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Solvable groups in which every real element
has prime power order

Alessandro Giorgi
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Abstract. We study the finite solvable groups G in which every real element has prime
power order. We divide our examination into two parts: the case O2(G) > 1 and the case
0,(G) = 1. Specifically we prove thatif O,(G) > 1, then G is a {2, p}-group. Finally, by
taking into consideration the examples presented in the analysis of the O(G) = 1 case,
we deduce some interesting and unexpected results about the connectedness of the real
prime graph I'r (G). In particular, we find that there are groups such that I'r (G) has 3 or
4 connected components.

1 Introduction

The prime graph I'(G) of a finite group G, also known as the Gruenberg—Kegel
graph of G, constitutes an important environment to study the “relations” between
the elements of G and more generally to analyze the structure of the group G. The
graph is defined in this way: the vertices of I'(G) are the prime divisors of |G| and
there is an edge between the vertices p and ¢ if G contains an element of order pq.

Reality is an interesting and useful notion in finite group theory. An element
x € G is said to be real if it is G-conjugate to its inverse x !, i.e. if there exists
g € G with x8 = x~!. We can then define, by considering only the real elements
of G, the real prime graph I'r (G) analogously to the prime graph: the vertices of
I'r (G) are the primes p for which G contains a real element of order p and the
vertices p and g are connected if G contains a real element of order pgq.

In this paper, we study the finite solvable groups G for which all the vertices of
I'r (G) are isolated, starting from the results obtained by Dolfi, Gluck and Navarro
in [2], where the authors investigated the finite solvable groups for which 2 is an
isolated vertex of I'g (G'). Taking into consideration the above definition of I'g (G),
it is clear that the fact that the vertices of I'r (G) are all isolated is equivalent to the
fact that every real element of G has prime power order. The analogous problem
for I'(G) was studied in 1957 by Higman in [6], in which he considered both
solvable and insolvable groups G for which every element has prime power order.
For the solvable case, his main result contained in [6, Theorem 1] tells us that G
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must be a p-group (which could be considered as the trivial case for this question)
or a {p,q}-group ([6, Theorem 1] actually says a lot more about the structure
of G).

It is easy to see that if G contains a real element other than the identity, then
|G| is even. Also, since every involution is a real element, we can conclude that if
G has non-trivial real elements, then 2 is a vertex of ['r (G'). So what we initially
wanted to prove, following Higman, was that if every real element in G has prime
power order, then G must be either a 2-group or a {2, p}-group. However, as we
will see, that is not true in general. Still we have been able to prove it in the case
that O2(G) > 1, where O, (G) is the largest normal 2-subgroup of G.

On a more technical side, we note that, since the real elements of G are the
real elements of 0% (G), the smallest normal subgroup of G with odd index, when
investigating the real elements of a finite group, we can assume that G = 0% (G).
Moreover, since 02/(G) has odd index, it contains a Sylow 2-subgroup of G.
Therefore, as Q2 (G) is contained in every Sylow 2-subgroup of G, we have

02(G) < 02(0%(G)).

In particular, if O2(G) > 1, then also O, (02/(G)) > 1.
With that being said, our first main result is the following.

Theorem A. Suppose that G is a finite solvable group with Ozl(G) = G. Let
N = 03(G). Suppose also that G is not a 2-group and N > 1. Then the following
are equivalent:

(1) every real element of G has prime power order;

(2) Gisa{2, p}-group, with p an odd prime, G = N x (K x Q) is a 2-Frobenius
group, with K a cyclic p-group and Q a cyclic 2-group. In particular, if
|Q| = 2, then K x Q is a dihedral group. In any case, every element of K
is real and inverted by z, where z is the only involution of Q;

(3) every element of G has prime power order.

But, as we already mentioned above, it is not generally true that if every real
element of G has prime power order, then G must be a 2-group or a {2, p}-group.
As a matter of fact, studying the case O, (G) = 1, even though we have not been
able in this paper to precisely describe the structure of such groups, we did find
that there are groups G and H such that every real element has prime power order
and |G| and | H | have, respectively, three and four prime divisors, as we will see
in Example 4.2. We should now recall that, by [3, Corollary B], since we are
assuming G solvable, for every prime p dividing |G|, G contains a real element of
order p, so p is a vertex of I'r (G) by definition (and the same holds for H). In the
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framework of the real prime graph I'r (G), since every isolated vertex is obviously
a connected component, if we write n(I") to indicate the number of connected
components of a graph I', then we can state this finding by saying that there exist
finite solvable groups G and H with n(I'r(G)) = 3 and n(I'r(H)) = 4.

This fact is somewhat unexpected because it goes against the usual similar-
ity of properties that I'r (G) has in respect to two other notorious graphs asso-
ciated to G, the prime graph on real character degrees I'.q g (G) and the prime
graph on real class sizes ', g (G), for which it is known that n(I'eq g (G)) < 2
and n(I's g (G)) < 2, as we will explain better later.

It could also be an interesting topic of study to investigate how much the num-
ber of prime divisors of |G| can be increased while preserving the condition that
every real element of G has prime power order, which is closely related, though
not equivalent, to the open problem of determining the least upper bound for
n(T'r(G)).

2 Preliminary results

We begin by fixing the notation and terminology that will be used throughout the
paper. For a group G, Z(G) denotes its center, G’ denotes its derived subgroup,
F(G) denotes its Fitting subgroup, ®(G) denotes its Frattini subgroup and G*°
denotes its nilpotent residual. An abelian group is said to be homocyclic if it is
a direct product of pairwise isomorphic cyclic groups.

For our study, we will need some basic but nevertheless fundamental properties
of real elements. Let us start with the following lemma (see [3, Lemma 3.2] for

a proof).

Lemma 2.1. Let G be a finite group.

(1) Ifx € G is real, then there is a 2-element y € G with x¥ = x~ 1.

(2) If x € G is real, then x™ is real for every integer m.

(3) Suppose that N < G and that xN € G/ N is real. Suppose also that o(xN)
is odd. Then thereis areal y € G withxN = yN.

4) If Q is a 2-group acting non-trivially on G, then there are 1 # x € G and
1

q € Q withx? =x"".
The next lemma will be used in several subsequent proofs to conclude vari-
ous arguments by contradiction, since it gives us a sufficient condition (actually
also a necessary condition, but we only need sufficiency) for the existence of real
elements of non-prime power order.
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Lemma 2.2. Let G be a finite group and let x,y € G be real elements whose
orders o(x) = p and o(y) = q are distinct primes. Suppose that x and y are
inverted by the same g € G and that xy = yx. Then xy is real inverted by g and

o(xy) = pq.

We note that Lemma 2.2 is still valid even if o(x) = p® and o(y) = ¢#, but it
is sufficient to enunciate it in this form, since by Lemma 2.1 (2), we can always
consider suitable powers of x and y and get real elements with prime order.

Following [2], we say that a finite group G satisfies R if every real element has
2-power order or 2'-order, and we say that G satisfies P if every real element has
prime power order.

We now want to prove that our working hypotheses descend to the quotient.
It is well known that solvability does and it is not difficult to verify that if G is
a finite group with 02 (G) = G, then, if N < G, we have 0¥ (G/N) = G/N.
Property P requires a little bit more work.

Lemma 2.3. Let G be a finite group and let N < G. If G satisfies P, then G/ N
satisfies P.

Proof. Since G satisfies P, obviously, G satisfies R. So, by [2, Lemma 2.2], we
have that G/ N satisfies R, that is, every real element of G/N has 2-power order
or odd order. Suppose by contradiction that G/N contains a real element x N of
odd non-prime power order. Then, by Lemma 2.1 (3), there exists a real y € G
with xN = yN. Then we have o(xN) | o(y) and so y is a real element of G with
non-prime power order, contradicting our assumptions. |

It is worth noting that Lemma 2.3 could also be proved directly by extending [2,
Lemma 2.1] to our case, instead of integrating [2, Lemma 2.2] with Lemma 2.1 (3)
as we did above.

We now recall [2, Theorem A], which establishes the basis for our work.

Theorem 2.4. Suppose that G is a finite solvable group with 0% (G) = G. Assume
that every real element of G is either a 2-element or a 2'-element. Let N = 02(G)
and Q € Syl,(G), and assume that G is not a 2-group. Then

(1) G/N has a normal 2-complement K/N and Q /N is cyclic or generalized
quaternion. If zN is the unique involution of Q /N, then

Ckx/N(Q/N) = Cg/N(zN).

(2) Suppose that N > 1. Then N = F(G), Q/N is cyclic and G splits over N. If
|Q/N| > 2, then K/N is cyclic. In any case, K/ F» is metabelian and F,/ N
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is abelian, where Fo/N = F(G/N). If |G| is coprime to 3, then K/F is
abelian.

We are now going to see some lemmas that give us some initial information on
the structure of the group G/N described in Theorem 2.4. For the sake of brevity,
we are going to write G instead of G/ N, K instead of K/N and so on.

Lemma 2.5. Let G be a finite group with G = K x Q and 0% (G) = G, where K
is the normal 2-complement and Q € Syl,(G). Then we have [K, Q] = K.

Proof. Since K < G, then [K, Q] < K and we also know that
[K. Q] < (K, Q) =G.
We can consider L. = [K, Q]Q. We have L < G, since [K, Q] < G and
0% = 0% = ¥ C [K,0]0 forevery g = gk € G,

with g € Q and k € K. Then L is a normal subgroup of G with odd index and so
it must be L = G. Then it follows that [K, Q] = K. |

Lemma 2.6. Let G be a finite group with G = K x Q, where Q € Syl,(G) and
K is the normal 2-complement of G. Suppose that OZI(G) = G and that Q has
a unique involution z, and assume that Cg (z) = Cg(Q). Then K is abelian if and
only if Cx(z) = 1 (if and only if z inverts every element of K).

Proof. Suppose K is abelian. Since (|Q|, |K|) = 1, by the coprime action of Q
on K, we have K = [K, Q] x Cx(Q) (see, for instance, [9, 8.4.2]). But by Lem-
ma 2.5, we know that [K, Q] = K and so Cg(Q) = 1. It follows that Cx(z) =
Ck(Q)=1

Conversely, suppose that Cx(z) = 1. So z induces an automorphism on K of
order 2 with no fixed points. It is a well-known result that z then acts on K as
the inversion. Since it is easy to see that a group in which the inversion is an
automorphism is abelian, we conclude. |

Let us finish this section with a lemma that contains an idea which will be used
several times later on.

Lemma 2.7. Let G be a finite group with G = K x Q, where Q € Syl,(G) and
K is the normal 2-complement of G. Suppose that 02’(G) = G and that Q has
a unique involution z, and assume that Cg(z) = Cg(Q). Suppose also that G
satisfies P and that K is nilpotent. Then K is a p-group for some odd prime p.
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Proof. Assume by contradiction that there are at least two odd primes p, g divid-
ing | K|, with p # ¢. By nilpotence, we have that the p-elements commute with
the g-elements. Consider now the actions of z on O,(K) and on O4(K). If z
centralizes, to fix ideas, O, (K), then O,(K) < Cg(z) = Cg(Q). So we would
have Q < C(0p,(K)). In particular, O,/ (K) x Q would be a normal subgroup
of G with odd index, contradicting the fact that 02/(G) = G. The same goes for
0O,4(K). So the actions of z on both are not trivial. Then, by Lemma 2.1 (4), there
exist real elements x € O, (K) and y € O4(K) inverted by z, respectively of or-
der p and ¢, that commute. But then, by Lemma 2.2, xy is a real element, inverted
by z, of order pq, contradicting P. Hence K must be a p-group. o

3 The case O,(G) > 1

In order to treat this case, it is necessary to repeat some ideas and results introduced
in [2].

Standard Hypotheses. Suppose that G = KQ, where K > 1 is normal of odd or-
der, O € Syl,(G) is cyclic or generalized quaternion and Cx(Q) = Cg(z), with
z the unique involution of Q. Suppose also that 0% (G) = G. Assume that G acts
on a 2-group V and that Cg (v) has a normal Sylow 2-subgroup forall 1 v € V.
In this case, we say that G satisfies the Standard Hypotheses with respect to V.

The following theorem (see [2, Theorem 3.1]) explains the introduction of such
hypotheses.

Theorem 3.1. Suppose G is a finite solvable group with 02’(G) = G. Assume that
G satisfies R and that G > N = Q3(G) > 1. Then there exists a subgroup H of
G suchthat G = NH, with N N H = 1, and H satisfies the Standard Hypotheses
with respect to N. Moreover, O/ (G) < Z(G).

Conversely, if H = K x Q, with Q € Syl,(H), satisfies the Standard Hypothe-
ses with respectto 'V, then G = V x H satisfies R.

We would like now to have a set of assumptions that descend to quotients. Recall
that, in a group action of Q on K, A/B is a Q-invariant p-section, for a prime p,
if A, B are Q-invariant subgroups of K, B <\ A and A/B is a p-group.

Hypotheses H2. Let G be a group with a cyclic Sylow 2-subgroup @ > 1 and a
normal 2-complement K. Suppose that 02 (G) = G and Cg(Q) = Ck(z), where
z is the unique involution of Q. Assume also that, for every prime p and for every
Q-invariant p-section A/B of K, [A/B, Q] is cyclic. In this case, we say that G
satisfies (H2).
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Then we have that Hypotheses H2 descend to quotients on N I G, N < K
(see [2, Lemma 3.2]).

Lemma 3.2. Suppose that G satisfies (H2) and let N < G, N < K. Then G/N
also satisfies (H2).

The following proposition clarifies the connection between the Standard Hy-
potheses and (H2) (see [2, Proposition 3.4]).

Proposition 3.3. If G = KQ satisfies the Standard Hypotheses, then G satisfies
(H2).

Before we can start with our own investigation, we need two other results from
[2], which describe the chief factors and the structure of the Sylow subgroups
of a group G satisfying (H2) (see respectively [2, Proposition 3.7] and [2, Theo-
rem 3.9]).

Proposition 3.4. Let G satisfy (H2). Let p be a prime dividing |K| and let P =
0,(G), R=D(G)NP and X = P/R. If X # 1, then X is a noncentral chief
factor of G, P € Syl,(G) and R = ®(P).

Theorem 3.5. Let G satisfy (H2) with K > 1. Let p be a prime dividing |K| and
P € Syl,(G). Then P is homocyclic abelian of rank at most 3. Also, we have
Z(G) = 1. If p divides | K/ K'|, then P is cyclic.

The first consequence that we deduce is the following.

Proposition 3.6. Let G satisfy (H2) and P and suppose that G is not a 2-group.
Then F(G) = F(K) and F(G) € Syl,(G), for p an (odd) prime.

Proof. Let us start by proving that F(G) = F(K). To do so, it is sufficient to show
that F(G) has odd order. Indeed, in that case, F(G) < K and so F(G) < F(K).
The other inclusion is trivial. Suppose then by contradiction that F(G) has even
order. Then it must be O2(G) > 1, s0 z € O,(G), where z is the unique involution
of Q. Therefore, z commutes with O,/ (G) = K, thatis, K = Cg(z) = Cx(Q).
Then Q < G and G = K x Q. Since OZI(G) =G,wehave G = Qand K =1,
contradicting the assumptions.

Working by contradiction, assume now that F(G) is not a p-group. Then there
exist distinct primes p, g, with O,(G), O4(G) > 1. Let us consider the action of
zon O;(G), for j = p,q.If the action is trivial, then, as in Lemma 2.7, we have
0 < Cg(0;(G)). So C5(0;(G)) is a normal subgroup with odd index. There-
fore, since 02 (G) = G, we have Cs(0;(G)) = G, that is, O;(G) < Z(G),
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whereas Z(G) = 1 by Theorem 3.5. So both those actions are not trivial. Thus,
by Lemma 2.1 (4), there exist a non-trivial real p-element x and a non-trivial real
g-element y both inverted by z, and they commute. Then, by Lemma 2.2, xy is
areal element of order pg, contradicting property P. So F(G) = O, (G) for some
(odd) prime p.

Finally, we note that a group satisfying (H2) is solvable by the Feit-Thompson
theorem. It is well known that, in a finite non-trivial solvable group, F(G) > 1 and
F(G) > ®(G). Then, since R = F(G) N ®(G) = ®(G), we have

F(G)/R = F(G)/®(G) > 1.
Therefore, by Proposition 3.4, we conclude that F(G) € Syl,(G). ]

We are almost ready to prove the main theorem of this paper. We just need
to simplify our work with one last observation. Suppose G is a finite solvable
group, with 02/(G) =G, G > N = 0,2(G) > 1 and assume that G satisfies P.
In particular, we can apply Theorem 2.4 to G. Since we are assuming N > 1, if
we also suppose |Q/N| > 2, where Q € Syl,(G), then by Theorem 2.4 (2), we
have that K/N is cyclic. Therefore, by Lemma 2.7, or even with little more work
by Lemma 2.6, we know that K/N is a p-group.

So it suffices to consider the case |Q /N | = 2. We begin with an auxiliary result
that will play a key role in the proof of the main theorem.

Proposition 3.7. Let H = K Q satisfy (H2) and P, with |Q| = 2. Suppose that K
is not nilpotent and that K /¥(H) is abelian. Then H is 2-Frobenius with lower
kernel a homocyclic abelian q-group of rank 2, upper complement of order 2 and
lower complement a cyclic p-group, with p # q.

Proof. Firstly, let us consider H/K'. We note that H /K’ still satisfies (H2) and P
and therefore its normal 2-complement K /K’ is a p-group by Lemma 2.7. Also,
by Lemma 2.5, we have [K/K’, OK'/K'] = K/K'. Then K/K' = [K/K’, O],
which is cyclic since H satisfies (H2).

We have F(H) = F(K) by Proposition 3.6. Thus K /F(K) is abelian and there-
fore K’ < F(K). Furthermore, by Proposition 3.6, F(K) is a g-group, for some
prime ¢ dividing |K|. Since we are assuming that K is not nilpotent, it must
be that p # ¢. Then it must also be that K’ = F(K); otherwise, we would have
p | [F(K)|. For convenience, let L = K’ = F(K). We note that L € Syl (H), so
by Theorem 3.5, L is homocyclic of rank at most 3. From what has been said
so far, we have K = L x P, where P € Syl,,(K). Moreover, up to conjugacy, we
can assume that z € Ng (P), where z is such that Q = (z). Indeed, by the Frattini
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argument, we have H = KNy (P) and so

[KIINa(P)| _ |K[|Nu(P)|
|K 0 Ng (P)] INk(P)|

so that |[Ng (P)| = 2|Ng(P)|. Then we can assume that z acts on P. We now
prove that P(z) is dihedral. Indeed, since P is a cyclic p-group and p is odd, we
know that Aut(P) is cyclic and hence it has a unique element of order 2, namely
the inversion map. Therefore, either Cp(z) = P or z acts on P as the inversion.
So P(z) is either abelian or dihedral. But O% (P(z)) = P(z) and so P (z) is not
abelian. Then P (z) is dihedral, and in particular, it is a Frobenius group.

We want now to verify that Cyz (P) = 1, which, since L is abelian, follows
easily once we prove that Z(K) = 1. Assume by contradiction that 1 # Z(K).
Obviously, Z(K) < H. Consider then the action of z on Z(K). This action is
not trivial; otherwise, we would have 1 # Z(K) < Z(H), contradicting the fact
that Z(H) = 1 by Theorem 3.5. So, by Lemma 2.1 (4), there is a real element
1#xeZ(K),x=1y,l € L,y € P,inverted by z. If [ # 1, then an appropriate
power of x would be a real g-element inverted by z that commutes with every
element of P. Recalling that every element of P is a real p-element inverted by
z, by Lemma 2.2, we would get a real element of non-prime power order, con-
tradicting P. So / = 1 and x is a real p-element inverted by z that commutes
with every element of L. But z acts non-trivially on L. Otherwise we would have
z € Cy(L). Since we also have Cy (L) < H and O¥ (H) = H, we would get
1 < L <Z(H), contradicting Theorem 3.5. So L contains at least one non-trivial
real g-element inverted by z by Lemma 2.1 (4). As before, that goes against P.

We can now prove that L has precisely rank 2. We have ®(L) < H (actually,
by Proposition 3.4, ®(L) = ®(H)). So P(z) acts on ®(L). Let us consider the
quotient L/®(L). Using the bar notation, we have that L is a Z 4-vector space
of dimension at most 3, by Theorem 3.5. By the coprime action of P on L, we
have CL(P) = Cr(P) =1 (see, for instance, [9, 8.2.2]). Recall also that P(z)
is a Frobenius group, with kernel P and complement (z). So, considering L as
a Zg4[P (z)]-module, by [7, Theorem 15.16], we deduce

dimz, (L) = |(z)|dimz, (CZ({z))).

In particular, 2 | dimg,, (L) and dimg, B (L) < 3, so it must be dimz B (L) = 2. Then
L has rank 2.

At this point, it remains to prove that K = L x P is a Frobenius group. Con-
sidering the quotient L /® (L), we can assume that ®(L) = 1. By Proposition 3.4,
we then have that L is minimal normal in H. Also, if we write F = Z, we
have seen above that L is an F-vector space of dimension 2. So L is an irre-
ducible F[H]-module. Since K < H, by Clifford’s theorem, we know that L is

2|K| = |H| = |[KNu(P)| =
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completely reducible as an F[K]-module (which we write as Lg). If Lk is ir-
reducible, then it is a faithful and irreducible [F[P]-module, and P is cyclic. It
is well known that P then acts fixed-point free on L. Suppose therefore that
Lg = L1 ® L,, with Ly, L, irreducible F[K]-modules. We want to verify that
the irreducible components L1, L, have the same kernel. If Lg is homogeneous,
then it is obvious, since L1 =~ L, as F[K]-modules. Assume that L is not homo-
geneous. By Clifford’s theorem, we know that H/K = (z) acts transitively on the
set of homogeneous components, in this case {L1, L, }. Thus L? = L, and there-
fore Cx(L1)* = Cg(L}) = Ck(L>), that is, the kernels are z-conjugate. But
Cg(L1) = LX for some X < P, and so Cx (L) = Cg(L1)? = L*X* = LX,
since L. < H and z normalizes every subgroup of P. In any case, we have proved
that Cx(L1) = Cg(L2). We observe that Cx (L) = L, since it is well known that
the Fitting subgroup of a solvable group is self-centralizing and L is abelian. Then
we have

L =Cg(L) =Cg(L1 ® Lz) = Cx(L1) N Ck(L2) = Ck(L;)

fori = 1,2. So it follows that L1 and L, are faithful and irreducible FF [ P]-mod-
ules. Then, again since P is cyclic, P acts fixed-point free on L and L, and
therefore P acts fixed-point free on L. So what we have actually proved is that
P acts fixed-point free on the section L/®(L). We can also demonstrate that L
is P (z)-indecomposable. Assume by contradiction that it is not true. Then there
are 1 # L1, Ly < L such that L, L, are P(z)-invariant (so L1, L, < H) and
L =1LyxL Then L/®(L) = L1/®(L1) x Lo/ P(L2), contradicting the fact
that L/ ®(L) is minimal normal in H/®(L) by Proposition 3.4. Therefore, L is
P (z)-indecomposable and P (z) acts coprimely on L. Then, by [5, Corollary 1],
if exp(L) = ¢", there exists a normal P (z)-series

L=QuL)> Qp1(L) == Qo(L) =1

in which every factor ,—;(L)/2,—i—1(L) is P{(z)-isomorphic to L/®(L) for
every i = 1,...,n — 1. Also, since L is a homocyclic g-group, it is known that
Qu(L)/R2y—1(L) = L/®(L). We already know that P acts fixed-point free on
this factor, so we conclude that the series is a normal P-series such that P acts
fixed-point free on every section. Then it follows that P acts fixed-point free on L,
thatis, K = L x P is a Frobenius group. o

Now we are finally able to prove the main theorem.

Theorem 3.8. Let G be a finite solvable group, with 02’(G) = G, and suppose
that G satisfies P. Let N = O2(G) and Q € Syl,(G). Assume that G is not a 2-
group, N > 1 and |Q/N| = 2. Then we have G = N x H, H = K x (z), with
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(z) € Syl,(H) and 0(z) = 2, and K is a cyclic p-group for some (odd) prime p.
Moreover, H is a dihedral group. In particular, every element of K is real in H,
inverted by z.

Proof. Since every hypothesis descends to quotientson M < G, M < N, we may
assume that N is minimal normal in G, so that it is an elementary abelian 2-group.
Therefore, all its elements are involutions and real elements of G, and [N, N] = 1.

By Theorem 3.1, we know that there exists H < G such that G = N x H
and H satisfies the Standard Hypotheses with respect to N. So H = K x Qo,
with K > 1 the normal 2-complement of H and Q¢ € Syl,(H). But H = G/N;
therefore, |Q¢| = 2. So H = K x (z), with z involution. Furthermore, by Propo-
sition 3.3, we have that H satisfies (H2).

Working by contradiction, assume that K is not a p-group. Then K is not nilpo-
tent, since otherwise, as in Lemma 2.7, K would be a p-group. Let us consider K*°
the residual nilpotent of K, which for a finite group is the last term of the lower
central series and the smallest normal subgroup for which the quotient is nilpotent.
We have K char K and so K <9 H. Moreover, K* # 1. Thus H/K® has
the normal 2-complement K/ K°°, which is nilpotent, and so K /K is a p-group
by Lemma 2.7. Also, by Lemma 2.5, we have [K/K®°, (z) K®/K*°] = K/ K.
Then K/ K = [K/K®, z], which is cyclic since H satisfies (H2). In particular,
K /K is abelian; therefore, K’ < K and we conclude K/ = K®°.

At this point, by the results in Theorem 2.4 (2), it is natural to split the proof
into two parts: the case where K /F(H) is abelian, which will be part (a), and the
case where K /F(H) is (strictly) metabelian, which will be part (b).

(a) Suppose that K/F(H) is abelian. Then, by Proposition 3.7, we get that H
is 2-Frobenius with lower kernel a homocyclic abelian g-group of rank 2, upper
complement of order 2 and lower complement a cyclic p-group, with p # ¢. Let
L denote the lower kernel and let P be a Sylow p-subgroup of H. Note also
that L = K’ = F(K) and that we can assume that z acts on P, as in the proof of
Proposition 3.7.

Therefore, we can conclude part (a). We recall H =~ G/N and so NL < G.
We now prove that [N, L] < G. Indeed, if n € N, [ € L and g € G, then there
are n1 € N and [; € L for which [8 = nylq, since N < G and NL < G. Then
[n,118 = [n8,n1l1] = [n8,[1] € [N, L]. Therefore, [N, L] < G. Suppose by con-
tradiction that [N, L] = 1. Then every element of N commutes with every ele-
ment of L. Considering the action of z on N — {1}, we see that there is a fixed
point 1 # x € N with x? = x = x~!, since N is elementary abelian. That is, x
is a real 2-element inverted by z. Since L contains a real non-trivial g-element
inverted by z, we would get by Lemma 2.2 a real element of non-prime power
order, contradicting P. So 1 # [N, L] < N and the minimality of N means that
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____H
(z2) = G

| K=H =H™
P = Cpe

L H'—K —K®=FK)=L
C, xC,
T o) = d(H)

Figure 1. Structure of group H in part (a)

[N, L] = N. By the Fitting decomposition (see, for instance, [9, 8.4.2]), we have
N =[N, L] x Cy(L), and thus Cy (L) = 1. So, applying [7, Theorem 15.16] to
the Z,[K]-module N, we get that Cx (P) > 1. Also,

Cn(P)* = Cy:(P?) = Cn(P)

andsoz € Ng(Cpn(P)). Considering then the action of z on C (P) — {1}, we see
that there exists a fixed point 1 # x € Cy(P) with x7 = x = x71, i.e. x is real
inverted by z and commutes with every element of P. But also every element of
P is real inverted by z, and so, as usual, this contradicts P. Therefore, if K/F(H)
is abelian, then K is a p-group.

(b) Let K/F(H) be metabelian. Obviously, we still have F(H) = F(K), F(K)
is an abelian g-group and F(K) € Syl,(H) by Proposition 3.6. We write again
L =F(K).

Assume by contradiction that L £ K’. Then g | |K : K'| and, by Theorem 3.5,
L is cyclic. But L is abelian and, being the Fitting subgroup of a solvable group,
L is self-centralizing. So Cy (L) = L and therefore H/L < Aut(L) = Aut(Cya);
thus H/L is abelian. Since O (H/L) = H/L, we have that H/L is a 2-group,
thatis, H/L =~ (z) and L = K. So K would be a g-group, contradicting the as-
sumptions. Then L < K’. Since K /L is metabelian, we have that K'/L = (K /L)’
is abelian and so K" < L. We note that we can assume that K’/L # 1; otherwise,
we are in the case of part (a). Now we prove K" = L. Suppose by contradiction
that K” < L. Then L/K"” = F(H/K") by Proposition 3.6, since L /K" is a nor-
mal Sylow g-subgroup of H/K"” and H/K" satisfies (H2) and P. We then have,
since K’/ K" is abelian, that K’/ K" < Cg/g~(L/K"), contradicting the fact that
the Fitting subgroup is self-centralizing and L < K.

Now we want to verify that K’/ L is a Sylow ¢-subgroup of H /L for some (odd)
prime ¢ dividing |K|. Let us consider H/L. It is easy to see that H' = K and so
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Figure 2. Structure of group H in part (b)

K’ = H",since H/H'is abelianand O (H/H’) = H/H', thatis, H/H' = (z).
Then
K'/L = (H/L)" char H/L.

Since K'/L is also abelian, then K'/L < F(H/L). But F(H/L) is a t-group by
Proposition 3.6. So K’/ L isat-group and ¢ # ¢, since L < K’ and L € Syl,(H),
and ¢ # p, since K/ = K is the residual nilpotent of K. In conclusion, we have
K'/JL < H/L and K'/L € Syl,(H/L). So, by Proposition 3.6, we must have
F(H/L) = K'/L.

We have that H/L satisfies the hypotheses of Proposition 3.7. So we get that
H/L is 2-Frobenius with lower kernel a homocyclic abelian z-group of rank 2,
upper complement of order 2 and lower complement a cyclic p-group, with p # ¢.
Then, in particular, we have that K/L is a Frobenius group. Let P be a Sylow
p-subgroup of H. We can assume that z € Ny (P) and so z acts fixed-point free
on P, that is, z inverts every element of P. Also, let 7 be a Sylow #-subgroup of
H such that TP < H, which exists since H has Hall {z, p}-subgroups.

Now we want to prove that Z(K’) = 1 so that C7(T) = 1, as in the proof
of Proposition 3.7. Let T be a conjugate in H of T that contains a non-trivial
real element inverted by z, which exists by [3, Corollary B]. Note that, obvi-
ously, K/ = L x T. Working by contradiction, assume that Z(K’) > 1. The ac-
tion of z on Z(K’) is not trivial; otherwise, since 0% (H) = H, we would get
1 < Z(K') < Z(H), contradicting Theorem 3.5. So, by Lemma 2.1 (4), there is a
real 1 # x =1y € Z(K'), with [ € L, y € T, inverted by z. If [ # 1, then a suit-
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able power of x is a non-trivial real g-element inverted by z that commutes with T,
contradicting P. Then / =1, x € T and x commutes with L, again contradict-
ing P.

We can now prove that |P| = 3. Recall TP =~ K/L is a Frobenius group,
with kernel T and complement P. Consider the section L = L/®(L). Since TP
acts coprimely on L, by the previous paragraph, we have C7(T) = C.(T) = 1
(see, for instance, [9, 8.2.2]). Also, L is a Zg4-vector space. So Lisa Z4[TP]-
module with CZ(T') = 1. Then, by [7, Theorem 15.16], we get that | P| divides
dimgz,, (L) = rank(L), which is at most 3 by Theorem 3.5. Therefore, we have
|P| = rank(L) = 3.

At this point, we are able to conclude part (b). By Theorem 2.4, N = F(G), as,
by hypothesis, N > 1. Recall also we are assuming N to be elementary abelian.
Therefore, we have Cg(N) = N and so N is a faithful G/N = H-module. Let us
consider the action of 7P on N. We know that | P| = 3, P acts faithfully (actually
fixed-point free) on the z-group 7 and TP acts faithfully on N. In particular, N
is a faithful Z,[T P]-module. Then, by [1, 36.2], we have Cy (P) > 1. With the
same argument as in the last paragraph of (a), we get a contradiction. Therefore,
even if K/F(H) is metabelian, K is a p-group.

So, in any case, K is a (z)-invariant p-section and then we have that [K, z]
is cyclic, since H satisfies (H2). By Lemma 2.5, [K, z] = K and so K is cyclic.
Then, by Lemma 2.6, we have Cg(z) = 1. Therefore, z inverts every element
of K, proving that H = K x (z) is a dihedral group. ]

Since we just did the hard work in Theorem 3.8, we can now prove Theorem A.

Proof of Theorem A. Tt is obvious that (3) implies (1).

Let us prove that (1) implies (2). Assume that every real element of G has
prime power order, that is, G satisfies P. By Theorem 3.1, there exists H < G
withG = N x H.So H = G/N. Let Q € Syl,(H). Then, by Theorem 2.4, we
have H = K x Q, where K is the normal 2-complement of H, and also, since
N = 0,(G) > 1, Q is cyclic. Let z be its unique involution.

Suppose | Q| > 2. Then, still by Theorem 2.4, we have that K is cyclic. There-
fore, since also Cx(z) = Cg(Q), by Lemmas 2.7 and 2.6, K is a p-group and
Ck (z) =1, so that every element of K is real inverted by z. Moreover, H = K x Q
is a Frobenius group. Indeed, if 1 # ¢ € Q were such that Cg(g) > 1, then, since
z € {g), we would have Cg(z) > 1, which is not true.

If |Q| = 2, then by Theorem 3.8, we have that K is a cyclic p-group and H is
a dihedral group. In particular, every element of K is real inverted by z.

In any case, we note that G is a {2, p}-group and H = K x Q is a Frobenius

group.
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Now we verify that even N x K is a Frobenius group. Working by contradic-
tion, assume that there exists 1 # k € K with Cy (k) > 1. We see that z acts on
Cy (k), since Cy (k)? = Cy=(k?) = Cy (k™) = Cy (k). Then, considering the
action of z on Cy (k) — {1}, we see that there is a fixed point, that is, an ele-
ment 1 # x € Cy (k) with x? = x. If we take a suitable power of x, then we have
an involution y € Cy (k) with y? = y = y~!. Therefore, by Lemma 2.2, ky is
areal element of G inverted by z with non-prime power order, contradicting P. So
G = NKQ is a 2-Frobenius group.

Finally, let us prove that (2) implies (3). Let x € G be an involution. Since K
acts fixed-point free on N and Q acts fixed-point free on K, we have that Cg (x)
is a 2-group. So G is a CIT-group (see [12] for the definition and more). Since G is
a {2, p}-group and a CIT-group, we have that every element of G has prime power
order. o

Let mr (G) denote the set of primes occurring as the order of real elements of G.

Corollary 3.9. Let G be a finite solvable group in which every real element has
prime power order. Suppose also that O2(G) > 1. Then either nr(G) = {2} or
7r(G) = {2, p} for some odd prime p.

Proof. If G is a 2-group, then 7r (G) = {2}. Assume that G is not a 2-group and
consider H = 0% (G). We have that H is a solvable group in which every real ele-
ment has prime power order and 02 (H) = H. Also, recall that 0»(G) < O»(H),
and so we have O,(H) > 1. Moreover, the real elements of G are the real elements
of H and so we have nr(G) = nr(H). If H is a 2-group, then it is a Sylow
2-subgroup of G. In this case, 7r(G) = {2}. Lastly, suppose that H is not a 2-
group. Then H satisfies the hypotheses of Theorem A and so H is a {2, p}-group
for some odd prime p. Then, in this case, nr (G) = {2, p}. |

So, given a {2, p}-group G as in Theorem A, we are able to say a lot about the
structure of G/ N . But, in general, there is not much we can say about the structure
of N. While, for a fixed p, we know by [6] that there is an upper bound for dI(N),
the derived length of N, depending only on p, we can show that, as p varies, there
are groups with dI(N) arbitrarily large.

Example 3.10. This example is based on a construction of I. M. Isaacs contained
in [8]. Although our results are very similar to those in [8], since our working
hypotheses are different, where necessary, we will give explicit proofs.

Let k = 2%, with a > 1 positive integer and let F = GF(2X). Consider then
Y = Gal(F|F,), which is cyclic of order k, generated by o, the Frobenius auto-
morphism. Thus we can define F{ X}, the “twisted polynomial ring” in the indeter-
minate X, that is, the ring of “polynomials” o9 + o1 X + -+ 4+ o, X™ for which
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Xo = a® X forevery o € . It is known that this does define a ring. We note that
Xk is central in F{X}. Then we consider the quotient R = F{X}/(X¥) and we
write x to denote the image of X in R under the natural homomorphism. So every
element of R is of the form oo + o1 x + - -+ + axg_;x*~1 and then |R| = (2F)F.
Also, x*¥ = 0and xa = a%x for every « € IF. Moreover, we have that xR = Rx
is a nilpotent ideal and R/xR = F. Therefore, xR = J(R), the Jacobson rad-
ical of R, that we denote as J. We have Ji = xR = Rx! and so Jk! #0
eJk=0.LetS=1+J={1+ax+ - +oar_1x*1 | o €F}, where 1 is
the identity element of R. It is a known fact in ring theory that S is a subgroup of
the group of units of R; in this case, it is a 2-group. For u > 1 integer, we write
Sy=14+J% Then S, < S and S =81 > S, >---> S_1 > S, = 1. Every
element s € S, is uniquely of the form s = 1 4+ ax* + y, with y € J**! and
o € [F. We can then define v,,: S;, — F with ¥, (s) = «. Itis easy to prove that v,
is a homomorphism from S, to the additive group of I and that ker(,) = Sy+1,
s0 Sy+1 < Sy. By [8, Corollary 4.2], we have [Sy, Sy] < Sy+v if u,v > 1. Fur-
thermore, if u +v <k — 1,5 € Sy, t € Sy and ¥, (s) = « and ¥, (¢) = B, then
Yuro([s,1]) = af”" — .
We now have to study the map (-,-):F x F — F given by

(@.f) = ap” — P’
in the case u odd. Let us consider [ as a vector space over [F,. Note that (-, -) is
[F»-bilinear.

We firstly prove thatif ¥ isoddand v + v < k — 1, then, for0 # « € IF, (o, F)
contains a hyperplane of I. Since (e, -) is 'o-linear, it is enough to prove that its
kernel is of dimension at most 1. So let («, 8) = 0 = («, ), with f # 0. We then
have

af® —Ba® =0=ay’ —ya°,
which implies that if y # 0, then
‘B—lﬂa“ — a—laav — )/_1)/0“,

soyB~1 = (yB~1)°". Since u is odd, we have (0*) = (o) and hence yf~! € F,.

Now we prove, still under the assumption that ¥ + v < k — 1, that there exist
0 # «a, B € I for which (o, F) # (B,F) (even if u is not odd). To do so, we will
use the trace of the Galois extension [F|[F, that is,

k—1
T:F —-F, with T(x) = Zoi(oc).
i=0

Recall that T is invariant with respect to § = Gal(F |IF»). Then, if « = 1, we have
TLy) =T =) =TG") =T =Ty -T() =0.
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Therefore, it suffices to find B,y € F with T'((8, y)) # 0. We have

TUB.y) =TBY" ) =T )=TB" y* ) =TyB")
=T 7 =)

Asu +v <k —1,wehave k t u + v, so we can choose y with y"u+v —y #0.
Moreover, simpll/ because oV is an automorphism of F, we can choose 0 # S
so that 87" (y®“"" — y) is an arbitrary element of F and, in particular, one with
non-zero trace. Thus (1,F) # (B8, F) if B is as stated.

To estimate the derived length of S, it is enough to verify that [Sy, S;,] = Sy
when u is odd. Indeed, assuming this is true, and denoting by S ) the n + 1-th
term of the derived series, by induction over n, we prove that S () > S4,, where
{tn}52 is the succession defined by 11 = 2 and t, 41 = 21, + 2 = 2(t, + 1) (note
that every term of #, is even and so ,, + 1 is odd).

Ifn =1, we have SV =[S, S] = [S1. S1] = S». If n > 1, then

0u+v

SEFTD = [§® §MW] >[5, S, 1> [St, 41, Stpt1] = S2t,42 = Sty

Therefore, if we take k with k — 1 > t,,, then N St, > 1 and so dI(S) > n.

Let us prove that [Sy,, Sy ] = Sz, when u is odd. Actually, we prove a stronger
condition: if u and v are positive integers with u odd, then [S,,, Sy] = Sy+. For
that, we fix u odd. We know that [S;,, Sy] < Sy+v if u, v are positive integers. If
u+v>k—1,wehave S, +, = 1 and we are done. Assume then that u + v <
k — 1. We work by induction over (k — 1 — u) — v. We know that ¥, 4+, ([Sy, Sv])
is a [Fp-subspace of F which contains all the elements of the form («, 8), with
a,B €. Since u + v < k — 1, we have also seen that ¥, ([Sy, Sy]) contains
two different hyperplanes of IF and so it has to be all of F. Then

Wu+v([Su’ Sv]) = Yu+v(Su+v)-

If (k—1—u)—v=0, that is, u +v = k — 1, then ker(y»,+y) = Sy = 1. So
Yy +v is injective and then, since ¥y, 4+ ([Su, Sv]) = Yu4v(Su+v), we deduce that
[Sy, Sy] = Sy+v, as desired.

If (k — 1 —u)—v > 0, we have, by inductive hypothesis, that

ker(Yu+v) = Sutv+1 = Su+@+1) = [Su, Sv+1] < [Su, Sv].
Therefore, since

ker(Yy+v) = Sutv+1 = [Su. Sl and  Yyu4o([Su. Sv]) = Vu+v(Sutv).

we conclude that [S;,, Sy] = Syu+v.
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In conclusion, we have proved that, for a fixed positive integer n, if we take k
sufficiently large, we have d1(S) > n.

Consider now the semidirect product F* x §. We have |F*| = 2K — 1. Recall
that k = 2%, with a > 1 a positive integer. Then we take a primitive divisor p of
2k 1, thatis, p | 2K —1 and p 4 27 — 1 for every positive i < k, which exists
by Zsigmondy’s theorem [11, Theorem 6.2]. Since p ¢ 2k/2 _ 1, it follows that
p | 2%/2 £ 1. Let P be a Sylow p-subgroup of F*. Then we have P < [F*, z],
where z is the unique involution of ¢, since F* = [F*, z] x Cgx=(z) by the co-
prime action (see, for instance, [9, 8.4.2]) and |Cpx(z)| = 2k/2 by Galois
theory, and so § acts fixed-point free on P. Moreover, P is the unique Sylow
p-subgroup of F* x g and so P <1 (F* x §). We identify P with the subgroup
1 - P of the unit group R of R.

Now we prove that the action of P on § is fixed-point free. Lets € S,y € P
and assume that s £ 1. So s € S, for some positive integer u < k — 1, and we
write s = 1 + ax* 4+ y, with0 # o € F and y € J**!. We have

Ly 4y hyy = 1+ ay ™y x* 4y~ yy.

y sy =1+ay”
It follows that the action of Yy € P on s € S consists in multiplying the u-th co-
efficient of s by y_ly"u foru =1,...,k — 1. Recall that ¢ is the Frobenius au-
tomorphism of the field IF, which is of characteristic 2; thus o (&) = a? for every
o eF,andso y~1y?" = y2“~1 If 1 # s were fixed by 1 # y € P, there would
be some integer u, 1 < u < k — 1, such that the u-th coefficient of s would be
non-zero and that would imply y2“~! = 1, so that p | 2% — 1, contradicting the
choice of p.

So we have proved that SP is a Frobenius group with Frobenius kernel S and
complement P. Moreover, the automorphism o of F can be extended to an auto-
morphism of the ring R by setting x° = x. We note that such an extension, which
we still denote by o, fixes S setwise and so § = (o) acts on S. Then we have the
group G = S x (P x§),thatis, a {2, p}-group and a 2-Frobenius group. It easily
follows then that every element of G has prime power order. It is also not difficult
to verify that § = 0,(G) and 0 (G) = G.

In conclusion, we have built a family of groups as in Theorem A, parameter-
ized by k = 29, such that, denoting N = S = 0,(G), if k — 1 > t,, we have
dI(N) > n. So, as k increases, we get dI(N) arbitrarily large.

4 Case O2(G) =1 and consequences on I'g (G)

Let us now consider a non-trivial finite solvable group G, with 02/(G) = G and
02(G) = 1. Suppose that G satisfies P. Let Q € Syl,(G). By Theorem 2.4 (1),
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we have that Q is cyclic or generalized quaternion, G has a normal 2-complement
K and also Cx (Q) = Ck(z), where z is the unique involution of Q.
Regarding the structure of F(G), we can easily deduce the following result.

Lemma 4.1. Let G be a non-trivial finite solvable group, with 0¥ (G) = G and
0,(G) = 1. Suppose that G satisfies P. Then there is one and only one (odd)
prime p for which O,(G) £ Z(G).

Proof. Let us first prove that there exists at least one prime p with O,(G) £ Z(G).
Working by contradiction, assume this is not true. Then we have F(G) < Z(G) and
so Cg(F(G)) = G. Since G is solvable, F(G) is self-centralizing and so we must
have F(G) = G, which implies that G is nilpotent. Since 0% (G) = G, we have
that G is a 2-group, contradicting our assumptions.

Assume now by contradiction that there are two different (odd) primes p, ¢ with
0,(G) £ Z(G) and O4(G) £ Z(G). Recall that Q € Syl,(G) and z is its unique
involution. We have that z does not centralize either O,(G) or O4(G); otherwise,
as already seen many times, we would get O,(G) < Z(G) and O4(G) < Z(G).
Therefore, there exist, by Lemma 2.1 (4), a non-trivial real element x € O,(G)
and a non-trivial real element y € O4(G), which are both inverted by z. Since they
commute, xy is a non-trivial real element of non-prime power order, contradicting
property P. |

It is not difficult to see that Z(G) < K. Also, since 0% (G/G’) = G/G’ and
G/ G’ is abelian, we have that G’ has 2-power index, that is, K < G’; actually,

G'=(KxQ) =K'[K.0]0"=KQ'

since [K, Q] = K by Lemma 2.5. So Z(G) < G’ and therefore Z(G) < ®(G),
but this by itself obviously does not force Z(G) = 1. If Z(G) = 1 were true, then
we could infer that F(G) is a p-group.

As already announced in the introduction, in this paper we were not able to
precisely describe the structure of these groups, but we concentrated our efforts on
finding the following examples, that prove that, in this case, G is not necessarily

a {2, p}-group.

Example 4.2. Consider S3 and its unique, up to isomorphism, irreducible Z5[S3]-
module V' of dimension 2. We can consider the semidirect product G = V x S3.
In [13], G is SmallGroup(150,5). Obviously, G is solvable and its structure is
(C5 x C5) x S3. We can verify that
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e the normal subgroups of G are 1,
G”" =F(G) = (C5s xCs5), G'=(Cs5xCs)xCs,

and G, so we have 0,(G) = 1 and 0% (G) = G;

e the orders of the real elements of G are {1, 2,3, 5}, that is, |7r(G)| = 3 and
every real element has prime (power) order;

e Z(G) = 1 (consistent with the fact that F(G) is a 5-group).

Note that the structure of G resembles that in Figure 1.

We can also extend G by considering the semidirect product with a suitable
irreducible Z1[G]-module W of dimension 3. Unfortunately, since the resulting
group H = W x G has order 199650, it is not listed in GAP libraries. So we will
identify W, and so also H, by saying that G acts on W as a group of matrices,
with generators

0 0 1[0 0 1][9 0 O[5 0 O
0 1 0[[T 0O0[|0 3 0[|0 9 0.
1 00J[01 0[]0 0 9][0 01

respectively of order 2, 3, 5, 5. Obviously, H is solvable and its structure is
(C11 x C11 x C11) @ ((Cs x Cs) 1 83).

We can verify that

e the normal subgroups of H are 1,
H" =F(H) = C11 x C11 x Ci1,
H" = (C11 % C11 x C11) % (C5 x Cs),
H' = (C11 x C11 x C11) ¥ ((Cs x Cs) x C3)
and H, so we have O, (H) = 1 and 0¥ (H) = H;

* the orders of the real elements of H are {1,2,3,5, 11}, thatis, |7r (H)| = 4 and
every real element has prime (power) order;

e Z(H) = 1 (consistent with the fact that F(G) is an 11-group).
Note that the structure of H resembles that in Figure 2.
It could be an interesting topic for future research to see if there are further

extensions and how much it is possible to increase |7wr(G)|, preserving the hy-
pothesis that every real element has prime power order.
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‘We will now, for our final considerations, switch to the framework of the real
prime graph I'r (G). Let us also consider other known graphs associated to G and
then compare their properties with the ones of I'r (G).

Regarding the Gruenberg—Kegel graph I'(G), we have to recall the follow-
ing simple, but still extremely important, result by M. S. Lucido, also known as
Lucido’s Lemma (see [10, Proposition 1]).

Lemma 4.3. Let G be a finite solvable group. If p,q,r are three distinct primes
that divide |G|, then G contains an element whose order is the product of two of
these primes.

It is immediate that Lemma 4.3 is equivalent to the fact that I'(G) does not con-
tain a set of three pairwise non-adjacent vertices, so, in particular, n(I'(G)) < 2.
Since the group H (also G) from Example 4.2 is such that I'g (H) contains sets
of three pairwise non-adjacent vertices, we deduce that an analogous version of
Lemma 4.3 for real elements does not hold.

Beyond the comparison with I'(G) already mentioned, we can compare this
feature of ['r (G) with two other notorious graphs associated to G, that historically
have maintained certain similarities with respect to I'r (G). These are I'.q r (G),
the prime graph on real character degrees, and I'cs g (G), the prime graph on real
class sizes.

Regarding the least upper bound for the number of connected components of
these graphs, we have the following results, respectively [4, Theorem 5.1 (ii)] and
[4, Theorem 6.2].

Theorem 4.4. Let G be a finite solvable group. Then n(I'eg r (G)) < 2.

Theorem 4.5. Let G be a finite group. Then n(Les g (G)) < 2.

So we deduce that, at least in this case, there is a breaking of the symmetry
between I's R (G), I'cq,r (G) and I'r (G). Furthermore, we note that the least up-
per bound for n(I'r (G)), if it exists, has to be at least 4. So determining such
a bound, even though there is now a little more information about it, remains an
open question of interest.
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