Abstract
A transitive permutation group is called semiprimitive if each of its normal subgroups is either semiregular or transitive. The class of semiprimitive groups properly includes primitive groups, quasiprimitive groups and innately transitive groups. The latter three classes of rank 3 permutation groups have been classified, making significant progress towards solving the long-standing problem of classifying permutation groups of rank 3. In this paper, we complete the classification of finite semiprimitive groups of rank 3, building on the recent work of Huang, Li and Zhu. Examples include Schur coverings of certain almost simple 2-transitive groups and three exceptional small groups.
Acknowledgements
The authors are grateful to the anonymous referees for their valuable comments and suggestions that have helped to improve the paper.
-
Communicated by: Michael Giudici
References
[1] M. Aschbacher and R. Guralnick, Some applications of the first cohomology group, J. Algebra 90 (1984), no. 2, 446–460. 10.1016/0021-8693(84)90183-2Search in Google Scholar
[2] J. Bamberg, A. Devillers, J. B. Fawcett and C. E. Praeger, Partial linear spaces with a rank 3 affine primitive group of automorphisms, J. Lond. Math. Soc. (2) 104 (2021), no. 3, 1011–1084. 10.1112/jlms.12454Search in Google Scholar
[3] E. Bannai, Maximal subgroups of low rank of finite symmetric and alternating groups, J. Fac. Sci. Univ. Tokyo Sect. IA Math. 18 (1971/72), 475–486. Search in Google Scholar
[4] A. A. Baykalov, A. Devillers and C. E. Praeger, Rank three innately transitive permutation groups and related 2-transitive groups, Innov. Incidence Geom. 20 (2023), no. 2–3, 135–175. 10.2140/iig.2023.20.135Search in Google Scholar
[5] A. Bereczky and A. Maróti, On groups with every normal subgroup transitive or semiregular, J. Algebra 319 (2008), no. 4, 1733–1751. 10.1016/j.jalgebra.2007.10.014Search in Google Scholar
[6]
M. Biliotti, A. Montinaro and E. Francot,
2-
[7] W. Bosma, J. Cannon and C. Playoust, The Magma algebra system. I. The user language, J. Symbolic Comput. 24 (1997), no. 3–4, 235–265. 10.1006/jsco.1996.0125Search in Google Scholar
[8] U. Dempwolff, Primitive rank 3 groups on symmetric designs, Des. Codes Cryptogr. 22 (2001), no. 2, 191–207. 10.1023/A:1008373207617Search in Google Scholar
[9] U. Dempwolff, Affine rank 3 groups on symmetric designs, Des. Codes Cryptogr. 31 (2004), no. 2, 159–168. 10.1023/B:DESI.0000012444.37411.1cSearch in Google Scholar
[10] U. Dempwolff, Symmetric rank 3 designs with regular, elementary abelian, normal subgroups, Finite Geometries, Groups, and Computation, Walter de Gruyter, Berlin (2006), 67–73. 10.1515/9783110199741.67Search in Google Scholar
[11] A. Devillers, A classification of finite partial linear spaces with a primitive rank 3 automorphism group of almost simple type, Innov. Incidence Geom. 2 (2005), 129–175. 10.2140/iig.2005.2.129Search in Google Scholar
[12] A. Devillers, A classification of finite partial linear spaces with a primitive rank 3 automorphism group of grid type, European J. Combin. 29 (2008), no. 1, 268–272. 10.1016/j.ejc.2006.09.003Search in Google Scholar
[13] A. Devillers, M. Giudici, C. H. Li, G. Pearce and C. E. Praeger, On imprimitive rank 3 permutation groups, J. Lond. Math. Soc. (2) 84 (2011), no. 3, 649–669. 10.1112/jlms/jdr009Search in Google Scholar
[14] A. Devillers, L. Morgan and S. Harper, The distinguishing number of quasiprimitive and semiprimitive groups, Arch. Math. (Basel) 113 (2019), no. 2, 127–139. 10.1007/s00013-019-01324-7Search in Google Scholar
[15] L. Dornhoff, On imprimitive solvable rank 3 permutation groups, Illinois J. Math. 14 (1970), 692–707. 10.1215/ijm/1256052963Search in Google Scholar
[16] D. A. Foulser, Solvable primitive permutation groups of low rank, Trans. Amer. Math. Soc. 143 (1969), 1–54. 10.2307/1995232Search in Google Scholar
[17] M. Giudici and L. Morgan, A theory of semiprimitive groups, J. Algebra 503 (2018), 146–185. 10.1016/j.jalgebra.2017.12.040Search in Google Scholar
[18]
S. P. Glasby,
Classifying finite groups 𝐺 with three
[19] R. M. Guralnick, Subgroups of prime power index in a simple group, J. Algebra 81 (1983), no. 2, 304–311. 10.1016/0021-8693(83)90190-4Search in Google Scholar
[20] C. Hering, Transitive linear groups and linear groups which contain irreducible subgroups of prime order. II, J. Algebra 93 (1985), no. 1, 151–164. 10.1016/0021-8693(85)90179-6Search in Google Scholar
[21] D. G. Higman, Finite permutation groups of rank 3, Math. Z. 86 (1964), 145–156. 10.1007/BF01111335Search in Google Scholar
[22] H. Y. Huang, C. H. Li and Y. Z. Zhu, On finite permutation groups of rank three, J. Algebra 666 (2025), 703–732. 10.1016/j.jalgebra.2024.11.028Search in Google Scholar
[23] B. Huppert, Zweifach transitive, auflösbare Permutationsgruppen, Math. Z. 68 (1957), 126–150. 10.1007/BF01160336Search in Google Scholar
[24] B. Huppert and N. Blackburn, Finite Groups. III, Grundlehren Math. Wiss. 243, Springer, Berlin, 1982. 10.1007/978-3-642-67997-1Search in Google Scholar
[25] W. M. Kantor, Permutation representations of the finite classical groups of small degree or rank, J. Algebra 60 (1979), no. 1, 158–168. 10.1016/0021-8693(79)90112-1Search in Google Scholar
[26] W. M. Kantor and R. A. Liebler, The rank 3 permutation representations of the finite classical groups, Trans. Amer. Math. Soc. 271 (1982), no. 1, 1–71. 10.1090/S0002-9947-1982-0648077-6Search in Google Scholar
[27] C. H. Li, H. Yi and Y. Z. Zhu, Finite imprimitive rank 3 affine groups – I, preprint (2024), https://arxiv.org/abs/2412.02365. Search in Google Scholar
[28] C. H. Li and Y. Z. Zhu, A proof of Gross’ conjecture on 2-automorphic 2-groups, Proc. Lond. Math. Soc. (3) 129 (2024), no. 5, Article ID e70002. 10.1112/plms.70002Search in Google Scholar
[29] C. H. Li and Y. Z. Zhu, The finite groups with three automorphism orbits, J. Algebra 678 (2025), 677–705. 10.1016/j.jalgebra.2025.04.028Search in Google Scholar
[30] M. W. Liebeck, The affine permutation groups of rank three, Proc. Lond. Math. Soc. (3) 54 (1987), no. 3, 477–516. 10.1112/plms/s3-54.3.477Search in Google Scholar
[31] M. W. Liebeck and J. Saxl, The finite primitive permutation groups of rank three, Bull. Lond. Math. Soc. 18 (1986), no. 2, 165–172. 10.1112/blms/18.2.165Search in Google Scholar
[32] L. Morgan, C. E. Praeger and K. Rosa, Bounds for finite semiprimitive permutation groups: Order, base size, and minimal degree, Proc. Edinb. Math. Soc. (2) 63 (2020), no. 4, 1071–1091. 10.1017/S0013091520000346Search in Google Scholar
[33] U. of Georgia VIGRE Algebra Group, First cohomology for finite groups of Lie type: Simple modules with small dominant weights, Trans. Amer. Math. Soc. 365 (2013), no. 2, 1025–1050. 10.1090/S0002-9947-2012-05664-9Search in Google Scholar
[34] P. Potočnik, P. Spiga and G. Verret, On graph-restrictive permutation groups, J. Combin. Theory Ser. B 102 (2012), no. 3, 820–831. 10.1016/j.jctb.2011.11.006Search in Google Scholar
[35] R. A. Wilson, The Finite Simple Groups, Grad. Texts in Math. 251, Springer, London, 2009. 10.1007/978-1-84800-988-2Search in Google Scholar
© 2025 Walter de Gruyter GmbH, Berlin/Boston