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Summary

We study, in this paper, a model for the core of the system of the Glycerophospholipid
metabolism in the murine cells. It comprises the simple and enzymatic reactions of Phos-
phatidylEthanolamine and the PhosphatidylCholine . The model’'s general structure is
taken from a number of books and articles. We translate this model into a set of ordinary
differential equations (ODESs), to propose a quantitative explanation of the experimental
experiences and the observed results. In order to make it usable as a basis for simulations
and mathematical analysis we need to make precise the various constants present in the
equations but which are usually not directly accessible in the literature. In a first step we
considered experimental data of rat’s liver cells obtained by NMR spectroscopy: given the
values of metabolite concentrations we find appropriate parameter values which allow us
to describe the system with ODEs. We have then performed several analyses using the
developed model such as stability analysis. A first interesting result is the global stability
of the system which was observed by simulation and then proved by mathematical argu-
ments. A second important result is that we observe on the diagrams that the steady state
for normal cells is precisely a singular point of order two, whereas tumoral cells present
different characteristics; this fact has been proved for PhosphatidylEthanolamine N-Methyl
transferase (PEMT), an enzyme which seems to be identified for the first time as a crucial
element in the tumoral process. In a second step we applied our model to experimental data
of proton HRMAS NMR spectroscopy for solid B16 melanoma and Lewis lung (3LL) 3LL
carcinoma cells treated by Chloroethyl Nitrosourea (CENU). We performed a complete
comparative analysis of parameters in order to learn the predictive statements to explain
increases and decreases which one can observe in concentrations.

1 Introduction

Phospholipids are a major component of biological membranes. They are a class of lipids
formed from four components: fatty acids, a negatively-charged phosphate group, alcoho-
lamine and a backbone. PhosphatidylCholine (PtdCho) and PhosphatidylEthanolamine (Pt-
dEth) are two of the most abundant Phospholipids. In most eukaryotic cells, PtdCho is synthe-
sized through two different pathways [1]; in the cytidine diphosphate-choline (CDP-choline)
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pathway (Kennedypathway) and via the transmethylation of PtdEth catalysed by Phosphatidyl-
Ethanolamine N-Methyl transferase (PEMT). Choline, supplied by food, is principally in the
form of PtdCho but also exists as free Choline [2, 3].

The Kennedy pathway for producing PtdCho, involves the activation of Choline (Cho) to CDP-
choline through an intermediate product, PhosphoCholine (P-Cho). The second pathway to
produce PtdCho consists of three sequential methylations of PtdEth. Cho derived from turnover
of PtdCho produced by the methylation pathway is used for PtdCho synthesis through the
Kennedy pathway. Therefore the activity of the Kennedy pathway does not reduce even in
the absence of Cho in the growth medium [4].

In 1975, Sundleet al. used radioisotope methods to examine the rates of synthesis for PtdCho
and PtdEt of liver [5, 6]. In their study, there are still questions about metabolic pathways to
be answered. However evidence of the two different pathways of PtdCho synthesis and the
relative activities of these pathways was provided by Vance et al. [7, 8]. The Nuclear Magnetic
Resonance (NMR) spectroscopy method has been used to study the biosynthesis of PtdCho and
PtdEth [9, 10]. The NMR technique can also provide a detailed examination of the specific
metabolic pathways. Reat al. performed kinetic analyses of liver PtdCho and PtdEth biosyn-
thesis using®C NMR spectroscopy [11].

The development of methods for pathway-specific analyses of phospholipid biosynthesis in in-
tact tissue can help in our understanding of numerous cellular processes, and may be important
for cancer studies. This is why the Phospholipid metabolism has attracted the attention in can-
cer research. It is of interest to biologists to be able to follow the phospholipid metabolism
in circumstances in which cell survival and cell proliferation are of conaam,neurological
disorders and cancer [12, 13]. Thus there is a need to develop a model for their biosynthesis and
turnover. This is why we tried to find a model for the GlyceroPhospholilid metabolism in the
murine liver cell. Our goal is to build a model with which one could simulate the behavior of
Phospholipids interactions. Due to the complexity of this system, mathematical modeling anc
numerical simulation is necessary to enable a compact representation of the current knowledge
and to make meaningful quantitative predictions guiding future experimental studies.

Once the model is developed to represent the metabolism of the murine liver cell, one can apply
it to study the Phospholipid metabolism of mouse melanoma and 3LL carcinoma cells. In the
recent years several studies have been carried out to perform chloroethylnitrosourea (CENU)
chemotherapy for the treatment of B16 melanoma and Lewis lung (3LL) carcinoma tumors in
vivo [14, 15, 16, 17, 18]. We apply our model to study the effects of such treatments. For
each of these two tumors we have experimental data for three different phases: Control(CTL},
Inhibition(INH) and Recovery(REC)[27].The results of our comparative analysis, based on our
simulation, show good agreements with experimental data [16].

In our study, we have directly translated the biochemical reactions into ODEs, following the
Michaelis-Menten chemical paradigm. Other authors have used probabilistic models or com-
puter science models based oftalcul; under very reasonable assumption all these models
yield ODEs as stated by L. Cardelli in his series on Atrtificial Biochemistry [19].

2 Methods

In this section, we first describe our model for the Phospholipids’ metabolism which is supplied
from bibliographical references(e.g. M.Israel and L.Schwartz [20, 30, 31, 32, 33, 34]). Thenwe
introduce our methods to obtain experimental data. Next, we develop an ODEs-based model.
Finally, we study different phase spaces of the system.
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Figure 1: Schematic representation of the model. Arrows with VM; and KM, param-
eters refer to enzymatic reactions while the rest represent simple reactions. Reactants:
Cho(Choline), PCho(Phospho-Choline),  PtdCho(Phosphatidyle-Choline), = GPC(Glycero-
PhosphoCholine), Eth(Ethanolamine), PEth(Phospho-Ethanolamine), PtdEth(Phosphatidyle-
Ethanolamine), GPE(Glycero-PhosphoEthanolamine). Enzymes: CK(Choline-Kinase),
EK(Ethanolamine-Kinase),CPT(PC-transferase),CCT(PhosphoCholine-Cytidyl-Transferase),
ECT/EPT(PhosphoEthanolamine-Cytidyl-Transferase), PEMT(PhosphatidyleEthanolamine-N-
methyl-Transferase),PIpA2 (PhosphoLipase A2), PIpC(PhosphoLipase C), PlpD(PhosphoLipase
D). Parameters: VM(Michaelis maximum reaction rate), KM(Michaelis concentration constant),
k1-k12( Rate constants for external reactions).

2.1 Biochemistry of the phospholipid metabolism

Our analysis concerns twenty-four biochemical reactions (Fig. 1). In this system there are two
main sub-systems with similar reaction structures; the first one is the Choline (Cho) cycle and
the second one is the Ethanolamine (Eth) cycle. In order to have a more complete model several
reactions involving external reactants are also considered in the model (Fig. 1).

Choline cycle:  Cho is phosphorylated in a reaction catalyzed by Choline-Kinase (CK), re-

sulting in the formation of PhosphoCholine (PCho)[30]. PCho is converted to PtdCho in a

two step reaction, first catalyzed by PhosphoCholine-Cytidyl-transferase (CCT), then by PC-
transferase (CPT)[30, 31]. PtdCho is converted to Glycero-PhosphoCholine (GPC) in the re-
action catalyzed by Phospholipase A2 (PIpA2)[31]. In addition, PCho and Cho can be synthe-
sized from hydrolysis of PtdCho through the reactions catalyzed by Phospholipase C (PIpC)
and Phospholipase D(PIpD) respectively[31, 32]. Cho can be also synthesized from GPC[32].

Ethanolamine cycle:  Ethis phosphorylated in an enzymatic reaction catalyzed by Ethanol-
amine-Kinase (EK), resulting in the formation of PhosphoEthanolamine (PEth)[33]. PEth is
converted to PtdEth in a two steps reaction, first catalyzed by PhosphoEthanolamine-Cytidy!-
transferase (ECT), then by PE-transferase (EPT)[33, 34]. PtdEth is converted to Glycerc-
PhosphoEthanolamine (GPE) in the reaction catalyzed by Phospholipase A2 (PIpA2)[8, 31].
Eth is synthesized from GPE[32].

The above two sub-systems are related through the reaction between PtdEth and PtdCho where
PhosphatidylEthanolamine N-Methyl Transferase (PEMT) plays the role of catalyst[4, 7, 8].
This reaction seems to be an important reaction in this system, and the basis of main analysis
in our study, since homeostasis of PtdCho is essential to maintain cell survival.
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External reactions: In addition tothereactions described so far, most of the reactants in
phospholipids metabolism model have external reactions. For example there is a reversible
reaction in which PhosphatidylSerine (PtdSer) releases & PtdEth as products [21]. In

the same way there are several external reactions in which Cho, Eth, PCho, PEth, PtdCho and
PtdEth have the role of substrate or product. We present these external reactions by input or
output arrows in the model(Fig. 1)[9, 21, 30].

2.2 Mathematical simulation

The mathematical simulation of the model is performed via a free mathematical software,
Scilab. For the simulation of the biological system we use traditional reaction-rate approach
by defining the equations describing the system and setting the initial parameters required for
the calculation. In this approach, the chemical reactions are modelled by ordinary differential
equations (ODESs) representing the concentrations of the substances. We formulate the basic
model for the given chemical reactions in terms of a system of differential equations , which
consists of one differential equation for the kinetics of each of the reactants. In each equation,
[X] represents the concentration of a given reactant X, whose values are expressed.ijT*.

Thek; is the reaction rate coefficient or rate constant in simple reactions. For enzymatic reac-
tions the parametefig M; and K M; are the maximum rate and Michaelis constant respectively.
The model writes as follows:
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In this model, each of these differential equations expresses the rate of change of one reac-
tant as a sum of fractional terms for enzymatic reactions and non-fractional terms for simple
reactions. Furthermore, we proposed an exponential formula with concentrations of studied
reactants in our system as variables, to explain the kinetics of reactions with reactants from the
external environment. Diffusion phenomena are the reason of this exponential form. Molecular
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diffusion, often callegimply diffusion, is a net transport of molecules from a region of higher
concentration to one of lower concentration by random molecular motion.

2.3 Model analysis for healthy liver cells

In this section, we use the described mathematical model in two steps: first we try to find
the different required parameters in system of equations, such as the rate constants for each
reaction, using the experimental values of the concentrations in healthy rat liver metabolism.
The second step is to study the phase spaces diagrams and also the different stability analyses
using the parameters obtained for healthy liver cells.

2.3.1 Concentrations and Parameter estimations

The described kinetic equations require different parameters, such as the rate constants for eachi
reaction. In the first application of our mathematical model, the experimental values that we
use, are derived from the concentrations of rat liver metabolism measured at several instants
during infusion with Choline and Ethanolamine [11]. Concentration of [PtdCho] and [PtdEth]
were measured from theP NMR spectra of the lipid extracts [11]. A description of these
experimental analysis is given in [23, 24]. The parameter values have an important effect on
the precision of the model which is representing this biological system. However these values,
k;, V M; and K M;, are difficult to estimate experimentally and many are unknown; that is why
we estimate them by means of a numerical method. There are several ways of doing so. Since
the changes in the concentration values in the different instants are small, we predict that the
system is initially close to its steady state. We use this assumption to treat our system of ODEs
as a nonlinear algebric problem (since all derivatives are zero).This simplification now leaves
a system of equations with a number of variables greater than the number of equations. There-
fore mathematically we have a set of possible solutions of this ODE system. Furthermore we
know that the vector of these rate constants needs to insure the behavior of the model in such a
way that the cell is viable. For example there exists a specific limited range of concentration,
for some metabolites, in which the cell can stay alive. These ranges can give upper and lower
bounds for parameters.[25]. Once we take into account all these biological constraints, the pos-
sible rate constant vectors fall into a subset of the parameter space. Characterizing this subset
would be a prediction of the model, and so would be characterizing the set of all the dynamics
of the model consistent with the parameter vectors in this subset. The vector of parameters
which are shown in Table Z{. Annexe 1) is one of these possible solutions. To obtain this,

we first define the sum of squares of rate equations of section 2.2 as a function. Then we find a
solution which minimizes the value of this function, in the viable range for parameters. For this
aim, since we have two inequality constraints as a lower bound and an upper bound for each
of parameters, we use the Karush-Kuhn-Tucker(KKT) theorem [35]. The KKT conditions are
necessary for a solution in nonlinear programming to be optimal, provided some regularity con-
ditions are satisfied. It is a generalization of the method of Lagrange multipliers to inequality
constraints[35]. This method gives a solution that best fits with the biological measurements.
Table 1 €f. Annexe 1) represents the average of concentrations which are measured experimen-
tally, for 8 reactants of our system. We first try to use the average values presented in Table 1
(cf. Annexe 1), to obtain a possible vector of the constants of reacdtiptise maximum veloc-

ity and kinetic constant of Michaelis-Menten modél/; and K M; (Table 2 ¢f. Annexe 1)).

We also try to find a possible vector of the constants, for each set of concentrations measured
in each of 6 time points [11]. Comparing the vectors obtained in each of these two cases, we do
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not observe bigvariations in the parameters, which means this is a robust solution. The results
and variations are shown in Table &.(Annexe 1). We also observe the similar results for up
to 100 other vectors in the subset of parameter space.
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Figure 2: Changedn initial concentrations. A: Changes of initial concentration of Phosphatidyl-
Choline. B: Phase space for Choline and PhosphoCholine. C: An Example of different initial
concentrations traversing into steady state. In A and B the color change from red to blue refers
to approaching the steady state. In C each color associates to the concentration of one of the
reactants. Concentrations values are given immol.g .

2.3.2 Phase spaces and Stability Analyses

Phase spaces: Here we calculate and study the phase spaces diagrams using the parameters
obtained in our model. The goal is to obtain the behaviour of the system with respect to time.
The simulation results showed that for the obtained parameter values there exists only one
steady state point in the range near the studied initial concentration values. When we try te
change one or several initial concentrations at tigpgve see that after passing a period of time

the concentrations of all the reactants converge finally toward the concentrations of the steacy
state point. Therefore one can conclude that the change in the initial concentration of each cf
the reactants does not modify the behaviour of the system at infinity).({Fig. 2).

Stability Analyses:  As a first set of stability analyses we study the changes in steady states
by modifying the concentrations of enzymes in enzimatic reactions. To determine the maximum
rate of an enzymatic reaction (like most of the reactions in our model) we used the Michaelis-
Menten model. In this model, the maximum initial velocity (a kinetic constant of the enzymatic
reactions) reflects the activity of an enzyme and is proportional to its concentration. Therefore,
in our simulation and in order to represent changes in enzyme concentrations, we simply mod-
ified the value of the maximum initial velocities of the reactiohS\(;). For example in the

case of the reaction between PtdEth and GPE, the diagrams of changes of steady state resulting
from the change of maximum velocity are shown in Fig. 3(a). On each of these diagrams, each
point (VM, X) corresponds to a concentration of the reacfénat the steady state.
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Figure 3: SteadyState Concentration vs. Enzyme Concentration. A: Change of steady state point

for the reaction of PtdEth and GPE. On each of these diagrams, each point (VMX ) corresponds
to a concentration of the reactant X; at the steady state. B: Change of steady state point for
the reaction of PtdEth and PtdCho. The red point in each of these diagrams is associated to the

concentration at the steady state of the experimental values. Concentration values are given in

pwmol.g™ L.

The diagrams were as expected. When the velocity of reaction from PtdEth to GPE increases,
the concentrations of GPE, PEth and Eth increase and the concentrations of PtdEth, Cho, Ptd-
Cho, PCho and GPC decrease.

Here it is worth to recall the special role of PtdEth N-methyltransferase enzyme(PEMT) in
phospholipids biosynthesis. The PEMT pathway is especially functional in the liver. It is

a minor pathway for PtdCho synthesis from PtdEth, the major pathway being the Kennedy
pathway which involves the metabolism of Choline taken from the blood. The PEMT path-
way is implicated in the biosynthesis of lipoproteins in the liver. In contrast, its role is poorly
known in tumors, excepted in hepatocarcinoma [26]. It was recently shown that some tumor
cell types could compensate for the deficiency of the Kennedy pathway by upregulating the
PEMT pathway, thus surviving. Therefore a complementary aim for our modelling was to get
further insight into the possible role of the PEMT pathway in the regulation of tumor phospho-
lipid metabolism. To our knowledge, the implication of PEMT in response to an anticancer
agent, in melanoma and 3LL carcinoma has never been investigated. Now we get back to
our model and take the reaction of first order, related to PtdEth and PtdCho for which PtdEth
N-methyltransferase (PEMT) plays the role of enzyme. Fig. 3(b) represents the changes cf
the steady state point associated to different reactants. On each of its diagrams, every point
(IPEMT], X) corresponds to a concentration of reactiiniat steady state. So if we change

the enzyme concentration, for an arbitrary value of the initial concentrationXljkéhe con-
centration [X;] will tend towards its steady state concentration value. In Fig. 3(b), the red point
(also shown by a circle) in each of the diagrams is associated to the concentration of the steady
state among the experimental values.

In the second set of stability analysis, we studied the effects of the changes in reaction rates
on concentrations and their relation to the steady state. For this aim, we performed several
different simulations for each reaction. In the diagrams presented in the example of Fig. 4(a};
each colour is associated to one of simulations. Each of these diagrams represents the changes
of concentration of a reactant vs. its reaction rate for that reactant.

Let us recall that the point where the rate of reaction reaches zero, is called the steady state point
for a given reactant. To make it clearer, let us explain the corresponding diagram for PtdEth.
This is also shown in Fig. 4(b) with a better resolution. The steady state is obtained when the
concentration is around ldmol.g~!. This is obtained by taking some random concentrations
and measuring the reaction rate for each of them. Then we connected the resulting points to see
when the zero rate is obtained. For any other points in this diagram, which are not the steady
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Figure 4: Ratevs. Concentration. A: Rate vs. Concentration for PhtdEth: Each experiment is
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change in concentration of one reactant vs. its reaction rate. We define the slopk) (as rate
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state, concentration tends towards the steady state concentration. In other words the normai
cell behaviour corresponds to a "superstable” steady state. As shown in Fig. 4(a) and Fig. 4(b),
for all of the reactants, these diagrams have shown to be linear and they coincide for any fixed
reactant.

In the third set of stability analyses on the concentrations of rat liver metabolism, we tried to
study the speed to reach the steady state point. In Fig. 4(b) for the points with the concentrations
far from the steady state point (which is shown by an arrow), the absolute value of this rate is
bigger than for the points which have a concentration close to the steady state. This means thét,
the speed to reach the steady state point increases when we try to change the concentration cf
reactants. One of the parameters which could influence this speed is the concentration of en-
zyme. To study the effect of the change of concentration or activity of an enzyme on this speec,
as itis shown in Fig. 4(b), we considered the slopes of the diagrams as an indicating coefficient
for the reaction speed. Let us call this slope e coefficient (k)If the concentration of one

of the enzymes changes, the rate coefficient does so. When the rate coefficient is small, the rate
changes more slowly than when the rate coefficient is larger. The diagrams of rate coefficients
vs. concentration of enzyme PEMT are shown in Fig. 5.

3 Results and Discussion

In this Section we will first study some interesting results obtained from the stability analyses
of section 3.2. We will also discuss the complexity of the algorithm applied to Rate vs. Con-
centration stability analysis. Then in the next step we give a mathematical proof for the stability
of this model of equations. Finally as the most interesting application of our proposed mathe-
matical model, we provide a complete comparative analysis using the experimental data which
come from chloroethylnitrosourea (CENU) chemotherapy for the treatment of B16 melanoma
and Lewis lung (3LL) carcinoma tumoral mice cells in vivo [19].
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Figure 6: Treatment Phases. Growth curves of untreated (white circles) and CENU-treated tumors
during the growth inhibition phase to treatment (black circles) and the growth recovery phase
(gray circles). CENU was given intratumorally at days 11, 14, and 18. Bars, SD.

10

Tumor Weight (g)

15

http://journal.imbio.de

-coeff. Eth

n

-coeff. P TdEth

(=1

N by ¥ o= 4
+ +Y o +‘§ + ++*} " w + 2
B gl S T oog *s 4
g | TR g T T ety
5.3 #+ #
Pl 28l S 2 T e
+¥
2 1
0 5 1 15 5 w0 5 5§ 0 15
[PEMT] [PEMT] [PENT]
& 0os
iz ++;‘¢?‘:+h A &
d 6 Gfeal iy 0055 fs, .
wiy o4 “S:t++ Yo :;r * &
ol B b B ookt .t oo
At 5 ® oy +Ht i ++#+ o
=
g2y B ST
- R
L *+
i ol” o4 L
0 5 1 1 5 0 5 0 & 10 15

[PEMT]

10

20

I
30

40

50

Day from B16 cell inoculation

3.1 Stability analyses results and Complexity study

The analysis of reactants’ concentrations vs. enzymes’ concentrations in section 3.2. shows

that:

» The PEMT Enzyme is found to provoke a reciprocal trend between PEth and PCho. This
means that there is a balance between the change of concentration of PEth and the charige
of concentration of PCho. This result is in good agreement with experimental biological
results reported in B16 melanoma cell cultures responding to an anticancer agent [14].

situations it is the third derivative which vanishes).

doi:10.2390/biecoll-jib-2010-129

One can note from Fig.3(b) that when the concentration of PEMT increases the concen-
tration of Cho and PC(PCho) saturate after certain values of [PEMT], while the concen-
tration of PtdCho still increases. This fits with the fact that the methylation of PtdEth may
relay PtdCho biosynthesis when the choline pathway is saturated or blocked[7, 8, 26].

The interesting result about the red points (also shown by a circle) in Fig.3(b), is that,
these positions are the places where the behaviour of diagrams changes (either inflexion
point in mathematical term which means where the second derivative is zero or in some
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In the stability analysesf Rate vs. Concentration in section 3.2., given the values of concen-
trations{C;} which were observed experimentally, we managed to find appropriate parameter
values{P;}. With these parameter values, the ODEs system has a stable solution, and the
resulting concentration values are equal to the initial ojés}). However, one could ask
whether a change in parameter values could give an unstable or oscillating solution. For that
purpose we studied the eigenvalues of the Jabobian matrix in a number of points 6%k to

As we had 41 parameters we just could not try all variations of them at the same time. For
instance, even to try 10 values for each parameter would take* Q) pperations. So we used
random numbers to change all parameter values simultaneously. In each of 10 000 experiments
we made, each parameter took a value, where rand factor was an uniformly distributed random
value in a range from 0 to 20. In all the experiments we observed the stability of the system.

3.2 Mathematical proof of stability (sketch)

We tried to find a fixed point for the proposed ODEs system using the parameter values that we
found in section 3.1, such as it would be the closest fixed poiftt¢. The eigenvalues for
Jacobian matrix of the system in such fixed points are always real and negative. This indicates
that the solution is always stable and without oscillations regardless of parameters values of the
system. More generally if we pay attention to our ODEs system where most of the equations
have the general form of Michaelis-Menten, we can prove that all solutions for this system are
stable. The proof is that we have a Jacobian matrix with a dominant diagonal. This means that,
in every row of this matrix, the magnitude of the diagonal entry in the row is larger than the
sum of the magnitudes of all the other (non-diagonal) entries in that row. More precisely, the
matrix A is diagonally dominant ifa;;| = >, |a;;| for alli, wherea;; denotes the entry in the

ith row andj,, column. The Jacobi method for solving a linear system converges if the matrix
is diagonally dominant. The eigenvalues for the Jacobian matrix in such systems are always
real and negative. This indicates that the solution is always stable and without oscillations
regardless the particular parameters of the system. In the other word all the evolutions of tha
cell metabolism are stable in the proposed mathematical model which is based on Michaelis-
Menten kinetics.

3.3 Application of the model on Tumors treated by CENU
3.3.1 Invivo experiments: Treatment protocol

Six-to-eight-weeks-old C57BL6/6J male mice were purchased from IFFA CREDO, (L' Arbresle,
France). Mice were shaved before s.c. injections into their flank<df05 tumor cells(B16
melanoma or 3LL cells). B16 melanoma or 3LL tumors became palpable at days 8-10 after
cell inoculation. Mice were divided into two groups, a Control (CT) group, which received
sham injections of saline solution, and a Treated (TR) group. The TR group received intratu-
mor chloroethylnitrosourea (CENU) injections at a dose of:fjfg body weight. CENU was
injected at days 11, 14, and 18 from B16 cell inoculation.

At defined times of tumor evolution (days 10, 12, 15, 20, 24, and 29 after B16 cell inoculation
for CT and TR tumors and prolonged to days 35, 43, and 54 for TR tumors), three mice of each
group were sacrificed according to institutional guidelines for animal welfare and experimental
conduct. Tumors were dissected and weighed. The dissection of the s.c. tumerZooi.

A piece of the tumok50 mg of the whole tumor was immediately prepared for NMR Spec-
troscopy as described below or frozen-a0 °C in case of delayed examination.

doi:10.2390/biecoll-jib-2010-129 10
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Tumor growthcurves were fitted to the Gompertz function and modified for the TR group
to include a growth delay period. Ranges for maximum attainable weights and other model
parameters obtained in CENU-treated melanoma models have been published previously [22].

3.3.2 Results and discussion

The aim of this section is to provide insights into metabolic pathways from biochemical data
derived from 1H-NMR spectroscopy-based metabolite profiling of tumors [27]. Proton two-
dimensional NMR spectroscopy analysis has been shown to cover very well the subset of phos-
pholipid derivatives [14, 16, 29], including the most concentrated phospholipids (PtdCho and
PtdEth), water-soluble precursors (choline, phosphocholine, cytidyl-diphosphocholine, ethanol-
amine, phosphoethanolamine, cytidyl-diphosphoethanolamine), phospholipid hydrolysis prod-
ucts (glycerophosphocholine, glycerophosphoethanolamine), and oxidization products (betaine).
Besides these technical conveniences, phospholipid metabolism is crucial for the build-up of
cellular membranes thus for tumor cell proliferation, a major phenotypic feature of tumors. Re-
cently, as an anticancer treatment strategy, it was proposed to inhibit key-enzymes of phospho-
lipid metabolism (choline-kinase) to slow down tumor cell proliferation [28]. We hypothetized
that, by modelling phospholipid derivative content variations between two conditions at steady
state, we could give insight, through the used set of parameters, into the induced regulations of
phospholipid metabolism. We thus compared phospholipids metabolism alterations in murine
tumors between baseline and the stable phase of their response to an anticancer agent. Based
on the classical hypothesis that pathways of phospholipids metabolism are very similar in liver
cells and tumor cells [9], we applied our mathematical model to study the effects of such treat-
ments. For each of these two tumors we have experimental data for three different phases:
Control(CTL), Inhibition(INH) and Recovery(REC) [27](See Fig. 6). The average concentra-
tions measured experimentally at steady state for each of these phases are shown in Table 3 and
4 (cf. Annexe 1).

At a first step we tried to obtain a possible vector for appropriate parameter values for eackh
phase of treatment, applying the same methodology we used for the liver cell metabolites. Tha
results are shown in Table B6f( Annexe 1).

Afterwards a complete comparative parameter analysis is performed in order to understand
the background of the observed increaments or decrements of concentrations(Table 3 and 4
(cf. Annexe 1). Let us explain an example in more details: As it is shown in Tabt#. 3 (
Annexe 1), for B16 melanoma, we observe an increase of &33.g~' melanoma for Phos-
phoethanolamine(PEth). The reason is easily explainable by our parameter analysis for change
of rate of all reactions in which PEth plays the role of a substrate or product. Here, PEth con-
centration increases sinéé\/q; is increasing rapidly anél M, is decreasing, despite PEMT
activity is decreasing. By a similar analysis we obtain the explanation for the decreases in GPC
and GPE in 3LL carcinoma [16].

4 Conclusion

Understanding cell metabolism evolution and changes is for many scientists more than a chai-
lenge; it is the key to a thorough understanding of cell dysfunction and very likely a step

toward the elucidation of carcinogenesis along the lines of Warburg’s seminal papers. In this
paper we presented mathematical analysis of the metabolic pathways which control and com-
mand the production of Glycerophospholipids through the enzymatic reactions of PtdEth and
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PtdCho.Analysis showghatthe normal cell stands at very special points of equilibrium. We
also checked our model against a series of experiments and gave evidence for the crucial role
of PhosphatidylEthanolamine N-Methyl transferase (PEMT) in tumor cells under CENU treat-
ment. Our results show that:

-The model fits "in vivo” observations and experiments with CENU tumor inhibitor, and pro-
vides new hypotheses on metabolic pathway activity from metabolite profiling of phospholipids
derivatives.

and provides:

-All the evolutions of the cell metabolism are stable in the Michaelis-Menten formula.

-The normal cell behaviour corresponds to a "superstable” steady state.
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Annexe 1
Table1: Initial concentrations of rat liver metabolites
Choline 0.514+0.11
Ethanolamine 0.11+0.01
PhosphoCholine 0.88+0.18
PhosphoEthanolamine 1.02£0.15
PhosphatidylCholine 29.5H2.76
PhosphatidylEthanolamine 9483.15
GlyceroPhosphoCholine 0.4D.09

GlycerophosphoEthanolamine

0:86.05

Values are gien inpmol.g~! liver, measured by P-NMRJ0i:10.1016/S1388-1981(01)00202-5

Table 2: Estimated parameter values for rat liver metabolites

Param Value Param Value Param Value
k1 1.465+0.091 VM, 2.289+0.105 KM, 0.567:0.015
ko 1.882:0.110 V M, 0.6244+0.076 K M> 29.7070.195
ks 0.281+0.013 VM3 0.8144+0.040 K M3 0.549+0.033
ky 2.981+0.118 V My 4.898+0.122 KMy 0.950+0.010
ks 0.064+0.007 V M5 0.5754+0.032 K Ms 29.812+0.252
ke 0.054+0.003 V Mg 0.696+0.009 K Mg 29.634+0.310
k7 1.001+0.081 VM~ 10.454-0.094 K M5 4.845+0.046
ks 0.786+0.041 V Mg 0.5054+0.008 K Mg 10.060+0.096
ko 2.206+0.109 V My 3.6294+0.086 K My 1.888+0.015
k1o 1.238+0.074 V Mg 0.5774+0.002 KMo 0.457:0.002
ki1 0.980+0.079 V My, 2.825+0.075 KMy 0.1214-0.011
k12 1.000+0.042 VMo 1.657+£0.009 KMo  29.844+0.155

Values are gien inpmol.g— 1 liver for K M; and ingmol.g~1.s~ for V.M; ands—! for k;.

Table 3: Average concentrations of B16 melanoma tumor model metabolites

B16: CTL INH REC
Cho 0.395 0.636 0.518
Eth 0.1 0.102 0.101
PCho 1.091 1.847 1.842
PEth 4.001 9.337 6.304
PtdCho 15.030 25.782 21.915
PtdEth  5.010 8.594 7.305
GPC 0.367 1.561 0.131
GPE 0.703 1.401 0.665

Values are gien inpmol.g—! melanoma, measured By NMR spectroscopy.

Table 4: Average concentrations of 3LL carcinoma tumor metabolites

3LL: CTL INH REC
Cho 0.946 1.746 1.596
Eth 0.1 0.991 0.101
PCho 0.996 1.610 1.542
PEth 3.533 6.458 5.468
PtdCho 10.456 11.470 13.071
PtdEth  3.485 3.823 4.357
GPC 4.643 1.370 2.434
GPE 1.356 1.025 0.873

Values are gien inumol.g~! 3LL carcinoma,measured ByH NMR spectroscopyd0i:10.1002/ijc.21761
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Table 5: Estimatedparametervalues for mouse melanoma and 3LL carcinoma metabolites which
is used in our comparative analysis

Cell: B16-Treated 3LL-Treated

Parameter: CTL INH REC CTL INH REC
k1 1.58040.28 | 0.975+0.11 | 0.70440.28 | 0.503+0.19 0.20440.01 0.318+0.05
ko 1.54440.19 1.787+0.04 | 2.402+0.42 1.322+0.05 1.38040.03 1.420+0.08
k3 0.66440.07 | 0.208+0.08 | 0.011+0.01 0.1940.11 0.066+0.006 | 0.085+0.008
kg 2.46940.12 1.907+0.01 | 2.254+0.14 1.826+0.07 1.72040.07 1.739+0.19
ks 0.06940.04 | 0.0054+0.08 | 0.113£0.01 0.093+0.01 0.021+£0.014 | 0.014+0.01
ke 0.04140.05 | 0.064+0.02 | 0.007+0.06 | 0.059+0.01 0.13940.04 0.096+0.05
k7 1.05540.04 | 1.002+0.002| 1.007+0.04 1.148+0.07 1.127+0.007 1.072+0.14
ks 0.00940.04 | 0.029+0.01 | 0.082+0.03 | 0.064+0.01 0.06940.03 0.089+0.01
ko 1.11540.04 | 1.000+0.001| 1.012+0.001 | 1.10G+0.04 1.00840.04 1.019+0.15
k10 0.92140.09 | 0.913+0.19 | 1.933+0.036 | 1.013+0.11 1.29140.14 1.266+0.21
k11 1.01640.02 1.098+0.09 | 1.028+0.09 1.009+0.01 0.97440.012 0.98440.05
k12 1.00040.01 | 1.00040.001| 1.000+0.001 | 1.00040.001 | 1.000+0.001 | 1.00G+0.001
V M, 3.25340.08 | 2.894+0.51 | 3.148+0.29 1.613+0.18 0.89240.18 0.94640.07
KMy 1.396+£0.15 1.345+0.23 | 0.63340.11 | 1.144+0.004 | 1.83640.04 1.722+0.16
V Mo 0.29040.02 | 0.460+0.10 | 0.402+0.036 | 0.585+-0.06 0.44040.06 0.58440.08
KMo 15.1940.03 | 25.88+0.01 | 22.04+0.02 | 10.614+0.006 | 11.5940.21 13.17+0.11
V M3 0.81840.07 | 0.871+0.14 | 0.752+0.151 | 0.804+0.02 0.73240.09 0.797+0.01
KMs 1.55940.03 | 2.113+0.31 | 0.54440.06 | 4.681-0.01 1.66540.13 2.656+0.17
V My 3.15840.35 | 3.038+0.05 | 4.570+0.29 3.274+0.13 2.13840.06 2.375+0.15
KMy 2.39840.20 | 2.900+0.09 | 1.920+0.31 1.130+0.06 1.76140.18 1.869+0.15
V M5 0.31740.07 | 0.66940.15 | 0.959+40.05 0.646+0.02 0.69440.06 0.751+0.07
KMs 15.1240.02 | 25.85+0.003| 21.97+0.006 | 10.5940.001 | 11.5740.12 13.14+0.01
V Mg 0.31340.06 | 0.7424+0.17 | 0.293+0.05 0.806+0.14 0.66240.05 0.764+0.07
K Mg 15.1540.01 25.87+0.01 | 22.01+0.31 | 10.60+0.001 | 11.5340.08 13.13+0.02
V M~ 2.42640.01 1.597+0.26 | 3.62340.82 2.143+0.08 1.53940.15 1.699+0.01
KM~ 6.53940.50 | 9.419+0.06 | 8.042+0.45 3.609+0.06 4.16540.25 4.6744+0.26
V Mg 0.41040.06 | 0.262+0.01 | 0.452+0.08 | 0.448:0.08 | 0.232+0.007 | 0.288+0.06
K Mg 5.29540.01 | 8.755+0.001| 7.482+0.03 3.698+0.01 4.09840.32 4.599+40.35
V Mg 1.86340.12 1.159+0.15 | 2.756+0.27 1.675+0.04 1.50640.23 1.451+0.19
K My 4.13040.16 | 9.550+0.17 | 6.551+0.14 3.51740.08 6.76440.27 5.794+0.14
V Mo 0.49040.01 0.3354+0.03 | 0.703£0.25 | 0.489+0.002 | 0.27240.09 0.303+0.09
KMo 1.02740.07 | 2.208+0.29 | 1.427+0.09 1.6910.05 1.466+0.2 1.012+0.21
V M1, 1.98040.05 | 3.284+0.26 | 3.676+0.69 2.348+0.17 2.77240.05 2.453+0.27
KM, 0.11240.04 | 0.287+0.05 | 0.096+0.02 | 0.12740.017 | 0.134+£0.017 | 0.106+0.008
V Mio 1.07240.18 1.754+0.09 | 1.299+40.04 1.20740.08 1.25040.08 1.334+0.07
KMo 15.1340.10 | 25.82+0.005| 22.1040.11 10.54+0.01 11.67+0.1 13.28+0.14

Values (means estimait&D estimate) are given inmol.g~! tumor for K M; and ingmol.g—1.s~ for V M; ands—! for k;.
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