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Summary

In recent years the amount of biological data has exploded to the point where much useful
information can only be extracted by complex computational analyses. Such analyses are
greatly facilitated by metadata standards, both in terms of the ability to compare data
originating from different sources, and in terms of exchanging data in standard forms, e.g.
when running processes on a distributed computing infrastructure. However, standards
thrive on stability whereas science tends to constantly move, with new methods being
developed and old ones modified. Therefore maintaining both metadata standards, and all
the code that is required to make them useful, is a non-trivial problem. Memops is a
framework that uses an abstract definition of the metadata (described in UML) to
generate internal data structures and subroutine libraries for data access (application
programming interfaces - APIs - currently in Python, C and Java) and data storage (in
XML files or databases). For the individual project these libraries obviate the need for
writing code for input parsing, validity checking or output. Memops also ensures that the
code is always internally consistent, massively reducing the need for code reorganisation.
Across a scientific domain a Memops-supported data model makes it easier to support
complex standards that can capture all the data produced in a scientific area, share them
among all programs in a complex software pipeline, and carry them forward to deposition
in an archive. The principles behind the Memops generation code will be presented,
along with example applications in Nuclear Magnetic Resonance (NMR) spectroscopy
and structural biology.

1 Introduction

In recent times, the combination of digitization, high-throughput approaches and modern
computing techniques has revolutionized the relationship between scientists and data in terms
of size and access. These advances present great opportunities but also create considerable
problems. Most data now exists in electronic form at some point in its life, and it is therefore
extremely important that data can be passed seamlessly between the many different programs
that might be used to process and analyse it. If all scientific software was always written to
some common data standard then this would not be difficult. In practice, however, this is a
non-trivial problem. Science is primarily driven by the need to generate results rather than
conform to standards, even if such standards existed and could be agreed upon in constantly
evolving fields.
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The need for standards remains, however. As high throughput methodologies have
proliferated, and networks have made it increasingly simple to move data to wherever it is
needed, there has been increased interest in defining data standards across a large number of
fields where there are immense amounts of data that need to be organised and exploited.
Recent reviews by Brazma et al., [1] on data standards and by Swertz and Jansen [2] on
software infrastructure give a good account of both current efforts and the underlying
considerations. Pitfalls abound: Top-down imposed standards may be universally ignored, but
just hoping that communities will self-organise can be a recipe for anarchy; new and
developing fields are too fluid for standardisation, while mature fields are too settled to
change, even for the better; minimal standards can leave too much out, while detailed
standards may become too unwieldy to be adopted.

Data handling in practice starts with the individual program. Every program has a data
model, if only implicitly, and every program needs to consider reading and validating input,
organising internal data, and producing output. Much of the required work is trivial, yet
input/output and data handling routines can make up a surprisingly large fraction of the code
(and the bugs) for a program. Programmers thus have an incentive to choose the simplest
possible data models in order to maintain an overview and minimize the workload.
Standardising and automating the writing of data access code has the potential to save
significant developer time, in addition to making the resulting code more clearly defined, and
easier to maintain and to interface with. More generally, making it easier to maintain complex
underlying models will free resources to support both interoperability and additional
functionality.

There are other practical considerations when considering how models, and the scientific code
that implements them, are developed and maintained in reality. Science constantly moves
forwards, both in terms of knowledge and methodology, so it is unrealistic to expect data
models that describe scientific areas to remain static. In addition data model development in
an academic environment is normally carried out by very small teams - typically one or two
people. It is therefore helpful to have a system that scales well in terms of model maintenance
and that has good mechanisms for extension. These are areas where code generation can help
enormously. Hand-written code tends to deteriorate over time as developers add quick patches
following user requests etc. Eventually refactoring becomes essential, and this can be
extremely time consuming and hard to fund for a large code base. Generated code is not as
flexible but tends to remain uncluttered for longer. A practical solution to this trade-off is to
provide hooks in the code generation machinery that allow for a limited amount of
maintenance-intensive but flexible handwritten code.

Structural biology has a long track-record of data standardisation. The determination of
atomic resolution structures is both complex and expensive, and it was appreciated very early
on in the history of X-ray crystallography that global archives of structures would have
considerable value. It was also appreciated that such archives would be much more useful if
the data were represented systematically. Thus macromolecular X-ray crystallography was
arguably the first biology-related community to embark on data standardisation. The Protein
Data Bank formalised their internal procedures into the v2.3 PDB coordinate format [3] while
a more extensive set of definitions were defined in mm-CIF [4]. At the same time as these
standards for archiving were being developed, CCP4 [5] was coordinating the establishment
of standards covering the intermediate stages of structure determination, defining software
pipelines based on PDB and reflection files that contain data, and a standard command line

doi:10.2390/biecoll-jib-2010-123 2


http://www.rcsb.org/
http://www.rcsb.org/
http://www.ccp4.ac.uk/

Journal of Integrative Bioinformatics, 7(3):123, 2010 http://journal.imbio.de

interface to run programs. CCPN, the project that has developed Memops, was created in part
to emulate CCP4 in the NMR field.

In macromolecular NMR spectroscopy, the interpretation and analysis phase of a project is
traditionally done by a single person interactively over weeks and months, and the total
amount of data generated in this phase runs to tens of Mb for a single project. The raw data
are NMR spectra — generally in the order of tens, each up to a few hundred Mb in size. Each
spectrum is a simple numerical matrix, calculated once and for all, and stored in binary form
in one of a few proprietary formats. The need for standardisation is not so much here, but in
the more varied and complex data used for spectrum headers, experiment description,
interpreted data, generated structures, and validation output.

Automatic code generation is a well established software technique [6] increasingly used as
a time-saving way of generating variants of verbose and repetitive code. It is related to the
Model Driven Architecture (MDA) concept promoted by the Object Management Group
(OMG). In MDA an abstract model of the system under study is used as a starting point first
for platform-specific models and ultimately for the finished software product. MDA does not
require code generation per se, and the specific models and final code are often generated
completely or partially by hand.

The Memops framework [7] (from MEta-MOdelling Programming System) is designed to
enable a small development team to build and maintain a large complement of code libraries.
This is achieved by generating the necessary subroutine code directly and automatically from
an abstract data model. Memops is an easy way of getting fully functional libraries handling
data access, 1/0, consistency and validity checking for several different languages and storage
implementations in parallel. It was initially proposed as part of a project to make a data
standard for macromolecular NMR spectroscopy data. Memops reduces the overhead of
developing standards, particularly in cases where the model is developing rapidly, in a
number of ways:

e The use of an abstract model with a diagrammatic representation (in UML) makes it
easier to oversee the structure of the model and to discuss changes. This is important,
as rigorous initial definition of a model can drastically improve its long term
usefulness.

e The automatic generation of data access, 1/0, and validation code provides high
quality libraries, allowing developers to concentrate on application development rather
than housekeeping code.

e The model change process is extremely fast. This makes it easier to modify a model,
which can be extremely useful both when fine-tuning the model, and when extending
it to include new features. The data compatibility system ensures that old format data
can be read by new versions, and for many changes (additions, deletions, renamings)
compatibility code is generated automatically.

e In some cases it is possible to hide model changes, or complexities, from programs
that are unaware of them. An attribute can be replaced transparently by a function call
(a 'derived attribute’), which behaves as if the attribute was stored in the normal way.
This feature can be used to present data in a simple manner even where the structure
of the data model is actually more complicated.

doi:10.2390/biecoll-jib-2010-123 3


http://www.ccpn.ac.uk/
http://www.omg.org/mda/
http://www.omg.org/

Journal of Integrative Bioinformatics, 7(3):123, 2010 http://journal.imbio.de

The resulting data access subroutines provide efficient means for integrating software either
sequentially into pipelines or through concurrent access, both due to the ability to maintain
complex models and because of the nature of the data storage implementation. All related data
are kept in a single network of interlinked objects with individual access to each object and
precisely defined relations between data items. Programs can navigate the network starting
from a root object, accessing only the data they need while maintaining consistent links to
other data that are not relevant in this context. For instance a LIMS application, X-ray
crystallography software, and NMR software could work off a single data set, keeping all the
information consistent, without any need for e.g. the crystallography software to be aware of
the NMR data structures. The facility to connect application-specific data to each data object
further allows program-specific information to be stored and kept through a pipeline.
Software integration and ultimately data quality are also improved by the precise and
comprehensive nature of the data model. The combination of standard access code, precise
definitions, model constraints, and built-in validation leaves much less scope for ambiguity.
In writing the CcpNmr FormatConverter, for instance, it was found that the most difficult step
was disambiguating and connecting up the information being read in from external formats.
Once the information was inside the data standard and thus well defined, exporting to other
programs was invariably straightforward. By contrast, even something as simple and well
established as the PDB coordinate file format was in practice often used in ways that were
incompatible between different programs, or that did not respect the specification.

This paper presents the version 2.0 of the Memops architecture, and evaluates its impact over
a number of applications. A more detailed view of the implementation can be found in the
Supplementary Material.

2 Development of standards in the NMR community

In order to describe how Memops has been used in practice, and to highlight the strengths and
weaknesses of the approach, it is helpful to look at the development of the associated standard
in the NMR community and how it tackles issues that had long proven difficult to solve.

Software for macromolecular NMR is dominated by isolated programs with little provision
for integration or the forming of software pipelines. The effectiveness of NMR studies is often
compromised by the difficulties of transferring data between programs. The answer to this
problem lies in some form of data exchange standard. However, the precise nature of this
standard needs to take into account the sheer complexity of the data under consideration, and
the fact that NMR experimental methods are constantly evolving so that any standard has to
be future-proofed. It must also take into account the relatively low level of resources available
for not purely scientific objectives like ease of use or adherence to external standards.
Memops was developed to address these problems by providing a framework for integrating
existing NMR software through a highly complex, readily extensible standard that can
reasonably be developed and maintained by a small team.

Data standard: Organisation. The goal of a data exchange standard is interoperability
between programs from different origins, within a software pipeline that generates data. The
set of exchanged data must be so comprehensive, detailed, and consistent that it can be used
directly as input for calculation. An exchange standard must work with programs that use
different approaches and architecture, and must maintain consistency for continuously
changing data without relying on data curation. It has to be possible to validate data files
electronically against the standard, to ensure compliance in a heterogeneous environment.
Any standard that satisfies these requirements must of necessity be large and complex. Yet the

doi:10.2390/biecoll-jib-2010-123 4



Journal of Integrative Bioinformatics, 7(3):123, 2010 http://journal.imbio.de

fragmented state of macromolecular NMR software, which is what makes a data exchange
standard desirable in the first place, means that the standard would have to be adopted by a
large number of independent, under-resourced groups using different programming languages
and storage implementations. We felt that our goals could only be achieved if storing data in
the standard became an integral part of each application. We therefore needed to make the
standard as attractive and useful for application programmers as possible.

To satisfy these goals it was decided:

e to target the standard at application programmers, who are presumably more tolerant
of complex models than research biologists

e to establish a standard object-oriented Application Programming Interface (API) rather
than a standard format

e to describe the standard in an Abstract Data Model and ensure that the API(s) exactly
reflected the model

e to provide working APl implementations for several languages, and for data storage in
at least XML formatted files and SQL relational databases

e to include complete validation of all model rules and constraints in the API
implementations

e to make data access transparent and independent of the underlying storage mechanism

e to provide utility code and features, such as event notification, backwards
compatibility support, and distribution of reference data

Data standard: Content. The actual content of the data standard for macromolecular NMR
was determined by CCPN over a series of community workshops where a wide range of
stakeholders were consulted [7,8,9]. The resulting standard was built on the work of the
BioMagResBank on NMR data [10] and the PDB on macromolecular topology [3]. It covers
NMR spectroscopy and structure generation; macromolecules (topology, structure,
coordinates, and simulation); laboratory information management; and utility data (citations,
people etc.). The structure of the data model is illustrated in Supplementary Figures 4 and 5.
For further information on the contents of the model see the CCPN web site and the API
documentation found there. Note that in the particular context of macromolecular NMR it was
critical that the standard was extremely detailed; it had to be able to be mapped onto by a
large number of subtly different implicit data models within the various NMR software
packages, and accommodate extensions as the science developed. However, the Memops
approach can be applied to any field, and to far simpler data models.

Code generation in the context of NMR is made more complex by the fact that external
software developers require implementations for a number of different computing languages.
This means that the generation machinery has to be capable of maintaining and synchronising
several APl implementations in tandem. The need for backwards compatibility at the
application level further complicates matters. If each implementation was written and
maintained by hand, coding and synchronisation testing would require resources far beyond
what could realistically be provided. As the number of implementations increased, even
providing separate code generators for each implementation would become a demanding task;
ideally the system should also make it possible to add new implementations with a minimum
of additional work.
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Fortunately code for data access (getting and setting values, creating and persisting objects) is
highly repetitive and can be easily deduced from the data model. This makes it possible to
replace handwritten APl implementations by a combination of generic code and model
lookup. The advantages are clear: There is less code to write and maintain; the generic code
does not depend on the model and so can be debugged once and for all; and synchronisation
between APl implementations and data model is guaranteed.

3 The Memops Machinery

The initial development of the Memops code generation framework has been described
previously [7]. The generation process is summarized in Figure 1. Details can be found in the
‘Memops Machinery’ section of the Supplementary Material. Memops currently supports
parallel generation of Python+XML, Java+XML, Javatdatabase, and C+XML
implementations, all from a single model. The source for all generated code is the data model
that describes the structure of the data to be stored, including constraints on which data values
are allowed. The machinery can work with any model that follows the Memops modelling
rules, whatever the underlying subject matter.

Software MEMOPS Domain
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Figure 1: Organisation of the Memops framework. The data model, edited in UML [11 ] is split
into packages, so that different domain experts can curate different areas, and so that
applications can choose to work with only a subset of the model. Packages have one-way ‘import’
links to other packages that they depend on. XML and database schemas, persistence code, and
the actual API implementations are generated automatically from the model. Over 99% of the
final code is generated automatically. The remainder, including code for complex model
constraints and non-standard functions, is added as language specific code snippets to the UML,
so that the generated code is fully functional without manual modifications. Applications, written
by third parties, ideally do all their data access by direct API calls.
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Memops produces object-oriented code. Information is organised as a set of linked data
structures (objects) with attributes, using methods to get, set, and modify values and links. For
the C implementation object orientation is not possible and so is emulated using structures
and complex function definitions. The model can be enriched by adding 'derived attributes'
that behave like stored attributes but are calculated from the stored information at runtime —
together with the function code needed to derive them. Data are fetched from disk
automatically when needed, one data package at a time. The implementations include full
validation of new data against all model constraints and protection of internal data structures
from casual modification (‘encapsulation’). A model event notifier (callback) facility has been
integrated with the API. Any application can register a function to be called when a given API
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function is executed or a given type of object is modified. This allows e.g. graphical user
interfaces to keep themselves up-to-date as the model data are modified.

Our first prototype was written as generic code that interrogated the model description at run-
time (an ‘interpreter’). However, this approach proved to be slow, complex to program and
debug, and hard to extend from the original Python to a statically typed language like Java.
For subsequent implementations we opted for a generator that interrogates the model at code
generation time and writes the run-time code for each API function out in full (a ‘compiler’).
This approach provides faster execution times and easier debugging, at the cost of having a
large and repetitive body of code in the API. For simplicity we concentrated on generating a
single, efficient subroutine library for each language+storage combination, albeit with some
possibility for fine-tuning the database structure in the database implementation.

The degree of synchronization we need requires essentially 100% automation, as any manual
post-generation modifications to the code would have to be repeated endlessly every time the
generation script was re-run. When the project started no existing framework could provide
for this need. Frameworks like Hibernate can now produce a functional data access API
implementation for Java+database automatically from a single input file. Memops is unique in
providing several data access implementations in parallel from a single model specification.
In addition Memops makes it relatively simple to add generators for new implementations.

Additional features. Since the first publication [7], the data model and generation machinery
have been extensively tested and optimised through practical use. Key changes to the internals
of Memops have been made at two levels. At the level of the code generation machinery
itself, the Python code has been refactored to make it simpler to add support for additional
languages (see Supplementary Figures 2 and 3). At the level of the generated APIs,
backwards compatibility code for data files from older model versions is now integrated with
the Python+XML API. Most backwards compatibility can be handled automatically as part of
XML file loading. Large model changes may be beyond the capabilities of this mechanism,
but these can be handled by a more complex installation. For example, changing data from
version 1 to 2 of the CCPN framework is possible through a web service.

A Java API over a database persistence layer has also been developed. In outline, Hibernate is
used to map between the database and the Java layer. Java code that is compatible with the
standard XML 1/O routines is generated along with a Hibernate mapping file that is also used
to generate the database schema using standard Hibernate tools. For additional customisation,
hooks within the Memops generation machinery can be used to define additional Hibernate
mappings and database triggers.

Further changes include the new C+XML API, complex object types that compare by value,
globally unique identifiers (GUID), simplifying the core model package, and various
optimisations.

Scalability. Memops is most effective where the handled data are complex, but not
particularly large. This is precisely the situation in the NMR field, where a typical project may
contain 2 million objects covering 300 classes and taking up 70 Mb when stored as XML
files. Loading such a project with the Python+XML implementation takes roughly 30 seconds
on a modern Linux PC with 2.16 GHz dual-core processor, and requires 600 Mb of memory
when fully loaded. However, these load times are somewhat misleading as individual data
files are only loaded when required, massively reducing the dwell times in actual application.
The load times for the Java+database implementation depend largely on the behaviour of
Hibernate. Currently searching starts to slow down noticeably for tables above 10° rows,
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where performance becomes limited by of the overhead of creating proxy objects within the
Hibernate layer. However, by judicious use of customisation, and using the Hibernate layer to
query SQL directly when most appropriate it is possible to work with larger data sets.

Availability. The Memops framework is available under the GPL license, the data exchange
standard with generated subroutine libraries under the LGPL license. Both may be found
wither on the CCPN web site, or at SourceForge.

4 Applications

Memops provides application developers with a set of APIs consistent with a formal data
model and with a high level of built-in housekeeping functionality. In the context of
macromolecular NMR, this makes it relatively easy for programs to communicate with each
other, either directly through the standard API I/O functionality generated by Memops, or
through wrappers. This approach has proven extremely successful in developing new
applications and addressing the data exchange problems that plagued the NMR community.
Some examples are described below:

The CcpNmr suite was developed as part of the CCPN project. It was based entirely on the
CCPN API from the start, using the Python+XML implementation (Supplementary Figure 6,
top). The CcpNmr programs served as pilot applications for the NMR and molecular parts of
the data model.

CcpNmr Analysis is a program for visualisation and assignment/analysis of macromolecular
NMR data, and is often used to set up structure generation. The program includes a rich set of
features supporting various NMR tasks, and has several hundred users worldwide. Version
2.1.3, based on the most recent Memops APIs has recently been released. Macromolecular
NMR spectrum analysis is arguably a matter of viewing spectrum contour plots and filling
information into a highly complex data model. The demands on the user interface are high, as
a single project may require many weeks of continuous interaction with the program. Data
access in CcpNmr Analysis is carried out through the Memops-generated API (except for the
large numeric matrices of the NMR spectra), with some limited transfer to internal data
structures for speed. The graphical user interface (GUI) is built on the Memops notifier
facility, and relies on the internal checking in the API implementation for enforcing data
consistency. CcpNmr Analysis needs to store both user profiles and session information like
window positions, current colour settings etc. - neither of which has any place in a general
data exchange standard. To this end CCPN has added two Analysis-specific packages to the
model. Using the Memops machinery also for this purpose was faster than writing file 1/0 by
hand and had the advantage that all data were available through a single interface.

Overall, using Memops aided development in three main ways. Firstly, the complexity
allowed by Memops made it possible to develop the data model to represent the underlying
science correctly from the start. Simplifying assumptions were confined to higher level code,
and so could be changed with relative ease as users needed ever more complicated cases to be
taken into account. Secondly, the time required to extend the model is extremely fast. Once
the desired semantics have been confirmed, the code update can take as little as half a day,
even for a complex extension. Where problems were found in the model — Analysis had its
own bespoke model packages and was co-developed with central parts of the data model —
this again sped up the development of new features considerably. Thirdly, the generated code
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is completely systematic, which means that developers can easily and accurately understand
what each function does without constantly having to check documentation. The users of
Analysis are mainly academics, many of whom require new features to test out ideas, and
using Memops means that feature requests can be handled quickly and accurately.

CcpNmr FormatConverter is a universal format converter for NMR and structural biology
that can read data from and write data to over 30 different current and legacy data formats. It
works by first converting all input data to CCPN format, querying the user where necessary
for disambiguating the data, and then re-exporting to the target format. It is a single
application with its own format parsers and writers. The architecture exploits the fact that the
CCPN format is precisely defined, highly detailed, and able to store all relevant data.
Ambiguities can be resolved at the import stage, simplifying the subsequent export. The use
of a central data definition format means that you can convert between n formats with 2n
(rather than n**2) converters.

A key point here is that for FormatConverter to work, it is essential that the underlying data
model is complex. Indeed, each piece of existing software has its own, often implicit,
underlying data model, and the role of FormatConverter is to resolve these assumptions in the
context of an all-encompassing data model that can handle all the individual cases. The ability
to convert between formats efficiently is a key step for both meta-analysis, and for data
exchange / pipelining. FormatConverter is widely used in the field of macromolecular NMR
and in the eNMR project, in particular the CASD-NMR structure calculation competition [12]
(see Supplementary Figure 8). The ability to consistently store large amounts of information
from external data files is especially powerful; the FormatConverter and CCPN framework
are used for data curation at the NMR deposition database BioMagResBank [13,14], and have
provided data for the RECOORD structure recalculation project [15]. They are essential tools
in new data organisation and analysis efforts [16,17].

Extend-NMR is a software development and integration project for macromolecular NMR
spectroscopy funded under the EU FP6 program. The integration aspect involves combining
scientific software from eight different developers into a single integrated pipeline,
encompassing NMR data acquisition, processing, analysis, structure generation, docking,
validation, and deposition (see Supplementary Figure 7). The pipeline includes a shared GUI
that can launch all the different applications. It is an example of using the API
implementations generated by Memops for data exchange, and involves pre-existing
applications with their own separate code base. The end-of-project integrated pipeline has just
been released. The integrated programs include:

TOPSPIN (Bruker BioSpin GmbH). Bruker is a major equipment manufacturer for NMR
spectrometers, and TOPSPIN is the Bruker software for data acquisition, processing, and
analysis of NMR data. The current TOPSPIN release (v2.1) can export NMR spectrum and
peak data to a CCPN project, and the upcoming release (v3.0) will have increased export
capabilities. TOPSPIN is written in Java, and the data are exported to a CCPN data structure
in memory by direct calls to the CCPN Java+XML API implementation.

ARIA [18] is one of the most popular programs for generating macromolecular structures from
NMR data. It reads a molecular sequence, NMR shifts, peaks and structural constraints, and
runs an iterative calculation to generate an ensemble of structures and a filtered version of the
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input data. ARIA versions from v2.2 (2007) support the complete input and export of data and
analyses through either ARIA files or a CCPN data structure. ARIA is a Python program with
associated CNS scripts, calling the CNS structure calculation engine [19, 20]. It uses its own
data structures internally, and transfers data to and from CCPN by calling the Python+XML
API implementation.

HADDOCK [21,22] is an information-driven macromolecular docking program. It was
developed from an earlier version of ARIA (see above) and uses the same architecture.
Haddock and CCPN have jointly developed a Haddock-specific model package to hold both
input data and Haddock switches and parameters, so that all information needed for launching
Haddock can be held in a CCPN project. This model is used by the CCPN Analysis software
to create all necessary input files to launch HADDOCK directly or, alternatively, to generate a
single HADDOCK server parameter file that can be uploaded to the HADDOCK web server
for a fully automatic docking run.

CING is a validation suite for NMR-derived structures, encompassing and expanding on a
number of pre-existing validation tools. The top layers of CING are written in Python, and
data transfer to and from the CCPN data standard is through direct API calls. A data model
package for structure validation data — not specific to CING — has been developed in
collaboration between the CCPN and CING teams.

The successful completion of the Extend-NMR project relied on the all-encompassing,
detailed nature of the data model and the facility for tailoring additions to specific programs.
The availability of implementations in different programming languages made it possible to
distribute the work required to integrate the various components of the pipeline to the
individual software development teams, each with their specific language expertise.

EUROCarbDB aims to create a distributed deposition database for glycobiology and
glycomics data (currently NMR, MS and HPLC), with associated bioinformatics tools. The
project includes an atomic-level molecular description framework for carbohydrate fragments,
developed in collaboration with CCPN. The NMR component of EUROCarbDB consists of a
Memops Java+database API for the NMR and molecular description packages of the standard
CCPN data model (Supplementary Figure 6, bottom). The database with the NMR data is
merged into the core EUROCarb database by merging the CCPN and EUROCarbDB
Hibernate mapping files. Additional links connect the Memops root object to the central
EUROCarb tables. Information is mainly uploaded one CCPN project at a time, with some
facility for editing the deposited data. Data extraction is mostly through Java API calls.

The Java+database API was tested in EUROCarbDB with over 1300 data sets loaded. Some
data-intensive or time-critical operations required special-purpose queries in Hibernate Query
Language (HQL). These can be customized at individual sites. Where required, hooks within
the Memops generation machinery were used to generate and maintain denormalised tables in
the database. These tables allowed rapid searching across key areas of the database without
needing to load large amounts of data through the Hibernate layer, and served to identify
objects of interest for later retrieval.
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5 Conclusion

Code generation techniques are a valuable tool for speeding up development and maintaining
the integrity of code. As with any structured system, there is a trade off between flexibility
and efficiency. In Memops this manifests itself in a number of ways. Firstly, it is relatively
difficult to “hack” short term changes into the generated APIs. In terms of the long-term
development of the code this should actually be seen as an advantage, as multiple layers of
such changes inevitably lead to bugs, and eventually the need for refactoring. In other words,
it enforces a systematic approach that may seem inconvenient in the short term, but is
beneficial in the long term. Secondly, Memops makes it easier to maintain data models that
accurately describe complex relationships and include difficult and unusual cases. The
complexity is no longer limited by your ability to maintain oversight of the model. The main
problem becomes the need for handling common situations simply while still including all
relevant subtleties, and even this can be alleviated by the use of derived attributes. The case
studies above demonstrate that being able to support a complex data model can be a critical
feature in data exchange and meta-analyses where the underlying data are fundamentally
complex, as is often the case in the life sciences. As web services and the GRID evolve, and
networks permit the movement of large datasets, questions of interoperability are expected to
become increasingly important. In the case of NMR there would be considerable advantages
to developing the Extend-NMR pipeline further so that arbitrary workflows could be defined
and the individual steps farmed out to remote services.

Memops implements a general approach for the generation of housekeeping code from an
abstract data model, and as such is potentially applicable to a wide range of domains.
However, it is anticipated that it would be most powerful in cases where the underlying data
are described by a complex data model which needs to be maintained by a small, highly
trained development team — a very common scenario in the life sciences.
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Supplementary Material:
MEMOPS: Data modelling and automatic code generation

Rasmus H. Fogh, Wayne Boucher, John M.C. lonides, Wim F. Vranken, Tim J. Stevens,
and Ernest D. Laue

1 Memops machinery
The code generation process is shown in Figure 1.

edit UML

ObjectDomain

UML model

API code,
I In-Memory Model : > Schemas,
MetaModel (Python objects) Autogeneration Mappings.

etc.

On-disk model
(XML files)

Supplementary Figure 1: Workflow for code generation. CCPN software is coloured in blue,
while external software is coloured in orange. Boxes with thick black borders are files generated
by the CCPN code.

The data model is edited in UML class diagrams augmented with tagged values. We are
currently using ObjectDomain, a commercial editor, but in principle any UML editor could be
used. The model description is transferred to an in-memory representation, specified as
Python objects using the Memops metamodel (see below), and stored in a Memops XML
format. Exporting the model description from the UML editor is the only part of the workflow
that depends on the editor - all subsequent code generation steps work solely from the in-
memory model description. The Memops metamodel is similar to the MOF 1.4 standard of
the OMG.

The abstract data model is language- and implementation- neutral. Language-specific
information is stored as sets of tagged values, one for each language (and each storage
implementation, if necessary). It consists mainly of code snippets for the body of manually
coded methods or constraints, for integration into the code by the API generation machinery.
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The Memops framework is written entirely in Python. We have found Python a good choice:
flexible, object oriented, and well suited to the complex model queries and inheritance
hierarchies of our generation scripts. First the model is read from XML and passed through an
adaptation stage. Standard operations (get, set, etc.) and their parameters are added to the
model at this stage, relieving the UML modellers of the work. The model adaptation also
customizes the model to the specific implementation, e.g. by adding features that are specific
for individual languages like Java.

Language & Format
Independent

Format dependent Language dependent
(XML, SQL) (Python, Java, C, ...)

Language & Format
dependent

Code required
for new format

Code required
for new language

Supplementary Figure 2: Organisation of APl generator code. Many tasks are independent of
the language or storage implementation being generated. By separating out the code, common
actions need only be coded once, and new implementations can be added with minimum effort.

The adapted model is then passed to the code generator scripts, the main ones being those that
generate the APl and the XML 1/0 mappings. To simplify the writing and maintaining of
generators, we have split the generation code into reusable modules. Figure 2 shows the
organization, while Figure 3 shows the modules used in the Python+XML API generation.
The logic for API generation resides mainly in ApiGen. Tasks that differ between
implementations are delegated to functions that are called from ApiGen but defined lower
down in the inheritance hierarchy. Particularly complex output code is written directly, e.g.
from PyFileApiGen, but most code is produced by calling functions from PyLanguage,
JavalLanguage etc. The level of organization should be evident from some sample function
names: setVar, newCollection, startLoop, endlf, callFunc, comparison, stringlsNotEmpty, ...
Formally the set of functions in the Language modules define a programming language,
which the generators use to define the APIs. A more general solution would have been to
implement automatic translation from an existing language like OCL. We settled for an
internal ad-hoc solution because 1) it was easier to implement, 2) we could limit ourselves to
constructs that occurred with some frequency in our APIs, 3) we could add special-case
functions to optimize the (generated code, like e.g. reraiseException or
collectionNotNoneAndNotEmpty.
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Supplementary Figure 3: API generator modules, specifically for the Python+XML API
implementation. Each box represents a class. Inheritance is shown by dotted arrows from
subtype to supertype — note that Python has no problems with multiple inheritance. The diagram
for a Java+database implementation would have the same structure, with PyLanguage replaced
by JavalLanguage, PyFileApiGen by JavaDbApiGen, etc. All classes are abstract, except for
PyFileApiGen. The four 'ApiGen’ classes contain the API generation logic — with ApiGen
accounting for about half the code and FileApiGen for a third. ModelTraverse contains general
looping and traversing code, while TextWriter contains code for writing to file. PyLanguage and
PyType hold low-level language-specific code.

2 API Implementations

Data structure. The model consists of classes of DataObjects with attributes, links,
operations, and constraints, DataTypes, and Complex Data Types. These are grouped in
packages (see Figure 4). The model description is organised using the Memops metamodel
(see below).

|
—>
Molecule
|
I

People

Supplementary Figure 4: Examples of packages from the CCPN data standard. Packages are
used to partition both the model description, the APl implementation code, and the data storage
for file implementations. MolStructure contains coordinates, MolSystem atomic level description
of molecular complexes, Molecule sequences, and ChemComp residue templates. Dotted arrows
show dependency relationships; e.g. MolStructure depends on MolSystem and on ChemComp
(not shown).

At run-time data are held in memory as linked objects with simple attributes or links
(henceforth ‘attributes’). The attributes may be single values or collections of various
cardinalities, modifiable or frozen. Collections may be unique (sets), ordered (lists) or both
(unique lists). The model may contain derived attributes, whose values are not stored but
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(re)calculated when queried. Most objects are DataObjects, which are mutable, compare by
identity and can appear in only one context in the model. As an alternative Complex Data
Type objects are immutable, have simple attributes but no links, and compare by value.
Complex Data Types are used for structured values that can appear in different contexts, such
as Urls or orientation matrices. Finally, Constraints, which can be attached to attributes,
classes, and simple or complex data types, are used to restrict which data values are allowed
by the model. Constraints are evaluated at the beginning of attribute modifiers, at the end of
object creation, and by the special checkValid function. Constraints are added as code
snippets in all supported languages, and can be arbitrarily complex.

ccp.molecule.MolSystem.MolSystem 1 . StructureEnsemble Model
+code: Word : +ensembleld: Int « +serial: Int
+name: Text Chain +atomNamingSystem: Line 1 +name: Line
+keywords: Line +code: Line +resNamingSystem: Line +details: Text
: +getChain() * 1 +getEnsembleValidations()
—
+coordChains
1 1
1 Coord
* * Atom . .
. . 1 1 +altLocationCode: Line =
ccp.molecule.MolSystem.Chain Residue +name: Word s Elagi
. +seqld: Int < . ‘+elementSymbol: Word + +y: Float
+seqCode: Int +getAtom() +7: Float
+seqlnsertCode: Line = +getElementSymbol() +bFactor: Float = 0.0
+getResidue() +getChemAtom() +occupancy: Float = 1.0

) I

* 1
ccp.molecule.MolSystem.Residue F ccp.molecule.MolSystem.Atom > ccp.molecule.ChemComp.ChemAtom

Supplementary Figure 5: Example package - 'MolStructure’, used for storing molecular
coordinate ensembles, with associated classes from other packages (names beginning with ‘ccp.").
Classes are connected by "parent-child' links (composition links - black diamonds). Each package
has a TopObject class (here the StructureEnsemble) that is a child of the MemopsRoot (not
shown). Links between classes are shown as dark lines — role names are derived from the names
of the classes, except where explicitly overridden (e.g. ‘coordChains'). One-way links are shown
as arrows. Most methods are generated automatically. The few explicit operations in the
diagram, like the Chain.getChain function, have non-standard code and are used to define
derived attributes.

An example of a model package is shown in Figure 5. All (non-abstract) classes are required
to have a mandatory, frozen 'parent’ link to another class (in the same package), as well as a
natural key - attributes and links that identify the object uniquely in the context of its parent.
The parent links join all objects together in a tree, rooted in the MemopsRoot object. The tree
is also used to define the containment relationships used in XML file storage. Each package
must contain one single class (a TopObject) that is a child of MemopsRoot. The combination
of links and keys ensures that there is a natural navigation path to each object and in general
gives structure to the web of objects. Mostly parent links and keys reflect the logical structure
of the data. In Figure 5, for instance, the Residue is a child of the Chain (key seqld) and the
Atom is a child of the Residue (key name). An object of a given class can be uniquely
identified by navigating from the MemospRoot through parent-child links to the object and
keeping the natural key at each step. The resulting list of natural keys forms the full key.

TopObjects are used to divide data into separate extents. For each package, the children and
descendants of a single TopObject are stored as a separate XML file (in file implementations).
It is not possible to form links between objects from the same package belonging to different
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TopObjects. This prevents e.g. forming a bond between atoms from different amino acid
templates. TopObjects are given a globally unique identifier (GUID) on creation. This can be
used to distinguish between objects created by different operators with accidentally /
unavoidably overlapping key attributes.

Connections between objects that are not parent-child links are called crosslinks. It is the
crosslinks that makes the object web differ from a tree. Most crosslinks are navigable from
either side. An example would be the link between Model and Coord in Figure 5, where you
could access both Model.coords and Coord.model. There may also be one-way links that can
be navigated from one side only. These are often derived, like all the one-way links in Figure
5. Data defining two-way links are stored in the objects on both sides of the link. This allows
rapid queries, at the cost of causing complications in modifying objects that would have been
prohibitive in handwritten, non-generated code. The most complex parts of the code
generation software tend to involve crosslinks. Modifying a crosslink requires changing the
internal state of objects on both sides of the link, which makes the API classes strongly
coupled. Pre-modification checks must likewise be carried out on objects on both sides of the
link. The required code differs depending on the link cardinality (-to-one or -to-many,
mandatory or optional) whether the link is modifiable, whether it is one-way or two-way,
whether it is to an object in the same or another package, and which constraints, if any, apply.

API functions. Information in the objects is protected from casual modification by
encapsulation; it can only be accessed by API function calls or through an explicit override
mechanism. The Python API exposes the following functions:

- get, set, add, remove. For all attributes, depending on cardinality and modifiability
- sorted. For collections of DataObjects; returns the objects sorted by full key (see above).

- findFirst (e.g. Chain.findFirstResidue(seqCode=42, ...)) and findAll. For collections of
DataObjects or Complex Data Types; returns first (all) object(s) with e.g. obj.seqCode ==
42,

- new (e.g. Chain.newResidue(seqld=39, seqCode=42, ...)). For parent classes. Factory
function, taking keyword arguments, that creates a new child object on the parent.

- delete (e.g. Model.delete()). For DataObjects (not Complex Data Types). Cascading
delete. When an object is deleted, all other objects rendered invalid by the deletion are
deleted recursively. For instance deleting an object of class Model will trigger the deletion
of all Coord objects linked to it, since the Coord.model link is mandatory.

- checkValid, checkAllValid. Validity check of object resp. recursive check of object and all
child objects.

The API further provides the normal object constructor for each language, and may provide
extra functions for some languages, e.g. overloaded function forms for Java. For Python the
normal attribute syntax (val = obj.attr; obj.attr = val) is also supported.

The Java API mirrors the Python API as far as possible. The only major difference arises
because Java does not allow you to pass in keyword=value arguments to functions. To make
up for this, findFirst, findAll and constructor functions come in several overloaded variants.
In the standard variant, keyword=value arguments are packed into a dictionary that is passed
in as an argument (which is what Python is doing ‘under the hood’). Other variants are
provided to avoid this rather cumbersome procedure. For the constructor, there is a variant
where the function parameters are the mandatory attributes/links that do not have default
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values (in alphabetic order). For findFirst and findAll there are variants for zero through four
keyword/value pairs.

The C API faces the same problems as the Java API, so again there are variant forms for the
findFirst, findAll and constructor functions. Since C does not allow function overloading as
in Java, the variant forms in C each have slightly differing names. A more important problem
is that C has a global namespace. To avoid possible name conflicts the short version of the
package name and the class name is prepended to all function names, making them globally
unique. The current version of the C API piggybacks off the Python API. Python itself is
coded in C, and there is a well specified way of accessing Python objects from C. The C API
just calls the corresponding functions in the Python API. C is not object oriented so structures
are used for the classes instead, in the same way as the C subroutines that underlie Python.

File storage implementation. We have chosen to handle data persistence transparently — the
implementation fetches data into memory as required. For file implementations the directory
structure and file names are standardized. Only the topmost directory locations are under user
control; the relevant information being kept in the Implementation package together with the
MemopsRoot. In file implementations data are split into multiple files (one file per
MolSystem and one file per StructureEnsemble, in the example from Figure 5) that are saved
and loaded independently. This allows the use of lazy loading. The actual file I/O is handled
by a generic routine based on a standard parser, with an autogenerated I/0O map storing the
correspondence between XML tags and model operations. The organisation of the
Python+XML implementation is shown in Figure 6 (top).

Database storage implementation. Some applications require concurrent multi-user access
to the data and in such cases a database persistence layer has considerable advantages over
storing data in XML files. Currently Memops provides database storage for the Java version
of the API. The database version of the API is functionally identical to the XML version.

Rather than develop our own object-relational mapping infrastructure, we use Hibernate for
the Java+database APl implementation. Hibernate mapping and configuration files are
generated from the data model and the database DDL is generated from the mapping files
using standard Hibernate tools. The database version of the API contains some subtle
differences in the way that data are organized. In particular, we wanted to support sharing
reference data among projects, and loading more than one project into the database in order to
facilitate mining of information across a collection of projects. When searching across
multiple projects, care has to be taken not to create Hibernate proxy objects corresponding to
the entire database, since this would be prohibitively slow. To mitigate this problem we
support the use of special-purpose queries in Hibernate Query Language (HQL), as discussed
for the EUROCarbDB application in the main text. As an additional advantage, these can be
customized at individual sites. To further potentiate this option the machinery includes hooks
to add special denormalized search tables to the database.

The database dialects supported are essentially limited to those supported by Hibernate. All
applications to date have used Postgres. However, it is anticipated that Oracle and MySQL
will be actively supported soon, in addition to Postgres. Additional 1/O calls to support
laboratory information management system applications (LIMS) are also being developed.
The organisation of the Java database implementation is shown ion Figure 6 (bottom).

doi:10.2390/biecoll-jib-2010-123 19


http://www.postgresql.org/
http://www.oracle.com/database
http://mysql.com/

Journal of Integrative Bioinformatics, 7(3):123, 2010

Python+XML

Application
Python API
XML parser .. I
- = XML /O code
XML /O mappingsf—
What to do for

which element

Data Storage
(XML files)

Javat+database
Application

Java API

Hibernate

Data Storage

Database Schema

http://journal.imbio.de
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Validity check

Generic XML read/write

User data in
CCPN XML
format

User application
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Validity check

Object-DB synchronisation

User data in
database

Supplementary Figure 6: Runtime code organization for an application using a Python+XML
Implementation (top) or a Java+database implementation (bottom). CCPN software is in blue,
external software is in orange, and code specific for the application is in red. Boxes with thick
black borders are files generated by CCPN code. The application is connected to the API
through an optional layer of utility functions. These execute common tasks that require extensive

data model manipulations, e.g. ‘Create a molecule from a string of one-letter codes’.

3 Data exchange and software integration

The purpose of a data exchange standard is to support the flow of data between unrelated
programs within a single field. At the lowest level even a reliable conversion of data between
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different file formats (translation, as it were), is a great improvement. This is the function of
CcpNmr FormatConverter, as discussed in the main text. Efficient integration requires
smooth, lossless transfer of data between the actual applications, rather than their output files.
For ease of use, data transfer must become an integral part of running the programs, without a
specific transfer step. This has the further advantage that there is then no separate format
conversion code that needs to be updated following program changes.

The experience of building a software pipeline for macromolecular NMR spectroscopy,
chiefly through the Extend-NMR collaboration, has provided a number of illustrative
examples of how to achieve integration. In general we find that there is a trade-off, so that
more indirect integration is easier to set up but less complete and harder to maintain,
especially for applications that are still developing. More direct integration with the data
standard requires more work to set up for existing applications, but is easier to maintain in the
long term, and comes with less potential for information loss and less need for user
intervention. Figure 7 shows the typical integration approaches used in the macromolecular
NMR software pipeline.

' Application |
Proprietary 5 Formatted CCPN
Memory. ! File XML/SQL

' Application

Proprietary Custom conversion CCPN i
Model Data Mode! [l

' Application

CCPN Data Model i CCPN [

CcpNmr Functions ! XML/SQL

Supplementary Figure 7: Software integration approaches:

Top: Data exchange through proprietary files. This approach is possible without modifying the
application code, but requires continued maintenance of program-specific 1/0 and mappings.
Integration of application output is often problematical, as output data items can be hard to
match with input data items, let alone with the CCPN objects that gave rise to them.

Middle: In-memory data conversion. Requires a program-specific conversion layer, but relies on
existing CCPN (and often application) 1/O. Integration is easier as all information relative to
data flow remains available.

Bottom: Direct data access through CCPN API. Does away with the need for conversion or
separate 1/O code. All information is connected to the data standard throughout. Requires the
application to be (re)written specifically for the data standard.

The CCPN data standard is also at the centre of a series of applications built around the
deposition databases for macromolecular NMR data (BMRB) and structures (PDBe) — see
Figure 8. The eNMR project forms a distributed facility that makes NMR analysis and
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structure generation software available on grid servers. It includes many of the programs also
integrated in the Extend-NMR pipeline, such as ARIA, HADDOCK, and CING. CASD-NMR
is a part of the eNMR project that sets up blind tests for NMR assignment and structure
generation programs along the lines of the CASP protein structure prediction project. An
interesting resource is the RECOORD database of NMR structures recalculated from the
original with standardized calculation methods. The input for the RECOORD calculation was
the FRED database of cleaned-up original deposited restraints, which was generated using the
CcpNmr FormatConverter.

Format
Converter

deposition at

Supplementary Figure 8 showing how the FormatConverter and CCPN project files are used in
ongoing projects in NMR. The FormatConverter deals with import of NMR file formats, often
from archives such as the BMRB or PDB. The data is then made available or analysed as CCPN
projects or as files in other file formats exported through the FormatConverter.

RECOORD

4 Memops Metamodel

The in-memory representation of the data model uses the Metamodel shown in Figure 9. For
code generation purposes this is implemented as a series of Python classes, with modelled
entities as objects.
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Supplementary Figure 9: shows the metamodel used for storing the data model description.
Broad-headed red arrows are used for inheritance, black lines for object-to-object links. In
addition to the operations shown in the diagram the model includes get and set functions for all
attributes and roles (not shown). All MetaPackages must be contained within another
MetaPackage, except for the topmost one which serves as root. Underlined attributes are not
currently used and are fixed at the given default values — they are implemented as class (static)

attributes.

For portability the MetaModel has been limited to single inheritance, which means that some
type constraints could not be represented properly in the diagram - these are enforced
separately by the wunderlying code. Specifically, MetaAttribute.valueType must be a
MetaDataObjType or MetaDataType, and MetaOperation.target must be an AbstractDataType,

ion(value)
+addCodeStub(tag, value)
+removeCodeStub(tag)
+getElement(name)
+getParameter(name)
+checkValid ()

a ClassElement, or a MetaOperation.
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