Abstract
In this article, we consider an inverse problem for the integral equation of the convolution type in a multidimensional case. This problem is severely ill-posed. To deal with this problem, using a priori information (sourcewise representation) based on optimal recovery theory we propose a new method. The regularization and optimization properties of this method are proved. An optimal minimal a priori error of the problem is found. Moreover, a so-called optimal regularized approximate solution and its corresponding error estimation are considered. Efficiency and applicability of this method are demonstrated in a numerical example of the image deblurring problem with noisy data.
Funding source: RFBR
Award Identifier / Grant number: 14-01-00182-a
Funding source: RFBR
Award Identifier / Grant number: 14-01-91151-NSFC-a
© 2015 by De Gruyter
Articles in the same Issue
- Frontmatter
- Identification of nonlinear heat conduction laws
- Numerical solution of the multidimensional Gelfand–Levitan equation
- On generalized cross validation for stable parameter selection in disease models
- An optimal regularization method for convolution equations on the sourcewise represented set
- Multilevel Jacobi and Gauss–Seidel type iteration methods for solving ill-posed integral equations
- Estimation of distributed parameters in permittivity models of composite dielectric materials using reflectance
- Asymptotic method for finding the coefficient of hydraulic resistance in lifting of fluid on tubing
- Identification of biological models described by systems of nonlinear differential equations
- Statistical inversion in electrical impedance tomography using mixed total variation and non-convex ℓp regularization prior
- Reconstruction of a convolution operator from the right-hand side on the semiaxis
- International workshop “Inverse Problems and Integral Geometry” Immanuel Kant Baltic Federal University, Kaliningrad, Russia October 13–16, 2014
Articles in the same Issue
- Frontmatter
- Identification of nonlinear heat conduction laws
- Numerical solution of the multidimensional Gelfand–Levitan equation
- On generalized cross validation for stable parameter selection in disease models
- An optimal regularization method for convolution equations on the sourcewise represented set
- Multilevel Jacobi and Gauss–Seidel type iteration methods for solving ill-posed integral equations
- Estimation of distributed parameters in permittivity models of composite dielectric materials using reflectance
- Asymptotic method for finding the coefficient of hydraulic resistance in lifting of fluid on tubing
- Identification of biological models described by systems of nonlinear differential equations
- Statistical inversion in electrical impedance tomography using mixed total variation and non-convex ℓp regularization prior
- Reconstruction of a convolution operator from the right-hand side on the semiaxis
- International workshop “Inverse Problems and Integral Geometry” Immanuel Kant Baltic Federal University, Kaliningrad, Russia October 13–16, 2014