Q

Note that all the integrands are absolutely integrable since x # y. Thus I'(x, y) with x # y takes the form

I'x,y) = j Vwy(z) - Vw}(z) dz - J K wy(z)wy(z) dz
Q\D Q\D
+G(y,x) - J VG(z,y)-VG(z,x)dz + J k2G(z,y)G(z,x) dz.
Q Q

Recalling the expression (1.2), we see that I'(x,y) = I'(y, x) if and only if H(y, x) = H(x,y). Thus I'(x, y) is
symmetric in the case G = G0 since H = 0.
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Therefore from (3.35) we obtain, for G = G0, G* 1

Wx(y) + Wy(x)
2

And this together with (3.33) yields twisted symmetry:

=I(x,y) + I'(x,y). (3.36)

Wx(y) = Wy (X) = wy(x) = wy(y).

Besides, the expression (3.31) together with symmetry yields:
+ foreach fixedy € Q\ D we have

AT (x,y) + K2IN(x,y) =0, x € Q\D;
. for each fixed x € @ \ D, we have
AIY (X, y) + K TN (x,y) =0, yeQ\D.
Besides, using (3.33) we conclude that, for each fixed y € Q \D
A(wy() + K*wy(y) =0, xe€Q\D, 3.37)

and for each fixed x € Q \ D,
Ay(wy(x) + K*wy(x) =0, y e Q\D.

Finally, from (3.36) we obtain, for each fixed x € Q \ D,
Ay(Wy(x)) + K*Wy(x) =0, yeQ\D.
As a conclusion, we have:

Proposition 3.3. Let G = G°, G*. Let U be an arbitrary nonempty open subset of @ \ D. Then the values W(x) and
wy(x) at all x € @ \ D are uniquely determined by those of W(y) and w(y) for all (x,y) € U?, respectively.

4 Conclusion and remarks

It became clear that the IPS function plays the central role in deriving the probe and singular sources methods.
Besides, the method of complementing function, which is introduced in the proof of Theorem 1.1, makes every-
thing so clear. Everything about the both methods can be derived from the knowledge of the IPS function Wy(x).
As a byproduct, we found the Side B of both the probe and singular sources methods for the mixed obstacle case.
This is an advantage of IPS. However, there is a proviso that this comes at the expense of the regularity of the
boundaries of the obstacles and whole domain. This seems to be unavoidable in order to establish especially
the singular sources method since its is based on Green’s theorem.

In this paper, we have considered only the case when the governing equation is given by the Helmholtz
equation. However, the method developed here can be applied also to the same type of inverse obstacle problems
governed by various partial differential equations, for example, the Navier equation, the Stokes system, the
biharmonic equation, and so on. And also it would be interested to consider their time domain versions by the
spirit of IPS. Those belong to our next project.

Our theory yields also an alternative simple proof of a result on the probe method described in [2], which is
nothing but the Side A called in this paper. However, it should be pointed out that the Side B without smallness
of k is still open at the present time even for the case Dy = 0, see [15].

1 Note that, in particular, if § = G* we have W, (y) = I(x, y) = wx(y). This implies the symmetry of Wy (y) = wy(y).
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A Appendix

Note that in this appendix it is assumed that k* satisfies Assumption 1.

Lemma 1. Letv € H%(Q) be an arbitrary solution of the Helmholtz equation Av + k*v = 0in Q. Let u € H*(Q \ D)
be the solution of (1.1) with f = v on Q. We have

lu =Vl 25y < CUVIL2,) + IVIL2apa)),
where C is positive constant independent of v.
Proof. Setw = u —v.The w = w(y) satisfies

Aw + K*w = 0, yeQ\D,

ow 0
— = ——v(y), aDy,
avV(y) Yy € 0Dy

ov
w=-v(y), y € 0Dy,
w =0, y e oQ.
Decompose w as w = wy + wy, where the wy = wy(y) solves
Awq + K*wq = 0, yeQ\D,
aW1 0
I —EV()’), Y € 0Dp,
w1 = 0’ y € aDd,
wq =0, yeoQ,
and thus wy = wy(y) satisfies .
Awy + K2wy = 0, yeQ\D,
aWZ
. D
e 0, y € 0Dy,
wy =-v(y), Yy €Dy,
wq =0, yeo.

Considering @ \ D as (? \ Dg) \ D, and applying [14, Lemma 2.2] to the case when Q and D are replaced with
Q\ Dy and Dy, respectively, we have

"W1||L2(g\5) < Clvlrzp,y-
So the problem is to show that
IW2l20\5 < ClVIzzapy- (A1)

Here we employ a slightly modified argument for the proof of [10, (4.12) in Lemma 4.1]. Solve
Ap +K*p=wy, yeQ\D,
w_,

3y s Yy € 0Dy,
p=0, y € 0Dq,
p=0, yeoQ.
Then we have
j w; dy = j pwady = J (Ap + K*p)ws dy
Q\D Q\D Q\D
0 0
:—Ja—ﬁwzdS— J a—?}wzdS— J Vp - Vw, dy + J k?pw; dy
Dn Da Q\D Q\D
B ap owsy owsy 3 @ J % B j 6_p
= J aVvdS+ J avpdS+ J aVpdS— J avvdS+ avpdS— adeS'

0Dy 0D, 0Dg 0Dy 0Dy 0Dy
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Thus one gets

2
||Wz||LZ(Q\5) < IVPlrz@ppVilzz@py-

By elliptic regularity up to boundary, we have

||P||H2(g\5) < C”WZHLZ(Q\E)

and the trace theorem yields

||VP||H% (3Dg) < C||VP||H1(9\5)-

Combining these, we obtain (A.1). O

Lemma 2. The solution w = wy of (1.6) for x € Q \ D satisfies, for each e > 0,

o sup ”WX"LZ(Q\E) < 0.
xeQ\D, e<dist(x,0Q)
Proof. There are two ways to validate the statement. The first one is a combination of Lemma 1 and a limiting
argument based on the Runge approximation property for the Helmholtz equation in the whole domain Q pro-
vided k? is not a Dirichlet eigenvalue for the minus Laplacian —A in Q. Another one goes back to the idea for
establishing [9, estimates (19) and (28)] for the case when D, = 0 and Dy = 0, respectively. Since the later one is
elementary, we describe here. Decompose wy as wy = (W1)x + (Wz)y, where the (w1), = w1(y) solves

Awq + k2w =0, yeQ\D,
aW1 0
W = —EG()),X), Yye ODn,
Wl = 0’ y € 6Dd,
wq =0, yeo,
and thus (w3), = wy(y) satisfies
Awsy + K*wy = 0, y e Q\D,
ow
a_vz =0, y € 0Dy,
wy =-G(y,X), ye€aDy,
wy =0, y e 0Q.

Considering Q \ D as (Q \ Dg) \ D,, and applying the argument for the proof of (28) in [9] to the case when Q and
D are replaced with Q \ Dg and Dy, respectively, we have

110G
IwDxl 2015 < c( j 12— x1} |5 (2, 0| ds@) + j |G<z,x>|dz),
oD, Dy

where C is a positive constant independent of x € Q \ D. It is easy to see that this together with (1.3) yields

sup ”(Wl)x"LZ(Q\E) < 0. (A.2)
xeQ\D, e<dist(x,0Q)

Note that we are considering general . Using a similar argument for the proof of [9, (19)], we have the estimate

”(WZ)X”LZ(Q\E) < ClG(, X)“L% (3Dy)"

Then assumption (1.3) and

sup |G(- —x < 00,
Sup 6(- =l 3 4, < 00
we obtain
sup ”(WZ)XHLZ(Q\E) < 0. (A3)

xeQ\D, e<dist(x,0Q)
From (A.2) and (A.3) we obtain the desired conclusion. O
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