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Summary

Computational models in systems biology are usually characterized by a lack of reliable
parameter values. This is especially true for kinetic metabolic models. Experimental data
can be used to estimate these missing parameters. Different optimization technigques have
been explored to solve this challenging task but none has proved to be superior to the
other. In this paper we review the problem of parameter estimation in kinetic models.
We focus on the suitability of four commonly used optimization techniques of parameter
estimation in biochemical pathways and make a comparison between those methods. The
suitability of each technique is evaluated based on the ability of converging to a solution
within a reasonable amount of time. As most local optimization methods fail to arrive at a
satisfactory solution we only considered the global optimization techniques. A case study
of the upper part of Glycolysis consisting 15 parameters is taken as the benchmark model
for evaluating these methods.

1 Introduction

The main goal of Systems Biology is an integrated description of the functionality of living or-
ganisms. One important aspect are metabolic networks, which are extremely complex, highly
interconnected and regulate vital cellular processes for all living organisms. To understand this
complex behavior it is helpful to translate a metabolic network into a dynamic model with a
rate law for each enzymatic reaction. These rate laws are defined as mathematical expressions
that heavily depend on the underlying mechanism of the enzymatic reactions and can become
quite complex with a large quantity of parameters. Therefore system-level computational ap-
proaches are required to model and understand these mechanisms. To model the system as
accurately as possible, it is important to have a complete and accurate set of parameters which
characterize the system. However it is not always possible to measure these parameters in wet
lab experiments due to high demands on cost and time. Furthermore there are certain paramters
for which there are no appropriate measurement methods yet established. As a result different
insilico methods have been proposed for parameter estimation which greatly reduce the effort
and cost of biological experiments.

Parameter estimation is considered to be an inverse problem because the methods calibrate
the model parameters to reproduce the experimental results in the best possible way. This is
an inverse approach as it solves problems by minimizing a cost function which quantifies the

value of the difference between the model-simulated data and the measurement data which
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it already have. Different methods, both global and local, aop@sed in this regard. Both
types of algorithms have advantages and disadvantages. Local optimization methods tend to
converge quickly whereas global methods might take time. Local optimization methods have
a tendency to get stuck in local optima whereas global optimization methods ensure the global
optimum. The latter is quite important for biological systems since in most cases there is no
clear indication about the order of magnitude of these parameters.

The main focus of this paper is to study and compare different parameter estimation algo-
rithms, namely Evolutionary Programming, Genetic Algorithm, Simulated Annealing and Par-
ticle Swarm Optimization. A small exemplary model of the upper part of Glycolysis with 15
parameters was implemented as the case study of a non-linear dynamic model. The results of
different parameter estimation methods applied in this case study are then analyzed and com-
pared.

In the following sections, the problem statement will be illustrated before describing the basic
concepts of global optimization methods. The next selection deals with the implementation
of the model, and the results obtained from the algorithms will be discussed. Finally, we will

conclude with an outline of future work.

2 Problem Statement

Estimating parameters in a nonlinear dynamic model is complex due to its nonlinearity for
which no general solution exist&]. Biological models are mostly dynamic in nature and
highly nonlinear. Because of this parameter estimation of biological models are dependent on
optimization techniques. Most current methods formulate this problem as a nonlinear dynamic
optimization problem with differential algebraic constraints and a measure of the distance be-
tween model prediction and experimental data that is used as the objective function. The task
is to minimize this objective function over a time series of data points. The objective function
is formulated as below

J = /Ot(ymes(t) — Ypre (0, )T (1) (Ymes () — Ypre (0, ))dE )

where the algorithm tries to find the vectbthat minimizes the cost function @is the vector

of parameters in the optimization problem. Hetg(¢) is the vector of experimental mea-
surement values of the state at time},.(0,t) is the vector computed values of the state at
time t. W(t) is a weighting matrix. Because of the nonlinear and dynamic nature of the system
this optimization is typically multimodal (nonconvex). So if local methods are used to find a
solution of the problem it is very likely that these methods will get stuck in local minBha [
Thusglobal optimization methods are best suited to solve this class of problems.

3 Global Optimization Methods

Global optimization methods can be classified as determini8ti&][and stochastic], 4].
Stochastic global optimization methods depend on probabilistic approaches. Because of ran-
dom nature of these approaches they cannot guarantee a convergence to the global solution. On
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the other hand deterministic methods do guarantee a global raaxihowever, these methods
cannot solve problems with certainty in finite time. Though cannot guarantee, stochastic meth-
ods can locate the vicinity of global optima quite efficiently most of the time and importantly

it will find it with modest computational time. For this reason stochastic global optimization
methods are typically used for paramter estimation.

There are a large number of stochastic global optimization methods. In this paper we discuss
four of them and compare the performance of these algorithms for evaluating the example
model used as the benchmark for testing these methods.

Evolutionary Computation (EC) is a very popular class of stochastic global optimization method.
So this class of algorithms is based on the ideas of biological evolution, in particular the mech-
anisms of reproduction, mutation and survival of the fitt@kt Just like biological evolution,

the evolutionary computational methods generate better solutions by creating new generations
from the one that were closest to the solution in the previous generation. Two algorithms in this
class are very popular: Evolutionary Programming and Genetic Algorithms.

Evolutionary Programming (EP) is one of the most popular optimization techniques in the class
of Evolutionary Computation. Like all Evolutionary Computation algorithms the mechanism
in this algorithm inspired by biological evolution. Since its introduction it has been applied
in different fields of optimization. It starts with a random initialization of the population of
solution. For each individual of the population it then generates a mutation. After that it
calculates the fitness of each individual. Based on this fitness value it keeps the best half while
ignoring the rest. In this way the population size is maintained. Using this new population as
the starting point the algorithm repeats this process until the solution is reached.

Genetic Algorithms (GA) are another very popular subclass of Evolutionary Computation. It
is quite similar to Evolutionary Programming differing in that GA uses both crossover and
mutation, with crossover as the primary search operator, while EP uses only mutation.

The Simulated Annealing (SA) method derives its name from annealing in metallurgy which

is a technique involving the heating and controlled cooling of a material to increase the energy
of its crystals to allow uphill move. Based on the analogy to this physical process each step of
SA chooses the current solution by a random nearby solution. In the SA method, each point cf
the search space corresponds to a state of some physical system, and the objective functior:is
similar to the internal energy of the system in that state. The method eliminates the problem of
getting stuck in local minima by allowing 'uphill’ moves].

The Rarticle Swarm Optimization (PSO) method was proposed by Kennedy and Eberhart year
1995 [10Q]. Itis inspired by social behavior and movement dynamics ofatssdirds and fishes.

Its performance is comparable to that of GA. The swarm is typically modeled by particles
that have a position and a velocity in multidimensional space. These particles roam througn
the hyperspace and have two essential reasoning capabilities: their memory of their own best
position and information of their neighbour best. Members of a swarm communicate good
positions to each other and adjust their own position and velocity based on these good positions.
It is a very efficient global search algorithm because it is derivative-free and insensitive to the
scaling onto design variable$(].
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4 Model Implementation

For the sake of a fair comparison, all algorithms were tested using the same model in the same
platform. The case study model was implemented in Com@sivhich is one of the most
popuar software application for simulation and analysis of biochemical networks. The main
reason for choosing this software is that all of the algorithms that were compared in this paper
have already been implemented. Thus it is comparatively easy to model biochemical pathways
and simulate a model without any programming effort. Furthermore the command prompt
version of the software can be extended by scripting languages like Perl to run the simulation
multiple times in order to predict the statistics of an estimation algorithm. One drawback to
Copasi is that it is not easily extensible to include new optimization algorithms.

The upper part of Glycolysis was used as the case study model. This pathway is taken from
Yeast as described by Hyne et. &l [All parameter values are also taken from the same paper.
The £hematic diagram of the model is given in Fig.1.

ADP
ATP

A?P v iDP A?P v fDP
Frue-1,6-P, —-

Glucose Gluc-6- P'_ Fruc-6-P
V?
ADP ' ATP ATP "ADP ATP+ AMP'— 2ADP

Figure 1: Schematic diagram of the case study model

The adinary differential equations (ODES) of this nonlinear dynamic model are:
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where Glucose, Gluc-6-P, Fruc-6-P, Fruc-16ADP, ATP, AMP are the six metabolites which

are considered to be the variables. All thg, @nd K,, are the parameters. There are 15
parameters in the model. Among those 15 parameters 4 parameters were estimated based on
time course data. The general form of the Copasi objective function is:

S(P) =3 el — (P’ @

which is minimized during paramter estimation. Equafas the discrete form of the objective
function presented in equatich These two equations are the same when mo. This is
the same as equation 1 but just a different mathematical reformulation. \Wliéteare the
simulated data corresponding to the experimental dat@ndw; is a weight used to normalize
the objective function. The weights are calculated according to the formuiral;il.

Table 1 describes the settings of the parameters for each of the algorithm.

Evolutionary Programming | Simulated Annealing
Number of Generations: 200| Start Temperature: 1
Population Size: 20 Cooling Factor: 0.85
Random Number Generator:|ITolerance:l £~
Seed: 0 Random Number Generator:|1
Seed: 0
Genetic Algorithm Particle Swarm
Number of Generations: 200| Iteration Limit: 2000
Population Size: 20 Swarm Size: 50
Random Number Generator:|1Std. Deviation:1 £~
Seed: 0 Random Generator: 1
Seed: 0

Table 1: Search parameters used in different algorithms

5 Results and Discussion

For a fair comparison all of the computations were performed using a Intel Quad Core (2.66
GHz) platform running Windows XP. The method parameters were kept at the default values
that COPASI starts with. This was made to ensure an equal starting point for the comparisons.
Parameter values of all the algorithms can be adjusted differently depending on the modet.
One parameter set for a specific model might not perform well for other models. Keeping
this in mind and also the complexity of adjusting these parameter values, we decided to keep
the method parameters at their initial values to ensure easy comparability of the results. The
values of the objective function are taken from 1.8 second before the algorithm finishes. Table
2 highlights the results obtained from running the computations 100 times for each algorithm.
The four parameters that are estimatedl@ré/,ﬁm,g, Vimaz 4 @ndkg,.. The actual values of these

four parameters are 2.26, 140.282, 44.7287 and 133.33 respeciijeljhfe time series data

is generated by integrating the ODESs over a time period of 100 arbitrary time steps. This time
series data is later considered as a measurement data during parameter estimation.

doi:10.2390/biecoll-jib-2010-133 5



Journal of Integrative Bioinformatics, 7(3):133, 2010 http://journal.imbio.de

From Table 2 it can be seen that among the two algorithms derieed EC algorithms the
performance of EP is a little better than that of GA. But the mean values of both algorithms
are far away from the actual value. This might be due to a known limitation of such algorithms
for getting stuck in local minima. The median value of the algorithms reaches quite close
to the actual value, which makes these algorithms still applicable to the parameter estimation
problems. Table 3 depicts the maximum and minimum value of the objective function for each
of the algorithms among the 100 runs. These values also validate the superiority of evolutionary
programming over genetic algorithms as the objective function for evolutionary programming
iS (Jymaz= 119.569 and/,,,;, = 9.68022 1Y) and for genetic algorithm it is/,.,= 129.588 and

Imin = 0.003527).

Algorithm | Parameter | Mean Standard | Median CPU Time
Name Name Deviation (seond)

ko 71.67417 | 304.4333 | 2.26002 1104.615
ep Vi 3263.349 | 13767.35 | 140.248

Vinaz, 4 295.7599 | 1338.407 | 44.75795

Ks: 124.3258 | 31.42429 | 133.3105

ko 81.57572 | 288.9584 | 2.25719 1053.612
GA VI 3616.948 | 13354.14 | 139.826

Vinaz,4 643.5873 | 2149.941 | 44.9594

Ks; 125.8438 | 30.14491 | 132.806

ko 2.25 2.13E% 2.26 58924.72
SA VI 140.2818 | 0.00141 140.282

Vinaz,4 44.7287 0.000258 | 44.7287

Ks; 133.3299 | 0.001191 | 133.33

ko 2.26 2.677E-1° | 2.26 6319.488
PSO VI 140.282 257E-13 140.282

—14
Vinaz,4 44.7287 S5FE 44.7287
Ks; 133.33 5715~ 133.33

Table 2: Results obtained by repeating the computation of the foualgorithms on the case study
model 100 times (CPU time is the total for 100 runs). Statistics for the data are calculated from
these 100 runs.

Algorithm Name| Objective function value
Maximum | Minimum
EP 119.569| 9.6802%1°
GA 129.588, 0.003527
SA 2.93E-08 7.83p°1
PSO 5.06E-10| 5.065 19

Table 3: Maximum and Minimum values of objective functions of thealgorithms obtained after
running the computation of each of the four algorithms 100 times. PSO has the best value in both
minimum and maximum as they both become to be the same.

However the best result is obtained from PSO with the lowest objective function value=(
5.06£-1° and J,,;, = 5.06E71%). The mean and the median of the parameters are exactly the
same as that of the actual values with low standard deviations. But the computational time
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for PSO is 5-6 times longer than that of the EC algorithms. It t&349.488 seconds for the

total of 100 runs. The performance of S4,(,.= 2.932-% and.J,,;, = 58924.72) considering

the accuracy is near to that of PSO . However it has the highest running time among all the
algorithms (58924.72 seconds). SA may be more effective to find an acceptably good solution
in a fixed amount of time, rather than the best possible solution. This is illustrated 2 &ig.

Fig. 3. SA reaches to an acceptable value of the objective functionouakly but they take

very long to converge to the best solution. R2Zgshows the value of the objective function for
eachof the algorithms after running the computation for only 5 seconds.

Mean value of Ohjective Function after 5 Second
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Figure 2: Mean value of the objective function after running eachof the algorithm for 5 seconds.
Though SA takes considerable longer time to reach the best objective function value, its converge
rate for the first few steps is quite fast as it reaches to the lowest objective function value comparing
the other algorithms.

Fig.3 describes the objective function for all the algorithms. The figure shows that the objective
function values as well as time needed to complete the process for each algorithm vary. As a
result the scales for both abscissa and ordinate also differ. Fig. 3(a) describes the Evolutionary
Programming. The algorithm takes about 12 seconds to find the optimized value. The starting
value of the objective function is quite high but optimizes to a value of 0.006996 within quite
short time. Fig. 3(b) depicts the activity of GA where the slope for the objective function is
quite stiff as it decreases rapidly and reaches to a nearly optimized value within 3 second of
the start. It further estimates the objective function value and stops on 0.066554 at 8.04 sec.
Fig. 3(c) portrays SA. Though it reaches an objective function value less than 1 within 2.3
sec., it takes considerable long time (598.198 sec.) to reach at its optimized value. This could
be considered as a limitation of this algorithm. Finally Fig. 3(d) shows that PSO is the best
performing algorithm among these four with the test model data. It has the smallest objective
function value of 5.06 £'° and it finds it within a reasonable time (42.2188 sec).

Considering accuracy PSO and SA outperforms EP and GA. But the computational time of the
EC algorithms is much lower than that of either PSO or SA.

Our work confirms previous work by Mendesal. [11]. Among the algorithms they tested,
Simulated Annealing gives the best fit of the solution but it took considerable longer than other
algorithms. They did not check the suitability of Particle Swarm Optimization. Meiles.
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Figure 3: Plot of the objective function with time for each algorithm. For each algorithm, the
illustration plot is for the best solution obtained for that respective algorithm in the 100 repetition
(for the best solution obtained from running each of the algorithms 100 times)

came to the conclusion that Evolutionary Strategy gives the best possible sofijtiorhpy
menioned in the paper that although pure genetic algorithms are by far the most popular evolu-
tionary computing algorithm, methods derived from evolutionary strategy are more efficient anc
robust. They compared two methods derived from evolutionary strategies named SRES (Evc-
lutionary Strategy using Stochastic Ranking) and CMA-ES( Covariance Matrix Adaptation-
Evolutionary Strategy) and showed that SRES was the better of the two. But they excluded
simulated annealing from the comparison citing poor performance with respect to their se-
lected evolutionary strategies, the development which was their main motivation. They also did
not mention anything specific about Particle Swarm Optimization.

6 Conclusion

In this paper several very popular global optimization methods have been analyzed. Although
the stochastic global optimization methods perform better, their accuracy is relatively low.
Some of those have the advantage of a short runtime but lack accuracy, whereas other are
more accurate but take considerable longer time. What is most desired is a balance between the
two; accuracy and computational time. However, it is well known that many stochastic methods
lend themselves to parallelization very easily. In that case, provided suitable hardware, these
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algorithms can be run within much shorter time. Other approashels as nonlinear filtering

might give better estimations within less running time. In our future work we will consider a
hybrid approach. This will take the advantage of each mechanism to offset weekness that each
of them have individually shown. In this hybrid approach we will start with SA which rapidly
converges to a low objective function region and then will use GA to converge to the optimized
value.
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