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Abstract: The main purpose of this paper is to develop further the integrated theory of the probe and singular
sources methods (IPS) which may work for a group of inverse obstacle problems. Here as a representative and

typical member of the group, an inverse obstacle problem governed by the Helmholtz equation with a fixed

wave number in a bounded domain is considered. It is assumed that the solutions of the Helmholtz equation

outside the set of unknown obstacles satisfy the homogeneous Dirichlet or Neumann boundary conditions on

each surface of obstacles. This is the case when two extreme types of obstacles are embedded in a medium.

By considering this case, not only a concise technique for IPS is introduced but also a general correspondence

principle from IPS to the probe method is suggested. Besides, as a corollary it is shown that the probe method

together with the singular sources method reformulated in terms of the probe method has the Side B under a

smallness conditions on the wave number k, which is the blowing up property of a sequence computed from
the associated Dirichlet-to-Neumann map.

Keywords: Inverse obstacle problem, probe method, singular sources method, Helmholtz equation, Dirichlet
boundary condition, Neumann boundary condition, third indicator function, IPS function
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1 Introduction

Both the probe method of Ikehata [7, 8] (later reformulated in [11]) and singular sources method of Potthast [19,

20] now become well-known classical analytical methods for reconstruction issue of inverse obstacle problems
governed by partial differential equations. This paper is concerned with the integrated theory of the probe and
singular sources methods (IPS), which is initiated by the author himself in [16, 17]. In particular, we focus on the

role of IPS in deriving the probe and singular sources methods together with introducing a technique to treat

some kind of inverse obstacle problems governed by partial differential equations. For the purpose we consider

a prototype inverse obstacle problem governed by the Helmholtz equation with a fixed wave number.

Now let us formulate the prototype problem. Let Ω be a bounded domain ofℝ3 with Lipschitz-boundary [6].
We denote by D a mathematical model of discontinuity embedded in the background medium Ω. We assume

that D takes the form D = Dn ∪ Dd , where Dn and Dd are open subsets of ℝ3 with Lipschitz-boundary with

Dn ∩ Dd = 0, Dn ∪ Dd ⊂ Ω and that Ω \ (Dn ∪ Dd) is connected. We denote by ν the unit outward normal vector
to not only ∂Ω but also ∂D. On the surfaces of Dn and Dd two boundary conditions of different type are imposed

as specified below.
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Let k ≥ 0. Given an arbitrary f ∈ H 1

2 (∂Ω), let u = u(x) in H1(Ω \ D) be the weak solution of

{{{{{{
{{{{{{
{

Δu + k2u = 0, x ∈ Ω \ D,
∂u
∂ν = 0, x ∈ ∂Dn ,

u = 0, x ∈ ∂Dd ,

u = f, x ∈ ∂Ω.

(1.1)

This means that, u = f on ∂Ω, u = 0 on ∂Dd in the sense of the trace and, for all φ ∈ H1(Ω \ D)with φ = 0 on ∂Ω
and φ = 0 on ∂Dd in the sense of the trace, we have

− ∫

Ω\D

∇u ⋅ ∇φ dx + ∫
Ω\D

k2uφ dx = 0.

Then the bounded linear functional
∂u
∂ν |∂Ω ∈ H

− 1
2 (∂Ω) is well defined via the formula

⟨
∂u
∂ν
|∂Ω , g⟩ = ∫

Ω\D

∇u ⋅ ∇ϕ dx − ∫
Ω\D

k2uϕ dx, g ∈ H
1

2 (∂Ω),

where ϕ ∈ H1(Ω \ D) such that ϕ = g on ∂Ω and ϕ = 0 on ∂Dd in the sense of the trace. Note that unless other-

wise specified the functions appearing in this paper are always real-valued; the symbol ν denotes the unit

outward normal vector field on ∂Ω and ∂D = ∂Dn ∪ ∂Dd .

In this paper, by considering the prototype inverse obstacle problemmentioned below, we further develop

a technique to the integrated theory of the probe and singular sources methods.

Problem. Extract information about the geometry of Dn and Dd from the
∂u
∂ν |∂Ω corresponding to infinitely

many f .

For the problem to have meaning we impose a restriction on k:

Assumption 1. The boundary value problem (1.1) with f = 0 has only a trivial solution.

Under Assumption 1 it is well known that the weak solution u of (1.1) exists and unique. Then the map

ΛD : H
1

2 (∂Ω) → H−
1

2 (∂Ω)

is well defined by

ΛD f =
∂u
∂ν
󵄨󵄨󵄨󵄨󵄨󵄨󵄨∂Ω

.

This is called the Dirichlet-to-Neumannmap. So Problem becomes the extraction problem of information about

the geometry of Dn and Dd from the graph of the Dirichlet-to-Neumann map ΛD or its partial knowledge.

It follows from the definition we have the symmetry: for all f ∈ H 1

2 (∂Ω) and g ∈ H 1

2 (∂Ω),

⟨ΛD f, g⟩ = ⟨ΛDg, f⟩.

Besides, if f ∈ H 3

2 (∂Ω) and both ∂Ω and ∂D are C2, then u ∈ H2(Ω \ D) and thus ΛD f = ∂u
∂ν |∂Ω ∈ H

1

2 (∂Ω) in the
sense of the trace [6]. Then, integration by parts (e.g., [6, Lemma 1.5.3.7]) yields the surface integral expression

of ⟨ΛD f, g⟩ for all f ∈ H
3

2 (∂Ω) and g ∈ H 1

2 (∂Ω),

⟨ΛD f, g⟩ = ∫
∂Ω

ΛD f(z)g(z) dS(z).

In this paper, we always consider k such that Assumption 1 is satisfied and, unless otherwise stated the

C2-regularity of ∂Ω and ∂D are assumed. Note that k = 0 satisfies Assumption 1
In [16] by considering the case that Dd = 0 in (1.1) and k = 0, the author introduced the integrated theory of

the probe and singular sources methods. In [17] IPS has been applied to an inverse obstacle problem governed

by the Stokes system. Therein a technique to treat a system is introduced. In this paper we pursuit IPS further by
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considering the case when Dd ̸= 0 and k ≥ 0. Especially, with application to elastic bodies in mind, it would be
interesting to consider such a case. It is expected that this situation causes some problems due to the coexistence

of two different boundary conditions and k ̸= 0. Besides, it cannot be said that the IPS concept was thoroughly
developed in [16, 17] in the sense that the treatment of the probe method therein is independent from IPS. This

timewewould like to show that not only the singular sourcesmethod but also the probemethod itself is derived

from IPS.

It should be pointed out that, using the original probe method [9], this type of problem itself has been con-

sidered by Cheng, Liu, Nakamura andWang [2]. However, they do not have the viewpoint of the IPS developed in

this paper. See also Remark 3.4 for more detailed comparison. Note that, for mixed obstacles placed in thewhole
space there are some applications of the factorization method [3, 5, 18],monotonicity method [1] and both [4].

1.1 The IPS function

The IPS in this paper starts with introducing a family of singular solutions for the back ground medium.

Let G = {G( ⋅ , x)}x∈Ω be a family of distributions in Ω indexed with x ∈ Ω having the form

G(y, x) = G(y − x) + H(y, x), (1.2)

where

G(y − x) = cos k|y − x|
4π|y − x|

and H( ⋅ , x) ∈ H2(Ω) is a real-valued solution of the Helmholtz equation in Ω such that, for each ϵ > 0,

sup

x∈Ω, dist(x,∂Ω)>ϵ
‖H( ⋅ , x)‖H2(Ω) < ∞. (1.3)

Note that G( ⋅ − x) coincides with the real part of the standard (complex-valued) fundamental solution of the
Helmholtz equation

Φ(y − x) = eik|y−x|

4π|y − x| .

Since the imaginary part of Φ( ⋅ − x) has the unique extension to the whole space as the entire solution of the
Helmholtz equation, the function G(y − x) also satisfies

ΔG( ⋅ − x) + k2G( ⋅ − x) + δ( ⋅ − x) = 0

as the distribution of y ∈ ℝ3 for each fixed x ∈ ℝ3.

Definition 1.1. Given G and x ∈ Ω \ D, letW = Wx(y;G) = W(y) in H2(Ω \ D) be the solution of

{{{{{{{
{{{{{{{
{

ΔW + k2W = 0, y ∈ Ω \ D,
∂W
∂ν = −

∂
∂ν G(y, x), y ∈ ∂Dn ,

W = −G(y, x), y ∈ ∂Dd ,

W = G(y, x), y ∈ ∂Ω.

(1.4)

We call the function Ω \ D ∋ x 󳨃→ Wx(x;G) the IPS function based on G for obstacle D.

Hereafter we simply write Wx(y;G) = Wx(y). Needless to say, Assumption 1 ensures the unique solvability of

equations (1.4) in the class H2(Ω \ D). The sudden appearance of the system (1.4) seems strange, however, it

is a natural extension of the corresponding one firstly introduced in [16] in the case when Dd = 0 and k = 0.
Besides, we will see in Section 3 that the IPS function generates the indicator function (see Definition 3.2) for the

probe method.

Since the system (1.4) is linear, we have the natural and trivial decomposition of the solution as

Wx(y) = wx(y) + w1

x(y), y ∈ Ω \ D, (1.5)
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where wx = wx(y;G) = w(y) in H2(Ω \ D) solves

{{{{{{{
{{{{{{{
{

Δw + k2w = 0, y ∈ Ω \ D,
∂w
∂ν
= −

∂
∂ν

G(y, x), y ∈ ∂Dn ,

w = −G(y, x), y ∈ ∂Dd ,

w = 0, y ∈ ∂Ω,

(1.6)

and w1

x = w1

x(y;G) = w(y) in H2(Ω \ D) solves

{{{{{{{
{{{{{{{
{

Δw + k2w = 0, y ∈ Ω \ D,
∂w
∂ν
= 0, y ∈ ∂Dn ,

w = 0, y ∈ ∂Dd ,

w = G(y, x), y ∈ ∂Ω.

(1.7)

The unique solvability of the boundary value problems (1.6) and (1.7) are also a consequence of Assumption 1.

Needless to say, from (1.5) we have

Wx(x) = wx(x) + w1

x(x), x ∈ Ω \ D. (1.8)

We call this the outer decomposition or natural decomposition of IPS function.
The IPS for Problem is based on the discovery of the following two representation formulae.

Theorem 1.1. Let x ∈ Ω \ D.
(1) We have the expression focused on the Neumann obstacle

Wx(x) = ‖∇G( ⋅ , x)‖2L2(Dn) − k
2‖G( ⋅ , x)‖2L2(Dn) + ‖∇(wx + (ϵx)n)‖2L2(Ω\D) − k

2‖wx + (ϵx)n‖2L2(Ω\D)

− ∫
∂Ω

G(z, x) ∂∂ν G(z, x) dS(z) + ‖∇w
1

x‖
2

L2(Ω\D) − k
2‖w1

x‖
2

L2(Ω\D) − ‖∇(ϵx)n‖
2

L2(Ω\D)

+ k2‖(ϵx)n‖2L2(Ω\D) − ‖∇G( ⋅ , x)‖
2

L2(Dd) + k
2‖G( ⋅ , x)‖2L2(Dd) ,

(1.9)

where (ϵx)n = (ϵx)n(y;G) = ϵ(y) in H2(Ω \ D) solves

{{{{{{
{{{{{{
{

Δϵ + k2ϵ = 0, y ∈ Ω \ D,
ϵ = 0, y ∈ ∂Dn ,

ϵ = G(y, x), y ∈ ∂Dd ,

ϵ = 0, y ∈ ∂Ω.

(1.10)

(2) We have the expression focused on the Dirichlet obstacle

Wx(x) = −‖∇G( ⋅ , x)‖2L2(Dd) + k
2‖G( ⋅ , x)‖2L2(Dd) − ‖∇(wx + (ϵx)d)‖2L2(Ω\D) + k

2‖wx + (ϵx)d‖2L2(Ω\D)

− ∫
∂Ω

G(z, x) ∂∂ν G(z, x) dS(z) + ‖∇w
1

x‖
2

L2(Ω\D) − k
2‖w1

x‖
2

L2(Ω\D) + ‖∇(ϵx)d‖
2

L2(Ω\D)

− k2‖(ϵx)d‖2L2(Ω\D) + ‖∇G( ⋅ , x)‖
2

L2(Dn) − k
2‖G( ⋅ , x)‖2L2(Dn) ,

(1.11)

where (ϵx)d = (ϵx)d(y;G) = ϵ(y) in H2(Ω \ D) solves

{{{{{{{{{
{{{{{{{{{
{

Δϵ + k2ϵ = 0, y ∈ Ω \ D,
∂ϵ
∂ν =

∂
∂ν G(y, x), y ∈ ∂Dn ,

∂ϵ
∂ν = 0, y ∈ ∂Dd ,

ϵ = 0, y ∈ ∂Ω.

(1.12)
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Introducing the functions (ϵx)n and (ϵx)d helps us to write the IPS function in terms of energy integrals (1.9)

and (1.11).We call this technique themethod of complementing function. A clear advantage is that: roughly speak-
ing, we can immediately see that (ϵx)n is bounded in H2(Ω \ D) if x is close to a point on ∂Dn; (ϵx)d is bounded
in H2(Ω \ D) if x is close to a point on ∂Dd .

It shoulder be pointed out that the two expressions (1.9) and (1.11) contain the common terms of integrals

− ∫
∂Ω

G(z, x) ∂
∂ν

G(z, x) dS(z) + ‖∇w1

x‖
2

L2(Ω\D) − k
2‖w1

x‖
2

L2(Ω\D) .

Except for those, the expression of the right-hand side on (1.11) coincides with the one on (1.9) multiplied by (−1)
and replaced (n, d) with (d, n).

The following corollary is a direct consequence of the facts listed below:

(a) the well-posedness of the boundary value problems (1.6), (1.7), (1.10) and (1.12),

(b) the expressions (1.9) and (1.11),

(c) the property that for any finite cone V with vertex at the origin x = 0

∫
V

|∇G(z − x)|2 dz = ∞.

Corollary 1.1. The IPS function Wx(x) satisfies (i), (ii) and (iii) listed below:
(i) limx→a∈∂Dn Wx(x) = ∞.
(ii) limx→b∈∂Dd Wx(x) = −∞.
(iii) For each ϵi > 0, i = 1, 2,

sup

x∈Ω\D, dist(x,∂D)>ϵ1 , dist(x,∂Ω)>ϵ2
|Wx(x)| < ∞.

Proof. In what follows we denote by C1 , C2 , . . . positive numbers independent of x. Using (1.9), from (a) and (b)

together with (1.2) and (1.3) we have: as x → a ∈ ∂Dn ,

Wx(x) ≥ ‖∇G( ⋅ , x)‖2L2(Dn) − 2k
2‖w‖2L2(Ω\D) − C1 .

Here, by Lemma 2 in Appendix we have, as x → a ∈ ∂Dn ,

Wx(x) ≥ ‖∇G( ⋅ , x)‖2L2(Dn) − C1 − C2 .

Then (c) together with Fatou’s lemma yields (i). Next consider the case when x → b ∈ ∂Dd . It follows from (1.11)

−Wx(x) ≥ ‖∇G( ⋅ , x)‖2L2(Dd) − 2k
2‖w‖2L2(Ω\D) − C3 .

Again, Lemma 2 yields, as x → b ∈ ∂Dd ,

−Wx(x) ≥ C4‖∇G( ⋅ , x)‖2L2(Dd) − C3 − C5 .

This yields the validity of (ii). The validity of statement (iii) is almost clear.

Therefore, using the asymptotic behavior of IPS function Wx(x) as x approaches ∂D, one can distinguish the

soft obstacle Dd and hard obstacle Dn . In particular, we know that IPS function does not have a definite sign

unlike a single type of obstacle case [16].

Remark 1.1. In this paper, about the choice of the family {H( ⋅ , x)}x∈Ω in (1.2) we consider only the two cases.

The first is the case when H(y, x) ≡ 0. In this case we denote G by G0. Then G( ⋅ , x) coincides with G( ⋅ − x). The
second is: we impose the boundary condition

H(y, x) = −cos k|y − x|
4π|y − x| , y ∈ ∂Ω. (1.13)

Under the assumption that k2 is not a Dirichlet eigenvalue for the minus Laplacian −Δ in Ω, for each x ∈ Ω the

H(y, x) exists and is unique, and satisfies (1.3). The function G( ⋅ , x) is nothing but the Green function for the

domain Ω with the source point at x ∈ Ω. In this case we denote G by G∗. Then Wx = 0 on ∂Ω for x ∈ Ω \ D
and w1

x ≡ 0. Hereafter unless otherwise stated, we always impose the condition on k2 mentioned above when
considering G∗.

Theorem 1.1 yields the following corollary.
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Corollary 1.2. Choose G = G0. Let wx = wx( ⋅ ;G0) and w1

x = w1

x( ⋅ ;G
0).

(i) We have the expression focused on the Neumann obstacle

Wx(x) = ‖∇G( ⋅ − x)‖2L2(Dn) − k
2‖G( ⋅ − x)‖2L2(Dn) + ‖∇(wx + (ϵx)n)‖2L2(Ω\D) − k

2‖wx + (ϵx)n‖2L2(Ω\D)

− ∫
∂Ω

G(z − x) ∂∂ν
G(z − x) dS(z) + ‖∇w1

x‖
2

L2(Ω\D) − k
2‖w1

x‖
2

L2(Ω\D)

− ‖∇(ϵx)n‖2L2(Ω\D) + k
2‖(ϵx)n‖2L2(Ω\D) − ‖∇G( ⋅ − x)‖

2

L2(Dd) + k
2‖G( ⋅ − x)‖2L2(Dd) ,

where (ϵx)n = (ϵx)n( ⋅ ;G0).
(ii) We have the expression focused on the Dirichlet obstacle

Wx(x) = −‖∇G( ⋅ − x)‖2L2(Dd) + k
2‖G( ⋅ − x)‖2L2(Dd) − ‖∇(wx + (ϵx)d)‖2L2(Ω\D) + k

2‖(wx + (ϵx)d)‖2L2(Ω\D)

− ∫
∂Ω

G(z − x) ∂∂ν
G(z − x) dS(z) + ‖∇w1

x‖
2

L2(Ω\D) − k
2‖w1

x‖
2

L2(Ω\D)

+ ‖∇(ϵx)d‖2L2(Ω\D) − k
2‖(ϵx)d‖2L2(Ω\D) + ‖∇G( ⋅ − x)‖

2

L2(Dn) − k
2‖G( ⋅ − x)‖2L2(Dn) ,

where (ϵx)d = (ϵx)d( ⋅ ;G0).

Remark 1.2. In particular, if k = 0, then for all x ∈ Ω and y ∈ Ω one can rewrite

− ∫
∂Ω

G(z − x) ∂∂ν G(z − y) dS(z) = ∫
ℝ3\Ω

∇G(z − x) ⋅ ∇G(z − y) dz. (1.14)

Note that the integrand of this right-hand side is absolutely integrable. Thus, the formulae in Corollary 1.2

become

Wx(x) = ‖∇G( ⋅ − x)‖2L2(Dn) + ‖∇(wx + (ϵx)n)‖2L2(Ω\D) + ‖∇G( ⋅ − x)‖
2

L2(ℝ3\Ω)

+ ‖∇w1

x‖
2

L2(Ω\D) − ‖∇(ϵx)n‖
2

L2(Ω\D) − ‖∇G( ⋅ − x)‖
2

L2(Dd)

and

Wx(x) = −‖∇G( ⋅ − x)‖2L2(Dd) − ‖∇(wx + (ϵx)d)‖2L2(Ω\D) + ‖∇G( ⋅ − x)‖
2

L2(ℝ3\Ω)

+ ‖∇w1

x‖
2

L2(Ω\D) + ‖∇(ϵx)d‖
2

L2(Ω\D) + ‖∇G( ⋅ − x)‖
2

L2(Dn) .

And also we have:

Corollary 1.3. Choose G = G∗. Then w1

x( ⋅ ;G
∗) = 0 and Wx( ⋅ ;G∗) = wx( ⋅ ;G∗).

(i) We have the expression focused on the Neumann obstacle

Wx(x) = ‖∇G( ⋅ , x)‖2L2(Dn) − k
2‖G( ⋅ , x)‖2L2(Dn) + ‖∇(wx + (ϵx)n)‖2L2(Ω\D) − k

2‖(wx + (ϵx)n)‖2L2(Ω\D)
− ‖∇(ϵx)n‖2L2(Ω\D) + k

2‖(ϵx)n‖2L2(Ω\D) − ‖∇G( ⋅ , x)‖
2

L2(Dd) + k
2‖G( ⋅ , x)‖2L2(Dd) ,

where (ϵx)n = (ϵx)n( ⋅ ;G∗).
(ii) We have the expression focused on the Dirichlet obstacle

Wx(x) = −‖∇G( ⋅ , x)‖2L2(Dd) + k
2‖G( ⋅ , x)‖2L2(Dd) − ‖∇(wx + (ϵx)d)‖2L2(Ω\D) + k

2‖(wx + (ϵx)d)‖2L2(Ω\D)
+ ‖∇(ϵx)d‖2L2(Ω\D) − k

2‖(ϵx)d‖2L2(Ω\D) + ‖∇G( ⋅ , x)‖
2

L2(Dn) − k
2‖G( ⋅ , x)‖2L2(Dn) ,

where (ϵx)d = (ϵx)d( ⋅ ;G∗).

1.2 IPS function to DNmap

In this section, we assume that Assumption 1 for the case D = 0 is also satisfied. We denote ΛD by Λ0 if D = 0. In
the probe method the form

⟨(Λ0 − ΛD)(v|∂Ω), v|∂Ω⟩ ≡ ∫
∂Ω

(Λ0 − ΛD)(v|∂Ω)(z) v(z) dS(z) (1.15)

plays the central role, where v is an arbitrary solution of the Helmholtz equation Δv + k2v = 0 in Ω.
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The idea of the method of complementing functionmentioned above suggests us the decomposition formu-

lae for the form (1.15) stated below.

Theorem 1.2. Let v ∈ H2(Ω) satisfy the Helmholtz equation Δv + k2v = 0 in Ω. We have

⟨(Λ0 − ΛD)(v|∂Ω), v|∂Ω⟩ = ‖∇v‖2L2(Dn) − k
2‖v‖2L2(Dn) + ‖∇(w + ϵn)‖

2

L2(Ω\D) − k
2‖(w + ϵn)‖2L2(Ω\D)

− ‖∇ϵn‖2L2(Ω\D) + k
2‖ϵn‖2L2(Ω\D) − ‖∇v‖

2

L2(Dd) + k
2‖v‖2L2(Dd)

(1.16)

and
⟨(Λ0 − ΛD)(v|∂Ω), v|∂Ω⟩ = −‖∇v‖2L2(Dd) + k

2‖v‖2L2(Dd) − ‖∇(w + ϵd)‖
2

L2(Ω\D) + k
2‖(w + ϵd)‖2L2(Ω\D)

+ ‖∇ϵd‖2L2(Ω\D) − k
2‖ϵd‖2L2(Ω\D) + ‖∇v‖

2

L2(Dn) − k
2‖v‖2L2(Dn) ,

(1.17)

where w, ϵn and ϵd are given by the solutions wx , (ϵx)n and (ϵx)d of (1.6), (1.10) and (1.12) with G(y, x) replaced
by v(y), respectively.

The formulae (1.16) and (1.17) are new and useful for establishing the probe method for Problem. Those should

be considered as the generalization of the well known decomposition formula in the case when Dd = 0 or
Dn = 0, see [9] for the Helmholtz equation case. And also note that the expression of the right-hand side on (1.17)
coincides with the one on (1.16) multiplied by (−1) and replaced (n, d) with (d, n).

It should be emphasized that the proof of Theorem 1.2 given in Section 3.2 is independent of IPS. Besides,

the decomposition formulae (1.16) and (1.17) themselves would be valid also in the context of the weak solution.

However, formulae (1.16) and (1.17) should be considered as a byproduct of introducing the IPS function at first.
Without seeking the energy decomposition of IPS as done in [16] one could never find the idea of the method of

complementing functions to form (1.15).

Organization of the paper. In Section 2 the proof of Theorem 1.1 is given. The proof is based on integration by

parts and clarifies themeaning of introducing the complementary functions (ϵx)n and (ϵx)d . Section 3 is devoted
to the integrated theory of the probe and singular sources methods. In Section 3.1 a representation formula

(3.2) of the indicator function for the probe method as a limit of the indicator sequence (see Definition 3.1) in

terms of the IPS function is established. It is Theorem 3.1. This together with Theorem 1.1 yields the Side A of

the probe method which is concerned with blowing up of the indicator function on the surface of obstacles. In

Section 3.2 first the proof of Theorem 1.2 togetherwith its corollary is given. Besides, In Section 3.3 it is shown that

Theorem 1.2 yields the Side B of the probe method which is concerned with blowing up of indicator sequence

of the probe method and stated as Theorem 3.2. In Section 3.4 we will see that the singular sources method is

included in the IPS theory and in Section 3.5 it is shown that the singular sources method has the same side

as the Side B of the probe method. Section 3.6 is devoted to a set of additional remarks related to the natural

decomposition (1.5). In the last section the conclusion and some possible applications are briefly mentioned.

InAppendixwedescribe two lemmaswhich yield theupper estimate of the L2-normof the reflected solution

wx and are used in the proof of Corollary 1.1.

2 Proof of Theorem 1.1

Firstwe show that thewx(y)which is the solution of (1.6) has two expressions. Inwhat followswe always assume
that (x, y) ∈ (Ω \ D)2.

Lemma 2.1. It holds that

wx(y) = ∫
∂Ω

∂
∂νwx(z)G(z, y) dS(z) + ∫

Dn

∇G(z, x) ⋅ ∇G(z, y) dz − ∫
Dn

k2G(z, x)G(z, y) dz

+ ∫

Ω\D

∇wx(z) ⋅ ∇wy(z) dz − ∫
Ω\D

k2wx(z)wy(z) dz − ∫
Dd

∇G(z, x) ⋅ ∇G(z, y) dz

+ ∫
Dd

k2G(z, x)G(z, y) dz + ∫
∂Dd

(wy(z)
∂
∂νwx(z) + wx(z)

∂
∂νwy(z)) dS(z)

(2.1)
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and

wx(y) = ∫
∂Ω

∂
∂ν

wx(z)G(z, y) dS(z) − ∫
Dd

∇G(z, x) ⋅ ∇G(z, y) dz + ∫
Dd

k2G(z, x)G(z, y) dz

− ∫

Ω\D

∇wx(z) ⋅ ∇wy(z) dz + ∫
Ω\D

k2wx(z)wy(z) dz + ∫
Dn

∇G(z, x) ⋅ ∇G(z, y) dz

− ∫
Dn

k2G(z, x)G(z, y) dz − ∫
∂Dn

(wy(z)
∂
∂ν

wx(z) + wx(z)
∂
∂ν

wy(z)) dS(z).

(2.2)

Proof. We start with the standard expression

wx(y) = ∫
∂Ω

(
∂
∂ν

wx(z)G(z, y) − wx(z)
∂
∂ν

G(z, y)) dS(z) − ∫
∂Dn

(
∂
∂ν

wx(z)G(z, y) − wx(z)
∂
∂ν

G(z, y)) dS(z)

− ∫
∂Dd

(
∂
∂ν

wx(z)G(z, y) − wx(z)
∂
∂ν

G(z, y)) dS(z).
(2.3)

Applying the boundary conditions on ∂Ω, ∂Dd and ∂Dn to (2.3), we obtain

wx(y) = ∫
∂Ω

∂
∂νwx(z)G(z, y) dS(z) + ∫

∂Dn

(
∂
∂ν G(z, x)G(z, y) − wx(z)

∂
∂νwy(z)) dS(z)

+ ∫
∂Dd

(
∂
∂νwx(z)wy(z) − G(z, x)

∂
∂ν G(z, y)) dS(z).

(2.4)

Since x and y outside both Dd and Dn , we have, for ∗ = d, n

∫
∂D∗

∂
∂ν G(z, x)G(z, y) dS(z) = ∫

D∗

ΔG(z, x)G(z, y) dz + ∫
D∗

∇G(z, x) ⋅ ∇G(z, y) dz

= ∫
D∗

∇G(z, x) ⋅ ∇G(z, y) dz − ∫
D∗

k2G(z, x)G(z, y) dz.

Thus (2.4) becomes

wx(y) = ∫
∂Ω

∂
∂νwx(z)G(z, y) dS(z) + ∫

Dn

∇G(z, x) ⋅ ∇G(z, y) dz − ∫
Dd

∇G(z, x) ⋅ ∇G(z, y) dz

− ∫
Dn

k2G(z, x)G(z, y) dz + ∫
Dd

k2G(z, x)G(z, y) dz

+ ∫
∂Dd

wy(z)
∂
∂νwx(z) dS(z) − ∫

∂Dn

wx(z)
∂
∂νwy(z) dS(z).

(2.5)

Besides, we have

− ∫
∂Dn

wx(z)
∂
∂νwy(z) dS(z) − ∫

∂Dd

wx(z)
∂
∂νwy(z) dS(z) = ∫

Ω\D

wx(z)Δwy(z) dz + ∫
Ω\D

∇wx(z) ⋅ ∇wy(z) dz

= ∫

Ω\D

∇wx(z) ⋅ ∇wy(z) dz − ∫
Ω\D

k2wx(z)wy(z) dz
(2.6)

and

− ∫
∂Dn

wy(z)
∂
∂νwx(z) dS(z) − ∫

∂Dd

wy(z)
∂
∂νwx(z) dS(z) = ∫

Ω\D

∇wx(z) ⋅ ∇wy(z) dz − ∫
Ω\D

k2wx(z)wy(z) dz. (2.7)
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From (2.6) one has

− ∫
∂Dn

wx(z)
∂
∂ν

wy(z) dS(z) = ∫
Ω\D

∇wx(z) ⋅ ∇wy(z) dz − ∫
Ω\D

k2wx(z)wy(z) dz + ∫
∂Dd

wx(z)
∂
∂ν

wy(z) dS(z). (2.8)

From (2.7) one has

∫
∂Dd

wy(z)
∂
∂ν

wx(z) dS(z) = − ∫
Ω\D

∇wx(z) ⋅ ∇wy(z) dz + ∫
Ω\D

k2wx(z)wy(z) dz − ∫
∂Dn

wy(z)
∂
∂ν

wx(z) dS(z). (2.9)

Thus one obtains the two representation of a single integral as follows.

From (2.8) we have

∫
∂Dd

wy(z)
∂
∂ν

wx(z) dS(z) − ∫
∂Dn

wx(z)
∂
∂ν

wy(z) dS(z)

= ∫
∂Dd

(wy(z)
∂
∂ν

wx(z) + wx(z)
∂
∂ν

wy(z)) dS(z) + ∫
Ω\D

∇wx(z) ⋅ ∇wy(z) dz − ∫
Ω\D

k2wx(z)wy(z) dz.
(2.10)

From (2.9) we have

∫
∂Dd

wy(z)
∂
∂νwx(z) dS(z) − ∫

∂Dn

wx(z)
∂
∂νwy(z) dS(z)

= − ∫
∂Dn

(wy(z)
∂
∂νwx(z) + wx(z)

∂
∂νwy(z)) dS(z) − ∫

Ω\D

∇wx(z) ⋅ ∇wy(z) dz + ∫
Ω\D

k2wx(z)wy(z) dz.
(2.11)

Substituting (2.10) and (2.11) into (2.5), we obtain (2.1) and (2.2).

Next we show that the w1

x has the following expression.

Lemma 2.2. We have

w1

x(y) = ∫
Ω\D

∇w1

x(z) ⋅ ∇w1

y(z) dz − ∫
Ω\D

k2w1

x(z)w1

y(z) dz

− ∫
∂Ω

G(z, x) ∂∂ν G(z, y) dS(z) − ∫
∂Ω

G(z, x) ∂∂νwy(z) dS(z).
(2.12)

Proof. To explain the reason for the introduction of the functionw1

x step by step, let us forget the set of boundary

conditions on (1.7).

First same as (2.3) we start with the standard expression

w1

x(y) = ∫
∂Ω

(
∂
∂νw

1

x(z)G(z, y) − w1

x(z)
∂
∂ν G(z, y)) dS(z) − ∫

∂Dn

(
∂
∂νw

1

x(z)G(z, y) − w1

x(z)
∂
∂ν G(z, y)) dS(z)

− ∫
∂Dd

(
∂
∂νw

1

x(z)G(z, y) − w1

x(z)
∂
∂ν G(z, y)) dS(z).

(2.13)

Here we impose the boundary conditions

{{
{{
{

∂
∂νw

1

x(z) = 0, z ∈ ∂Dn ,

w1

x(z) = G(z, x), z ∈ ∂Ω.
(2.14)

Then (2.13) becomes

w1

x(y) = ∫
∂Ω

(
∂
∂νw

1

x(z)w1

y(z) − G(z, x)
∂
∂ν G(z, y)) dS(z) + ∫

∂Dn

w1

x(z)
∂
∂ν G(z, y) dS(z)

− ∫
∂Dd

(
∂
∂νw

1

x(z) G(z, y) − w1

x(z)
∂
∂ν G(z, y)) dS(z).

(2.15)
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Here we have

∫
∂Ω

∂
∂ν

w1

x(z)w1

y(z) dS(z) = ∫
∂Dn

∂
∂ν

w1

x(z)w1

y(z) dS(z) + ∫
∂Dd

∂
∂ν

w1

x(z)w1

y(z) dS(z) + ∫
Ω\D

Δw1

x(z)w1

y(z) dz

+ ∫

Ω\D

∇w1

x(z) ⋅ ∇w1

y(z) dz

= ∫

Ω\D

∇w1

x(z) ⋅ ∇w1

y(z) dz − ∫
Ω\D

k2w1

x(z)w1

y(z) dz + ∫
∂Dd

∂
∂ν

w1

x(z)w1

y(z) dS(z).

Thus (2.15) becomes

w1

x(y) = ∫
Ω\D

∇w1

x(z) ⋅ ∇w1

y(z) dz − ∫
Ω\D

k2w1

x(z)w1

y(z) dz

− ∫
∂Ω

G(z, x) ∂∂ν
G(z, y) dS(z) + ∫

∂Dn

w1

x(z)
∂
∂ν

G(z, y) dS(z)

+ ∫
∂Dd

∂
∂νw

1

x(z)w1

y(z) dS(z) − ∫
∂Dd

(
∂
∂νw

1

x(z) G(z, y) − w1

x(z)
∂
∂ν G(z, y)) dS(z).

(2.16)

Here using the boundary condition of wy on ∂Dn , one has

∫
∂Dn

w1

x(z)
∂
∂ν G(z, y) dS(z) = − ∫

∂Dn

w1

x(z)
∂
∂νwy(z) dS(z)

= ∫

Ω\D

w1

x(z)Δwy(z) dz − ∫
∂Ω

w1

x(z)
∂
∂νwy(z) dS(z) + ∫

∂Dd

w1

x(z)
∂
∂νwy(z) dS(z)

+ ∫

Ω\D

∇w1

x(z) ⋅ ∇wy(z) dz

= − ∫
∂Ω

G(z, x) ∂
∂νwy(z) dS(z) + ∫

∂Dd

w1

x(z)
∂
∂νwy(z) dS(z)

+ ∫

Ω\D

∇w1

x(z) ⋅ ∇wy(z) dz − ∫
Ω\D

k2w1

x(z)wy(z) dz.

Besides we have

∫

Ω\D

∇w1

x(z) ⋅ ∇wy(z) dz = − ∫
∂Dd

∂
∂νw

1

x(z)wy(z) dS(z) − ∫
Ω\D

Δw1

x(z)wy(z) dz

= ∫
∂Dd

∂
∂νw

1

x(z) G(z, y) dS(z) + ∫
Ω\D

k2w1

x(z)wy(z) dz.

That is,

∫

Ω\D

∇w1

x(z) ⋅ ∇wy(z) dz − ∫
Ω\D

k2w1

x(z)wy(z) dz = ∫
∂Dd

∂
∂νw

1

x(z) G(z, y) dS(z). (2.17)

Note that we made use of the first boundary condition on ∂Dn of (2.14) and the boundary condition for wy on

∂Dd of (1.6). Thus one gets

∫
∂Dn

w1

x(z)
∂
∂ν G(z, y) dS(z) = − ∫

∂Ω

G(z, x) ∂∂νwy(z) dS(z) + ∫
∂Dd

w1

x(z)
∂
∂νwy(z) dS(z)

+ ∫
∂Dd

∂
∂νw

1

x(z) G(z, y) dS(z).
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Therefore (2.16) becomes

w1

x(y) = ∫
Ω\D

∇w1

x(z) ⋅ ∇w1

y(z) dz − ∫
Ω\D

k2w1

x(z)w1

y(z) dz − ∫
∂Ω

G(z, x) ∂∂ν
G(z, y) dS(z)

− ∫
∂Ω

G(z, x) ∂
∂ν

wy(z) dS(z) + ∫
∂Dd

w1

x(z)
∂
∂ν

wy(z) dS(z) + ∫
∂Dd

∂
∂ν

w1

x(z) G(z, y) dS(z)

+ ∫
∂Dd

∂
∂ν

w1

x(z)w1

y(z) dS(z) − ∫
∂Dd

(
∂
∂ν

w1

x(z) G(z, y) − w1

x(z)
∂
∂ν

G(z, y)) dS(z)

= ∫

Ω\D

∇w1

x(z) ⋅ ∇w1

y(z) dz − ∫
Ω\D

k2w1

x(z)w1

y(z) dz − ∫
∂Ω

G(z, x) ∂∂ν
G(z, y) dS(z)

− ∫
∂Ω

G(z, x) ∂
∂ν

wy(z) dS(z) + ∫
∂Dd

w1

x(z)
∂
∂ν

wy(z) dS(z) + ∫
∂Dd

∂
∂ν

w1

x(z)w1

y(z) dS(z)

+ ∫
∂Dd

w1

x(z)
∂
∂ν

G(z, y) dS(z). (2.18)

Here we impose the boundary condition of w1

x and w1

y on ∂Dd:

w1

x(z) = w1

y(z) = 0, z ∈ ∂Dd . (2.19)

Thus (2.18) yields (2.12).

Note that the set of boundary conditions (2.14) and (2.19) coincides with that of (1.7).

From (2.1), (2.2) and (2.12) we immediately obtain the following two expressions forWx(y).

Proposition 2.1. It holds that

Wx(y) = ∫
Dn

∇G(z, x) ⋅ ∇G(z, y) dz − ∫
Dn

k2G(z, x)G(z, y) dz + ∫
Ω\D

∇wx(z) ⋅ ∇wy(z) dz

− ∫

Ω\D

k2wx(z)wy(z) dz − ∫
∂Ω

G(z, x) ∂
∂ν G(z, y) dS(z) + ∫

Ω\D

∇w1

x(z) ⋅ ∇w1

y(z) dz

− ∫

Ω\D

k2w1

x(z)w1

y(z) dz + ∫
∂Ω

G(z, y) ∂
∂νwx(z) dS(z) − ∫

∂Ω

G(z, x) ∂∂νwy(z) dS(z)

− ∫
Dd

∇G(z, x) ⋅ ∇G(z, y) dz + ∫
Dd

k2G(z, x)G(z, y) dz

− ∫
∂Dd

(G(z, y) ∂∂νwx(z) + G(z, x)
∂
∂νwy(z)) dS(z)

(2.20)

and

Wx(y) = − ∫
Dd

∇G(z, x) ⋅ ∇G(z, y) dz + ∫
Dd

k2G(z, x)G(z, y) dz − ∫
Ω\D

∇wx(z) ⋅ ∇wy(z) dz

+ ∫

Ω\D

k2wx(z)wy(z) dz − ∫
∂Ω

G(z, x) ∂∂ν G(z, y) dS(z) + ∫
Ω\D

∇w1

x(z) ⋅ ∇w1

y(z) dz

− ∫

Ω\D

k2w1

x(z)w1

y(z) dz + ∫
∂Ω

G(z, y) ∂∂νwx(z) dS(z) − ∫
∂Ω

G(z, x) ∂∂νwy(z) dS(z)

+ ∫
Dn

∇G(z, x) ⋅ ∇G(z, y) dz − ∫
Dn

k2G(z, x)G(z, y) dz

+ ∫
∂Dn

(wy(z)
∂
∂ν G(z, x) + wx(z)

∂
∂ν G(z, y)) dS(z).

(2.21)
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Now let us explain the role of introducing the solutions of (1.10) and (1.12). It is concerned with the last terms on

(2.20) and (2.21). We call this technique themethod of complementing function.

Lemma 2.3. We have

∫
∂Dd

G(z, y) ∂∂ν
wx(z) dS(z) + ∫

∂Dd

G(z, x) ∂∂ν
wy(z) dS(z)

= − ∫

Ω\D

(∇(ϵy)n(z) ⋅ ∇wx(z) + ∇(ϵx)n(z) ⋅ ∇wy(z)) dz + ∫
Ω\D

k2((ϵy)n(z)wx(z) + (ϵx)n(z)wy(z)) dz
(2.22)

and

∫
∂Dn

wy(z)
∂
∂ν

G(z, x) dS(z) + ∫
∂Dn

wx(z)
∂
∂ν

G(z, y) dS(z)

= − ∫

Ω\D

(∇wy(z) ⋅ ∇(ϵx)d(z) + ∇wx(z) ⋅ ∇(ϵy)d(z)) dz + ∫
Ω\D

k2(wy(z)(ϵx)d(z) + wx(z)(ϵy)d(z)) dz.
(2.23)

Proof. First we rewrite the integral

∫
∂Dd

G(z, y) ∂
∂νwx(z) dS(z).

Using the equation (1.10), we have

∫
∂Dd

G(z, y) ∂
∂νwx(z) dS(z) = ∫

∂Dd

(ϵy)n(z)
∂
∂νwx(z) dS(z) + ∫

∂Dn

(ϵy)n(z)
∂
∂νwx(z) dS(z)

− ∫
∂Ω

(ϵy)n(z)
∂
∂νwx(z) dS(z)

= − ∫

Ω\D

(ϵy)nΔwx(z) dz − ∫
Ω\D

∇(ϵy)n ⋅ ∇wx(z) dz

= − ∫

Ω\D

∇(ϵy)n ⋅ ∇wx(z) dz + ∫
Ω\D

k2(ϵy)n(z)wx(z) dz.

Interchanging x and y, we obtain the expression (2.22).
Second we rewrite the integral

∫
∂Dn

wx(z)
∂
∂ν G(z, x) dS(z).

Using the equation (1.12), we have

∫
∂Dn

wx(z)
∂
∂ν G(z, y) dS(z) = ∫

∂Dn

wx(z)
∂
∂ν (ϵy)d(z) dS(z) + ∫

∂Dd

wx(z)
∂
∂ν (ϵy)d(z) dS(z)

− ∫
∂Ω

wx(z)
∂
∂ν (ϵy)d(z) dS(z)

= − ∫

Ω\D

wxΔ(ϵy)d(z) dz − ∫
Ω\D

∇wx(z) ⋅ ∇(ϵy)d(z) dz

= − ∫

Ω\D

∇wx(z) ⋅ ∇(ϵy)d(z) dz + ∫
Ω\D

k2wx(z)(ϵy)d(z) dz.

Interchanging x and y, we obtain the expression (2.23).
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Thus (2.20) together with (2.22) yields

Wx(y) = ∫
Dn

∇G(z, x) ⋅ ∇G(z, y) dz − ∫
Dn

k2G(z, x)G(z, y) dz + ∫
Ω\D

∇wx(z) ⋅ ∇wy(z) dz

− ∫

Ω\D

k2wx(z)wy(z) dz − ∫
∂Ω

G(z, x) ∂
∂ν

G(z, y) dS(z) + ∫
Ω\D

∇w1

x(z) ⋅ ∇w1

y(z) dz

− ∫

Ω\D

k2w1

x(z)w1

y(z) dz + ∫
∂Ω

G(z, y) ∂∂ν
wx(z) dS(z) − ∫

∂Ω

G(z, x) ∂
∂ν

wy(z) dS(z)

− ∫
Dd

∇G(z, x) ⋅ ∇G(z, y) dz + ∫
Dd

k2G(z, x)G(z, y) dz

+ ∫

Ω\D

(∇(ϵy)n(z) ⋅ ∇wx(z) + ∇(ϵx)n(z) ⋅ ∇wy(z)) dz

− ∫

Ω\D

k2((ϵy)n(z)wx(z) + (ϵx)n(z)wy(z)) dz.

(2.24)

And (2.21) together with (2.23) yields

Wx(y) = − ∫
Dd

∇G(z, x) ⋅ ∇G(z, y) dz + ∫
Dd

k2G(z, x)G(z, y) dz − ∫
Ω\D

∇wx(z) ⋅ ∇wy(z) dz

+ ∫

Ω\D

k2wx(z)wy(z) dz − ∫
∂Ω

G(z, x) ∂
∂ν G(z, y) dS(z) + ∫

Ω\D

∇w1

x(z) ⋅ ∇w1

y(z) dz

− ∫

Ω\D

k2w1

x(z)w1

y(z) dz + ∫
∂Ω

G(z, y) ∂
∂νwx(z) dS(z) − ∫

∂Ω

G(z, x) ∂∂νwy(z) dS(z)

+ ∫
Dn

∇G(z, x) ⋅ ∇G(z, y) dz − ∫
Dn

k2G(z, x)G(z, y) dz

− ∫

Ω\D

(∇wy(z) ⋅ ∇(ϵx)d(z) + ∇wx(z) ⋅ ∇(ϵy)d(z)) dz

+ ∫

Ω\D

k2(wy(z)(ϵx)d(z) + wx(z)(ϵy)d(z)) dz.

(2.25)

Letting x = y in (2.24) and (2.25), we obtain

Wx(x) = ‖∇G( ⋅ , x)‖2L2(Dn) − k
2‖G( ⋅ , x)‖2L2(Dn) + ‖∇wx‖2L2(Ω\D) − k

2‖wx‖2L2(Ω\D)

− ∫
∂Ω

G(z, x) ∂∂ν G(z, x) dS(z) + ‖∇w
1

x‖
2

L2(Ω\D) − k
2‖w1

x‖
2

L2(Ω\D)

− ‖∇G( ⋅ , x)‖2L2(Dd) + k
2‖G( ⋅ , x)‖2L2(Dd)

+ 2 ∫

Ω\D

∇(ϵx)n(z) ⋅ ∇wx(z) dz − 2 ∫
Ω\D

k2wx(z)(ϵx)n(z) dz

(2.26)

and

Wx(x) = −‖∇G( ⋅ , x)‖2L2(Dd) + k
2‖G( ⋅ , x)‖2L2(Dd) − ‖∇wx‖2L2(Ω\D) + k

2‖wx‖2L2(Ω\D)

− ∫
∂Ω

G(z, x) ∂∂ν G(z, x) dS(z) + ‖∇w
1

x‖
2

L2(Ω\D) − k
2‖∇w1

x‖
2

L2(Ω\D)

+ ‖∇G( ⋅ , x)‖2L2(Dn) − k
2‖G( ⋅ , x)‖2L2(Dn)

− 2 ∫

Ω\D

∇wx(z) ⋅ ∇(ϵx)d(z) dz + 2 ∫
Ω\D

k2wx(z)(ϵx)d(z) dz.

(2.27)
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Here rewrite

‖∇wx‖2L2(Ω\D) + 2 ∫

Ω\D

∇(ϵx)n ⋅ ∇wx(z) dz = ‖∇(wx + (ϵx)n)‖2L2(Ω\D) − ‖∇(ϵx)n‖
2

L2(Ω\D) (2.28)

and

‖∇wx‖2L2(Ω\D) + 2 ∫

Ω\D

∇wx ⋅ ∇(ϵx)d(z) dz = ‖∇(wx + (ϵx)d)‖2L2(Ω\D) − ‖∇(ϵx)d‖
2

L2(Ω\D) . (2.29)

Rewrite also as

‖wx‖2L2(Ω\D) + 2 ∫

Ω\D

(ϵx)nwx(z) dz = ‖wx + (ϵx)n‖2L2(Ω\D) − ‖(ϵx)n‖
2

L2(Ω\D) (2.30)

and

‖wx‖2L2(Ω\D) + 2 ∫

Ω\D

wx(ϵx)d(z) dz = ‖wx + (ϵx)d‖2L2(Ω\D) − ‖(ϵx)d‖
2

L2(Ω\D) . (2.31)

Then from (2.26), (2.27), (2.28), (2.29), (2.30) and (2.31) we obtain (1.9) and (1.11) of Theorem 1.1.

Remark 2.1. Assume that Dd = 0. This the purely Neumann obstacle case. Then the equation (2.17) becomes

∫

Ω\D

∇w1

x(z) ⋅ ∇wy(z) dz − ∫
Ω\D

k2w1

x(z)wy(z) dz = 0. (2.32)

It is easy to see that equation (2.32) combined with (i) of Corollary 1.2 makes the representation of IPS function

so simple:

Wx(x) = ‖∇Wx‖2L2(Ω\Dn)
− k2‖Wx‖2L2(Ω\Dn)

+ ‖∇G( ⋅ − x)‖2L2(Dn) − k
2‖G( ⋅ − x)‖2L2(Dn)

− ∫
∂Ω

G(z − x) ∂
∂ν G(z − x) dS(z).

This is an extension of the expression of IPS function given in [16, Remark 1.7] to the case k ̸= 0. It seems, in the
case Dd ̸= 0 one cannot expect such a simple expression.

3 Integrated theory

3.1 IPS to Side A of probe method

In this subsection we derive the probe method via the integrated theory of the probe and singular sources

methods. We fix an arbitrary G = {G( ⋅ , x)}x∈Ω given by (1.2) unless otherwise specified.
First we recall the notion of a needle. Given x ∈ Ω let Nx denote the set of all non-self intersecting piecewise

linear curves σ connecting a point on ∂Ω and x such that other points on σ are in Ω. We call each member in

Nx a needle with a tip at x.

Definition 3.1. Given x ∈ Ω and σ ∈ Nx a sequence {vn} of H2(Ω) functions is called a needle sequence for

(x, σ) based on G if each vn satisfies the Helmholtz equation Δv + k2v = 0 in Ω and {vn} converges to G( ⋅ , x)
in H2

loc
(Ω \ σ). Then the sequence given by

⟨(Λ0 − ΛD)(vn|∂Ω), vn|∂Ω⟩ ≡ ∫
∂Ω

(Λ0 − ΛD)(vn|∂Ω)(z)vn(z) dS(z)

is called the indicator sequence for the probe method.

Note that, hereafter, unless otherwise specified we assume that Assumption 1 for the case D = 0 is also satisfied.
This ensures not only the well-definedness of Λ0 but also the existence of the needle sequence for an arbitrary

needle [9].

The Side A of the probemethod starts with the convergence property of the indicator sequence as described

below.
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Theorem 3.1. Let x ∈ Ω \ D and σ ∈ Nx . Let {vn} be an arbitrary needle sequence for (x, σ) based onG. If σ ∩ D = 0,
then we have

lim
n→∞
⟨(Λ0 − ΛD)(vn|∂Ω), vn|∂Ω⟩ = I(x), (3.1)

where

I(x) = Wx(x) − ⟨ΛD(G( ⋅ , x)|∂Ω), G( ⋅ , x)|∂Ω⟩ + ∫
∂Ω

∂
∂ν

G(z, x)G(z, x) dS(z). (3.2)

Proof. Fix x ∈ Ω \ D. First we show that the limit of the left-hand side on (3.1) exists and its limit has the expres-

sion

lim
n→∞
⟨(Λ0 − ΛD)(vn|∂Ω , vn|∂Ω⟩ = wx(x) − ∫

∂Ω

∂
∂ν

wx(z)G(z, x) dS(z). (3.3)

Define

Gn(z, x) = G(z, x) − vn(z), z ∈ Ω. (3.4)

The form of Gn( ⋅ , x) together with Green’s theorem yields an expression of wn = w(z) at z = x, which is the

solution of

{{{{{{{
{{{{{{{
{

Δw + k2w = 0, z ∈ Ω \ D,
∂w
∂ν = −

∂vn
∂ν , z ∈ ∂Dn ,

w = −vn , z ∈ ∂Dd ,

w = 0, z ∈ ∂Ω.

That is,

wn(x) = ∫
∂Ω

∂
∂νwn(z)Gn(z, x) dS(z) − ∫

∂Dn

(
∂
∂νwn(z)Gn(z, x) − wn(z)

∂
∂ν Gn(z, x)) dS(z)

− ∫
∂Dd

(
∂
∂νwn(z)Gn(z, x) − wn(z)

∂
∂ν Gn(z, x)) dS(z).

(3.5)

By Definition 3.1 and the assumption σ ∩ D = 0, we have, as n →∞, Gn( ⋅ , x) → 0 in H2(D) and the well-

posedness, we have wn → wx in H2(Ω \ D). Therefore it follows from these and the Sobolev embedding, letting

n →∞ of (3.5), we obtain

wx(x) = lim
n→∞
∫
∂Ω

∂
∂νwn(z)Gn(z, x) dS(z) = lim

n→∞
( ∫
∂Ω

∂wn
∂ν G(z, x) dS(z) − ∫

∂Ω

∂wn
∂ν vn(z) dS(z)). (3.6)

Since
∂wn
∂ν →

∂wx
∂ν in H 1

2 (∂Ω), the first term of the right-hand side on (3.6) is convergent and the limit is given by

∫
∂Ω

∂wx
∂ν G(z, x) dS(z).

Therefore the second term of the right-hand side on (3.6) is also convergent and its limit satisfies

wx(x) = ∫
∂Ω

∂wx
∂ν G(z, x) dS(z) − lim

n→∞
∫
∂Ω

∂wn
∂ν vn(z) dS(z).

Using this and the trivial expression

∂
∂νwn(z) = −(Λ0 − ΛD)(vn|∂Ω)(z), z ∈ ∂Ω,

we obtain

wx(x) = ∫
∂Ω

∂wx
∂ν (z) G(z, x) dS(z) + limn→∞

⟨(Λ0 − ΛD)(vn|∂Ω), vn|∂Ω⟩.

This is nothing but (3.3).
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Next we show that the right-hand side of the formula (3.3) coincides with that of formula (3.2). Recalling

(2.12) of Lemma 2.2 with x = y, we have

− ∫
∂Ω

G(z, x) ∂
∂ν

wx(z) dS(z) = w1

x(x) − ‖∇w1

x‖
2

L2(Ω\D) + k
2‖w1

x‖
2

L2(Ω\D) + ∫
∂Ω

G(z, x) ∂∂ν
G(z, x) dS(z). (3.7)

Besides from equation (1.7) we have

⟨ΛDG( ⋅ , x)|∂Ω , G( ⋅ , x)|∂Ω⟩ = ∫
∂Ω

∂
∂ν

w1

x(z)w1

x(z) dS(z) = ‖∇w1

x‖
2

L2(Ω\D) − k
2‖w1

x‖
2

L2(Ω\D) . (3.8)

From (3.7) and (3.8) together with (1.8) we see that

wx(x) − ∫
∂Ω

∂
∂ν

wx(z)G(z, x) dS(z)

= wx(x) + w1

x(x) − ‖∇w1

x‖
2

L2(Ω\D) + k
2‖w1

x‖
2

L2(Ω\D) + ∫
∂Ω

G(z, x) ∂∂ν
G(z, x) dS(z)

= Wx(x) − ⟨ΛDG( ⋅ , x)|∂Ω , G( ⋅ , x)|∂Ω⟩ + ∫
∂Ω

G(z, x) ∂
∂ν

G(z, x) dS(z).

(3.9)

A combination of (3.3) and (3.9) yields the desired conclusion.

Definition 3.2. The function I(x) appeared as the limit (3.1) and expressed as (3.2) is called the indicator function
for the probe method based on G.

The formula (3.1) should be understood as a computation formula of the indicator function by using Λ0 − ΛD .
Besides, this shows that IPS function Wx(x) can be calculated from ΛD (and Λ0 which can be calculated in

advance) acting on the needle sequences from the surface ∂Ω to inside.

The second and third terms of the right-hand side on (3.2) are bounded when x is away from ∂Ω, by virtue
of (1.2) and (1.3). Thus it follows from Corollary 1.1 and (3.2) that

(i) limx→a∈∂Dn I(x) = ∞,
(ii) limx→b∈∂Dd I(x) = −∞.
Then it follows from Theorem 1.1, (3.2) and (3.8) that the I(x) has two expressions:

I(x) = ‖∇G( ⋅ , x)‖2L2(Dn) − k
2‖G( ⋅ , x)‖2L2(Dn) + ‖∇(wx + (ϵx)n)‖2L2(Ω\D) − k

2‖wx + (ϵx)n‖2L2(Ω\D)
− ‖∇(ϵx)n‖2L2(Ω\D) + k

2‖(ϵx)n‖2L2(Ω\D) − ‖∇G( ⋅ , x)‖
2

L2(Dd) + k
2‖G( ⋅ , x)‖2L2(Dd)

(3.10)

and

I(x) = −‖∇G( ⋅ , x)‖2L2(Dd) + k
2‖G( ⋅ , x)‖2L2(Dd) − ‖∇(wx + (ϵx)d)‖2L2(Ω\D) + k

2‖wx + (ϵx)d‖2L2(Ω\D)
+ ‖∇(ϵx)d‖2L2(Ω\D) − k

2‖(ϵx)d‖2L2(Ω\D) + ‖∇G( ⋅ , x)‖
2

L2(Dn) − k
2‖G( ⋅ , x)‖2L2(Dn) .

(3.11)

Then we can easily check that, for each ϵi > 0, i = 1, 2,

sup

x∈Ω\D, dist(x,∂D)>ϵ1 , dist(x,∂Ω)>ϵ2
|I(x)| < ∞. (3.12)

So the convergence of the indicator sequence (3.1), blowing up property of the I(x) mentioned (i) and (ii)
above and (3.12) establish the Side A of the probe method for the mixed obstacle case.

The point that should be emphasized is: from IPSwe obtained that I(x) as the limit of the indicator sequence
takes the expressions (3.10) and (3.11). Is should be also pointed out that, the expression (3.11) coincides with

(−1)-times the expression (3.10) replaced with (n, d) with (d, n).

Remark 3.1. If G = G0, from the well-posedness of boundary value problems (1.6), (1.10) and (1.12) one can relax

(3.12) as: for each ϵ > 0,
sup

x∈Ω\D, dist(x,∂D)>ϵ
|I(x)| < ∞.
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Definition 3.3. For an arbitrary point x ∈ Ω \ D define

I1(x) = ⟨ΛD(G( ⋅ , x)|∂Ω), G( ⋅ , x)|∂Ω⟩ − ∫
∂Ω

∂
∂ν

G(z, x)G(z, x) dS(z). (3.13)

In principle, it is possible to calculate I1(x) in advance from given ΛD without probing. Besides, if G = G0, it
follows from (3.8) we have the energy integral expression of (3.13):

I1(x) = ‖∇w1

x‖
2

L2(Ω\D) − k
2‖w1

x‖
2

L2(Ω\D) − ∫
∂Ω

∂
∂ν

G(z, x)G(z, x) dS(z).

In particular, if k = 0, then by (1.14) this becomes

I1(x) = ‖∇w1

x‖
2

L2(Ω\D) + ‖∇G( ⋅ − x)‖
2

L2(ℝ3\Ω)
, x ∈ Ω \ D.

Finally, by (3.2) and (3.13) we have the inner decomposition of IPS function:

Wx(x) = I(x) + I1(x), x ∈ Ω \ D. (3.14)

The equations (1.8) and (3.14) give us two ways of decomposition of IPS function.

Remark 3.2. The two types of the decompositions (3.10) and (3.11) suggest the replacement:

G( ⋅ , x) → v,

where v is an arbitrary solution of the Helmholtz equation in Ω. Theorem 1.2 can be considered as an example

of the validity of this replacement.

3.2 Proof of Theorem 1.2 and a corollary

Proof of Theorem 1.2. First we prove the validity of (1.16). We have

‖∇(w + ϵn)‖2L2(Ω\D − ‖∇ϵn‖
2

L2(Ω\D) = ‖∇w‖
2

L2(Ω\D) + 2 ∫

Ω\D

∇ϵn ⋅ ∇w dx

= − ∫
∂D

∂w
∂ν w dS + k2‖w‖2L2(Ω\D) − 2 ∫

∂D

ϵn
∂w
∂ν dS + 2 ∫

Ω\D

k2ϵw dz

= ∫
∂Dd

∂w
∂ν v dS + ∫

∂Dn

∂v
∂ν w dS − 2 ∫

∂Dd

v ∂w
∂ν dS

+ k2‖w + ϵn‖2L2(Ω\D) − k
2‖ϵn‖2L2(Ω\D)

= ( ∫
∂Dn

∂v
∂ν w dS − ∫

∂Dd

∂w
∂ν v dS) + k2‖w + ϵn‖2L2(Ω\D) − k

2‖ϵn‖2L2(Ω\D) .

(3.15)

Besides we have

⟨(Λ0 − ΛD)(v|∂Ω), v|∂Ω⟩ = − ∫
∂Ω

∂w
∂ν v dS

= − ∫

Ω\D

∇w ⋅ ∇v dz + ∫
Ω\D

k2wv dz − ∫
∂D

∂w
∂ν v dS

= ∫
∂D

w∂v
∂ν dS − ∫

∂D

∂w
∂ν v dS

= − ∫
∂Dd

v ∂v∂ν dS + ∫
∂Dn

w∂v
∂ν dS − ∫

∂Dd

∂w
∂ν v dS + ∫

∂Dn

∂v
∂ν v dS

= ( ∫
∂Dn

∂v
∂ν v dS − ∫

∂Dd

v ∂v∂ν dS) + ( ∫
∂Dn

∂v
∂ν w dS − ∫

∂Dd

∂w
∂ν v dS).

(3.16)
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Here we have

{{{{{{
{{{{{{
{

‖∇v‖2L2(Dn) − k
2‖v‖2L2(Dn) = ∫

∂Dn

∂v
∂ν

v dS,

‖∇v‖2L2(Dd) − k
2‖v‖2L2(Dd) = ∫

∂Dd

∂v
∂ν

v dS.
(3.17)

Now from (3.15), (3.16) and (3.17) we obtain (1.16).

Next we have

−‖∇(w + ϵd)‖2L2(Ω\D) + ‖∇ϵd‖
2

L2(Ω\D) = −‖∇w‖
2

L2(Ω\D) − 2 ∫

Ω\D

∇ϵd ⋅ ∇w dz

= ∫
∂D

∂w
∂ν

w dS + 2 ∫
∂D

∂
∂ν

ϵd w dS − k2‖w‖2L2(Ω\D) − 2 ∫
Ω\D

k2ϵdw dz

= − ∫
∂Dd

∂w
∂ν

v dS − ∫
∂Dn

∂v
∂ν

w dS + 2 ∫
∂Dn

∂
∂ν

v w dS

− k2‖w + ϵd‖2L2(Ω\D) + k
2‖ϵd‖2L2(Ω\D)

= ( ∫
∂Dn

∂v
∂ν w dS− ∫

∂Dd

∂w
∂ν v dS) − k2‖w + ϵd‖2L2(Ω\D) + k

2‖ϵd‖2L2(Ω\D) .

(3.18)

Thus from (3.16), (3.17) and (3.18) we obtain (1.17).

Note that once we have found the equation to prove, the proof is just a calculation. The point of Theorem 3.1 is

the introduction of complementing functions ϵn and ϵd in such a way that the integral

∫
∂Dn

∂v
∂νw dS − ∫

∂Dd

∂w
∂ν v dS

has two energy integral expressions given by (3.15) and (3.18).

As a direct corollary, we obtain:

Corollary 3.1. Let x ∈ Ω and σ ∈ Nx . Let {vm} be an arbitrary needle sequence for (x, σ) based on G. We have

⟨(Λ0 − ΛD)(vm|∂Ω), vm|∂Ω⟩ = ‖∇vm‖2L2(Dn) − k
2‖vm‖2L2(Dn) + ‖∇(wm + (ϵm)n)‖2L2(Ω\D)

− k2‖wm + (ϵm)n‖2L2(Ω\D) − ‖∇(ϵm)n‖
2

L2(Ω\D) + k
2‖(ϵm)n‖2L2(Ω\D)

− ‖∇vm‖2L2(Dd) + k
2‖vm‖2L2(Dd)

(3.19)

and
⟨(Λ0 − ΛD)(vm|∂Ω), vm|∂Ω⟩ = −‖∇vm‖2L2(Dd) + k

2‖vm‖2L2(Dd) − ‖∇(wm + (ϵm)d)‖2L2(Ω\D)
+ k2‖wm + (ϵm)d‖2L2(Ω\D) + ‖∇(ϵm)d‖

2

L2(Ω\D) − k
2‖(ϵm)d‖2L2(Ω\D)

+ ‖∇vm‖2L2(Dn) − k
2‖vm‖2L2(Dn) ,

(3.20)

where wm , (ϵm)n and (ϵm)d are given by wx , (ϵx)n and (ϵx)d with G(y, x) in (1.6), (1.10) and (1.12) replaced by vm(y),
respectively.

It should be emphasized that the point is the idea or the principle of the derivation of the things to be proved, like

(1.16) and (1.17) or, (3.19) and (3.20). It is not a trivial fact aswehave already seen. It is based on the correspondence
principlementioned below.

Principle. Replace the singular solution G(z, x) appeared in some identity, say (3.10) and (3.11), involving wx ,

(ϵx)n and (ϵx)d with {vm} based on G. Then one gets a corresponding identity for {vm} (to be proved indepen-
dently), say (3.19) and (3.20).

Note that conversely (3.19) and (3.20) yield immediately (3.10) and (3.11) by taking the limit and the formula (3.1),

respectively.
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3.3 Side B of probe method

The Side B of the probe method is concerned with the blowing up property of the indicator sequence. It is based

on Theorem 1.2 or Corollary 3.1 and the blowing up property of the needle sequence stated below.

Proposition 3.1. Given an arbitrary point x ∈ Ω and needle σ ∈ Nx let {vm} be an arbitrary needle sequence for
(x, σ) based on G.
(a) Let V be an arbitrary finite cone with vertex at x. Then we have

lim
m→∞
‖∇vm‖2L2(V∩Ω) = ∞.

(b) Let z ∈ Ω be an arbitrary point on σ \ {x} and B open ball centered at z. Then we have

lim
m→∞
‖∇vm‖2L2(B∩Ω) = ∞.

This fact has been already established in [11].

Once we have (3.19), (3.20) and Proposition 3.1, one gets the following theoremwhich states the Side B of the

probe method.

Theorem 3.2. Let k = 0. Let x ∈ Ω and σ ∈ Nx . Assume that one of the two cases (a) and (b) listed below is satisfied:
(a) x ∈ D,
(b) x ∈ Ω \ D and σ ∩ D ̸= 0.
Then for any needle sequence {vm} for (x, σ) based on G we have

lim
m→∞
⟨(Λ0 − ΛD)(vm|∂Ω), vm|∂Ω⟩ =

{
{
{

∞ if σ ∩ Dd = 0,
−∞ if σ ∩ Dn = 0.

Proof. We describe only the case when σ ∩ Dd = 0. In this case we have x ∈ Ω \ Dd and the convergence

vm → G( ⋅ , x) in H2(Dd) yields the boundedness of the sequence {(ϵm)n} in H2(Ω \ D). Thus it follows from
(3.19) that

⟨(Λ0 − ΛD)(vm|∂Ω), vm|∂Ω⟩ ≥ ‖∇vm‖L2(Dn) − C,

where C is a positive constant. Here, by Proposition 3.1 under (a) and (b) above we have ‖∇vm‖L2(Dn) →∞. This
completes the proof.

Remark 3.3. Note that Theorem 3.2 does not cover all the possible cases for (x, σ). For example, if both of the
conditions σ ∩ Dd ̸= 0 and x ∈ Dn are satisfied, it would be difficult to state something about the behavior of the

indicator sequence.

The problem is the case when k ̸= 0. For this, even in the case when Dd = 0 we have only a result in [11] under
a smallness condition on k. See also [15, Section 2.3.1] for a concise explanation.

Here, applying the idea described therein to formulae (3.19) and (3.20), we show a result.

We assume that Dn and Dd have the form

Dn =
N
⋃
j=1

Dn, j Dd =
M
⋃
l=1

Dd, l ,

where Dn, j , j = 1, . . . , N , and Dd, l , l = 1,M, are connected components of Dn and Dd , respectively and satisfy

Dn, j ∩ Dn, j󸀠 = 0 if j ̸= j󸀠; Dd, l ∩ Dd, l󸀠 = 0 if l ̸= l󸀠.
The assumption on k is as follows: k satisfies all the inequalities listed below:

C(Ω \ D)2k2 ≤ 1, (3.21)

max
j=1,...,N

8C(Dn,j)2k2 < 1, (3.22)

max
l=1,...,M

8C(Dd,j)2k2 < 1. (3.23)

Here the constants C(Ω \ D), C(Dn,j) and C(Dd,l) denote the Poincaré constants [21] in the following sense,
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respectively:

(i) Constant C(Ω \ D) satisfies, for all w ∈ H1(Ω \ D) with w = 0 on ∂Ω,

‖w‖L2(Ω\D) ≤ C(Ω \ D)‖∇w‖L2(Ω\D) .

(ii) Constant C(Dn,j) satisfies, for all v ∈ H1(Dn,j) with ∫Dn,j
v dz = 0,

‖v‖L2(Dn,j) ≤ C(Dn,j)‖∇v‖L2(Dn,j) .

(iii) Constant C(Dd,l) satisfies, for all v ∈ H1(Dd,l) with ∫Dd,l
v dz = 0,

‖v‖L2(Dd,l) ≤ C(Dd,l)‖∇v‖L2(Dd,l) .

Theorem 3.3. All the statements of Theorem 3.2 for k ̸= 0 are valid under the smallness condition (3.21), (3.22) and
(3.23).

Proof. Consider the case σ satisfy σ ∩ Dd = 0. Applying the inequality (3.21) to the function w = wm + (ϵ)m , we
have

‖∇(wm + (ϵm)n)‖2L2(Ω\D) − k
2‖wm + (ϵm)n‖2L2(Ω\D) ≥ 0.

Thus (3.19) yields

⟨(Λ0 − ΛD)(vm|∂Ω), vm|∂Ω⟩ ≥ (‖∇vm‖2L2(Dn) − k
2‖vm‖2L2(Dn)) + Rm , (3.24)

where

Rm = −‖∇(ϵm)n‖2L2(Ω\D) − ‖∇vm‖
2

L2(Dd) .

By the convergence property of {vm} in H2(Dd), we have {ϵm} is bounded in H2(Ω \ D). Therefore the sequence
{Rm} is bounded. Besides, applying the same argument in [11] (and also see [15]) to the first termof the right-hand

side on (3.24), we obtain

‖∇vm‖2L2(Dn) − k
2‖vm‖2L2(Dn) ≥ C1‖∇vm‖

2

L2(Dn) − C2 ,

here C1 and C2 are positive constants independent of m, however, depends on σ, Dn and k satisfying (3.22).

Thus the blowing up property of the indicator sequence is reduced to that of ‖∇vm‖2L2(Dn)
, that is covered by

Proposition 3.1.

The treatment of the case when σ ∩ Dn = 0 is the same except for the use of (3.23) and (3.20) instead of (3.22)
and (3.19), respectively.

Remark 3.4. It should be noted that in [2] they considered the probe method [7, 9] for the Helmholtz equation
Δu + k2u = 0 in the mixed obstacle case. However, in their paper only the Side A of the probe method is con-

sidered and their argument is based on a combination of that of [9] and a detailed singularity analysis of the

reflected solution. There is no description about the Side B of the probe method, which has been introduced

in [11] and developed in [12]. Besides, even the case when the wave number k = 0 their result does not cover
Theorem 3.2. This is due to the lack of formulae (1.16) and (1.17) or (3.19) and (3.20).

3.4 Singular sources method included in IPS

The singular sources method consists of three parts listed below.

(a) Given x ∈ Ω \ D and σ ∈ Nx let {vn} be an arbitrary needle sequence for (x, σ) based on G. Then we have

formula (3.6), that is,

wx(x) = − limn→∞
< (Λ0 − ΛD)(vn|∂Ω), (G( ⋅ , x) − vn)|∂Ω > . (3.25)

(b) It holds that:

(i) limx→a∈∂Dn wx(x) = ∞,
(ii) limx→b∈∂Dd wx(x) = −∞.

(c) For each ϵi > 0, i = 1, 2,
sup

x∈Ω\D, dist(x, ∂D)>ϵ1 , dist(x, ∂Ω)>ϵ2
|wx(x)| < ∞. (3.26)

The statements (b) and (c) are the direct consequence of Corollary 1.1, outer decomposition (1.8), (1.3) and (1.7).
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Note that Remark 3.1 works also for (3.26) in the case when G = G0. That is, the condition dist(x, ∂Ω) > ϵ2 in
(3.26) is dropped.

Remark 3.5. If G = G∗, then G( ⋅ , x) = 0 on ∂Ω and by (3.25) one gets

wx(x) = lim
n→∞
⟨(Λ0 − ΛD)(vn|∂Ω), vn|∂Ω⟩

provided σ ∩ D = 0. From this together with (3.1) and (3.2) we obtain

wx(x) = I(x) = Wx(x).

So this is the completely integrated version of the probe and singular sources methods. By Theorem 3.2 this

version also has the Side B. To distinguish from other cases we denote wx(x) = I(x) = Wx(x) by w∗x (x) = I∗(x) =
W∗x (x) if G = G∗.

3.5 Side B of singular sources method

Given x ∈ Ω and σ ∈ Nx let {v0n} be the needle sequence for (x, σ) based on G = G0, that is,

v0n → G( ⋅ − x)

in H2

loc
(Ω \ σ). Let H(z) = H(z, x) solve

{
ΔH + k2H = 0, z ∈ Ω,

H(z) = −G(z − x), z ∈ ∂Ω.

It is clear that the H( ⋅ , x) satisfies (1.3). The function

vn(z) = v0n(z) + H(z, x), z ∈ Ω,

satisfies the Helmholtz equation in Ω and that the sequence {vn} satisfies

vn → G( ⋅ − x) + H( ⋅ , x)

in H2

loc
(Ω \ σ). This means that sequence {vn} is a needle sequence for (x, σ) based on G = G∗ (see also

Remark 1.1). Thus, if σ ∩ D = 0, then by Remark 3.5 we have

w∗x (x) = I∗(x) = W∗x (x)
= lim

n→∞
⟨(Λ0 − ΛD)(vn|∂Ω), vn|∂Ω⟩.

Here note that we have

vn(z) = v0n(z) − G(z − x), z ∈ ∂Ω.

Therefore we obtain

w∗x (x) = I∗(x) = W∗x (x)
= lim

n→∞
⟨(Λ0 − ΛD)((v0n − G( ⋅ − x))|∂Ω), (v0n − G( ⋅ − x))|∂Ω⟩.

Besides, as a corollary of Theorem 3.2 we obtain

Corollary 3.2. Let k = 0. Let x ∈ Ω and σ ∈ Nx . Assume that one of the two cases (a) and (b) listed in Theorem 3.2
is satisfied. Then for any needle sequence {v0m} for (x, σ) based on G = G0 we have

lim
n→∞
⟨(Λ0 − ΛD)((v0n − G( ⋅ − x))|∂Ω), (v0n − G( ⋅ − x))|∂Ω⟩ =

{
{
{

∞ if σ ∩ Dd = 0,
−∞ if σ ∩ Dn = 0.
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And also as a corollary of Theorem 3.3 we have:

Corollary 3.3. Let k ≥ 0 satisfy (3.21), (3.22) and (3.23). Then the same conclusions as Corollary 3.2 are valid.

Let w0

x(y) = wx(y;G0). The w0

x solves

{{{{{{{
{{{{{{{
{

Δw + k2w = 0, y ∈ Ω \ D,
∂w
∂ν
= −

∂
∂ν

G(y − x), y ∈ ∂Dn ,

w = −G(y − x), y ∈ ∂Dd ,

w = 0, y ∈ ∂Ω.

The function Ω \ D ∋ x 󳨃→ w0

x(x) is a natural extension of the indicator function for the singular sources method
discussed therein to the case Dd ̸= 0. See also [16, Section 1.3] for an explanation ofwhyw0

x(x) is called the indica-
tor function for the singular sources method in relation to its original singular sources method of Potthast [20].

Now let σ ∩ D = 0. By (3.4) and (3.25) in the case G = G0, we have

w0

x(x) = − limn→∞
⟨(Λ0 − ΛD)v0n|∂Ω , Gn( ⋅ , x)|∂Ω⟩,

where

Gn(z, x) = G(z − x) − v0n(z).

Here we have the trivial decomposition

⟨(Λ0 − ΛD)G( ⋅ − x)|∂Ω , G( ⋅ − x)|∂Ω⟩ = ⟨(Λ0 − ΛD)v0n|∂Ω , v0n|∂Ω⟩ + ⟨(Λ0 − ΛD)Gn( ⋅ , x)|∂Ω , Gn( ⋅ , x)|∂Ω⟩
+ ⟨(Λ0 − ΛD)v0n|∂Ω , Gn( ⋅ , x)|∂Ω⟩
+ ⟨(Λ0 − ΛD)(Gn( ⋅ , x)|∂Ω), v0n|∂Ω⟩.

This together with the symmetry of Dirichlet-to-Neumann maps Λ0 and ΛD yields the expression

−⟨(Λ0 − ΛD)v0n|∂Ω , Gn( ⋅ , x)|∂Ω⟩ =
1

2
(⟨(Λ0 − ΛD)v0n|∂Ω , v0n|∂Ω⟩ + ⟨(Λ0 − ΛD)Gn( ⋅ , x)|∂Ω , Gn( ⋅ , x)|∂Ω⟩)

−
1

2
⟨(Λ0 − ΛD)G( ⋅ − x)|∂Ω , G( ⋅ − x)|∂Ω⟩.

(3.27)

Therefore, using Theorem 3.2 for the choiceG = G0 and Corollary 3.2, we obtain the side B of the singular sources
method formulated in [16].

Corollary 3.4. Let k = 0. Let x ∈ Ω and σ ∈ Nx . Assume that one of the two cases (a) and (b) listed in Theorem 3.2
is satisfied. Then for any needle sequence {v0n} for (x, σ) based on G = G0 we have

− lim
n→∞
⟨(Λ0 − ΛD)v0n|∂Ω , (G( ⋅ − x) − v0n)|∂Ω⟩ =

{
{
{

∞ if σ ∩ Dd = 0,
−∞ if σ ∩ Dn = 0.

And also from Theorem 3.3 and Corollary 3.3 we have:

Corollary 3.5. Let k ≥ 0 satisfy (3.21), (3.22) and (3.23). Then we have the same conclusions as Corollary 3.4.

Corollaries 3.4 and 3.5 could never be obtained using a single methodology, and show us the greatest advantage

of the integrated theory.

Remark 3.6. It follows from (3.27) and the existence of the needle sequencewhich is a consequence of the Runge

approximation property for the Helmholtz equation in Ω we have the expression

w0

x(x) =
1

2
(I0(x) + I∗(x) − ⟨(Λ0 − ΛD)G( ⋅ − x)|∂Ω , G( ⋅ − x)|∂Ω⟩),

where the I0(x) denotes the I(x) given by (3.2) (or both of (3.10) and (3.11)) with the case when G = G0, that is,
G( ⋅ , x) = G( ⋅ − x).
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3.6 Additional remarks

3.6.1 Lifting

First for general G, from Lemma 2.1 we obtain

wx(y) − ∫
∂Ω

∂
∂ν

wx(z)G(z, y) dS(z) = wy(x) − ∫
∂Ω

∂
∂ν

wy(z)G(z, x) dS(z). (3.28)

So define

I(x, y) = wx(y) − ∫
∂Ω

∂
∂ν

wx(z)G(z, y) dS(z), (x, y) ∈ (Ω \ D)2 . (3.29)

Then (3.28) yields the symmetry

I(x, y) = I(y, x).
Besides, by (3.1) and (3.3), we have another expression for the indicator function:

I(x) = wx(x) − ∫
∂Ω

∂
∂ν

wx(z)G(z, x) dS(z).

This together with (3.29) yields I(x) = I(x, y)|y=x and in this sense, the I(x, y) is called the lifting of I(x).
The inner decomposition (3.14) itself has the lifted version. For general G, by (2.12) we have

w1

x(y) = I1(x, y) − ∫
∂Ω

G(z, x) ∂
∂νwy(z) dS(z), (x, y) ∈ (Ω \ D)2 , (3.30)

where

I1(x, y) = ∫
Ω\D

∇w1

x(z) ⋅ ∇w1

y(z) dz − ∫
Ω\D

k2w1

x(z)w1

y(z) dz − ∫
∂Ω

∂
∂ν G(z, y)G(z, x) dS(z).

A similar computation to (3.8) yields

⟨ΛD(G( ⋅ , y)|∂Ω), G( ⋅ , x)|∂Ω⟩ = ∫
Ω\D

∇w1

y(z) ⋅ ∇w1

x(z) dz − ∫
Ω\D

k2w1

y(z)w1

x(z) dz.

Thus we have

I1(x, y) = ⟨ΛD(G( ⋅ , y)|∂Ω), G( ⋅ , x)|∂Ω⟩ − ∫
∂Ω

∂
∂ν G(z, y)G(z, x) dS(z). (3.31)

By (3.13), this yields I1(x) = I1(x, y)|y=x . Thus, I1(x, y) gives a lifting of I1(x).
Next rewrite (3.29) as

wx(y) = I(x, y) + ∫
∂Ω

G(z, y) ∂∂νwx(z) dS(z).

This together with (3.30) yields

Wx(y) = I(x, y) + I1(x, y) + ∫
∂Ω

G(z, y) ∂∂νwx(z) dS(z) − ∫
∂Ω

G(z, x) ∂∂νwy(z) dS(z). (3.32)

This is the lifted version of inner decomposition (3.14). Note also that we have twisted decomposition

wy(x) + w1

x(y) = I(x, y) + I1(x, y). (3.33)

3.6.2 Uniqueness

We consider only two cases: G = G0 , G∗. From (3.29) we have

I(x, y) =
{{{
{{{
{

wx(y) − ∫
∂Ω

∂
∂νwx(z)G(z − y) dS(z) if G = G0 ,

wx(y) if G = G∗.

(3.34)

Note thatwx(y) depends onG and the symmetry of I(x, y) yields the symmetrywx(y) = wy(x) in the caseG = G∗.
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The expression (3.34) together with symmetry of I(x, y) yields:
∙ for each fixed x ∈ Ω \ D,

Δy I(x, y) + k2I(x, y) = 0, y ∈ Ω \ D,

∙ for each fixed y ∈ Ω \ D,
Δx I(x, y) + k2I(x, y) = 0, x ∈ Ω \ D.

Here the symbols Δy and Δx denote the Laplacian with respect to y and x, respectively.
By the unique continuation property of the Helmholtz equation, one concludes: indicator function I(x),

x ∈ Ω \ D is uniquely determined by I(x, y) given at all (x, y) ∈ U × V , where U and V are arbitrary nonempty

open subsets of Ω \ D, typically in a small neighborhood of ∂Ω. Besides, using the argument for the proof of (3.3),
we obtain also the computation formula of the lifting

I(x, y) = lim
n→∞
⟨(Λ0 − ΛD)(vn|∂Ω), v󸀠n|∂Ω⟩,

where vn is the same as that of (3.3) and v󸀠n is an arbitrary needle sequence for (y, σ󸀠) based on G and σ󸀠 ∈ Ny
satisfying σ󸀠 ∩ D = 0. So in principle or theoretically, it suffices to use only the needle sequences for the needles

with tips in U × V , say with U = V and U is given by the intersection of a small open ball centered at a point on
∂Ω with Ω. In that case we can use only the straight needles explicitly constructed in [13].

Summing up, we have obtained the following uniqueness theorem by using needles localized, say in a small
neighborhood of ∂Ω in Ω.

Proposition 3.2. Let G = G0 , G∗. Let U be an arbitrary nonempty open subset of Ω \ D. Assume that we have the
data ΛD(vn|∂Ω) for all x ∈ U and a needle σ ∈ Nx with σ \ ∂Ω ⊂ U, and a needle sequence {vn} for (x, σ) based
on G. Then the obstacles Dd and Dn are uniquely determined by the data.

The key of the proof is to put the calculation process of the lifting I(x, y) for all (x, y) ∈ U2
in between. This result

could never have been found using a single methodology alone.

3.6.3 Symmetry of I1(x, y) and implications

For general G from (3.32) we obtain

Wx(y) +Wy(x)
2

= I(x, y) + I
1(x, y) + I1(y, x)

2
. (3.35)

Note that for general G the I1(x, y) is not necessary symmetric with respect to variables x and y. Here we note
that the I1(x, y) is symmetric for G = G∗ , G0. In fact, if G = G∗, then G( ⋅ , x) = 0 on ∂Ω for each x ∈ Ω \ D. Thus
(3.31) yields I1(x, y) = 0 = I1(y, x).

For generalG, a similar argument for the proof of the symmetry of Green’s function, we have, for (x, y) ∈ Ω2

with x ̸= y,

∫
∂Ω

∂
∂ν G(z, y)G(z, x) dS(z) = −G(y, x) + ∫

Ω

∇G(z, y) ⋅ ∇G(z, x) dz − ∫
Ω

k2G(z, y)G(z, x) dz.

Note that all the integrands are absolutely integrable since x ̸= y. Thus I1(x, y) with x ̸= y takes the form

I1(x, y) = ∫
Ω\D

∇w1

x(z) ⋅ ∇w1

y(z) dz − ∫
Ω\D

k2w1

x(z)w1

y(z) dz

+ G(y, x) − ∫
Ω

∇G(z, y) ⋅ ∇G(z, x) dz + ∫
Ω

k2G(z, y)G(z, x) dz.

Recalling the expression (1.2), we see that I1(x, y) = I1(y, x) if and only if H(y, x) = H(x, y). Thus I1(x, y) is
symmetric in the case G = G0 since H ≡ 0.



M. Ikehata, Integrating probe and singular sources methods: III  425

Therefore from (3.35) we obtain, for G = G0 , G∗,¹

Wx(y) +Wy(x)
2

= I(x, y) + I1(x, y). (3.36)

And this together with (3.33) yields twisted symmetry:

wx(y) − w1

y(x) = wy(x) − w1

x(y).

Besides, the expression (3.31) together with symmetry yields:

∙ for each fixed y ∈ Ω \ D we have

Δx I1(x, y) + k2I1(x, y) = 0, x ∈ Ω \ D;

∙ for each fixed x ∈ Ω \ D, we have

Δy I1(x, y) + k2I1(x, y) = 0, y ∈ Ω \ D.

Besides, using (3.33) we conclude that, for each fixed y ∈ Ω \ D

Δx(w1

x(y)) + k2w1

x(y) = 0, x ∈ Ω \ D, (3.37)

and for each fixed x ∈ Ω \ D,
Δy(wy(x)) + k2wy(x) = 0, y ∈ Ω \ D.

Finally, from (3.36) we obtain, for each fixed x ∈ Ω \ D,

Δy(Wy(x)) + k2Wy(x) = 0, y ∈ Ω \ D.

As a conclusion, we have:

Proposition 3.3. Let G = G0 , G∗. Let U be an arbitrary nonempty open subset of Ω \ D. Then the values Wx(x) and
wx(x) at all x ∈ Ω \ D are uniquely determined by those of Wx(y) and wx(y) for all (x, y) ∈ U2, respectively.

4 Conclusion and remarks

It became clear that the IPS function plays the central role in deriving the probe and singular sources methods.

Besides, the method of complementing function, which is introduced in the proof of Theorem 1.1, makes every-

thing so clear. Everything about the bothmethods can be derived from the knowledge of the IPS functionWx(x).
As a byproduct, we found the Side B of both the probe and singular sourcesmethods for themixed obstacle case.

This is an advantage of IPS. However, there is a proviso that this comes at the expense of the regularity of the

boundaries of the obstacles and whole domain. This seems to be unavoidable in order to establish especially

the singular sources method since its is based on Green’s theorem.

In this paper, we have considered only the case when the governing equation is given by the Helmholtz

equation.However, themethoddevelopedhere canbe applied also to the same type of inverse obstacle problems

governed by various partial differential equations, for example, the Navier equation, the Stokes system, the

biharmonic equation, and so on. And also it would be interested to consider their time domain versions by the

spirit of IPS. Those belong to our next project.

Our theory yields also an alternative simple proof of a result on the probe method described in [2], which is
nothing but the Side A called in this paper. However, it should be pointed out that the Side B without smallness
of k is still open at the present time even for the case Dd = 0, see [15].

1 Note that, in particular, if G = G∗
we haveWx(y) = I(x, y) = wx(y). This implies the symmetry ofWx(y) = wx(y).
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A Appendix

Note that in this appendix it is assumed that k2 satisfies Assumption 1.

Lemma 1. Let v ∈ H2(Ω) be an arbitrary solution of the Helmholtz equation Δv + k2v = 0 in Ω. Let u ∈ H2(Ω \ D)
be the solution of (1.1) with f = v on ∂Ω. We have

‖u − v‖L2(Ω\D) ≤ C(‖v‖L2(Dn) + ‖v‖L2(∂Dd)),

where C is positive constant independent of v.

Proof. Set w = u − v. The w = w(y) satisfies

{{{{{{{
{{{{{{{
{

Δw + k2w = 0, y ∈ Ω \ D,
∂w
∂ν
= −

∂
∂ν

v(y), y ∈ ∂Dn ,

w = −v(y), y ∈ ∂Dd ,

w = 0, y ∈ ∂Ω.

Decompose w as w = w1 + w2, where the w1 = w1(y) solves

{{{{{{{
{{{{{{{
{

Δw1 + k2w1 = 0, y ∈ Ω \ D,
∂w1

∂ν = −
∂
∂ν v(y), y ∈ ∂Dn ,

w1 = 0, y ∈ ∂Dd ,

w1 = 0, y ∈ ∂Ω,

and thus w2 = w2(y) satisfies
{{{{{{{
{{{{{{{
{

Δw2 + k2w2 = 0, y ∈ Ω \ D,
∂w2

∂ν = 0, y ∈ ∂Dn ,

w2 = −v(y), y ∈ ∂Dd ,

w2 = 0, y ∈ ∂Ω.
Considering Ω \ D as (Ω \ Dd) \ Dn and applying [14, Lemma 2.2] to the case when Ω and D are replaced with

Ω \ Dd and Dn , respectively, we have

‖w1‖L2(Ω\D) ≤ C‖v‖L2(Dn) .

So the problem is to show that

‖w2‖L2(Ω\D) ≤ C‖v‖L2(∂Dd) . (A.1)

Here we employ a slightly modified argument for the proof of [10, (4.12) in Lemma 4.1]. Solve

{{{{{{{
{{{{{{{
{

Δp + k2p = w2 , y ∈ Ω \ D,
∂p
∂ν = 0, y ∈ ∂Dn ,

p = 0, y ∈ ∂Dd ,

p = 0, y ∈ ∂Ω.

Then we have

∫

Ω\D

w2

2
dy = ∫

Ω\D

pw2 dy = ∫
Ω\D

(Δp + k2p)w2 dy

= − ∫
Dn

∂p
∂ν w2 dS − ∫

Dd

∂p
∂ν w2 dS − ∫

Ω\D

∇p ⋅ ∇w2 dy + ∫
Ω\D

k2pw2 dy

= ∫
∂Dd

∂p
∂ν v dS + ∫

∂Dn

∂w2

∂ν p dS + ∫
∂Dd

∂w2

∂ν p dS = ∫
∂Dd

∂p
∂ν v dS + ∫

∂Dd

∂w2

∂ν p dS = ∫
∂Dd

∂p
∂ν v dS.
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Thus one gets

‖w2‖2L2(Ω\D) ≤ ‖∇p‖L2(∂Dd)‖v‖L2(∂Dd) .

By elliptic regularity up to boundary, we have

‖p‖H2(Ω\D) ≤ C‖w2‖L2(Ω\D)

and the trace theorem yields

‖∇p‖
H

1

2 (∂Dd)
≤ C‖∇p‖H1(Ω\D) .

Combining these, we obtain (A.1).

Lemma 2. The solution w = wx of (1.6) for x ∈ Ω \ D satisfies, for each ϵ > 0,

sup

x∈Ω\D, ϵ<dist(x,∂Ω)
‖wx‖L2(Ω\D) < ∞.

Proof. There are two ways to validate the statement. The first one is a combination of Lemma 1 and a limiting
argument based on the Runge approximation property for the Helmholtz equation in the whole domain Ω pro-

vided k2 is not a Dirichlet eigenvalue for the minus Laplacian −Δ in Ω. Another one goes back to the idea for

establishing [9, estimates (19) and (28)] for the case when Dn = 0 and Dd = 0, respectively. Since the later one is
elementary, we describe here. Decompose wx as wx = (w1)x + (w2)x , where the (w1)x = w1(y) solves

{{{{{{{
{{{{{{{
{

Δw1 + k2w1 = 0, y ∈ Ω \ D,
∂w1

∂ν = −
∂
∂ν G(y, x), y ∈ ∂Dn ,

w1 = 0, y ∈ ∂Dd ,

w1 = 0, y ∈ ∂Ω,

and thus (w2)x = w2(y) satisfies

{{{{{{{
{{{{{{{
{

Δw2 + k2w2 = 0, y ∈ Ω \ D,
∂w2

∂ν = 0, y ∈ ∂Dn ,

w2 = −G(y, x), y ∈ ∂Dd ,

w2 = 0, y ∈ ∂Ω.

Considering Ω \ D as (Ω \ Dd) \ Dn and applying the argument for the proof of (28) in [9] to the case when Ω and

D are replaced with Ω \ Dd and Dn , respectively, we have

‖(w1)x‖L2(Ω\D) ≤ C( ∫
∂Dn

|z − x|
1

2

󵄨󵄨󵄨󵄨󵄨󵄨󵄨
∂G
∂ν (z, x)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨
dS(z) + ∫

Dn

|G(z, x)| dz),

where C is a positive constant independent of x ∈ Ω \ D. It is easy to see that this together with (1.3) yields

sup

x∈Ω\D, ϵ<dist(x,∂Ω)
‖(w1)x‖L2(Ω\D) < ∞. (A.2)

Note that we are considering general G. Using a similar argument for the proof of [9, (19)], we have the estimate

‖(w2)x‖L2(Ω\D) ≤ C‖G( , x)‖L 4

3 (∂Dd)
.

Then assumption (1.3) and

sup

x∈ℝ3
‖G( ⋅ − x)‖

L
4

3 (∂Dd)
< ∞,

we obtain

sup

x∈Ω\D, ϵ<dist(x,∂Ω)
‖(w2)x‖L2(Ω\D) < ∞. (A.3)

From (A.2) and (A.3) we obtain the desired conclusion.
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