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Abstract: Crop plant breeding involves selecting and developing new plant varieties with desirable traits such

as increased yield, improved disease resistance, and enhanced nutritional value. With the development of high-

throughput technologies, such as genomics, transcriptomics, and metabolomics, crop breeding has entered a

new era. However, to effectively use these technologies, integration ofmulti-omics data from different databases

is required. Integration of omics data provides a comprehensive understanding of the biological processes

underlying plant traits and their interactions. This review highlights the importance of integrating omics

databases in crop plant breeding, discusses available omics data anddatabases, describes integration challenges,

and highlights recent developments and potential benefits. Taken together, the integration of omics databases is

a critical step towards enhancing crop plant breeding and improving global food security.
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1 Introduction

Crop plant breeding is a complex and challenging process that requires the identification and selection of

desirable traits such as increased yield [1], improved disease resistance [2], and enhanced nutritional value

[3]. Over the years, traditional breeding methods have been used to develop new plant varieties by crossing

plants with desirable traits to produce offspring with improved traits [4–6]. However, these methods are time-

consuming and often limited by the genetic diversity of available plant species. In recent years, the emergence of
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high-throughput omics technologies has revolutionized crop plant breeding by providing vast amounts of data

on the molecular mechanisms underlying plant development [7], and responses to environmental stresses [8].

Genomics is essential in crop breeding, allowing the identification of important genetic traits and accelerating

the development of improved varieties. The number of sequenced crop genomes has continued to rapidly grow

in recent years (Figure 1A), providing valuable resources for agricultural research. Additionally, epigenomics

and transcriptomics have become increasingly important in crop breeding, providing insights into gene regula-

tion and aiding in the identification of desirable traits [9, 10]. The SRA database has seen a continuous increase

in epigenomic and transcriptomic data, further emphasizing the significance of these fields for crop breeding

(Figure 1B). Proteomics and metabolomics have continued to develop in crop breeding, allowing for a deeper

understanding of plant molecular mechanisms [11, 12].

These technologies have enabled the identification of key genes and pathways involved in crop traits, allow-

ing breeders to select and develop new plant varieties with desirable traits more efficiently [4–6]. In recent

years, there has been a significant increase in literature focused on the application of omics technologies in crop

breeding (Figure 1C), highlighting the growing importance of these approaches in agricultural research. How-

ever, the effective use of omics technologies in crop plant breeding requires the integration of diverse datasets

fromdifferent databases. Integration of omics data is crucial in providing a comprehensive understanding of the

biological processes underlying plant traits and their interactions. In recent years, several omics databases have

been developed to store and analyze large-scale omics data for different crop species, including rice (Table 1),

maize [13], wheat [14], and soybean [15]. These databases provide awealth of information on the geneticmakeup,

epigenome regulation, gene expression profiles, protein functions, and metabolic pathways of crops, which can

be used to improve breeding programs.

The integration of omics databases can provide several benefits to crop plant breeding. Firstly, it can help

to identify novel gene targets that are associated with desirable traits [30]. This can be achieved by integrating

genomic, epigenomic, transcriptomic, proteomic, and metabolomic data to identify genes that are differentially

expressed or are involved in keymetabolic pathways. Secondly, it can help to develop predictivemodels for crop

performance by integrating different omics data and environmental factors. Thesemodels can be used to predict

the performance of newplant varieties under different environmental conditions and select the best performing

varieties for further development [31]. Furthermore, the integration of omics databases can accelerate breeding

cycles by providing breeders with a better understanding of the molecular mechanisms underlying crop traits

[32]. This can help to reduce the time and cost required to develop new plant varieties with desirable traits.

Finally, it can help to improve global food security by providing breeders with the tools and resources needed

to develop new crop varieties that are more resilient to environmental stresses and can produce higher yields

[33].

In this review, we aim to highlight the importance of integrating omics databases in crop plant breeding

and discuss the current state of integration efforts. We will begin by discussing the different types of omics data

available for crop plants, including genomic, epigenomic, transcriptomic, proteomic, andmetabolomic data. We

will then review the different databases that host these omics data and describe their features, strengths, and

limitations. Next, we will discuss the challenges associated with integrating omics databases, such as data het-

erogeneity, scalability, and interoperability. Then, we will highlight some of the recent developments in omics

data integration in crop plant breeding and the potential benefits of these efforts. Finally, we will discuss the use

of machine learning algorithms and network analysis tools to integrate omics data and identify key genes and

pathways associated with desirable traits. Overall, the integration of omics databases is a critical step towards

enhancing crop plant breeding and improving global food security. The use of omics technologies and databases

can provide breeders with the tools and resources needed to develop new crop varieties with desirable traits

more efficiently and sustainably. The integration of omics databases is a rapidly evolving field, and future devel-

opments in this area are expected to further enhance our ability to develop crops that are more productive,

resilient, and sustainable.
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Figure 1: Statistics of land plant omics data and literature. (A) The number of completed genome assemblies for land plants. The data

was downloaded from NCBI GENOME REPORTS, which filtered all genomes with the “land plants” tag and a genome size of less than

100 Mb. (B) The amount of epigenomic and transcriptomic data generated from land plants. The number of each omics sample was

searched in the NCBI SRA database using a query such as “(((land plants [organism]) AND 2023)) AND RNA-seq [strategy]”. The sample

size of “RNA-Seq” is the result after being reduced by 20 times. (C) The number of literatures on land plant omics research. The literature

count was searched in the PubMed database by “omics plant” or “omics crop”.
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Table 1: Statistics of rice omics database.

Database name Omics type Number of

accessions

Released

year

Link Ref.

RAP-DB Genome 1 2006 https://rapdb.dna.affrc.go.jp [16]

BGI-RIS Genome 1 2007 http://rice.genomics.org.cn [17]

RGAP Genome 1 2005 http://rice.uga.edu [18]

RIGW Genome 2 2020 http://rice.hzau.edu.cn/rice_rs3 [19]

RGI Genome 16 2023 https://riceome.hzau.edu.cn [20]

RPAN Genome 3010 2016 https://cgm.sjtu.edu.cn/3kricedb [21]

RiceENCODE Epigenome 972 2021 http://glab.hzau.edu.cn/RiceENCODE [22]

RiceXPro Transcriptome 194 2011 https://ricexpro.dna.affrc.go.jp [23]

RED Transcriptome 284 2017 http://expression.ic4r.org [24]

PPRD Transcriptome 11,726 2022 https://plantrnadb.com/ricerna [25]

RPMD Proteome 38 2004 http://www.info.chi-biotech.cc [26]

RKD Proteome 1429 2007 https://ricephylogenomics.ucdavis.edu [27]

MCDRP Proteome 2400 2013 http://www.genomeindia.org/biocuration [28]

RiceCyc Metabolome 316 2013 http://pathway.gramene.org/gramene [29]

2 Omics data and databases for crop plants

Crop plants are complex organisms that have undergone natural selection and human domestication. Omics

technologies provide a powerful tool for investigating the genetic and molecular mechanisms underlying plant

growth, development, and responses to environmental stresses [30, 31]. With the decreasing cost of high-

throughput sequencing, an increasing amount of molecular information on crops is being obtained. This has

led to the rapid establishment of large public databases for the sharing of bioinformatics data in various coun-

tries, such as the National Genomics Data Center (NGDC) [34], the National Center for Biotechnology Informa-

tion (NCBI) [35], the DNA Data Bank of Japan (DDBJ) [36], and the European Bioinformatics Institute (EBI) [37]

(Figure 2A).

Through omics data, crop shape can be improved, including increasing yield, enhancing the root system’s

nutrient uptake ability, improving plant adaptability to the environment, resistance to adversity, and flavor,

among other things (Figure 2B). With the expansion of biological big data, more and more secondary databases

have been established to better integrate and analyzemulti-omics data, thereby explaining themolecular mech-

anisms of crops at different levels (Figure 2C). In this article, we will first introduce the five main types of omics

data commonly used in crop plant research: genomic, epigenomic, transcriptomic, proteomic, andmetabolomic

data.

Genomic information has proven to be an invaluable tool for crop improvement [38]. The identification

of genes responsible for desirable traits such as resistance to diseases or high yield is facilitated by genomic

data. The use of genomic databases such as NCBI Assembly [39], Genome Warehouse [40], EnsemblPlants [41],

Phytozome [42], and PlantGDB [43] provides access to genome sequences, gene annotations, and functional anno-

tations for many crop species, including rice, maize, soybean, wheat, and so on (Table 2). This information can

help researchers developmolecularmarkers and breeding programs that produce improved crop varieties with

enhanced characteristics. Furthermore, genomics can aid in understanding the evolution and domestication of

crops, which can have implications for their conservation and management. Therefore, genomics is the cor-

nerstone of omics research. Overall, genomics has the potential to transform agriculture by improving crop

productivity, sustainability, and resilience, contributing to global food security.

Epigenomic data can be integrated with other omics data to gain a more comprehensive understanding

of the underlying biological processes. For example, integrating epigenomic data with transcriptomic data can

provide insights into how changes in chromatin structure affect gene expression [57]. This can help identify key

https://rapdb.dna.affrc.go.jp
http://rice.genomics.org.cn
http://rice.uga.edu
http://rice.hzau.edu.cn/rice_rs3
https://riceome.hzau.edu.cn
https://cgm.sjtu.edu.cn/3kricedb
http://glab.hzau.edu.cn/RiceENCODE
https://ricexpro.dna.affrc.go.jp
http://expression.ic4r.org
https://plantrnadb.com/ricerna
http://www.info.chi-biotech.cc
https://ricephylogenomics.ucdavis.edu
http://www.genomeindia.org/biocuration
http://pathway.gramene.org/gramene
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Figure 2: Generation, storage, mining, and integration of crop omics data. (A) Generation and storage of omics data in public databases.

(B) Applications of five omics technologies (genomic, epigenomic, transcriptomic, proteomic, and metabolomic data) in crop breeding. (C)

Construction of a secondary database based on mining of multi-omics data.

regulatory genes and pathways that can be targeted in crop breeding programs. Despite its potential, integrat-

ing epigenomic data poses unique challenges due to the complex nature of epigenetic modifications and the

difficulty in accurately measuring them. However, recent advancements in high-throughput epigenomic tech-

nologies, such as ATAC-Seq [58], ChIP-seq [59] and BS-Seq [60], have made it possible to generate large amounts

of epigenomic data in a cost-effective and efficient manner. Currently, there are Encyclopedia of DNA Elements

(ENCODE) projects for human and mouse, but as yet there is no well-defined project for plants. In 2014, the
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Table 2: Statistics of comprehensive omics databases about plants.

Database name Omics type Number of

accessions

Released

year

Link Ref.

Assembly Genome 2662 2016 https://www.ncbi.nlm.nih.gov/assembly [39]

GWH Genome 1358 2021 https://ngdc.cncb.ac.cn/gwh [40]

Phytozome Genome 312 2012 https://phytozome-next.jgi.doe.gov [42]

PlantGDB Genome 187 2004 http://plantgdb.org [43]

EnsemblPlants Genome 134 2002 https://plants.ensembl.org/index.html [41]

ChIP-Hub Epigenome >10,000 2022 https://biobigdata.nju.edu.cn/ChIPHub [44]

PlantCADB Epigenome 649 2022 https://bioinfor.nefu.edu.cn/PlantCADB [45]

PlantExp Transcriptome 131,423 2023 https://biotec.njau.edu.cn/plantExp [46]

PPRD Transcriptome ∼45,000 2022 http://ipf.sustech.edu.cn/pub/plantrna [25]

Genevestigator Transcriptome >250,000 2006 https://genevestigator.com [47]

ePlant Transcriptome >10,000 2005 http://bar.utoronto.ca [48]

PlantGenIE Transcriptome 35,533 2015 https://plantgenie.org [49]

PsctH Transcriptome 20 2021 http://jinlab.hzau.edu.cn/PsctH [50]

PlantscRNAdb Transcriptome 31 2021 http://ibi.zju.edu.cn/plantscrnadb [51]

PCMDB Transcriptome 22 2022 http://www.tobaccodb.org/pcmdb [52]

PPDB Proteome >5000 2004 http://ppdb.tc.cornell.edu [53]

PlantPReS Proteome >20,000 2016 http://www.proteome.ir/ [54]

PMN Metabolome 9129 2021 https://plantcyc.org [55]

MetaCrop Metabolome 392 2008 https://metacrop.ipk-gatersleben.de [56]

international plant science community launched the Plant ENCODE project [61]. Since then, with the efforts

of plant researchers worldwide, several ENCODE databases for various plant species have been established

(Table 2), including RiceENCODE, which provides an important platform for studying the epigenome, genetic

mechanisms, tissue specificity of rice. Additionally, FruitENCODE [62] has obtained various functional genomic

data for 11 fleshy fruits, laying the groundwork for understanding the molecular regulation of fruit ripening.

Moreover, comprehensive plant regulome databases called ChIP-Hub [44] and PlantCADB [45] also has been

constructed (Table 2). In conclusion, incorporating epigenomic data into omics-based approaches can further

enhance crop plant breeding by providing a more comprehensive understanding of the biological processes

underlying desirable traits. By integrating diverse omics datasets, researchers can identify key regulatory genes

and pathways that can be targeted to develop new plant varieties with improved yield, disease resistance, and

nutritional value.

Transcriptomic data is crucial in advancing crop breeding by providing crucial insights into gene expression

patterns in different tissues and under varying conditions. In addition to identifying differentially expressed

genes, transcriptomic data can help researchers to understand the complex regulatory networks that control

gene expression, including the involvement of non-coding RNAs (ncRNAs) such as long non-coding RNAs (lncR-

NAs) and microRNAs (miRNAs) [63]. These ncRNAs have emerged as important players in gene regulation and

can significantly influence crop traits and responses to environmental stimuli. Besides, single-cell transcrip-

tomic analysis is an emerging technology that allows researchers to study gene expression patterns at the level

of individual cells [64]. This technology has revolutionized the field of transcriptomics, enabling researchers to

identify rare cell types, map developmental trajectories, and uncover novel gene expression patterns that are

masked in bulk transcriptomic analyses. By applying single-cell transcriptomics to crop plants, researchers can

gain a more comprehensive understanding of gene expression patterns in different cell types and tissues, and

the molecular mechanisms that govern crop growth and development. To access bulk transcriptomic data for

crop plants, researchers can use established databases such as PlantExp [46], PPRD [25], Genevestigator [47],

ePlant [48], and PlantGenIE [49], which provide a variety of transcriptomic data sets for different crop species

(Table 2) Besides, with the widespread application of single-cell transcriptomic technology in plants, databases

focused on plant single-cell transcriptomics, such as PsctH [50], PlantscRNAdb [51], and PCMDB [52] have been

https://www.ncbi.nlm.nih.gov/assembly
https://ngdc.cncb.ac.cn/gwh
https://phytozome-next.jgi.doe.gov
http://plantgdb.org
https://plants.ensembl.org/index.html
https://biobigdata.nju.edu.cn/ChIPHub
https://bioinfor.nefu.edu.cn/PlantCADB
https://biotec.njau.edu.cn/plantExp
http://ipf.sustech.edu.cn/pub/plantrna
https://genevestigator.com
http://bar.utoronto.ca
https://plantgenie.org
http://jinlab.hzau.edu.cn/PsctH
http://ibi.zju.edu.cn/plantscrnadb
http://www.tobaccodb.org/pcmdb
http://ppdb.tc.cornell.edu
http://www.proteome.ir/
https://plantcyc.org
https://metacrop.ipk-gatersleben.de
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established successively (Table 2). These databases are critical resources that enable researchers to explore gene

expression patterns across different tissues and under varying conditions. The availability of transcriptomic

data sets from different crop species and tissues has greatly facilitated the identification of candidate genes

and pathways for crop improvement, thereby enabling the development of more productive and resilient crop

varieties.

Proteomic data is a valuable tool for understanding the protein content and function of crop plants. By

using proteomic data, researchers can identify proteins involved in critical metabolic pathways or associated

with specific traits. The Plant Proteome Database (PPDB) [53], Plant stress proteome database (PlantPReS) [54],

Rice Proteome Database (RPD) [65], Soybean Proteome Database (SPD) [66], are among the most commonly used

proteomic databases for crop plants (Table 2), providing access to proteomic datasets for various crop species,

including protein sequences, structures, and functional annotations. Proteomics plays a critical role in crop sci-

ence research, as it provides researchers with a comprehensive view of the protein content of crop plants. This

information can be used to improve crop yield and quality, increase stress tolerance, and develop new crop

varieties with improved traits. For example, proteomic data has been used to identify proteins associated with

abiotic stress responses, such as drought or salinity [67], and to identify proteins involved in plant-microbe inter-

actions [68], such as those associated with disease resistance. In addition, proteomic data can be used to identify

proteins associated with specific crop traits, such as those related to nutritional value or flavor. This informa-

tion can be used to develop crops with enhanced nutritional content or improved flavor profiles [69], which

can increase their value to consumers. Looking forward, proteomics will continue to play an important role

in crop science research, as new technologies and methods are developed to analyze and interpret proteomic

data. These advances will allow researchers to gain a more detailed understanding of the protein content and

function of crop plants, which can be used to develop new crop varieties that aremore resilient, productive, and

sustainable.

Metabolomics is a powerful tool for investigating the genetic basis ofmetabolic variation, providing insights

into the complex biochemical cascades that connect the genome, transcriptome, andproteome to phenotype [70].

By analyzing a wide range of sample types, including primary cells, tissues, biofluids, and entire organisms,

metabolomics can determine the relative and absolute amounts of various metabolites, such as sugars, lipids,

amino acids, and nucleotides. In crop science research, metabolomics is also an important tool that offers a com-

prehensive view of the metabolite content and function of crop plants. Using metabolomics data, researchers

can identify metabolites that are involved in critical metabolic pathways or associated with specific traits in

crops [71]. Several commonly used metabolomic databases for crop plants include Plant Metabolic Network

(PMN) [55], and MetaCrop [56], a detailed database of crop plant metabolism (Table 2). Metabolomics not only

aids in identifying individual metabolites but also contributes to the development of crops that have superior

stress tolerance or nutritional content. One application of metabolomics is the detection of biomarkers linked

to abiotic stress responses, which can then be utilized to cultivate crops that are more resistant to these condi-

tions. Additionally, metabolomics can determine metabolic pathways that influence specific crop traits, such as

those affecting nutritional value or flavor, and can be utilized to create crops with superior nutritional content

or flavor profiles.

Different from the micro-level molecular omics, macro-level crop phenomics is the focal point of breeders.

Therefore, in recent years, phenomics has also emerged as a field of study. Phenomics refers to a comprehen-

sive and systematic approach to studying and describing the phenotypes of organisms, combining the terms

“phenotype” and “omics”. Phenomics methods often utilize high-throughput techniques and large-scale data

analysis to collect and analyze phenotype data. These techniques may include image analysis, genomics, tran-

scriptomics, metabolomics, proteomics, and others, in order to obtain comprehensive information about an

individual’s phenotype. By integrating phenotype data with genomic and environmental data, researchers can

identify genes or environmental factors associated with specific phenotypic features, revealing the genetic basis

and regulatory mechanisms underlying phenotypes.

In conclusion, the application of omics technologies and databases offers a powerful tool for investigating

the intricate genetic andmolecularmechanisms that underlie the growth, development, and responses of plants

to environmental stresses. The diverse types of omics data complement each other in providing a comprehensive
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viewof themolecular processes involved in cropplants. However, it is important to consider the distinct features,

strengths, and limitations of the different databases that host these omics data when selecting an appropriate

database for a particular research question. A judicious selection of a database can facilitate the integration of

omics data, and provide valuable insights into the biology of crop plants, leading to the development of new

crop varieties with desirable traits at an accelerated pace.

3 Challenges of integrating omics from databases

Integrating omics data from different databases presents several challenges due to the heterogeneity of the data,

differences in data formats, and varying levels of data quality. One of the primary challenges is the integration

of data from different omics technologies, which often use different data formats and produce data with dif-

ferent levels of complexity (Figure 3). For example, genomic data typically consists of large, complex data sets,

while proteomic data may contain information on thousands of individual proteins. Overcoming these chal-

lenges requires the development of standardized data formats and integration tools that can handle diverse data

types.

Another challenge associated with integrating omics databases is scalability. As the number of omics data

generated increases, it becomes increasingly difficult to store, process, and analyze the data. For example, a

single genome sequence for a crop plant may require hundreds of gigabytes of storage, while a large-scale

proteomic study may generate terabytes of data. Scalability can be addressed through the use of cloud-based

storage and computing resources, as well as the development of efficient algorithms and data compression

techniques.

Interoperability is another challenge that arises when integrating omics databases. Different databases

may use different ontologies and vocabularies to describe the same biological concepts, making it difficult to

integrate data from different sources. Furthermore, data may be stored in different formats or with different

levels of annotation, making it difficult to compare and analyze the data. This is especially common in single-

cell transcriptome studies. Interoperability can be improved through the use of common data standards and

the development of ontology-based integration tools that can map data from different sources onto a common

framework.

Metabolomebolomebolomom
Proteome

Metaboabo
roteom

ranscriptome
Prote
criptom

Epigenome
ranscrip

Epigenom
Genome Phenome

Experiment

Anaylsis Tools

Data

Figure 3: Challenges of integrating omics data. The left side represents the challenges of integrating omics data stored in various

databases, where the dots and lines indicate the potential mutual regulation of different omics levels. The right side represents the

challenges of data processing at different levels, including challenges in using bioinformatics analysis tools for data processing,

challenges in obtaining experimental data, and challenges in data storage and sharing. The middle section represents the growth

phenotype of plants.
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In conclusion, integrating omics data from different databases presents several challenges that must be

addressed in order to fully exploit the potential of these data for crop plant research. Overcoming these chal-

lenges requires the development of standardized data formats, scalable storage and computing resources, and

ontology-based integration tools. With the development of these tools and resources, the integration of omics

databases can provide valuable insights into the biology of crop plants and help to accelerate the development

of new crop varieties with desirable traits.

4 Recent developments in omics data integration for crop plant

breeding

Recent developments in omics data integration for crop plant breeding have shown promise in accelerat-

ing the development of new crop varieties with desirable traits [72, 73]. One approach is the use of machine

learning algorithms to integrate data from different omics technologies and predict the performance of differ-

ent crop varieties under different environmental conditions. Today, in the field of computer science, machine

learning has produced numerous excellent algorithms and frameworks. Currently, machine learning methods

applied in biological research can be roughly categorized into unsupervised, supervised, and reinforcement

learning.

Unsupervised learning aims to extract latent data features or structures from unlabeled biological data.

For example, unsupervised dimensionality reduction techniques such as Principal Component Analysis (PCA)

and Singular Value Decomposition (SVD) can be applied to crop sequencing and quantitative samples, along

with clustering methods like K-means clustering and hierarchical clustering. These approaches can help us bet-

ter understand the characteristics of the omics data. In contrast, supervised learning requires the use of labeled

training data, where the input and output are known, to buildmodels. Thesemodels are then used to predict and

classify new inputs, using algorithms such as K-Nearest Neighbors (KNN), Support Vector Machines (SVM), Ran-

dom Forests, Decision Trees, Naive Bayes, etc. Supervised learning can be applied, for example, to differentiate

between good and bad genotypes based on molecular data. Finally, unlike unsupervised and supervised learn-

ing, reinforcement learning focuses more on iterative experimentation (trial and error) and delayed rewards. It

continuously optimizes the correspondence between states and actions based on feedback (rewards) provided

by the environment. One application of reinforcement learning is in protein structure prediction [74].

A recent study usedmachine learning algorithms to integrate genomic and phenotypic data and predict the

performance of different varieties under drought conditions [75, 76]. The results showed that the algorithmwas

able to accurately predict the performance of different varieties, and identified several new candidate genes

that may be involved in drought tolerance.

Another approach is the use of multi-omics data integration to identify key regulatory networks and path-

ways that underlie specific traits or responses to environmental stresses [77]. For example, a recent study used

multi-omics data integration to identify key regulatory networks involved in salt stress tolerance in tomato [78].

The study integrated transcriptomic, proteomic, and metabolomic data and identified several key regulatory

pathways involved in salt stress tolerance, including the production of osmoprotectants and the regulation of

ion transport. Overall, The potential benefits of omics data integration for crop plant breeding are numerous

[79]. By integrating data from different omics technologies, researchers can gain a more comprehensive under-

standing of the molecular processes underlying crop growth, development, and responses to environmental

stresses [80]. The functional annotation of the plant gene and gene-phenotype association could be found by

new text mining tools [81, 82]. This knowledge can be used to develop new crop varieties with improved yields,

disease resistance, and stress tolerance, as well as to identify new targets for crop improvement. In addition,

the integration of omics data can help to accelerate the breeding process by reducing the time and resources

required for traditional breeding methods.
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5 Discussion

The integration of omics data in crop plant breeding has brought about tremendous advances in the develop-

ment of new crop varieties that possess desirable traits such as increased yield, improved disease resistance,

and enhanced nutritional value [1–3]. The integration of diverse omics datasets from different databases pro-

vides a comprehensive understanding of the underlying biological processes and interactions that influence

plant traits. Machine learning algorithms and multi-omics data integration have emerged as powerful tools for

analyzing and interpreting omics data, enabling the development of predictive models that can accelerate the

breeding process and reduce the time and resources required for traditional breeding methods. These mod-

els can identify genetic factors underlying desirable traits and predict the performance of different varieties

under specific environmental conditions, allowing for more efficient and effective selection and crossing of

plants.

Moreover, the integration of omics data can be used to develop new crop varieties with improved yields,

disease resistance, and stress tolerance, as well as to identify new targets for crop improvement. However, the

integration of omics data poses several challenges, including the sheer volume of data generated by different

omics technologies, the complexity of integrating multiple omics data sets, and the need for advanced computa-

tional tools and expertise to analyze and interpret these data. Additionally, the ethical and social considerations

associatedwith the use of omics data in crop breeding cannot be ignored. The development of new crop varieties

with desirable traits can have significant impacts on the environment, local communities, and thewider agricul-

tural system [83]. Therefore, transparent and inclusive decision-making processes that involve all stakeholders,

including farmers, consumers, and policymakers, are essential.

In conclusion, the integration of omics data in crop plant breeding is a critical step towards enhancing

crop productivity and improving global food security. Addressing the challenges associated with the integration

of omics data will require collaboration and coordination among researchers, policymakers, and stakeholders

across the agricultural sector. The benefits of omics data integration in crop breeding are enormous, and it is

essential that efforts are made to leverage these technologies for the betterment of humanity.
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