Home Scalar and vector tomography for the weighted transport equation with application to helioseismology
Article
Licensed
Unlicensed Requires Authentication

Scalar and vector tomography for the weighted transport equation with application to helioseismology

  • Nathan L. Thompson ORCID logo EMAIL logo and Alexander L. Bukhgeim
Published/Copyright: April 8, 2022

Abstract

Motivated by the application to helioseismology, we demonstrate uniqueness and stability for a class of inverse problems of the weighted transport equation. Using 𝐮-analytic functions, this inverse problem is expressed as a Cauchy problem. In this form, we show that, for a finite even trigonometric polynomial weight function, the resulting system is well-conditioned numerically and permits a Carleman-like estimate with boundary terms.

MSC 2010: 30J99; 35J56

References

[1] N. H. Abel, Auflösung einer mechanischen Aufgabe, J. Reine Angew. Math. 1 (1826), 153–157. 10.1515/crll.1826.1.153Search in Google Scholar

[2] A. S. Alekseev, M. M. Lavrent’ev, R. G. Mukhometov and V. G. Romanov, A numerical method for solving the three-dimensional inverse kinematics problem of seismology, Mat. Problemy Geofiz. Vol. 1 (in Russian), Siberian Branch of USSR Academy Sci., Novosibirsk (1969), 179–201. Search in Google Scholar

[3] E. V. Arbuzov, A. L. Bukhgeim and S. G. Kazantsev, Two-dimensional tomography problems and the theory of 𝐮-analytic functions, Siberian Adv. Math. 8 (1998), no. 4, 1–20. Search in Google Scholar

[4] A. A. Boukhgueim, Modern techniques in seismic tomography, Mathematical Methods and Modelling in Hydrocarbon Exploration and Production, Math. Ind. 7, Springer, Berlin (2005), 267–297. 10.1007/3-540-26493-0_9Search in Google Scholar

[5] A. L. Bukhgeim, Inverse gravimetry approach to attenuated tomography, Tomography and Inverse Transport Theory, Contemp. Math. 559, American Mathematical Society, Providence (2011), 49–63. 10.1090/conm/559/11071Search in Google Scholar

[6] A. L. Bukhgeim and A. A. Bukhgeim, Inversion of the Radon transform, based on the theory of 𝐮-analytic functions, with application to 3D inverse kinematic problem with local data, J. Inverse Ill-Posed Probl. 14 (2006), no. 3, 219–234. 10.1515/156939406777340883Search in Google Scholar

[7] A. A. Bukhgeim and S. G. Kazantsev, Reconstruction of scalar and vector fields from their attenuated radon transform, Proceedings of the 22nd IASTED International Conference “Modeling, Indentification and Control”, IASTED/ACTA, Innsbruck (2003), 294–298. Search in Google Scholar

[8] A. L. Bukhgeim, S. M. Zerkal and V. V. Pikalov, On one algorithm for solution of a 3D inverse kinematic problem of seismology, Methods for Solution of Inverse Problems, Akad. Nauk SSSR Sibirsk. Otdel., Novosibirsk (1983), 38–47. Search in Google Scholar

[9] A.-P. Calderón, Uniqueness in the Cauchy problem for partial differential equations, Amer. J. Math. 80 (1958), 16–36. 10.2307/2372819Search in Google Scholar

[10] T. Carleman, Sur un problĂšme d’unicitĂ© pur les systĂšmes d’équations aux dĂ©rivĂ©es partielles Ă  deux variables indĂ©pendantes, Ark. Mat. Astr. Fys. 26 (1939), no. 17. Search in Google Scholar

[11] S. D’Silva, T. L. Duvall Jr., S. M. Jefferies and J. W. Harvey, Helioseismic tomography, Astrophys. J. 471 (1996), 1030–1043. 10.1086/178030Search in Google Scholar

[12] T. L. Duvall Jr., S. M. Jefferies, J. W. Harvey and M. A. Pomerantz, Time-distance helioseismology, Nature 362 (1993), 430–432. 10.1038/362430a0Search in Google Scholar

[13] T. L. Duvall Jr., P. H. Scherrer, R. S. Bogart, R. I. Bush, C. De forest, J. T. Hoeksema, J. Schou, J. L. R. Saba, T. D. Tarbell, A. M. Title, C. J. Wolfson and P. N. Milford, Time-distance helioseismology with the mdi instrument: Initial results, Solar Phys. 170 (1997), 63–73. 10.1007/978-94-011-5236-5_4Search in Google Scholar

[14] D. Fournier, L. Gizon, M. Holzke and T. Hohage, Pinsker estimators for local helioseismology: Inversion of travel times for mass-conserving flows, Inverse Problems 32 (2016), no. 10, Article ID 105002. 10.1088/0266-5611/32/10/105002Search in Google Scholar

[15] P. Funk, Über eine geometrische Anwendung der Abelschen Integralgleichung, Math. Ann. 77 (1915), no. 1, 129–135. 10.1007/BF01456824Search in Google Scholar

[16] L. Gizon and A. C. Birch, Time-distance helioseismology: The forward problem for random distributed sources, Astrophys. J. 571 (2002), 966–986. 10.1086/340015Search in Google Scholar

[17] G. Herglotz, Über die ElastizitĂ€t det Erde bei BerĂŒckstichitgung ihrer variablen Dichte, Z. Math. Phys. 52 (1905), no. 3, 275–299. Search in Google Scholar

[18] A. G. Kosovichev, Tomographic imaging of the sun’s interior, Astrophys. J. 461 (1996), 55–57. 10.1086/309989Search in Google Scholar

[19] M. M. Lavrent’ev, V. G. Romanov and S. P. Shishatskii, Ill-Posed Problems of Mathematical Physics and Analysis (in Russian), “Nauka”, Moscow, 1980. Search in Google Scholar

[20] M. M. Lavrentiev, V. G. Romanov and V. G. Vasiliev, Multidimensional Inverse Problems for Differential Equations, Lecture Notes in Math. 167, Springer, Berlin, 1970. 10.1007/BFb0067428Search in Google Scholar

[21] N. N. Lebedev, Special Functions and Their Applications, Prentice-Hall, Englewood Cliffs, 1965. 10.1063/1.3047047Search in Google Scholar

[22] R. G. Muhometov, The reconstruction problem of a two-dimensional Riemannian metric, and integral geometry, Dokl. Akad. Nauk SSSR 232 (1977), no. 1, 32–35. Search in Google Scholar

[23] A. P. Prudnikov, Y. A. Brychkov and O. I. Marichev, Integrals and Series. Vol. 1, Gordon & Breach, New York, 1986. Search in Google Scholar

[24] J. Radon, Über die Bestimmung von Funktionen durch ihre Integralwerte langs gewisser Mannigfaltigkeiten, Ber. Verh. Sachs. Akad. Wiss. Leipzig. Math. Nat. Kl. 69 (1917), 262–277. 10.1090/psapm/027/692055Search in Google Scholar

[25] S. T. Thornton and J. B. Marion, Classical Dynamics of Particles and Systems, 5th ed., Brooks/Cole, California, 2004. Search in Google Scholar

[26] E. Weichert and K. Zoeppritz, Über Erdbebenwellen, Nachr. Königl. Gesellschaft Wiss. 4 (1907), 415–549. Search in Google Scholar

Received: 2021-01-01
Accepted: 2022-01-07
Published Online: 2022-04-08
Published in Print: 2023-02-01

© 2022 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 11.9.2025 from https://www.degruyterbrill.com/document/doi/10.1515/jiip-2021-0001/html
Scroll to top button