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Summary

Clustering is an important approach in the analysis of biological data, and often a first
step to identify interesting patterns of coexpression in gene expression data. Because of
the high complexity and diversity of gene expression data, many genes cannot be easily
assigned to a cluster, but even if the dissimilarity of these genes with all other gene groups
is large, they will finally be forced to become member of a cluster. In this paper we show
how to detect such elements, called unstable elements. We have developed an approach for
iterative clustering algorithms in which unstable elements are deleted, making the iterative
algorithm less dependent on initial centers. Although the approach is unsupervised, it is
less likely that the clusters into which the reduced data set is subdivided contain false
positives. This clustering yields a more differentiated approach for biological data, since
the cluster analysis is divided into two parts: the pruned data set is divided into highly
consistent clusters in an unsupervised way and the removed, unstable elements for which
no meaningful cluster exists in unsupervised terms can be given a cluster with the use of
biological knowledge and information about the likelihood of cluster membership. We
illustrate our framework on both an artificial and real biological data set.

1 Introduction

An important tool in analyzing biological data sets is cluster analysis, the partitioning of a data
set into groups based on a specified distance measure so that data points within a group are more
similar to each other than to points in different groups. A typical application of cluster analysis
is the clustering of gene profiles: ”the large number of genes and the complexity of biological
networks greatly increases the challenges of comprehending and interpreting the resulting mass
of data, which often consists of millions of measurements. A first step toward addressing this
challenge is the use of clustering techniques, which is essential in the data mining process to
reveal natural structures and identify interesting patterns in the underlying data” [4].
Iterative clustering algorithms, such as k-means [5], are an important subclass of clustering al-
gorithms. These algorithms start with initial centers and reapply a characteristic deterministic
procedure to obtain a set of final centers. The clustering, i.e. the final set of clusters, is then
easily obtained from these centers that are considered as representatives of the clusters.
However, iterative algorithms have an undesirable feature: these are local search procedures
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andit is well known that the performance heavily depends on the initial starting conditions [7],
especially the choice of initial centers. This drawback is serious, since it implies that different
executions of a clustering algorithm can give completely different clusterings which could sug-
gest that clustering is, to some extent, an arbitrary process.
To remedy this problem, initialization methods have been developed that try to select better
than random initial centers. However, these methods are heuristic and their improvements are
not overwhelming. In [8] three initialization methods for the EM clustering algorithm [6] were
studied, among which random initialization, and it was observed that the performance of the
three methods was similar for all examined data sets. In [9] a comparison was made between
five initialization methods with the use of three performance measures. The performance of the
examined methods depended both on the data set and the chosen performance measure. This
limits the general applicability of these initialization methods.
Another popular solution to avoid the arbitrariness encapsulated in iterative algorithms is to
generate many clusterings and to select an optimal one according to some cluster validation
measure [11]. However, there exists many cluster validation measures and they can give com-
pletely different optimal clusterings which introduces again some arbitrariness, in the choice
of a validation measure. We call the problem of having to make an arbitrary choice to obtain a
clustering from a (large) set of given clusterings, e.g. the arbitrary choice of initial centers or
the arbitrary choice of a validation measure, the arbitrariness-problem.
In this paper we demonstrate the use of an iterative clustering algorithm, while avoiding its
dependency on initial centers, thus constructing a robust clustering. At the same time this clus-
tering will be well-defined, in the sense that there is no arbitrariness-problem. The basic idea
is to reduce the initial data set to a set that is less dependent on initial centers. Our method is
explained in section 3 and is illustrated both on an artificial and biological data set in section 4.

We notice that because our goal is to generate a robust clustering for gene expression data,
we prefer to use iterative algorithms over hierarchical algorithms. Hierarchical clustering has
been noted by statisticians to suffer from lack of robustness [10] and thus is not suitable for our
purpose. Indeed, iterative algorithms are dependent on initial centers and thus also vulnerable to
noise, but these algorithms are nondeterministic and we will make use of this feature to develop
a statistical framework in section 3.1. This framework allows to define the expected cluster-
ing, which can be seen as independent of initial centers and thus as robust. Such a statistical
framework is not possible for hierarchical clustering, since these algorithms are deterministic.
Furthermore, gene expression data sets are typically very large and in this case the construction
of a dendrogram is computationally prohibitive [6].

2 Related work

The removal of data elements to obtain a more ’clusterable’ subset of the original data set
{g1, . . . , gn} is also discussed in [12]. In fact, the condition for a data elementgj to be removed
is more or less the same for both methods. Given the average clusteringC̄, to be defined in
section 3.1.1, an elementgj is considered to be unstable if̄C(j, k) is around 0.5 for all or many
k 6= j (the concept of instability is more rigorously considered in section 3.1). While our def-
inition for instability differs somewhat from the one given in [12], the goal of both methods
is essentially to detect such unstable elements and to remove them. Although the basic ideas
behind both methods coincide, our discussion differs in three important ways from the one in

Journal of Integrative Bioinformatics, 7(3):134, 2010 http://journal.imbio.de

doi:10.2390/biecoll-jib-2010-134 2

C
op

yr
ig

ht
 2

01
0 

T
he

 A
ut

ho
r(

s)
. P

ub
lis

he
d 

by
 J

ou
rn

al
 o

f I
nt

eg
ra

tiv
e 

B
io

in
fo

rm
at

ic
s.

 
T

hi
s 

ar
tic

le
 is

 li
ce

ns
ed

 u
nd

er
 a

 C
re

at
iv

e 
C

om
m

on
s 

A
ttr

ib
ut

io
n-

N
on

C
om

m
er

ci
al

-N
oD

er
iv

s 
3.

0 
U

np
or

te
d 

Li
ce

ns
e 

(h
ttp

://
cr

ea
tiv

ec
om

m
on

s.
or

g/
lic

en
se

s/
by

-n
c-

nd
/3

.0
/)

.

http://journal.imbio.de/


[12]. First, whilethediscussion in [12] is heuristic, weprovethat under certain conditions the
removal of appropriate elements gives a more ’clusterable’ data set, see section 3. Secondly,
the most important condition to obtain a more clusterable data set is thatC̄(j, k) is not altered
after the removal of a data elementgk 6∈ {gj, gk}. This is a non trivial condition, since by elimi-
nating data elements the structure of the reduced data set can be different from the original one,
which is overlooked in [12]. This condition is more fully discussed in section 3. Thirdly, the
final clustering in [12] is obtained by applying a hierarchical clustering algorithm. We show in
section 3.2 how the final clustering can be obtained in a more intuitive way, without the need
for an extra clustering step.
We mention that other criteria than instability can be used to select elements for removal. For
example, the silhouette width [11] of an element indicates the confidence with which this el-
ement belongs to the produced clusters. Consequently, elements with a low silhouette width
can be selected for removal. However, as already indicated, we show that the use of instability
makes it possible to state theorems concerning the ’clusterability’ of a reduced data set.

3 Methods

3.1 Cluster stability variance

3.1.1 M -set and expected clustering

Given is a data setD = {g1, . . . , gn} that is clustered by a given iterative clustering algorithm.
A clustering can be represented as a matrixC with elementsC(j, k), j = 1...n, k = 1...n:

C(j, k) = 1 if gj andgk are placed in different clusters (1)

= 0 if gj andgk are placed in the same cluster (2)

GivenN clusteringsCi, generated with randomly chosen initial centers and possibly by differ-
ent iterative algorithms, we call the setM = {C1, ..., CN} anM -set. The representation of a
clustering as a matrix gives the advantage that an average clusteringC̄ can be defined, given
anM -set{C1, . . . , CN}, as follows:C̄(j, k) = 1

N

∑N
i=1 Ci(j, k). We can then also define the

expected clusteringE[C] as the matrix with elementsE[C](j, k) = E[C(j, k)], provided that
the expected valuesE[C(j, k)] exist.
The importance of the expected clustering is that it can be seen as independent of initial centers
(and of clustering algorithm), since it is the uniquely defined probability-weighted sum over all
possible clusterings generated by the given iterative algorithm or algorithms. In practice this
expected clustering is approximated by the above defined average clusteringC̄ which is con-
sidered to be still much less dependent on initial centers than a particular clustering, especially
if the initial centers for the generation of theCi are randomly selected and ifN is large enough.
This suggests that̄C can be chosen as the clustering that is highly independent of initial centers.
This suggestion is not correct, becauseC̄ does not necessarily represent a clustering, since it
is not necessarily true that̄C(j, k) = 1 or 0, ∀j, k. The goal is now to find a clustering that
combines the main characteristic ofC̄, being highly independent of initial centers, and that of
the correspondingM -set, containing clusterings that satisfy (1)-(2).
Note thatC̄(j, k) denotes the fraction of clusterings wherebygj andgk are placed in different
clusters. Large values of̄C(j, k) indicate thatgj andgk end up in different clusters for most
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choicesof initial centers,and small values indicate the opposite. Values around 0.5 indicate
uncertainty about whethergj andgk belong to different clusters or to the same cluster.
Since both small and large values ofC̄(j, k) indicate a stable relationship betweengj andgk

in the sense that under these conditionsgj andgk clearly belong to the same cluster or clearly
belong to different clusters, a ’stability function’σ can be introduced:

σ(a) = 1− a 0.5 ≤ a ≤ 1

= a 0 ≤ a < 0.5

for a ∈ [0, 1]. Thus, the lowerσ(C̄(j, k)), the more stable the relationship is betweengj andgk

in the sense described above, and vice versa.
As a next step a measure is constructed that summarizes the stability ofall the relationships be-
tween the given data elements. This can be done by summingσ(C̄(j, k)) over all the elements.
We thus define the instability of anM -setM = {C1, . . . , CN} as

µ(M) =
2

n(n− 1)

n−1∑
j=1

∑

j<k≤n

σ(C̄(j, k)) (3)

The largerµ(M), the larger the instability ofM , which intuitively means that there is more
uncertainty about which elements belong together.

3.1.2 Cluster stability variance

In section 3.1.1 it is shown that a clustering can be interpreted as a random variable, where
randomness arises from the random choice of initial centers. This probabilistic view allows us
to define the variance of a random clustering asE[d(C, E[C])2], whered(C, E[C]) denotes the
’squared distance’ fromC to E[C] which we define as:

d(C, E[C]) =
2

n(n− 1)

n−1∑
j=1

∑

j<k≤n

|C(j, k)− E[C](j, k)| (4)

For finiteN we use the following as an approximation of the variance, given anM -setM :

CSV (M) =
1

N − 1

N∑
i=1

d(Ci, C̄)2 (5)

whereCSV isanabbreviation for what we call the ’cluster stability variance’ associated with
theM -set{C1, . . . , CN}. Since differences between clusterings in anM -set arise from differ-
ent initial centers, the CSV can only be nonzero because of the dependence on initial centers.
Thus the CSV is a measure for the dependence of anM -set on initial centers. Reducing the
dependency of clusterings in a givenM -set thus amounts to reducing the CSV. This can also be
seen from a different point of view: from formula (5) it follows that the CSV can be interpreted
as the distance from anM -set to the corresponding average clustering, or thus as an approx-
imation of the distance from a givenM -set to the expected clustering, which is completely
independent of initial centers. In this respect, the reduction of the CSV equals the reduction of
the distance of theM -set to the expected clustering, which amounts to making the clusterings
contained in theM -set more independent of initial centers.
However, there is no clue as to how to reduce this CSV. We take a detour by going back to the
above defined concept of instability.

Journal of Integrative Bioinformatics, 7(3):134, 2010 http://journal.imbio.de

doi:10.2390/biecoll-jib-2010-134 4

C
op

yr
ig

ht
 2

01
0 

T
he

 A
ut

ho
r(

s)
. P

ub
lis

he
d 

by
 J

ou
rn

al
 o

f I
nt

eg
ra

tiv
e 

B
io

in
fo

rm
at

ic
s.

 
T

hi
s 

ar
tic

le
 is

 li
ce

ns
ed

 u
nd

er
 a

 C
re

at
iv

e 
C

om
m

on
s 

A
ttr

ib
ut

io
n-

N
on

C
om

m
er

ci
al

-N
oD

er
iv

s 
3.

0 
U

np
or

te
d 

Li
ce

ns
e 

(h
ttp

://
cr

ea
tiv

ec
om

m
on

s.
or

g/
lic

en
se

s/
by

-n
c-

nd
/3

.0
/)

.

http://journal.imbio.de/


3.1.3 Reducing the instability of an M -set

We now define the instability of a given data elementgk. As for the definition of the instability
of anM -set (3) we use the valuesσ(C̄(j, k)), but we restrict the summation to those elements
wherek is involved:

µ(gk) =
1

n− 1

(k−1∑
j=1

σ(C̄(j, k)) +
n∑

j=k+1

σ(C̄(k, j))
)

Intuitively we expect that the more unstable the data elements are, the more unstable the asso-
ciatedM -set. This is now proven.

Theorem 1 1. 1
n

∑n
k=1 µ(gk) = µ(M)

Proof.

n∑

k=1

µ(gk) =
n∑

k=1

1

n− 1

(k−1∑
j=1

σ(C̄(j, k)) +
n∑

j=k+1

σ(C̄(k, j))
)

= n
2

n(n− 1)

n∑
j=1

n∑

k=1

σ(C̄(j, k)) = nµ(M)

Lemma 1 1.

σ(C̄(j, k)) = min(|Ci(j, k)− C̄(j, k)|, 1− |Ci(j, k)− C̄(j, k)|)

Proof. Suppose first that̄C(j, k) > 0.5. This implies:σ(C̄(j, k)) = 1− C̄(j, k).
Case 1:min(|Ci(j, k)− C̄(j, k)|, 1−|Ci(j, k)− C̄(j, k)|) = |Ci(j, k)− C̄(j, k)|. Then we have

|Ci(j, k)− C̄(j, k)| ≤ 1− |Ci(j, k)− C̄(j, k)|
⇒ |Ci(j, k)− C̄(j, k)| ≤ 0.5

This implies thatCi(j, k) = 1 and so we have:σ(C̄(j, k)) = 1−C̄(j, k) = Ci(j, k)−C̄(j, k) =
|Ci(j, k)− C̄(j, k)|.
Case 2:min(|Ci(j, k) − C̄(j, k)|, 1 − |Ci(j, k) − C̄(j, k)|) = 1 − |Ci(j, k) − C̄(j, k)|. This
is proved in a similar manner as case 1. In this case we haveCi(j, k) = 0 andσ(C̄(j, k)) =
1− |Ci(j, k)− C̄(j, k)|. The part wherēC(j, k) ≤ 0.5 is checked similarly.

We now present a relationship betweenCSV (M) andµ(M).

Theorem 2 1. CSV (M) ≤ N

N − 1
µ(M)

Proof. We put the elementsCi(j, k) for given j andk, andi = 1, ..., N in two setsA1 and
A2 as follows: A0 = {Ci(j, k) |Ci(j, k) = 0} and A1 = {Ci(j, k) |Ci(j, k) = 1}. Note
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that |A0| = N(1 − C̄(j, k)) and|A1| = NC̄(j, k), where|A0| and|A1| denote the number of
elements ofA0 resp.A1. From the previous lemma we know that

Nσ(C̄(j, k)) =
N∑

i=1

min(|Ci(j, k)− C̄(j, k)|, 1− |Ci(j, k)− C̄(j, k)|) (6)

Suppose now that̄C(j, k) > 0.5. From the proof of the above lemma it follows that

Ci(j, k) = 1 ⇒ σ(C̄(j, k)) = |Ci(j, k)− C̄(j, k)| (7)

Ci(j, k) = 0 ⇒ σ(C̄(j, k)) = 1− |Ci(j, k)− C̄(j, k)| (8)

Denote

|Ci(j, k)− C̄(j, k)|0 = |Ci(j, k)− C̄(j, k)| = C̄(j, k) if Ci(j, k) ∈ A0 (9)

|Ci(j, k)− C̄(j, k)|1 = |Ci(j, k)− C̄(j, k)| = 1− C̄(j, k) if Ci(j, k) ∈ A1 (10)

From (6), (7) and (8) it then follows that

Nσ(C̄(j, k)) = |A0|(1− |Ci(j, k)− C̄(j, k)|0) + |A1| |Ci(j, k)− C̄(j, k)|1
and because of (9)-(10) this is equivalent to

Nσ(C̄(j, k)) = |A0|(1− C̄(j, k)) + |A1| (1− C̄(j, k)) (11)

= N(1− C̄(j, k)) (12)

We have also the following

N∑
i=1

|Ci(j, k)− C̄(j, k)|2 =

|A0|∑
i=1

|Ci(j, k)− C̄(j, k)|20 +
N∑

|A0|+1

|Ci(j, k)− C̄(j, k)|21 (13)

= |A0| |Ci(j, k)− C̄(j, k)|20 + |A1| |Ci(j, k)− C̄(j, k)|21 (14)

= NC̄(j, k)(1− C̄(j, k)) (15)

after suitable substitutions. Subtracting (12) from (15) gives

N∑
i=1

|Ci(j, k)− C̄(j, k)|2 −Nσ(C̄(j, k)) = −N(1− C̄)2 (16)

⇒ 1

N

N∑
i=1

|Ci(j, k)− C̄(j, k)|2 = σ(C̄(j, k))− (1− C̄)2 ≤ σ(C̄(j, k)) (17)

Given that (see (4))

1

N

N∑
i=1

d(Ci, C̄) =
1

N

2

n(n− 1)

N∑
i=1

n−1∑

k=1

∑

k<j≤n

|Ci(j, k)− C̄(j, k)|

(17) becomes

1

N

N∑
i=1

d(Ci, C̄)2 ≤ 2

n(n− 1)

n−1∑

k=1

∑

k<j≤n

σ(C̄(j, k)) = µ(M) (18)

It can be checked that the caseC̄(j, k) ≤ 0.5 gives the same result. The statement about the
CSV is now easily demonstrated from (18).

Journal of Integrative Bioinformatics, 7(3):134, 2010 http://journal.imbio.de

doi:10.2390/biecoll-jib-2010-134 6

C
op

yr
ig

ht
 2

01
0 

T
he

 A
ut

ho
r(

s)
. P

ub
lis

he
d 

by
 J

ou
rn

al
 o

f I
nt

eg
ra

tiv
e 

B
io

in
fo

rm
at

ic
s.

 
T

hi
s 

ar
tic

le
 is

 li
ce

ns
ed

 u
nd

er
 a

 C
re

at
iv

e 
C

om
m

on
s 

A
ttr

ib
ut

io
n-

N
on

C
om

m
er

ci
al

-N
oD

er
iv

s 
3.

0 
U

np
or

te
d 

Li
ce

ns
e 

(h
ttp

://
cr

ea
tiv

ec
om

m
on

s.
or

g/
lic

en
se

s/
by

-n
c-

nd
/3

.0
/)

.

http://journal.imbio.de/


The importance oftheprevious theorem is that it gives the missing clue of how to reduce the
CSV: the CSV can possibly be lowered by reducing the instability. The next question is thus
how µ(M) can be lowered. It is now shown that this can be done by eliminating unstable
elements. But first we introduce a new notation. Notice thatE[C] and thusC̄ depends on
the chosen clustering algorithm(s) which we keep fixed during the elimination of elements,
but also depends on the data setD which changes while eliminating data elements. Since
the following two theorems deal with deleting elements, we make this dependency explicit by
using the notation̄CD instead ofC̄ for the following theorems. Furthermore we will need to
denote submatrices of̄C, which we define as̄C(A) = {C̄(j, k) | dj, dk ∈ A} and withA ⊆ D.
Likewise the instability of a data element depends on the current data set. Thus we use the
notationµD(gl) to denote the instability ofgl regarding data setD andµD(M) to denote the
instability ofM regardingD.

Theorem 3 1.

µD(gl) = max
1≤k≤n

µD(gk), C̄D(D \ {gl}) = C̄D\{gl}(D \ {gl}) ⇒ µD\{gl}(M) ≤ µD(M)

Proof.

µD\{gl}(M)− µD(M) =
1

n− 1

n∑

k=1,k 6=l

µD\{gl}(gk)− 1

n

n∑

k=1

µD(gk) (by theorem 1)

=
1

n− 1

n∑

k=1,k 6=l

µD(gk)− 1

n

n∑

k=1

µD(gk)

=

∑n
k=1,k 6=l µD(gk)− (n− 1)µD(gl)

n(n− 1)
≤ 0

wherethe secondline follows from the first by the assumption̄CD(D \ {gl}) = C̄D\{gl}(D \
{gl}), and the fourth line from the third because of the assumptionµD(gl) = max1≤k≤n µD(gk).

Thuseliminating themostunstable element will reduce the instability ofM or preserve the
instability in the worst case, under the assumption that the data structure, as seen by the con-
sidered clustering algorithm(s), does not change, i.e.C̄D(D \ {gl}) = C̄D\{gl}(D \ {gl}).
Furthermore deleting the most unstable element will lead to the greatest decrease in instability,
as expressed by the following theorem.

Theorem 4 1.

µD(gl) ≥ µD(gm), C̄D(D \ {gl}) = C̄D\{gl}(D \ {gl}),
C̄D(D \ {gm}) = C̄D\{gm}(D \ {gm}) ⇒ µD\{gl}(M) ≤ µD\{gm}(M)

Proof. The proof is completely analogous to the proof of theorem 3.
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3.2 A highl y initialization-independent clustering

In section 3.1.1 it was stated that we want to find a clustering that is highly independent of
initial centers, a characteristic possessed byC̄, but at the same time constituting a clustering
according to definitions (1) - (2). In section 3.1.2 it was stated that the clusterings of a given
M -set can be given this characteristic by reducing the CSV, and from section 3.1.3 it follows
that removing unstable elements is a very good approach to accomplish this. From theorems 3
and 4 one would conclude that the more elements are removed, starting with the most unstable
element, then the second most unstable one, etc, the lower the instability of theM -set and thus
the lower the CSV potentially becomes by theorem 2. Thus all elements except one should be
removed to obtain the maximally independent clustering, which is clearly undesired.
However, notice that this conclusion is not true, since the above theorems only hold if the data
structure is not changed by removing data elements. By this we mean that the same elements
are clustered together before and after the removal of some data element. This consideration
gives two main cases: 1. the assumption of unchanging structure is more or less true and thus
there is no well-defined highly initialization-independent clustering, 2. the assumption is not
valid and after the removal of a number of unstable elements the CSV reaches a minimum. In
this case the optimal data set is the given data set after the elimination of these unstable ele-
ments and the highly initialization-independent clustering is then defined as the clustering in
the givenM -set that is closest tōC, where distance is measured according to (4).
Three remarks are in place. First, we let anM -set consists of clusterings generated with a fixed
number of initial centers. This ensures that the clusterings in a givenM -set share an important
characteristic, namely that each clustering has the same number of clusters. This gives also
the possibility to generate severalM -sets, with different numbers of initial centers. Some will
possibly fall in case 1, some possibly in case 2. The advantage then is that for those that fall in
case 2, we immediately know unambiguously the number of clusters.
Second, it could be argued that the highly initialization-dependent clustering is not necessarily
’better’, according to some validation measure, than the other clusterings in theM -set. How-
ever, the original objective was that by eliminating unstable elements, and thus reducing the
CSV, the clusterings of the reduced data set are only marginally dependent on initial centers
(on the condition that the CSV can be made small enough) and thus the differences between
the clusterings in theM -set are small. If we accept that these small differences are not critical,
a validation measure is not necessary, except for the case that there are severalM -sets that fall
in case 2 and we have to choose from their highly initialization-independent clusterings.
Third, a removed genegj can be given a membership degreem(gj, c) in clusterc in a natural
way, as follows:m(gj, c) =

∑
gk∈c C̄(j, k)/|c|.

The fact that the removed unstable elements are not part of a cluster, opens the door for investi-
gators to subsequently enhance the clustering process. The removed elements can be placed in
a suitable cluster on the basis of biological knowledge, while the membership degrees can be
used as additional unsupervised knowledge.
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4 Results

4.1 Ar tificial data set

We created a simple artificial data set that mimics periodic gene times series data, by starting
from the most simple period functionf(x) = sin(x) and adding some noise to it. Three clusters
of genes are then created as follows. First, the three phase shifts0, 2π/3 and4π/3 are used to
characterize each cluster. Second, for each cluster 10 gene time series are defined by selecting
20 time points from the corresponding sine function. For this selection we introduce two levels
of randomness: one on the level of the gene and one on the level of the time points. For each
geneg a random numberR1(g) ∼ N (0, σ2

1) is generated. For each geneg and eachpth time
point, p = 1, . . . , 20, a second Gaussian numberR2(g, p) ∼ N (p − 1, σ2

2) is generated. The
value of thepth time point,tp(g), is then defined astp(g) = R1(g) + R2(g, p) + P (g), where
P (g) denotes the phase shift ofg. WhereasR1(g) is fixed for each time point, the value of
R2(g, p) is dependent on the time point. We chooseσ1 = 0.05 andσ2 = 0.01.
Finally, two extra elements are introduced that do not clearly belong to a cluster. The first
element is created in the same way as the above 30 genes, but with a phase shift ofπ/3. The
second element is given a time shift of 0 and a large period of8π.
Figure 1(a) shows the generated genes according to the cluster to which they belong. The two
extra elements have been placed in an imaginary fourth cluster. K-means with the correlation
distance as distance measure was applied withN = 10 and 3 centers. The resulting CSV is
shown in Figure 1(b). A first minimum is at 0 after the two extra elements were deleted. Thus,
the method described above allows to detect these elements that do not belong to any of the
predefined clusters. If this would be a real biological data set, it would be up to the biologist to
decide to which cluster, if any, these 2 elements belong on the basis of biological knowledge.

(a) 3 well separatedclusters and 2 unstable elements (b) CSV

Figure 1: Artificial data set
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4.2 Real biological data set

With the use of the above described method we analyzed the fission yeast cell cycle microarray
data set discussed in [1], which concerns yeast cells synchronized by elutriation, and subse-
quently grown and sampled intermittently to obtain time series growth data. In three indepen-
dent experimental time series, each gene was measured at 20 time points.
From this large data set the top 500 genes reported in [2] were selected for further consideration.
This data set was then further reduced as follows. First, for each genegi the fraction of non-
missing time points was calculated, denoted asn1(gi). For example, ifgi had 45 non-missing
values, thenn1(gi) = 45/60 = 0.75. Obviously, we wanted to proceed further with only those
genes for whichn1 was high enough. Now, denote the highest value ofn1 over all genes asa1,
the second highest value asa2, etc. LetSi = {gj ∈ G |n1(gj) ≥ ai}, whereG denotes the set
of 500 genes. Our purpose was to select a set of genesSi for which the correspondingai was as
large as possible, since this implied that the number of missing values was small. At the same
time we wanted|Si|, the number of elements inSi, as large as possible so that the number of
genes that was not considered further would be limited. However, the fact that the sequence of
ai is decreasing and the sequence of|Si| is increasing, gave two conflicting requirements. A
compromise was found as follows. Letci = ai + |Si|/|G|. The optimalSi is then defined as
the one for which the correspondingci is maximal, which was found to consist of 338 genes.
Missing values were filled in using k-nearest neighbor [3], and finally for each of the 338 genes
the average was taken over the three experimental repeats to give the final data set.

We then generated 4M -sets withN = 50 with 3, 4, 5 and 6 clusters. We chose a small
number of clusters, since in [1] this yeast data set was also analyzed and 4 clusters were found.
However, notice that because of different preprocessing methods our analyzed data set was not
completely identical. For eachM -set unstable elements were sequentially eliminated starting
with the most unstable one, and after each elimination the CSV was calculated again. The
results are shown in Figure 2. To make the decision whether anM -set belongs to case 1 or 2
(see section 3.2) we plotted also a second-degree polynomial interpolation. It is clear that the
M -sets for 4, 5 and 6 clusters belong to case 1 and thus that there is no well-defined maximally
initialization-independent clustering for which the data set can be divided in 4, 5 or 6 clusters,
since the CSV decreases steadily with the elimination of genes. On the other hand, there is a
clear minimum in the case of 3 clusters, where the minimum corresponds with the elimination
of 84 (unstable) elements. We then found the desired highly initialization-independent cluster-
ing as the one that was closest tōC, as explained in section 3.2. The distance of the closest
clustering to the average clustering was found to be around 0.06, thus assuring that our final
clustering is highly independent of initial centers. Furthermore, thirty-seven clusterings of the
50 clusterings in the generatedM -set were exactly equal to this clustering, thus further con-
firming that we have substantially reduced the dependence on initial centers.
Notice that it is not stated that the given data set cannot be meaningfully divided into 4, 5 or 6
clusters, but only that the described method does not tell how the data set should be optimally
subdivided in a part that is clustered in an unsupervised way and a part for which previously
gained biological knowledge is used to enhance the unsupervised clustering. A solution is to
do the clustering completely unsupervised, as traditional practice, or to predefine a threshold
for the CSV and to eliminate genes as long as this threshold is not reached.
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Figure 2: CSV of fission yeast data set

5 Discussion and future research

We presented a method that detects and removes unstable elements from a given gene expres-
sion data set. The data characteristics of these genes are too different from those of the other
genes to reliably assign them to a cluster in an unsupervised way. The remaining, stable genes
can be well-divided into clusters and if the the data set is such that distance-based similar-
ity corresponds, to some extent, to similarity in terms of biological functional characteristics,
the subsequent biological analysis performed by the biologist is greatly facilitated. After the
biological characteristics of these clusters have become clear, the unstable elements can be
assigned to one of the clusters in a supervised way, integrating supervised and unsupervised
analysis in a natural way.
We plan to apply the described method to several real biological data sets. Data sets that will
be used for this purpose are the fission yeast data from section 4.2, data sets from the Many
Microbe Microarrays Database [13] and the S. cerevisiae data set described in [14].
Although classical hierarchical algorithms are not appropriate to generate a robust clustering
of gene expression data (see section 1), a more recent technique, called SOTA [15], combines
both hierarchical and SOM clustering, allowing a visual representation of the clusters and be-
ing rather insensitive to noise. An interesting direction for future research is to compare the
proposed approach with SOTA in terms of robustness, time complexity, and ease of evaluation
of the clustering for the biologist.
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