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Abstract: Stem cells are capable of self-renewal and differentiation into various cell types, showing signifi-

cant potential for cellular therapies and regenerative medicine, particularly in cardiovascular diseases. The

differentiation to cardiomyocytes replicates the embryonic heart development, potentially supporting cardiac

regeneration. Cardiomyogenesis is controlled by complex post-transcriptional regulation that affects the con-

struction of gene regulatory networks (GRNs), such as: alternative polyadenylation (APA), length changes in

untranslated regulatory regions (3′UTRs), and microRNA (miRNA) regulation. To deepen our understanding of

the cardiomyogenesis process, we have modeled a GRN for each day of cardiomyocyte differentiation. Then,

each GRN was automatically transformed by four transformation rules to a Petri net and simulated using the

software VANESA. The Petri nets highlighted the relationship between genes and alternative isoforms, empha-

sizing the inhibition of miRNA on APA isoforms with varying 3′UTR lengths. Moreover, in silico simulation of

miRNA knockout enabled the visualization of the consequential effects on isoform expression. Our Petri net

models provide a resourceful tool and holistic perspective to investigate the functional orchestra of transcript

regulation that differentiate hESCs to cardiomyocytes. Additionally, the models can be adapted to investigate

post-transcriptional GRN in other biological contexts.

Keywords: cardiomyogenesis; gene regulatory networks; microRNAs; untranslated regions; computer simula-

tion

1 Introduction

Cardiovascular diseases are the world’s most common cause of mortality, summing about 17.9 million deaths

each year [1]. It is well known that human adult cardiac tissue expresses a low regeneration rate due to low

proliferation from cardiomyocytes [2]. Thus, an alternative to heart transplant in addressing cardiac failure
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is the regeneration from parts of the malfunctioning tissue with new healthy cardiomyocytes. In this context,

stem cells have potential of being used in the field of regenerative medicine [3]. Because of the cells’ ability

to self-renew and differentiate, there is particular interest in the treatment of cardiovascular disease [4–6].

Pluripotent stem cells are good study models for cardiac regeneration [7–9]. In addition to having therapeutic

prospects [3, 5], they can differentiate to cardiomyocytes similarly to the embryonic heart development [10–12].

During cardiomyogenesis, there is complex transcriptional and post-transcriptional regulation, in which many

key players are involved, including coding (messenger RNAs, mRNA) and non-coding RNAs (ncRNAs), such as

long non-coding RNAs (lncRNAs) and microRNAs (miRNAs) [13–15].

Our group has previously shown that differentiation of human embryonic stem cells (hESCs) to cardiomy-

ocytes involves post-transcriptional regulation and translational control. The sole recruitment of transcripts,

coding and non-coding, to the ribosomal complex contributes to the cardiomyogenesis process [13, 14]. Addition-

ally, we have also observed that alternative polyadenylation (APA) can have an impact in the differentiation of

cardiomyocytes [16]. This mechanism can generate many isoforms of the same gene, differing only in the length

of the 3′ untranslated region (3′UTR), without changes in the coding sequence [17]. Consequently, changes of

3′UTR length can impact binding of regulatory elements, such as microRNAs. These small ncRNA of about 18–22

nucleotides can inhibit gene targets through target sites usually located on the 3′UTRof themRNA [18]. Tounravel

the implications of this complex post-transcriptional regulation, we have previously constructed Gene Regula-

tory Networks (GRN) to elucidate how APA isoforms, their changing 3′UTR lengths and miRNA targets affect the

dynamic gene expression landscape during cardiomyogenesis differentiation of hESCs [16].

The construction of GRNs provides a comprehensive understanding of the complex interplay between vari-

ous relevant transcripts during cardiomyogenesis that is not easily feasible in vitro. Computational modeling of

GRN can deepen our understanding of biological systems by dealing with a large amount of data and the calcu-

lations to find the most relevant connections between biological elements [19, 20]. Moreover, modeling of GRN

enables the investigation of gene interactions and the manipulation of gene expression in silico. This strategy

can direct in vitro validations on predicted pathways and relevant signaling found in the model [21, 22].

A gene regulatory system can be represented as a GRN,which can be either an undirected or directed graph.

In the former, connections between nodes have no particular direction. On the other hand, in the latter, the

connections indicate a specific direction of interaction between the nodes [19]. Examples of applied undirected

graphs are protein-protein-interaction networks, while biochemical pathways and GRNs are better modeled by

directed graphs due to the nature of the reactions.

Some modeling approaches for directed graphs are Bayesian networks, Boolean networks, and Petri nets

[20, 23]. Biological networks have been successfully computationally modeled by these approaches in the past,

with Petri net methods standing out in this field [20, 22, 24–28].

Bayesiannetworks dealwith conditional probability to build the connectivity betweennodes. Sincemultiple

tests are needed until the best model is found, this method requires a high computational processing capacity

[23]. As for Boolean networks, its interactions are represented by Boolean functions that calculate the state of

a gene by activation of other genes [23]. Since genes can show two states, activated or inactivated, the Boolean

method does not account for intermediate expression thresholds [23].

As for Petri nets, invented by and named after Carl Adam Petri [29], they are a directed bipartite graph

consisting of two types of nodes: places (drawn as circles) and transitions (drawn as rectangles). In the sys-

tem, places represent the conditions whereas transitions represent the actions. Tokens are the system units,

which can pass through the system depending on the pre-defined transitions, if the necessary criteria are

met for the execution of that action [30]. Adaptable, Petri nets allow the representation of large and dynamic

systems in a simple and compartmentalized way, through the modeling of small subprocesses [24]. The net-

work allows the simulation of gain or loss of function, an interesting characteristic in the context of GRN [22,

26]. Additionally, it enables simulations of large networks, an advantage over Bayesian and Boolean networks

[20, 24].

There are several extensions of the basic Petri net formalism that enhance its modeling capabilities. For

example, incorporation of stochastic transitions to represent probabilistic behavior. Functions can be used as

arc weights and transition properties, allowing the modeling of complex dynamic networks [31–33].
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In this context, VANESA [34] is an open-source hybrid modeling, transformation, and simulation environ-

ment for biological networks and Petri nets. It enables the reconstruction of a variety of biological networks.

Supported biological node entities are enzyme, DNA, mRNA, andmiRNA, among others. Biological networks can

be automatically transformed into Petri nets based on a set of customizable user-defined rules with predefined

parameters. This allows the representation of various types of biological systems and their transformation to

meaningful Petri nets. Complex networks can easily be created, manipulated, and visualized within the same

software. Also, simulations can be run, and gain or loss of function can be assessed. Finally, a connected data

warehouse that includes repositories, such as KEGG pathways [35], facilitates further data integration.

Petri nets have been used to represent a variety of biological networks and contexts, both in health and

disease [22, 25, 36–40]. In terms of cardiomyocytes, they have been applied to model cardiomyocytes in pro-

apoptotic signaling pathways [41] and theWnt/𝛽-catenin signaling pathway [42]. As for stemcell’s differentiation,

the haematopoietic GRN was previously modeled [43] to evaluate their self-renewal capacity [44]. In other bio-

logical scenarios,miRNA inhibition have beenmodeled in the epidermal growth factor receptor (EGFR) signaling

pathways [45] and in the context of disease state and treatment [25, 46].

However, to our knowledge, Petri nets were still not applied in the context of cardiomyocyte differentia-

tion, especially in a GRN that addresses post-transcriptional regulation of alternative polyadenilation, polysomal

recruitment, and miRNA targeting.

Here, we have deepened our understanding of the previously constructed post-transcriptional GRNs of

cardiomyogenic differentiation of hESCs [16] by modeling them as biological networks and automatically trans-

formed them to Petri nets using VANESA. All the three stages of cardiomyogenesis were modeled. Starting from

the mesodermal stage (day four – D4P), to progenitor (day nine – D9P), and final day of beating cardiomyocytes

(day fifteen – D15P). The networks were modeled taking into account the expression of alternative polyade-

nilated transcripts and the specific expressed miRNAs that target them. Inhibition of miRNAs was included,

which regulated specific transcript production. Beyond that, we have simulated miRNA knockout and its con-

sequences in the network. Together, the resulted Petri net models of the cardiomyogenesis post-transcriptional

GRN provides a valuable insight into understanding how cardiomyogenesis is finely tuned beyond transcription.

We show that expressed miRNA can influence not only gene targets, but specific alternative isoforms, and this

regulation can be manipulated in silico.

Finally, these models are a versatile tool that can be adapted to other biological contexts. The Petri nets

are particularly relevant in those cases where investigation of miRNA regulation on a transcriptomic level will

benefit from in silicomanipulations of miRNA expression.

2 Materials and methods

2.1 Gene regulatory networks

The post-transcriptional gene regulatory networks that are used for the modeling and simulation of the Petri

nets were previously constructed by our group and are described in more thorough detail in [16].

2.1.1 RNA sequencing analysis

In summary, the transcriptome data that is used to generate the GRN was obtained from the RNA sequencing

followed by polysome profiling of the hESC line hES-NKX2-5eGFP/w differentiation to cardiomyocytes. This was

previously carried out by our group and is fully described in [13].

In detail, hESCs were differentiated to cardiomyocytes. Polysome profiling was carried out at specific time

points of hESCs differentiation: day zero (D0), day one (D1), day four (D4), day nine (D9), and day fifteen (D15).

With this technique, RNA was separated into two fractions: transcripts that are bound to polysomes (P) and the

transcripts that are free from polysomes (L). From the polysome-bound transcripts fraction (P) of all days of

cardiomyogenesis, bulk RNA sequencing was performed, generating the samples D0P, D1P, D4P, D9P, and D15P.



4 — A.F.F. Hansel-Fröse et al.: Petri net modeling of gene regulatory networks of cardiomyogenesis

Reanalysis of the RNA-seq data started with quality control with FastQC [47] and trimming of reads with Trim

Galore (v.0.4.0) [48]. Alignment of reads was done with HISAT2 (v.2.1.0) [49] with the human genome version

GRCh38 and the reads were counted with HTSeq (v.0.11.1) [50]. The differential gene expression analysis was

done with DESeq2 (v.1.24.0) [51], comparing each day of cardiomyogenic differentiation (D1P, D4P, D9P, and D15P)

to the pluripotent stage (D0P). Differentially expressed genes were considered using an adjusted p-value cutoff

of 0.05 and log2FoldChange (log2FC) cutoff of |2|. Normalization of reads to Counts PerMillion (CPM)was carried

out in R (v. 4.2.2.) [52].

2.1.2 Alternative polyadenylation isoforms

The alternative polyadenilation (APA) isoforms and their respective 3′UTR start and end sites were identified

using APAtrap [53] in each sample (D0P, D1P, D4P, D9P, D15P), as detailed in our previous work in [16]. The signif-

icant APA isoforms were considered by the adjusted p-value cutoff of less than 0.05 and percentage difference

greater than 20 percent, which are parameters of APAtrap as provided in [53] (Supplementary Data). Only the

APA isoforms derived from differentially expressed genes were kept.

2.1.3 miRNA targets

The miRNA expression data was obtained from the miRNAome of cardiac differentiation of pluripotent stem

cells with corresponding time points to the samples, obtained by Garate and collaborators [15]. Differentially

expressed miRNAs were filtered considering the cutoff of log2FC of |2| and adjusted p-value of 0.05.

To predict the targets from miRNAs specifically on the 3′UTR sequence of the previously selected APA iso-

forms, first their 3′UTR sequences from the human genome version GRCh38 was retrieved. Then, the human

miRNA seed sites from the repository of miRBase [54] were obtained. The prediction of the miRNA targeting

specifically on the 3′UTR sequence from the APA isoforms was carried out with psRNATarget [55].

2.1.4 Construction of the GRNs

For further investigation, one GRN was created for each day of cardiomyogenic differentiation (D1P, D4P, D9P,

and D15P). However, in D1P, only two genes were differentially expressed and showed differentially expressed

APA isoforms. Therefore, the D1P GRN was not further investigated.

For the other days of differentiation, the nodes of each GRN are the differentially expressed genes, the dif-

ferentially expressed miRNA that targeted the 3′UTR regions, and the specific APA isoforms from the genes. The

edges represent the logical connections between the nodes.

Each node has five attributes: its name, label, start concentration, log2FC, and color. The label defines the

biological type (‘DNA’ for genes, ‘miRNA’ for miRNAs, and ‘mRNA’ for APA isoforms). The start concentration is

the normalized read count as CPM. The log2FC values were included in the corresponding nodes of the graph

object with the label ‘log2FC’. In the case that DNA had more than one mRNA isoform, the isoform that receives

the concentration value is chosen randomly. The gene nodes received a blue color, whilst miRNA nodes received

a purple color. The shade of the node color is set to a value reflecting its log2FC. If the log2FC value is higher than

2 (upregulated), it is set to a dark color code. If it is lower than −2 (downregulated), it is set to a lighter color
code. All transcript isoforms received the default dark navy color.

Similar to the nodes, each edge has a label defining its biological type, which is set to ‘Physical Interaction’.

The data structure for a GRN is a graph object from the R package iGraph [56], which also provides the

function “graph_from_data_frame”. In addition, this package was used to export each GRN as a GraphML file,

which in turn can be imported by VANESA without loss of relevant information.
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2.2 Generation of the Petri nets

Each constructed GRN was imported to VANESA as a biological network for further transformation, simulation,

and analysis. The latest updates to VANESA, released as version v.0.5, were used.

For the investigation of the quantitative temporal behavior of each GRN, it needed to be transformed into

a mathematical formalism that allows for such simulations. For this purpose, each imported biological network

was automatically transformed to a Petri net using four designed transformation rules and the rule-based trans-

formation provided by VANESA. Each Petri net is a functional Petri net (FPN) [57] with inhibitor arcs. FPNs with

inhibitor arcs are a subset of hybrid functional Petri nets (HFPN) [58]. In general, VANESA supports extended

hybrid Petri nets (xHPN) [59], a superset of HFPN, for Petri net modeling, transformation, and simulation.

2.2.1 Design of the transformation rules

Four transformation rules were designed that allowed the transformation of each GRN to a meaningful FPN

with inhibitor arcs. The default values of Petri net elements are: number of start tokens of a discrete place is 0,

delay of a discrete transition is 1, and the regular arcs and inhibitor arcs weight is 1. In the following, the four

transformation rules and their values differing from the default values are described.

The first rule transforms a DNA node to a place which is fed by a transition, as shown in Figure 1A. The arc

weight and the number of start tokens of the place are set to the start concentration of the DNA node.

Figure 1: Transformation rules with the biological pattern on the left side and its Petri net representation on the right side. (A)

Transformation of a DNA node and (B) transformation of a miRNA node. Both nodes are transformed to a place that is fed by a transition.
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Similarly, the second rule transforms the miRNA node to a place that is fed by a transition. The arc weight

and the number of start tokens of the place are set to the start concentration of the miRNA node (Figure 1B).

The third rule represents the inhibition of miRNA over the mRNA isoform (Figure 2A). The mRNA node is

transformed to a transition, and the miRNA node and DNA node are mapped to those discrete places created

by the first and second rule. The miRNA place is connected to the mRNA transition by an inhibitor arc. Further,

the miRNA place and DNA place are connected to a decay transition which is feeding a counter place. The arc

weights of the arcs from and to the decay transition are set to a function that determines the minimum number

of tokens of the miRNA place and DNA place. This function is evaluated during each step of the simulation. The

delay of the mRNA transition is set to 0.7 and the delay of the decay transition is set to 0.1. This ensures that

available miRNA first binds to DNA and only remaining miRNAmight inhibit the mRNA transition. The timeline

of transition firings based on these delays is visualized in Figure 3.

The fourth rule connects the DNA place created by the first rule with the mRNA transition created by the

third rule with a regular arc, as shown in Figure 2B. Further, the transition is feeding a result place, named

GENE_TRANSCRIPT_FINALwhereGENEandTRANSCRIPT are the names of the parent gene (DNA) and transcript

isoform (mRNA), respectively. The arc weights of both arcs are set to the number of tokens of the DNA place, and

this number is evaluated during each step of the simulation.

It is ensured that all constants and functions evaluate to integers greater than zero by rounding up to the

next integer. In addition, it is ensured that arc weights of arcs to a transition evaluate to a number greater than

Figure 2: Transformation rules with the biological pattern on the left side and its Petri net representation on the right side. (A)

Transformation of the inhibition and decay process by an inhibitor arc and a decay transition. (B) Transformation of the production of a

mRNA by a DNA to a result place that is fed by the mRNA transition.
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Figure 3: Section of the Petri net simulation timeline from time-point zero to two, representing the order of transition firings based on

their defined delays.

zero. This is archived by replacing each arc weight function f by max( f , 1) to avoid enabling of transitions with

zero tokens in their pre-places.

Further, if a node of the biological network is represented by a Petri net node, its color code is reflected by

the corresponding Petri net node.

For simplicity in the context of Petri nets, biological nodes that are mapped to Petri net nodes are referred

to by their biological meaning. Hence, a place corresponding to a DNA node is referred to as a DNA place.

2.2.2 Biological interpretation of the Petri nets

Each Petri net model that was automatically created by the transformation represents a GRN during the process

of transcription. Transcripts of the involved DNA and miRNA are generated with a constant speed, given by

their start concentrations, as outlined in the first and second rule. The start concentration of a biological node

thus leads to a constant generation of tokens of its corresponding place in the Petri net. The third rulemodels the

inhibition ofmRNAs. EachmRNA is represented as a transition and thus treated as a process. Those processes are

inhibited by available miRNAs connected to the particular mRNAs by inhibitor arcs. As long as there is miRNA

present, the mRNA transition is not active.

During each step of simulation, first, the minimum of available miRNA and DNA are bound and removed

by the decay transition. The counter keeps track of the number of bound DNA and miRNA for later evaluation.

The functions assigned to the involved arcs as arc weights calculate those minimum values. Once a mRNA is

not inhibited by any connected miRNA, it is active and processes all remaining DNA that is counted for later

evaluation by the result places modeled by the fourth rule. This strict firing order is modeled by the delay of the

involved transitions.

In general, the model assumes that during each step of the simulation: (1) transcripts are generated at a

constant speed, (2) the presence of a single miRNA inhibits a mRNA process entirely, regardless of the number

of connected miRNA and DNA nodes, (3) minimum number of available miRNA and DNA bind and decay first,

and (4) all remaining DNA is then processed by the mRNA process.

2.3 Simulation of the Petri nets

VANESAuses an installation of OpenModelica [60] and the Petri net library PNlib [61] for the Petri net simulation.

The Petri netswere simulated for 20 timeunitswith the following settings: OpenModelica 1.24.4, PNlib 3.0.0, using

a short model name, and 2,000 equations per file. The last two options were necessary to simulate the largest

Petri net, D15P. The simulation of each Petri net for 20 time units was sufficient to observe its temporal behavior.

The interpretation of the simulation results was based on the transcript productions, namely the places

called “GENE_TRANSCRIPT_FINAL” which contained the final number of tokens that were not sufficiently inhib-

ited by the miRNAs and, therefore, would be expressed.

Adjustments of the model can be done by manipulating the biological network before its transformation to

the Petri net is performed. A change of the start concentration of the miRNA or DNA node would for example

reflect loss or gain of expression. Further, the generated Petri net can be adjusted by altering the transformation

rules and by manipulating values of Petri net elements after its generation.
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2.4 Visualization of the Petri nets and their simulation results

The generated Petri nets and their simulation results were visualized in VANESA. The generated Petri net auto-

matically incorporated color coding to indicate transcript expression levels. This allowed quick interpretation

of differential expression fold changes from the previous biological network analysis. The layout used for the

visualization of Petri nets is an implementation of the GEM (short for graph embedder) algorithm [62].

To analyze the simulation of specific and relevant genes from the original biological networks, we focused

on enhancing the visualization of the most relevant places and transitions. To achieve this, Petri net counter

nodes that were not essential for interpretation, were excluded in visualization. The figures were exported by

VANESA as PDF files. The biological networks and their corresponding Petri nets were saved as SBML files and

the simulation results were exported as CSV files. All files are available as Supplementary Material.

3 Results

The results of the Petri net simulations are evaluated based on the accumulation of tokens in relevant places

and compared against the differential expression analysis. First, this section describes the interpretation of the

simulation results in general followed by a detailed analysis of selected network parts.

3.1 Interpretation of the simulation results

For the evaluation of the simulation results, pairs of genes of interest related to cardiomyocyte differentiation

were pre-selected according to the previous research [16] and to common miRNA target regulation. Then, the

gene pairs were evaluated regarding their differential expression fold change (log2FC) coordinated or not to

the accumulation of tokens in the Petri net simulation. Coordinated expression was considered when down-

regulated genes were targeted of upregulated miRNA and showed low accumulation of tokens after simula-

tion. Since differential expression and token values were calculated considering the normalized readcount

from the genes, the low token accumulation output was defined as less than the input token from the same

gene and the interconnected gene. Coordinated expression was also evaluated as true in the inverse case,

when upregulated genes were targeted of downregulated miRNA and resulted in high accumulation of output

tokens. High token accumulation was defined as more than the input token from the same evaluated gene and

its interconnected gene pair. Contradictory evaluation of gene pairs was defined when downregulated genes

showed high accumulation of tokens and when upregulated genes showed low accumulation of tokens after

simulation.

To interpret the miRNA knockout simulation, we considered the simulation of the miRNA knockout suc-

cessful when the result output token from the target transcript was higher than the result output token in a

simulation without miRNA knockout.

3.2 Visualization of the Petri nets

Each GRN of the days D4P, D9P, and D15P was imported to VANESA as a biological network and further automat-

ically transformed to a Petri net by the four defined transformation rules. All elements of the biological network

(DNA, mRNA, and miRNA nodes and edges) were transformed successfully to Petri net elements (places, transi-

tions, and arcs), while maintaining the proper interaction relationship between them, as shown in Figures 4–6.

To analyze the simulation of specific and relevant genes from the original biological networks, we focused

on enhancing the visualization of key locations displaying the final expression simulation results.
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Figure 4: D4P Petri net visualized using the GEM layout. Genes and miRNA are the colored places, whilst transcript isoforms are the

colored transitions. Labels and tokens are omitted for visibility.

Figure 5: D9P Petri net visualized using the GEM layout. Genes and miRNA are the colored places, whilst transcript isoforms are the

colored transitions. Labels and tokens are omitted for visibility.

3.3 Simulation of Petri nets and comparison with differential gene expression

To assess the significance of the modeling of the GRN, its transformation to a Petri net, and its simulation, we

evaluated pairs of selected genes of interest, targeted by common miRNAs. Their relevance was addressed pre-

viously in the GRN of each day of cardiomyogenic differentiation D4P, D9P, and D15P [16]. The simulation results

revealed that many gene pairs and commonmiRNAs exhibited token accumulation patterns consistent with the

previously assessed differential gene expression analysis. In this case, simulationswere categorized as coherent.
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Figure 6: D15P Petri net visualized using the GEM layout. Genes and miRNA are the colored places, whilst transcript isoforms are the

colored transitions. Labels and tokens are omitted for visibility.

However, some gene pairs accumulated more or fewer tokens than expected, indicating inconsistencies when

compared to the differential expression analysis. These results were considered as incoherent.

3.3.1 Coherent token accumulation with the differential expression analysis

The coherent token accumulation regarding the differential expression analysis was observed in all days of

cardiomyogenic differentiation. It was seen not only with genes that shared miRNAs targets in common, but

also in individual genes that did not interconnect in the networks.

First, in D4P, the AASS genewas analyzed. It is also present in the D9P network. In the differential expression

analysis, AASS is less expressed in D4P, presenting a log2FC of −2.99, as shown in Figure 7. All the transcripts

from AASS gene, modeled as transitions, are targeted and inhibited by themiRNA hsa-miR-574-3p, which in turn

is overexpressed with a log2FC of 1.67. Tokens in the place AASS and in themiRNA place are generated at a speed

of 157 and 16 per time unit, respectively.

After 20 time units, all the AASS transcripts showed a result of zero generated tokens, except for the isoform

ENST00000679659 with 20 tokens. The low accumulation of tokens in the simulation corroborates with the dif-

ferential expression analysis in which AASS is less expressed, as it can be seen by the color code of light blue in

the gene place.

Then, in the D9P network, the first connections between genes through commonmiRNA appears. The down-

regulated gene AASS was observed connected with IGFBP7, a gene most expressed in D9P with a log2FC of 3.09.

Both are targeted by the miRNA hsa-miR-1277-3p, which is upregulated with an expression of log2FC equal to
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Figure 7: D4P Petri net, focus on the AASS gene after the simulation. Genes and miRNA are the colored places, whilst transcript isoforms

are the colored transitions.

2.12 (Figure 8). Tokens in the place AASS are generated with a speed of 111, in IGFBP7 with a speed of 90, and in

the miRNA place hsa_miR_1277_3p with a speed of 13 per time unit.

In the final result of the simulation, it was possible to observe the overexpression of IGFBP7 through

the accumulation of 540 tokens of its uniquely detected isoform ENST00000512512. The miRNA hsa-miR-574-

3p, which inhibits AASS in the D4P Petri net (Figure 7), is also present with a constant token generation of

302. On day D9P of cardiomyogenic differentiation, it shows a slightly higher differential expression with a

log2FC of 3.10. The accumulated token counts in both genes and isoforms align with the differential expression

results. IGFBP7, which is more highly expressed, has more final tokens than AASS, which is less expressed in

D9P.

The gene pair MAD2L2 and SEPHS1 showed coordinated token accumulation in both days, D9P and D15P.

First, in D9P, both genes MAD2L2 and SEPHS1 are less expressed, with respective log2FCs of −2.20 and −3.00,
whilst their token generation are 83 and 105 respectively, as shown in Figure 9. The miRNA they share, hsa-miR-

548az-5p, has a constant generation of 1 token, with a low differential expression of log2FC equal to−4.59.
After 20 time units, none of the SEPHS1 transcripts produced any tokens, nor did any isoforms from

MAD2L2. All isoforms from SEPHS1 and MAD2L2 are being targeted by highly expressed miRNA. The isoform

ENST00000376692 is exclusively targeted by a highly expressed miRNA hsa-miR-542-3p, which receives con-

stantly 165 tokens and has a log2FC of 1.47. Since both downregulated genes show zero accumulated tokens,

their simulations were considered corroborating with differential expression analysis.

The same gene pair is present in D15P, with the difference that MAD2L2 shows a lower generation of incom-

ing tokens than in the previous network, with a constant generation of 69 tokens, as shown in Figure 10. The

differential expression still remains low at D15P with log2FC of −2.43. The same pattern is found with the gene
SEPHS1 as its constant token generation of 54 is almost half as many as before and also remains less expressed

with log2FC of −3.95. The common miRNA hsa-miR-548az-5p that interconnects these genes presents the same

values as in the previous network, with a constant token generation of 1 and log2FC of −4.59.
After 20 time units, none of the SEPHS1 transcripts produced tokens at the end, nor did the isoforms

from MAD2L2. Repeating the pattern seen in D9P, here in D15P we also see both downregulated genes show-

ing zero token accumulation. Therefore, the simulation results corroborate with the differential expression

analysis.
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Figure 8: D9P Petri net, focus on the interconnected genes AASS and IGFBP7 through the common target miRNA hsa-miR-1277-3p. Genes

and miRNA are the colored places, whilst transcript isoforms are the colored transitions.

3.3.2 Incoherent token accumulation with the differential expression analysis

In the final days of cardiomyogenesis, some genes did not show an accumulation of tokens coordinated with the

differential expression analysis. This means that either high token sumwas seen in downregulated genes or low

token sum in upregulated genes.

In D15P we have observed the pair of genes BMP7 and AURKB. The gene BMP7 is overexpressed with a

log2FC of 2.92 and a constant token generation of 281. On the other hand, the less expressed gene AURKB shows

a log2FC of −2.20 and a constant token generation of 25, as seen in Figure 11. Both are targets of the common

miRNA hsa-miR-651-5p, which in turn is strongly downregulated with a log2FC of −7.99 and a constant token
generation of 1.

As a result, after 20 time units, only the isoform ENST00000584972 from AURKB generated 480 tokens in

total, whereas the uniquely expressed isoform from BMP7 generated zero tokens. It would be expected that the

most expressed gene BMP7 would show a significant amount of token accumulation. However, no tokens at all

were accumulated after simulation by BMP7. In contrast, AURKB is less expressed than BMP7 in D15P and it

presented more output tokens after simulation. Therefore, the accumulated token results do not corroborate

with the differential expression results.

In the same D15P network, the pair of genes FGFR1 and ALKBH5 are sharing the miRNA hsa-miR-197-3p in

common. While FGFR1 presents low expression with a log2FC of −2.06 and a constant generation of 189 tokens,
ALKBH5 is overexpressed with log2FC of 2.03 and receives 388 tokens constantly (Figure 12). The hsa-miR-197-3p

miRNA is also upregulated with a log2FC of 1.96 and a token generation of 401.
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Figure 9: D9P Petri net, focus on the interconnected genes MAD2L2 and SEPHS1, interconnected through the common target miRNA

hsa-miR-548az-5p. Genes and miRNA are the colored places, whilst transcript isoforms are the colored transitions.

Figure 10: D15P Petri net, focus on the interconnected genes MAD2L2 and SEPHS1, interconnected through the common target miRNA

hsa-miR-548az-5p. Genes and miRNA are the colored places, whilst transcript isoforms are the colored transitions.
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Figure 11: D15P Petri net, focus on the interconnected genes AURKB and BMP7, interconnected through the common target miRNA

hsa-miR-651-5p. Genes and miRNA are the colored places, whilst transcript isoforms are the colored transitions.

After 20 time units, neither isoform from FGFR1 generated any tokens. The zero token generation from

downregulated gene FGFR1 corroborates with the differential expression reference. However, despite ALKBH5

being highly expressed in D15P, it also presented zero token accumulation in its uniquely expressed isoform.

Therefore, for this pair of genes, the simulation results does not corroborate with the gene expression analysis.

3.3.3 miRNA knockout simulation

To simulate the knockout of miRNA, we observed the gene IGFBP7 in D15P. This gene was already present in the

previous Petri net of D9P. First, we assessed the normal simulation of the gene, without removing the inhibition

by the miRNAs. In D15P, IGFBP7 is upregulated with log2FC of 4.15, and a constant token generation of 179, as

shown in Figure 13. Its uniquely expressed isoform ENST00000512512 is the target of two upregulated miRNAs,

hsa-miR-1277-3p that shows log2FC of 2.12 and a constant token generation of 13, and hsa-miR-24-1-5p with log2FC

of 3.86 and a constant token generation of 50.

In normal settings, after 20 time units, the IGFBP7’s only transcript generated 2,320 tokens. Thus, the high

tokenaccumulation corroborateswith the expression analysis, since IGFBP7 is upregulated. To simulate amiRNA

knockout, the constant token generation of the miRNA hsa-miR-24-1-5p is reconfigured to zero by deactivating

its feeding transition. After rerun of 20 step simulation, the accumulated output tokens of the transcript of

IGFBP7 increased to 3,320 tokens, as shown in Figure 14. The increase of tokens from the targeted transcript

is an expected outcome. Since miRNA regulation inhibits the target transcripts, if such miRNA is itself sup-

pressed, then the targeted transcript can be expressed. Therefore, the knockout simulation corroborates with

the inhibition of a miRNA.
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Figure 12: D15P Petri net, focus on the pair of genes ALKBH5 and FGFR1, interconnected through the common target miRNA

hsa-miR-197-3p. Genes and miRNA are the colored places, whilst transcript isoforms are the colored transitions.

Figure 13: Simulation of the IGFBP7 gene in the D15P Petri net.
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Figure 14: Simulation of the IGFBP7 gene after the miRNA hsa-miR-24-1-5p knockout in the D15P Petri net.

4 Discussion

4.1 Modeling of GRNs as Petri nets

Complex biological systems can be investigated with more detail through the construction of networks in order

to elucidate the interactions between the genes. Computational approaches to model said networks enhance

their understanding by investigating a substantial amount of data to pinpoint the relevant gene regulations

[19, 20]. Furthermore, an in silico oriented investigation through network modeling allows the simulation of

gene expression manipulation prior to conducting in vitro experiments, which then can be focused on relevant

predicted signaling [21, 22].

The software VANESA enables the intuitivemodeling and visualization of biological networks, themodeling

and simulation of Petri nets, and the rule-based transformation of biological networks to Petri nets.

Gene expression canbe regulated by othermeans thatwere not accounted for during the construction of our

GRNs, including lncRNAs and transcription factors (TFs). Through the presence of miRNA binding sites, lncRNAs

can act as miRNA sponges, capturing the miRNAs and preventing interactions with their mRNA targets and thus

hindering its inhibitory activity [63]. In this way, lncRNAs compete with other target transcripts, reducing the

regulatory ability of miRNA on their original targets [63]. Therefore, lncRNAs could alter the simulation and

construction of the present regulatory network. Previous work by our group has already shown that there is

extensive lncRNA expression throughout the cardiomyogenesis differentiation of hESCs [14] and they can play

an important role in the cardiomyocyte cell cycle [64].

Here, we have searched for miRNA regulations related to the APA modification, specifically on the 3′UTR

of coding mRNAs, which is exclusive of mRNAs. As lncRNAs do not typically have a 3′UTR, they were initially

excluded from the miRNA target identification. However, inclusion of known lncRNA target information, espe-

cially in the context of the heart development, could greatly improve our GRN models and corresponding Petri

nets to consider this extra layer of regulation [64].

Other relevantmolecules thatwere not investigated in ourGRNs are TFs,which are regulatory elements that

bind to specific DNA sequences, enabling their control of gene transcription rate [65]. TFs are known to be key

players in gene expression and in processes such as stem cell development and differentiation [65]. Moreover,

there are TFs that regulatemore than one gene,which could be interesting tomodel in a network. In thismanner,

taking TFs into account in our GRNs could help to determine the activation strength of the genes present in the

network. Consequently, the gene’s expression could be fine-tuned in the GRNs and generated Petri nets. These

factors are also important for the regulation of cardiomyocytes proliferation [66] and stem cell pluripotency

[67]. Therefore, their inclusion in this present network could greatly enhance the analysis. Other relevant post-

transcriptional regulations, such as RNA half-life [68] and inhibition capacity of eachmiRNAmolecule, were not
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modeled in our GRNs. However, we were able to illustrate the regulation of miRNAs on their targets in a more

dynamic way than traditional GRNs.

4.2 Petri net simulations

The aim of a network simulation is to predict real data [21, 22, 25]. Therefore, it was expected that overexpressed

genes would generate more result tokens than genes that were not highly expressed. Similar to a previous study

which compared two factors between each other in order to validate the simulation [22], here, we have also

selected relevant pairs of genes to evaluate the simulation result according to their differential expressions. We

have selected the genes due to theirmiRNAs in commonand to their relevance to cardiomyogenic differentiation.

Many genes that are relevant for cardiomyocyte differentiation showed coherent simulation results with

expression analysis. In the first network, D4P, the downregulated gene AASS showed a low accumulation of

tokens after simulation. Then, in the ninth day of differentiation, the gene IGFBP7 was observed interacting

with AASS through a common miRNA, hsa-miR-1277-3p. In the final cardiomyocyte stage, IGFBP7 was not seen

interacting with any other gene, apart from the miRNA. In both networks, D9P and D15P, the upregulation of

IGFBP7 could be validated by the higher accumulation of tokens in its unique transcript. In fact, IGFBP7’s only

expressed transcript generated more than 2,000 tokens in D15P. These network results corroborate previous

work that confirmed the expression of IGFBP7 in vitro in cardiomyocytes [69]. It is interesting how the same set

of genes are present in each stage of cardiomyogenesis, despite showing different interactions.

In another example, the downregulated gene SEPHS1, targeted by 9 miRNAs, generated zero tokens after

the simulation, not only in the D9P network, but also in D15P. In both networks, it was interacting with MAD2L2

through the commonmiRNA hsa-miR-548az-5p. MAD2L2 also showed zero token accumulation after simulation.

The pattern of token accumulation of both genes was compatible with their low expression in the last two stages

of cardiomyogenesis. This observation also aligns with previous work where the deficiency of SEPHS1 is asso-

ciated with cardiac development [70]. Furthermore, SEPHS1 was targeted by two interesting miRNAs: first, the

highly expressed hsa-let-7e-5p, a miRNA from the let-7 family, which is essential for cardiomyocyte maturation

[71, 72] and second, the hsa-mir-302d-3p, a miRNAwhich is known to participate in the proliferation of stem cells

that derive into cardiomyocytes [73].

However, there were simulation results which did not match what was found in the differential expression.

In D15P, the downregulated geneAURKB generatedmore output tokens than the upregulated gene BMP7. BMP7 is

known to be important for cardiomyogenic development [74] and togetherwith FGFR1 it assists in differentiation

to cardiomyocytes [75]. Meanwhile, AURKB is expected to be less expressed in differentiated cardiomyocytes,

since its expression is associated with their proliferation [76].

Also in the D15P network, the gene FGFR1 showed inconsistent simulation results while interacting with

ALKBH5 through a common miRNA. Even though FGFR1 was less expressed and showed zero token accumu-

lation, its interacting gene ALKBH5 showed contradictory results. Despite being upregulated in D15P, the only

transcript from ALKBH5 accumulated zero output tokens. The relationship of FGFR1 and ALKBH5 through the

sharing of the miRNA hsa-miR-197-3p has been observed previously, as seen in the experimentally validated

database StarBase [77]. Additionally, it is known that suppression of FGFR1 is important for cardiomyogenic

differentiation [75]. The gene ALKBH5 plays an important role in epigenetic modification by encoding for a

demethylase thatmodifiesN(6)-methyladenosine (m6A) onRNA [78]. It is an essential process even in cardiomyo-

genesis, as its overexpression induces cardiac regeneration and cardiomyocyte proliferation [79]. Since we have

investigated gene expressions, chromatinmodifications were not taken into account. Thus, in the context of car-

diomyogenesis, this gene pair is a good candidate for refinement of the Petri net models to achieve congruent

simulation results.

In thismanner, rather than expecting all the simulation results to be in agreement across the entire network,

the interpretation of simulation results should pay attention to the groups of genes that are relevant to each other

[22, 25]. Otherwork has also interpreted the Petri net sublevels or clusters, evaluating groups of genes that would

integrate a specific pathway [37]. Furthermore, it is also important to note that supplementary experiments are

needed to confirm the simulation results of specific pairs of genes [22]. Many works have focused on only a
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selected regulatory pathway that comprises a limited number of genes and/or cytokines [41, 44]. In contrast,

we have generated three Petri nets with 64, 329, and 543 places each. The largest network, D15P, consists of 543

places, 543 transitions, and 1,471 edges. A small margin of incongruence of the simulation results is expected due

to the size of the models, as fewer nodes have the advantage of being more accurate [20]. In other words, the

more complex the gene regulatory network, the more difficult it is to build an accurate model [20]. In addition,

the concentrations of the genes and miRNAs were obtained from bulk RNA-sequencing, which evaluates the

behavior of a population of cells. Variations and fluctuations are inherent to biological diversity, which can also

hinder the accuracy of the model [20].

The incongruence of the models with in vitro experiments can also indicate missing information in the

known biological network. This is a hypothesis that should be investigated further, especially in the case of

ALKBH5 and FGFR1 due to their notorious role in cardiomyogenesis [75, 79]. Interesting to notice is that ALKBH5

is an upregulated gene in the GRN of D15, even though it is targeted by 13 miRNAs, two of them highly expressed.

There could be a missing key player that suppresses inhibition of these miRNAs. The work of Bonzanni and col-

laborators showed that the Petri net modeling of the haematopoietic differentiation was indicating a missing

repression of a gene, which was not accounted for in experimental evidence [43]. Thus, due to some contradic-

tory results obtained by the simulations, it could indicate that regulatory elements might also be missing in our

model. Other processes, such as molecular degradation, might also play a role, especially in the context of RNA

half-life [68]. This case has been considered in a Petri net model of stem cell self-renewal network [44] and could

be investigated further.

Finally, we have also performed amiRNA knockout simulation that targets the gene IGFBP7 and its uniquely

expressed isoform ENST00000512512. Since themiRNA inhibits the expression of their target gene, it is predicted

that its absencewill lead to a higher expression of its target. As expected, the absence of inhibition of the hsa-miR-

24-1-5pmiRNA resulted in a greater number of tokens generated by the IGFBP7 transcript. As alreadymentioned,

the expression of IGFBP7 in cardiomyocytes was previously confirmed in vitro [69]. ThemiRNA knockout is an in

silico approach that could contribute to the investigation of these key players in the context of cardiomyogenesis.

Moreover, we have chosen to simulate a knockout situation, but other works have successfully used anti-miRNA

approaches to suppress the miRNA expression in the Petri net model [45]. It is also possible to increase the con-

centration of any node in the biological network, modeling the overexpression of a gene, transcript, or miRNA.

A higher start concentration of either IGFBP7 or target miRNAs could show different simulation outcomes. This

illustrates the possibilities of gene expression manipulation in our cardiomyogenic differentiation Petri nets.

4.3 Application of the model

The systems biology approach of transforming a biological network into a computational model for simulation

and analysis can have different aims, fromunderstanding the processes to predict behaviors of the elements due

to modifications [20]. In the medical field, this can be translated into a variety of objectives, recently thoroughly

reviewed [80]: first, models can elucidate dysfunctional processes in disease and cancer [20, 25, 37], second,

disease models can reveal the effect of drugs and treatments [46], and third, models can be used to predict apop-

tosis [41] or mortality [81]. However, before investigating disrupted gene regulation in the context of disease, it

is essential to understand how the steady-state is supposed to be. Thus, models of well-studied and established

signaling pathways need to be thoroughly constructed and validated [36, 40] before they can be disrupted. In

regenerative medicine, stem cells stand out in the field by their intrinsic capacity of self-renewal and differ-

entiation [6]. Thus, they could be used to recolonize, regenerate, and/or repopulate damaged tissues [3]. The

differentiation process of stem cells has been modeled as Petri nets before, particularly in angiogenesis and

hematopoiesis [43, 44, 82]. To our knowledge, however, Petri net modeling in the context of cardiomyogenesis

has not been done, yet.

Prior, we have shown that not only genes, but also miRNAs and their specific targets over the alternative

polyadenilated isoformsplayed an important role in the differentiation process of stemcells into cardiomyocytes

[16]. Following these findings, we have transformed the GRNs to Petri nets, allowing further applications:
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First, it enables investigating the functional orchestration of transcripts that successfully differentiate stem

cells into cardiomyocytes from a holistic point of view. New interactions between genes through miRNAs can

be observed. Possible role of known genes [82] or missing regulation elements can be hypothesized, due to

unexpected simulation results [43].

Second, it facilitatesmanipulation of gene expression, in the case of knockout or overexpression. This proves

a valuable tool for those interested in cardiomyogenesis and/or themiRNA regulation over alternative isoforms.

Instead of immediately studying the cardiomyocyte differentiation process in vitro, one can use the modeled

GRNs and generated Petri nets to optimize concentrations, knockout miRNAs or even to overexpress genes. Not

only prediction of in vitro results is expected, but also various benefits for the research, such as reduction of

animal usage, reagents, financial costs, and time [20, 40]. Experimental design can be planned ahead using the

computational models before in vitro validation.

Finally, consequences of thementioned investigations can contribute to thefield of regenerativemedicine. A

better understanding and control over how stem cells differentiate to cardiomyocytes is a step forward towards

the application of these cells in the context of cardiovascular diseases [4].

4.4 Improvement of the model

Due to some inconsistent simulation results, as previously stated,we believe that ourmodel can still be improved

in a number of ways. Quantification at the transcript level by long-read RNA sequencing [83] would enablemore

precision in the expressed isoform identification and consequently improve the simulation results. Normaliza-

tion of the read counts for gene length in addition to library size could reduce quantification noise [84]. The

evaluation of simulation results could be validated with significance analysis of concentration changes [45, 46]

or considering constant transition and place invariants [37]. The inclusion of new categories of nodes, such as

TFs and lncRNAs, to the models could help to fine-tune the representation of transcript expression and miRNA

inhibition. VANESA already provides modeling of lncRNAs and TFs in biological networks, which allows the

implementation of these elements to improve the network. The miRNA-sponge activity of lncRNAs and regu-

latory effect of TFs could be represented in the set of transformation rules in VANESA. Thus, it is possible to

enhance the presented initial GRNs resulting in more complex and sophisticated models.

Given the simplicity of the network compared to the complex cellular environment, which includes several

other factors influencing post-transcriptional regulation, it would be interesting to enhance the Petri net models

by such factors. One potential approach is to incorporate probabilistic behavior by using stochastic transitions,

a methodology that has been successfully implemented in a biological Petri net in the past [22]. In detail, a prob-

ability distribution is assigned to each stochastic transition to determine its delay. Thus, each transition has to

wait a random amount of time until it can fire again, instead of a constant amount of time. Assigning random

delays to the transitions involved in the inhibition of miRNAs could help to refine their processes.

Further, a GRN could represent continuous behavior, such as transcription rates given as functions, once

sufficient data about the processes is available. Such a GRN could then be transformed to a hybrid Petri net

reflecting not only discrete but also continuous behavior. VANESA supports transformation to, modeling of, and

simulation of hybrid Petri nets with stochastic transitions given its implemented xHPN formalism.

5 Conclusions

The use of Petri nets proved to be a good strategy for modeling and simulating the GRNs previously constructed

through a holistic point of view. Interactions between genes and miRNAs identified in in silico experiments

could be observed in the networks and were usually in agreement with the simulation results. Here, we have

modeled post-transcriptional GRNs with a specific miRNA regulation on APA isoforms, transformed them auto-

matically into Petri nets, and simulated a miRNA knockout, providing a dynamic point of view of the process of

cardiomyogenic differentiation of hESCs.
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Naturally, there is still potential for improvements. The comparison between the model’s prediction with

the experimental data can indicate whether the model is adequate or needs to be revised if incoherent results

are found [23]. The models representing post-transcriptional regulation during cardiomyogenic differentiation

alignwith the initial differential expression analysis and the existing literature. However, as demonstrated here,

the effectiveness depends on the specific genes being evaluated. The simulation results were best interpreted

regarding relevant pairs of genes and sharedmiRNAswhose interaction have already been observed experimen-

tally. This in silico analysis allowed us to understand biological phenomena faster than linear and experimental

in vitromethods, since they require a greater amount of time and resources to analyze a large number of gene

interactions compared to computational models [20].

The modeling of the post-transcriptional GRNs of differentiating cardiomyocytes helps to elucidate the

dynamic interplay between the transcripts during cardiomyogenesis, considering not only their concomitant

interactions but also the simulation of their expressions. Prospects for these models are varied, such as the

inclusion of additional elements, e.g., lncRNAs, TFs, transcript-level quantification, and in vitro validation of the

simulated miRNA knockout.

6 Supplementary material

All of the necessary data to reproduce the figures of this article are publicly available in the following resource:

https://doi.org/10.5281/zenodo.15190369. The biological networks and the Petri nets of all the days of cardiomyo-

genesis are available, as well as the set of rules needed to transform the GRN to Petri nets, all the simulation

results and the adapted miRNA knockout network. Additional information on how to install VANESA, visualize

the GRN, transform the Petri nets and upload the simulation results is provided.
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