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Abstract: During early pregnancy, extravillous trophoblasts (EVTs) play a crucial role inmodifying thematernal

uterine environment. Failures in EVT lineage formation and differentiation can lead to pregnancy complications

such as preeclampsia, fetal growth restriction, and pregnancy loss. Despite recent advances, our knowledge on

molecular and external factors that control and affect EVT development remains incomplete. Using trophoblast

organoid in vitro models, we recently discovered that coordinated manipulation of the transforming growth

factor beta (TGFβ) signaling is essential for EVT development. To further investigate gene networks involved
in EVT function and development, we performed weighted gene co-expression network analysis (WGCNA) on

our RNA-Seq data. We identified 10 modules with a median module membership of over 0.8 and sizes ranging

from 1005 (M1) to 72 (M27) network genes associated with TGFβ activation status or in vitro culturing, the latter
being indicative for yet undiscovered factors that shape the EVTphenotypes. Lastly,we hypothesized that certain

therapeutic drugs might unintentionally interfere with placentation by affecting EVT-specific gene expression.

We used the STRING database to map correlations and the Drug-Gene Interaction database to identify drug

targets. Our comprehensive dataset of drug-gene interactions provides insights into potential risks associated

with certain drugs in early gestation.
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1 Introduction

The human placenta is a unique transiently existing organ that acts as lungs, liver, gut, kidney, and endocrine

glands for the developing fetus, supplying oxygen and nutrients, and eliminating waste products [1, 2]. During

early gestation, epithelial villous cytotrophoblasts give rise to a layer ofmultinucleated hormone-producing syn-

cytiotrophoblasts (STBs), and migratory extravillous trophoblasts (EVTs) (Figure 1A). EVTs invade the maternal

decidua, the superficial uterine mucosal layer, transforming maternal arteries into wide-lumen, low-pressure

vessels to ensure a smooth and adequate supply of maternal blood [3, 4]. Additionally, EVTs reshape the mater-

nal immune system to ensure the acceptance of the fetal semi-allograft [5]. Failures in EVT differentiation are

noticed in pregnancy complications such as preeclampsia, fetal growth restriction, and early pregnancy loss
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exposing themother and the baby to risk for immediate life-threatening conditions during pregnancy and severe

complications later in life [6–10]. EVT differentiation is initiated by the development of so-called villous cell

columns that attach to the maternal uterus (decidua) (Figure 1A). Before EVT detach from the column to pene-

trate the decidua, these cells undergo various stages of differentiation to form a highly invasive phenotype.

In this context, transforming growth factor beta signaling (TGFβ) was identified as one of the key regu-

lators orchestrating EVT maturation [11, 12]. Our recent studies on trophoblast organoids (TO) demonstrated

that EVTs lacking TGFβ signaling develop into hyper-invasive, spindle-shaped cells, while TGFβ-activated EVTs
acquire a less-migratory, secretory phenotype, more closely mimicking the in vivo placental EVT (pEVT) pheno-

type. Sequential activation of TGFβ signalling of TO-EVT is essential to reproduce correct EVT differentiation in
vitro (Figure 1A) [13].

Transcriptional profiling is a powerful tool for identifying physiological and pathological tissue gene signa-

tures and their regulatory mechanisms. While the DESeq2 workflow for analysis of bulk RNA sequencing data

focuses on differentially expressed genes, the Weighted Gene Co-expression Network Analysis (WGCNA, ver-

sion 1.71) algorithm identifies clusters of genes with similar expression patterns and reveals related biological

functions [14]. To date, WGCNA has been employed for identifying gene co-expression networks in physio-

logical processes such as lactation [14], in various cancers to determine therapeutic targets and biomarkers

[15–18], and for investigating transcriptional regulators including micro and long non-coding RNAs [19, 20].

To gain more insights into the processes orchestrating EVT maturation, we employed WGCNA with our recent

RNA-Seq data, where we compared isolated EVTs from first-trimester placental tissue (pEVTs) to EVTs derived

from trophoblast organoids (TO-EVTs) from the same donors [13]. Our first aim was to decipher the complex

gene networks involved in TGFβ-dependent EVT maturation and identify any remaining differences between in
vivo EVTs and in vitro TO-EVTs. Our second aim was to investigate external factors that could affect adequate

EVT differentiation and placentation in early pregnancy. Only about 30 % of all human pregnancies result in

a live birth. Besides known factors such as genetic aberration, infections, and immune rejection, about half

of the patients will remain without a diagnosis [21]. A possible explanation might be external factors such

as pharmaceutical drugs that unintentionally target critical EVT-specific genes in early weeks of gestation,

thereby jeopardizing adequate placentation. We queried the STRING database to map gene interactions and

the Drug-Gene Interaction database to identify potential drug targets. These findings provide a basis for high-

throughput testing to identify possible cross-reactions of pharmaceuticals that could harm placentation in early

pregnancy.

2 Materials and methods

2.1 Data collection

We performed bioinformatic analysis on RNA-Seq data sets (n = 16) from EVTs isolated either from first-trimester placental tissue

(pEVTs) or derived from corresponding trophoblast organoids (TO), encompassing three distinct populations (Figure 1A and B) [13]:

(1) in vivo placental extravillous trophoblasts (EVTs) comprising both TGFβ-inactive and TGFβ-active EVTs (pEVTon, n = 4) due to a

TGFβ-activating in vivo environment, (2) in vitro trophoblast organoid (TO)-derived EVTs that were inhibited for TGFβ signalling (TO-
EVToff, n = 8), and (3) in vitro-derived TO-derived EVTs, exposed to TGFβ-activating conditions comprising both TGFβ-inactive and
TGFβ-active TO-derived EVTs (TO-EVTon, n = 4).

2.2 Weighted gene co-expression network analyses (WGCNA)

We used our recent RNA-Seq data sets from pEVTon, TO-EVToff, and TO-EVTon [13] to run WGCNA with parameters used in Mohr et al.

[22]. After creating a DESeq2 (version 1.34.0) [23] object, we filtered out genes with very low counts (<10) in over 10 % of samples and

performed variance stabilizing transformation, followed by batch correction using the limma package [24]. Next, we created an eSet

object with feature data described in Figure 1 and applied additional filtering using two-Gaussian filtering. To improve the filtering

process, we calculated a threshold using the package mixtools (version 2.0.0) [25]. We then removed outliers, defined by an absolute

z-normalized inter-sample connectivity (zK) higher than 1.96, as recommended by Oldham et al. [26].
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Figure 1: Maturation of in vitro-derived TO-EVT requires TGFβ activation. (A) Illustration of placental EVTs (pEVT) and trophoblast
organoid EVTs (TO-EVT), marked in red. Villous cytotrophoblasts (vCTB) proliferate to form a cell column (CC) and differentiate into

pEVTon. TO-EVT are differentiated under TGFβ-inhibited (TO-EVToff) and TGFβ-activated (TO-EVTon) conditions. Please note that only a
subset of distally located EVTs display activated TGFβ signaling (beige). (B) EVT populations for establishing TGFβ- and cell
origin-dependent WGCNA gene networks. (C) Manhattan plots depicting the g:Profiler results of enriched pathways in pEVTon, TO-EVToff,

and TO-EVTon. Circle size correlates with the size of the enriched pathway while the y-axis depicts the adjusted p-value as a negative

decadic logarithm. Pathways of interest are encircled and named. VS, villous stroma; MC, mesenchymal cell; MØ, macrophage; vCTB,

villous cytotrophoblasts; STB, syncytiotrophoblast; CC, cell column; pEVT, placental extravillous trophoblast; TO-EVT, trophoblast

organoid-derived EVT; GO:MF, gene ontology: molecular function; GP:BP, gene ontology: biological process; GO:CC, gene ontology:

cellular component; KEGG; Kyoto encyclopedia of genes and genomes; REAC, reactome; WP, WikiPathways; TF, transcription factor;

MIRNA, MicroRNA; HPA, human protein atlas; CORUM, comprehensive resource of mammalian protein complexes; HP, human

phenotype.
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The WGCNA parameters included a “signed” network type, β: 12, deepsplit: 2, correlation: “bicor”, and pamStage: TRUE. Mod-
ules were calculated and genes with the absolute correlation between genes and module eigengenes below 0.8 were pruned until

the network stabilized. We pruned genes with an absolute correlation between genes and module eigengenes below 0.8 until the

network stabilized. To verify the association of calculated modules with phenotype information, we employed a mixed-effect model

and calculated t-tests as described by Li et al. [27]. We calculated a normalized intramodular connectivity (kWithin), which is the

module connectivity divided by the maximal connectivity as shown in the following formula, with 𝛼 as a value for the adjacency in

the co-expression network:

kWithin ⋅ norm
i
=

∑
i∈module

𝛼
i

max

( ∑
i∈module

𝛼
i

)

We identified hub genes by selecting the top 10 % of genes based on their kWithin values for each module. We then used the

STRING database (version 2.4.2) to map gene interactions and the Drug-Gene Interaction database to identify potential drug targets

[28–31].
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Figure 2: WGCNA identifies 10 modules in EVT populations. (A) z-normalized intersample connectivity (zKonnectivity). The red line

denotes a zKonnectivity of−1.96. (B) Dendrogram showing the euclidian distance between all detected modules. Each branch depicts a

gene assigned to the respective modules. Grey areas represent genes not assigned to any module. (C) Violin plots depicting the

membership score of selected modules: module membership for the entire network (overall), and for the cell origin modules M24, M22,

M26, M1, M19, M11, and for TGFβmodules M8, M27, M16, M10. The red line at 0.8 indicates the defined cut-off for module selection.
(D) Bar graph displaying the number of genes within the modules.
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3 Results and discussion

3.1 g:Profiler identified enriched biological pathways in EVT populations

To understand the differences between EVT subsets, we conducted g:Profiler analyses and created Manhattan

plots to visualize functional enrichment across multiple categories, such as molecular function, biological pro-

cess, cellular compartment, and human phenotype ontology (Figure 1C). To this end, we studied two stages

of EVT differentiation in TO-EVTs, including TGFβ-inhibited (TO-EVToff) and TGFβ-activated (TO-EVTon), and

compared those with isolated, primary pEVTs (pEVTon). We found that the TO-EVToff subset showed enrich-

ment of “canonical and non-canonical Notch signaling”. During EVT formation, trophoblasts undergo certain

steps of differentiation orchestrated by various signaling pathways. Among these active NOTCH1 signaling was

demonstrated as a prerequisite for initiating and stabilizing EVT formation [32]. Hence, the up-regulation of

Notch signaling in TO-EVToff might indicate an accumulation of an immature EVT phenotype. Additionally,

functional enrichment analysis revealed potentially increased migratory properties in TO-EVToff, with path-

ways related to cell migration and adhesion being upregulated. These results align with our previous find-

ings that inhibition of TGFβ prompts an invasive, less mature EVT phenotype [13]. When comparing pEVTon

and TO-EVTon, we observed a significant overlap in upregulated pathways related to TGFβ signalling, con-

firming that pEVTon exhibit a TGFβ signature and that TO-EVT require TGFβ activation to resemble in vivo

pEVTon.

3.2 Weighted gene co-expression network analysis (WGCNA) of EVT RNA-Seq data

To explore the relationships between different gene sets (modules), we used WGCNA to analyse the RNA-Seq

data of pEVTon, TO-EVToff, and TO-EVTon. We also looked for significant differences between female and male

samples. First, we checked that all samples had a zKonnectivity above −1.96 (Figure 2A). We then excluded

genes with low expression levels across all samples, resulting in a co-expression network of 7743 genes. Using

an iterative approach by Mohr et al. [26], we identified 50 modules (M) containing between 1005 (M1) and 33

(M50) genes (Figure 2B). All modules and assigned genes are listed in the Supplementary Table 1. We calcu-

lated associations between pEVTon and TO-EVTon from female and male donors, and the module eigengenes

(Supplementary Figure 1). Surprisingly, in this study, no modules exhibited statistically significant variations

between samples differentiated by fetal sex. However, potential differences in module expression relative to

fetal sex may be characterized by a small effect size. Taken this into account, the sample size of the current

investigation may be too small to detect such nuanced alterations. This underscores the necessity for subse-

quent investigations with augmented sample sizes enhancing statistical power to elucidate a potential influence

of fetal sex on the modules examined herein. Hence, we did not investigate sex-specific gene expression net-

works further. However, we identified 10 modules (M1, M8, M10, M11, M16, M19, M22, M24, M26, and M27) that

were associated with TGF𝛽 activity and cell origin, and we selected these for further analysis (Figure 2C and

D). These modules had a median module membership of above 0.8, indicating that the gene assignments were

stable.

3.2.1 TGF𝛃-dependent eigengene modules

We identified four genemodules (M8,M10,M16, andM27) associatedwith TGFβ activity, consisting of 286, 202, 127,
and 72 network genes, respectively (Figure 3, Supplementary Figure 2). Modules M8 and M27 showed increased

eigengene expression in response to TGFβ signalling, while M10 and M16 exhibited reduced eigengene expres-
sion. Notably, we did not find significant differences between pEVTon and TO-EVTon. Within themodule network

genes of M8 and M27, we identified several well-known TGFβ signalling-associated genes expressed in EVTs [13]
including SKI, SKIL, NUAK1, FN1, HPGD, ESAM, KRT7, LITAF, ID1, and CLIC4 [33–42]. In contrast, the network
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Figure 3: Eigengene plots of TGFβ-associated modules. Plots are colored according to the module color. P-values between pEVTon,
TO-EVToff, and TO-EVTon are depicted in the plots.

genes of M10 and M16 were enriched in genes associated with an immature EVT phenotype, including PEG10,

FZD6, FREM1, CDK2, CDH5, ITGA6, ITGB4, and COMT [32, 43–47]. These findings reasserted that in vitro activation

of the TGFβ pathway promotes a pEVTon-like gene signature.

3.2.2 Cell origin-dependent eigengene modules

Although activation of TGFβ signalling led to a significant convergence of TO-EVTon genotypes to their in vivo
counterparts, our WGCNA analyses revealed six modules that showed expressional differences between in vivo

pEVTs and in vitro-derived TO-EVTs (Figure 4, Supplementary Figure 3). In these modules no significant dif-

ferences were found between TO-EVToff and TO-EVTon. We observed downregulated eigengene expressions

in M1 (1005 network genes), M11 (182 network genes), and M19 (90 network genes) in pEVTon, while M22 (83

network genes), M24 (78 network genes), and M26 (73 network genes) showed increased eigengene expres-

sions in pEVTon. These results suggest that the current TO-EVT culture conditions do not fully replicate pEVTon



A. I. Lackner et al.: Critical placenta-specific genes as potential targets of therapeutic drugs — 7

eigengene expression

M
od

ul
e:

 M
1

−1
.0

−0
.50.
0

0.
5

1.
0

4.
9 

x 
10

-3

7.
2 

x 
10

-6

4.
5 

x 
10

-1

TO
-E

VT
off

TO
-E

VT
on

pE
VT

on

eigengene expression

M
od

ul
e:

 M
22

−1
.0

−0
.50.
0

0.
5

1.
0

3.
1 

x 
10

-3

1 
x 

10
-2

1 
x 

10
-2

TO
-E

VT
off

TO
-E

VT
on

pE
VT

on

M
od

ul
e:

 M
24

2.
2 

x 
10

-3

−1
.0

−0
.50.
0

0.
5

1.
0

5 
x 

10
-5

5.
5 

x 
10

-1

TO
-E

VT
off

TO
-E

VT
on

pE
VT

on

M
od

ul
e:

 M
26

−1
.0

−0
.50.
0

0.
5

1.
0

1.
8 

x 
10

-2

6 
x 

10
-3

6.
8 

x 
10

-2

TO
-E

VT
off

TO
-E

VT
on

pE
VT

on

M
od

ul
e:

 M
11

−1
.0

−0
.50.
0

0.
5

1.
0

4.
1 

x 
10

-2

3.
4 

x 
10

-5

5.
8 

x 
10

-1

TO
-E

VT
off

TO
-E

VT
on

pE
VT

on

M
od

ul
e:

 M
19

−1
.0

−0
.50.
0

0.
5

1.
0

TO
-E

VT
off

TO
-E

VT
on

pE
VT

on

2.
4 

x 
10

-2

2.
5 

x 
10

-5

5.
6 

x 
10

-1

Fi
g
u
re
4
:
Ei
g
e
n
g
e
n
e
p
lo
ts
o
f
ce
ll
o
ri
g
in
-a
ss
o
ci
a
te
d
m
o
d
u
le
s.
P
lo
ts
a
re
co
lo
re
d
a
cc
o
rd
in
g
to
th
e
m
o
d
u
le
co
lo
r.
P
-v
a
lu
e
s
b
e
tw
e
e
n
p
EV
To

n
,T
O
-E
V
To

ff
,a
n
d

TO
-E
V
To

n
a
re
d
e
p
ic
te
d
in
th
e
p
lo
ts
.



8 — A. I. Lackner et al.: Critical placenta-specific genes as potential targets of therapeutic drugs

maturation, and our module-based data might provide insights for identifying the complete spectrum of factors

that shape pEVTon genotypes in future studies.

3.3 Module network genes are targeted by pharmaceutical drugs

Our final aim was to investigate the susceptibility of EVT-specific genes to pharmaceutical drugs. We analysed

the network genes of all modules (M1 – M50) using the Drug-Gene Interaction and STRING database to identify

genes that can be targeted by drugs (Supplementary Table 2). Our findings revealed that numerous EVT-related

genes can be affected by various drugs, such as inhibitors, modulators, agonists, inducers, antibodies, antago-

nists, suppressors, antisense oligonucleotides, or interactingmolecules. The complexity of potential interactions

between module network genes and drugs is illustrated in Figure 5 (M1, M11, M19, M22, M24, and M26) and Sup-

plementary Figure 4 (M8, M10, M16, and M27). We further identified important drug targets from EVT network

genes across the detected modules, including ITGB1 (M4, Supplementary Table 2), and HMGCR (M1, Figure 5),

which have been associated with important EVT functions.

Over 800 distinct drugs have been identified to potentially interact with nuclear factor erythroid 2-like BZIP

transcription factor 2 (NFE2L2, M1, Figure 5 and Supplementary Table 2). In human placentas, NRF2 (NFE2L2)

has been detected in extravillous trophoblasts, with increased protein levels observed in endovascular and

interstitial trophoblasts from placentas affected by fetal growth restriction and preeclampsia [48]. NRF2 plays

M1 M11 M19 M22 M24 M26 interacƟng drugs

NFE2L2

NCP1

HTT

HMGCR

Figure 5: Drug-gene interaction plot for cell origin-associated modules. Network plot depicting module network genes and interacting

drugs. Module network genes are colored according to the module color. Niemann-Pick-C1 (NCP1), nuclear factor erythroid 2 Like BZIP

transcription factor 2 (NFE2L2), 3-Hydroxy-3-Methylglutrylo-CoA Red (HMGCR), and huntingtin (HTT) are depicted in the interaction plot.
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a crucial role in the VEGF-NRF2-mediated oxidative stress response by regulating the expression of protective

genes, such as heme oxygenase-1 and glutathione peroxidase [49]. As early placentation primarily occurs under

hypoxic conditions, defence against reactive oxygen species becomes essential from the 9th/10th week onwards,

when maternal blood begins to flow into the intervillous space [50]. In summary, drug-induced alterations in

NRF2 levels may pose an unidentified risk for the basal defence mechanisms against oxidative stress during

early placentation.

During pregnancy, Niemann-Pick-C1 (NPC1, M1, Figure 5, Supplementary Table 2) participates in the uptake

of cholesterol, a vital nutrient necessary for fetal growth [51]. Although current knowledge regarding NPC1

function in placental physiology is limited, sequencing data reveal high RNA expression levels of NPC1 in

trophoblast subtypes, suggesting a role in the transport of cholesterol to the foetus during human preg-

nancy [13, 52]. Consequently, impaired NPC1 expression could negatively impact fetal nutrition throughout

gestation.

Nearly 200 drugs potentially target huntingtin (HTT , M19, Figure 5, Supplementary Table 2), a gene orig-

inally identified in the context of Huntington’s disease and involved in various cellular processes such as

organelle transport, spindle pole assembly during mitosis, and protein transport [53]. Gene expression profiles

reveal high expression of HTT in trophoblast subtypes, particularly in extravillous trophoblasts [13, 52]. While

the functions of HTT in human trophoblasts have not yet been demonstrated, mice lacking huntingtin exhibited

impaired trophoblast giant cell differentiation [54]. These findings suggest that drug-induced alterations in HTT

expression could disrupt trophoblast differentiation, which is essential for optimalmaternal adaptations during

pregnancy.

Integrin beta 1 (ITGB1, M4, Supplementary Table 2) is expressed at high levels in endovascular extravil-

lous trophoblasts (EVTs) deeply embedded within maternal decidual tissues [55, 56]. This increased expression

is believed to be necessary for the trophoblasts to withstand and migrate against maternal blood flow [56].

Our Drug-Gene Interaction database query identified eight pharmaceuticals that have the potential to target

ITGB1, including antagonists (e.g., Firategrast, Volociximab, Intetumumab), inhibitors (e.g., Abituzumab, Natal-

izumab), and antibodies (e.g., Etaracizumab). Firategrast, for example, is a small-molecule antagonist of the

integrin α4β1, which is an integrin dimer composed of ITGA4 and ITGB1 and is used to reduce trafficking of

lymphocytes into the central nervous system for the treatment of multiple sclerosis [57]. Through its antagonis-

tic effect on ITGB1, it could interferewith the establishment of thematernal-fetal interface and compromise fetal

growth.

One interesting pharmacological target that has come to our attention is the interleukin-1 receptor type 1

(IL1R1; M8, Supplementary Figure 4, Supplementary Table 2). Evidence suggests that IL1R1 is upregulated dur-

ing trophoblast differentiation and exhibits high expression levels in extravillous trophoblasts (EVTs). Our prior

laboratory experiments have demonstrated that trophoblast motility increases upon stimulation with one of

its ligands, IL-1β. Additionally, we observed that IL-1β stimulation induces the expression of urokinase plas-

minogen activator (uPA), plasminogen activator inhibitor-1 (PAI-1), and PAI-2 in trophoblast cells. These findings

suggest that the IL1R1 signalling pathway and the subsequent activation of the plasminogen systemmay be cru-

cial for ensuring proper decidual invasion [58]. Anakinra, a recombinant form of IL-1Ra, directly binds to and

blocks IL1R1. This compound is utilized to treat pro-inflammatory states in various diseases, including famil-

ial Mediterranean fever, rheumatoid arthritis, and cryopyrin-associated periodic syndromes. However, data

regarding the use of anakinra during pregnancy are limited. Consequently, the European Medicines Agency

recommends avoiding its use in pregnant patients and patients with childbearing potential who are not using

contraception. In conclusion, potential effects Anakinra on EVT invasion may have significant implications for

the establishment of the maternal-fetal interface [59].

We have identified 3-Hydroxy-3-Methylglutrylo-CoA Reductase (HMGCR, M1, Figure 5, Supplemen-

tary Table 2) as a target for 19 different drugs, primarily statins, which inhibit cholesterol synthesis. Only

recently EVTswere shown to exhibit increased levels of free and esterified cholesterols, the precursors of steroid

hormones such as progesterone [60]. Placental progesterone expression is considered a key factor supporting

pregnancy maintenance in the first weeks of gestation [61]. Hence, reduced progesterone expression caused
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unintentionally by statins may pose a severe risk for successful pregnancy outcomes. Our findings align with a

recent meta-analysis, which found higher rates of spontaneous abortions in patients exposed to statins [62].

4 Conclusions

In this study, we conducted a comprehensive bioinformatic analysis based on gene expression profiles from

in vivo EVTs and in vitro TO-derived EVTs from first-trimester placental tissue. Using WGCNA, we identified

expected TGFβ-dependent gene networks confirming our previous studies where we demonstrated the impor-
tance of the signalling pathway in EVT maturation [13]. However, we also detected large gene networks specific

to the cells’ origin still pointing out differences between in vivo and in vitro-derived EVTs despite TGFβ acti-

vation. These findings indicate that while activating TGFβ signalling in TO-EVT largely resembles pEVT gene

expression profiles, further studies are required to better mimic in vivo EVT phenotypes. Surprisingly, we found

that fetal sex did not result in sex-specific gene modules. Our drug-gene interaction analysis identified several

EVT-specific genes as potential drug targets, including ITGB1, RXRA, and HMGCR. Compromised placentation

provoked by drug side effects might be one explanation for idiopathic early pregnancy loss. Consequently,

there is an urgent need for data collection and further investigation of unintended pharmaceutical effects

counteracting EVT development and differentiation. We propose using TO-EVT cultures as a highly reliable,

animal-freemodel for testing pharmaceutical effects on EVT formation and function to protect and support early

pregnancy.
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