

Exponent-critical groups

Simon R. Blackburn*, William Cocke, Andrew Misseldine
and Geetha Venkataraman

Communicated by Evgenii I. Khukhro

Abstract. We define and investigate the property of being “exponent-critical” for a finite group. A finite group is said to be exponent-critical if its exponent is not the least common multiple of the exponents of its proper non-abelian subgroups. We explore properties of exponent-critical groups and give a characterization of such groups. This characterization generalizes a classical result of Miller and Moreno on minimal non-abelian groups; interesting families of p -groups appear.

1 Introduction

Often times in group theory, questions about a group can be reduced to questions about its proper subgroups. This is especially true of various first-order properties of groups. For example, the question “Does a group contain an element of a certain order?” can be answered by examining all cyclic subgroups of the group. The question “Is a given finite group solvable?” can be answered by examining all 2-generated subgroups of the group [7]. A more complicated and celebrated result is Thompson’s classification of N -groups, finite groups all of whose subgroups are either solvable or Fitting-free [14]. A famous and classical line of research involved the question of what can be said about a non-abelian group all of whose proper subgroups are abelian. These groups are known as *minimal non-abelian* and were studied by Miller and Moreno in 1903 [12]. In this article, we introduce the following question: “What do the exponents of the non-abelian proper subgroups of G imply about the exponent of G ?”. More precisely, we make the following definition.

Definition 1.1. A finite group G is *exponent-critical* if the exponent of G is not the least common multiple of the exponents of its proper non-abelian subgroups.

The second author was supported by a GEN Omar N. Bradley Officer Research Fellowship in Mathematics.

To give an example, we observe that the dihedral group D_{16} of order 16 is exponent-critical: it has exponent 8, and any proper non-abelian subgroup of D_{16} is isomorphic to the group D_8 of exponent 4. As a non-example, we note that D_{24} is not exponent-critical: it has exponent 12 and contains proper non-abelian subgroups isomorphic to D_{12} (of exponent 6) and D_8 (of exponent 4).

We remark that if we drop the non-abelian condition in our definition above, the problem becomes trivial. Indeed, the family of finite groups whose exponent is not the least common multiple of the exponents of its proper subgroups is exactly the family of non-trivial cyclic groups of prime power order.

In this paper, we investigate (finite) exponent-critical groups. An abelian group G is exponent-critical if and only if it is non-trivial, so it is the non-abelian case which is interesting. The exponent $\exp(G)$ of a non-cyclic group G is the least common multiple of the exponents of its maximal subgroups, as every cyclic subgroup is contained in a maximal subgroup. So at least one maximal subgroup of a non-abelian exponent-critical group must be abelian. However, a finite group with an abelian maximal subgroup is solvable. (This result originally appeared in a paper by Herstein [9], is a weakening of a result in Scott [13, Theorem 13.4.6], and is a homework problem in Dixon and Mortimer [6, Exercise 3.4.7].) So, in particular, we may make use of the theory of Hall subgroups when investigating exponent-critical groups.

Every minimal non-abelian group is exponent-critical, so our characterization of exponent-critical groups is an extension of Miller and Moreno's characterization of minimal non-abelian groups. Since minimal non-abelian groups are well studied, it is especially interesting to find exponent-critical groups that are not minimal non-abelian. We will construct many such examples.

In this paper, we show that exponent-critical groups must lie in several explicitly defined families, and all groups in these families are exponent-critical. Before discussing our results, we define the following (standard) notation. For a group G , we write $Z(G)$ for the center of G and $\Phi(G)$ for the Frattini subgroup of G . If H is a subgroup of G (written $H \leq G$), we write $N_G(H)$ for the normalizer of H in G and $C_G(H)$ for the centralizer of H in G . We write $\exp(G)$ for the exponent of G . For an element $g \in G$, we write $o(g)$ for the order of g .

We first show that exponent-critical groups cannot be divisible by a large number of distinct primes.

Theorem A. *The order of a non-abelian exponent-critical group is divisible by at most three distinct primes.*

The exponent-critical groups divisible by exactly three primes are classified as follows.

Theorem B. *Let G be a non-abelian finite group whose order is divisible by exactly three distinct primes. Then G is exponent-critical if and only if G is a direct product of a cyclic Sylow subgroup of G and its complement, which is minimal non-abelian.*

The complement in Theorem B is a minimal non-abelian group H whose order is divisible by exactly two primes. Such groups H are well understood: see Mastnak and Radjavi [11, Section 2.2], for example, for a description of Miller and Moreno's classification of such groups using modern notation.

We now turn to the case when an exponent-critical group has order divisible by exactly two primes p and q . We need the following definition in order to state our theorem. Recall that the p -part of a natural number $n = p^a m$ with $\gcd(p, m) = 1$ is p^a .

Definition 1.2. Let G be a finite group, and let p be a prime number. A subgroup H of a group G is a p -witness for G if it is non-abelian, proper, and the p -parts of $\exp(G)$ and $\exp(H)$ are equal.

It is not hard to see that a finite group G is exponent-critical if and only if there exists a prime p dividing the order of G such that no p -witness for G exists.

Theorem C. *Let G be a non-abelian exponent-critical group whose order is divisible by exactly two distinct primes p and q . Without loss of generality, swapping p and q if necessary, we may suppose that G does not possess a p -witness for G . Then G is isomorphic to one of the following families of exponent-critical groups.*

- (i) *G is a direct product of a cyclic Sylow p -subgroup of G and its complement which is minimal non-abelian.*
- (ii) *G is a semi-direct product of a normal abelian Sylow p -subgroup P of G by a cyclic Sylow q -subgroup Q . The subgroup P is a direct product of cyclic groups of order p^m for some positive integer m . We have $|G : \mathbf{C}_G(P)| = q$, and Q acts non-trivially and irreducibly on P/P^P .*
- (iii) *G is a semi-direct product of a normal abelian Sylow p -subgroup P of G by a cyclic Sylow q -subgroup Q . The subgroup P is a direct product of a cyclic group of order p^m and an elementary abelian group. We have $m > 1$. The action of the subgroup Q on P preserves this direct product, acting non-trivially and irreducibly on the elementary abelian group, and trivially on the cyclic group of order p^m . We have $|G : \mathbf{C}_G(P)| = q$.*
- (iv) *G is a semi-direct product of a (unique) normal Sylow q -subgroup Q by a non-normal cyclic Sylow p -subgroup P . The subgroup Q is special in the*

sense of Gorenstein [8, p. 183], so Q is either elementary abelian or Q has nilpotency class 2 with $Q' = Z(Q) = \Phi(Q)$ and Q' is elementary abelian. Further, if $x \in P$ generates P , then x acts irreducibly on Q/Q' and trivially on Q' .

Again, we comment that the structure of the complement in part (i) of this theorem, namely the structure of a minimal non-abelian q -group, is well understood; see [11, Section 2.1] for example.

It remains to consider exponent-critical p -groups P . The problem naturally splits into two cases, depending on the number of abelian maximal subgroups of P . We say that an exponent-critical p -group P is of type \mathcal{A} if P has exactly one maximal subgroup which is abelian, and is of type \mathcal{B} if P has more than one abelian maximal subgroup. (If $a \in P$ is an element of maximal order in a non-abelian exponent-critical group P , then every maximal subgroup of P containing a is abelian. So P possesses at least one non-abelian maximal subgroup. Thus every exponent-critical p -group has type \mathcal{A} or \mathcal{B} .) The following theorem provides a characterization of p -groups of type \mathcal{B} .

Theorem D. *A non-abelian finite p -group has type \mathcal{B} if and only if it is 2-generated with derived subgroup of order p .*

Finally, we consider exponent-critical p -groups of type \mathcal{A} . We construct a “universal” group as a quotient U/D of a certain semi-direct product U . In order to state our result, we now define this semi-direct product.

Definition 1.3. Let W be the abelian group defined by

$$W = \langle a_0 \rangle \times \langle a_1 \rangle \times \cdots \times \langle a_{p-1} \rangle,$$

where a_0 has order p^m and a_i has order p^{m-1} for $1 \leq i \leq p-1$.

Let $\phi: W \rightarrow W$ be the automorphism (see Lemma 4.5) of W such that

$$\phi(a_i) = \begin{cases} a_i a_{i+1} & \text{for } 0 \leq i \leq p-2, \\ a_i \prod_{j=1}^{p-1} a_j^{-\binom{p}{j}} & \text{for } i = p-1. \end{cases}$$

Let $\langle b_0 \rangle$ be the cyclic group generated by an element b_0 of order p^{m-1} . Define U to be the semi-direct product $U = W \rtimes \langle b_0 \rangle$, where b_0 acts on W via the automorphism ϕ . So $b_0^{-1} w b_0 = \phi(w)$ for all $w \in W$.

Define $D \trianglelefteq U$ to be the normal subgroup of order p generated by the element

$$a_0^{p^{m-1}} a_{p-1}^{p^{m-2}}.$$

Let \mathcal{N} be the set of normal subgroups N of U such that

$$D \leq N \leq \Phi(U), \quad N \cap \langle a_0 \rangle = \{1\}, \quad \text{and} \quad U' \not\leq N.$$

Theorem E. *The following statements hold.*

- (i) *Let P be an exponent-critical p -group of exponent p^m and type \mathcal{A} . Then P is isomorphic to U/N , where $N \in \mathcal{N}$.*
- (ii) *Any group of the form U/N with $N \in \mathcal{N}$ is a non-abelian exponent-critical p -group of exponent p^m .*
- (iii) *There are no exponent-critical 2-groups of exponent 2^2 and type \mathcal{A} . When p is odd or $m \geq 3$, the converse to (i) holds: any group of the form U/N with $N \in \mathcal{N}$ is an exponent-critical p -group of exponent p^m and type \mathcal{A} .*

In particular, this theorem shows that, when p is odd or $m \geq 3$, there exists a unique maximal exponent-critical p -group U/D of exponent p^m and type \mathcal{A} . We believe these p -groups are particularly interesting.

We should mention that the characterization of exponent-critical groups has applications to explicit computations involving varieties of groups [4, 5]; this was how we originally came across this problem.

The rest of the paper proceeds as follows. Section 2 contains a proof of Theorem A and Theorem B. In Section 3, we prove Theorem C. Finally, in Section 4, we characterize exponent-critical p -groups and prove Theorems D and E.

2 Exponent-critical groups of order divisible by three primes

We will prove Theorems A and B in this section.

Proof of Theorem A. Let G be a non-abelian exponent-critical finite group. We mentioned in the introduction that G is solvable. Suppose that the order of G is divisible by four or more primes. Since G is non-abelian, it must be the case that some Sylow p -subgroup P of G is not central. Let q be a prime dividing the order of G such that $\mathbf{C}_G(P)$ does not contain a Sylow q -subgroup of G . Let H_{pq} be a pq -Hall subgroup of G , which is necessarily non-abelian. For any other prime r dividing $|G|$, a Hall pqr -subgroup H_{pqr} of G is therefore non-abelian. Moreover, H_{pqr} is proper since $|G|$ is divisible by four or more primes. So H_{pqr} is a p -witness, a q -witness and an r -witness for G . So there exists an ℓ -witness for G for all primes ℓ dividing the order of G , which contradicts G being exponent-critical. \square

Theorem 2.1. *Let G be a non-abelian, exponent-critical group. If the order of G is divisible by three distinct primes, then G has a non-trivial central cyclic Sylow subgroup and all Sylow subgroups of G are abelian.*

Proof. By the same reasoning as in the proof of Theorem A, the group G has a non-abelian pq -Hall subgroup for two primes p and q dividing $|G|$. This subgroup is proper as three primes divide the order of G , and so it is a p -witness and q -witness for G . Suppose r is the third prime dividing $|G|$. If either the pr - or qr -Hall subgroups are non-abelian, then we have an r -witness for G , and so G is not exponent-critical. Therefore, both these Hall subgroups are abelian. Hence all Sylow subgroups of G are abelian, and the Sylow r -subgroup centralizes a Sylow p - and Sylow q -subgroup of G . If the Sylow r -subgroup is not cyclic, then G would contain a proper subgroup which is an r -witness for G , which would imply that G is not exponent-critical. \square

We now prove Theorem B, which classifies exponent-critical groups whose orders are divisible by only 3 distinct primes.

Proof of Theorem B. Suppose G is exponent-critical. Then G has a central cyclic Sylow p -subgroup P by Theorem 2.1. Let H be a Hall qr -subgroup of G . Since P is central, G is a direct product of P and H . If H were abelian, then G would be abelian. Hence H is non-abelian. Suppose by way of contradiction that H has a non-abelian proper subgroup K . Then $PK \leq G$ and $\exp(G)$ is the least common multiple of $\exp(PK)$ and $\exp(H)$, which implies that G is not exponent-critical. Hence H is minimal non-abelian.

Conversely, suppose that G is a direct product of a cyclic p -group P and a minimal non-abelian qr -group H . Any proper subgroup of G containing P is abelian, since H is minimal non-abelian. So no subgroup of G is a p -witness for G , and hence G is exponent-critical. \square

3 Exponent-critical groups of order divisible by exactly two primes

Before proving Theorem C, we show that each of the four families of groups given in Theorem C consists of exponent-critical groups, by showing that there is no p -witness for any group G in the family.

Lemma 3.1. *Let p and q be distinct primes. Let G be a direct product of a normal cyclic Sylow p -subgroup P and a minimal non-abelian q -subgroup Q . Then G is exponent-critical.*

Proof. Suppose, for a contradiction, H is a p -witness for G . Since P is cyclic, $P \leq H$. Since H is proper, $H = P \times K$ for some proper subgroup K of Q . Since Q is minimal non-abelian, K is abelian. But then H is abelian, so H is not a p -witness for G . This contradiction shows that G is exponent-critical. \square

Lemma 3.2. *Let p and q be distinct primes. Suppose G is a non-abelian semi-direct product of a normal abelian Sylow p -subgroup P of G by a cyclic q -complement Q . Suppose that P is the direct product of cyclic groups of order p^m , where m is a positive integer. Furthermore, suppose that $|G : \mathbf{C}_G(P)| = q$ and Q acts non-trivially and irreducibly on P/P^P . Then G is exponent-critical.*

Proof. Suppose, for a contradiction, that H is a p -witness for G . We see that $H = P_1 Q_1$, where $P_1 = P \cap H$ and where Q_1 is a q -group. By replacing H by a conjugate if necessary, we may assume that $Q_1 \leq Q$. Since H is non-abelian, Q is cyclic and $|G : \mathbf{C}_G(P)| = q$, we see that $Q_1 = Q$. Since P is normal and $Q \leq H$, we see that P_1 is normalized by Q . Because H has exponent divisible by the p -part p^m of the exponent of G , the quotient $P_1 P^P / P^P$ is non-trivial. The action of Q on P/P^P is irreducible and $P_1 P^P / P^P$ is Q -invariant, and hence $P_1 P^P / P^P = P/P^P$. So P is generated by P_1 and P^P , and hence P_1 generates P (as $P^P = \Phi(P)$). Hence $P_1 = P$. Thus $H = P_1 Q_1 = P Q = G$, and so H is not proper. This contradiction establishes the lemma. \square

Lemma 3.3. *Let p and q be distinct primes. Moreover, suppose G is a non-abelian semi-direct product of a normal abelian Sylow p -subgroup P of G by a cyclic q -complement Q . For $m > 1$, suppose that P is the direct product of a cyclic group of order p^m and an elementary abelian p -group. Suppose Q centralizes the cyclic group of order p^m and acts irreducibly on the elementary abelian group. Furthermore, suppose that $|G : \mathbf{C}_G(P)| = q$. Then G is exponent-critical.*

Proof. We may write $P = C \times A$, where C is a cyclic group of order p^m and where A is elementary abelian; Q centralizes C and acts irreducibly by conjugation on A . We choose a generator y for Q , so $Q = \langle y \rangle$.

Suppose, for a contradiction, that H is a p -witness for G . As in Lemma 3.2, we may assume that $H = P_1 Q$, where P_1 is normalized by Q .

Since H is non-abelian, there exists an element $g := ca \in P_1$, where $c \in C$ and $a \in A \setminus \{1\}$. Now Q acts non-trivially on A , since G is non-abelian. Since Q acts irreducibly and non-trivially on A , we deduce that $\mathbf{C}_A(y) = \{1\}$, and so $[g, y] \in A \setminus \{1\}$. Since P_1 is normalized by Q , we see that $[g, y] \in P_1$, and so $P_1 \cap A \neq \{1\}$. But Q acts irreducibly on A , and so $A \leq P_1$. Since p^m divides the exponent of H and since $m > 1$, we see that there exists an element $x \in P_1$ such that $x \notin APP$. Since APP has index p in P , we find that $\langle x \rangle APP = P$,

and so $\langle x \rangle A = P$ (since $P^p = \Phi(P)$). But $\langle x \rangle A \leq P_1$, and so $P_1 = P$. Thus $H = P_1 Q_1 = PQ = G$, and so H is not proper. This contradiction establishes the lemma. \square

Lemma 3.4. *Let p and q be distinct primes. Let $G = Q \rtimes P$ be a (non-abelian) semi-direct product of a Sylow q -subgroup Q by a non-normal cyclic Sylow p -subgroup P . Suppose that Q is special, so either Q is elementary abelian or $Q' = Z(Q) = \Phi(Q)$. Moreover, suppose that P acts (by conjugation) trivially on Q' and irreducibly on Q/Q' . Then G is exponent-critical.*

Proof. Let $G = Q \rtimes P$ satisfy the conditions of the lemma. We show that there is no p -witness for $\exp(G)$.

Assume for a contradiction that H is a p -witness for $\exp(G)$. Without loss of generality, we may assume that $H = Q_1 P_1$ for some $Q_1 \leq Q$ and $P_1 \leq P$, where Q_1 is P_1 -invariant. Clearly, P_1 contains an element x which is of maximal order in P , and so (since P is cyclic) we see that $P_1 = P = \langle x \rangle$.

Suppose that $Q_1 \subseteq \Phi(Q)$. Since Q is special (whether elementary abelian or not), $Q' = \Phi(Q) \leq Z(Q)$. So $Q_1 \leq Z(Q)$ is abelian and, since P centralizes Q' , we see that P centralizes Q_1 . But then H is abelian, and we have a contradiction. We may deduce that Q_1 contains an element in $Q \setminus \Phi(Q)$, and so $Q_1 \Phi(Q)/\Phi(Q)$ is non-trivial.

Since Q is special, $\Phi(Q) = Q'$, and so P acts irreducibly on $Q/\Phi(Q)$. Since Q_1 is P -invariant, the non-trivial subgroup $Q_1 \Phi(Q)/\Phi(Q)$ is a P -invariant subgroup of $Q/\Phi(Q)$. So $Q_1 \Phi(Q)/\Phi(Q) = Q/\Phi(Q)$, and thus $Q_1 \Phi(Q) = Q$. By the non-generation property of the Frattini subgroup, we may deduce that $Q_1 = Q$, and so it follows that $H = G$. This contradicts the fact that H is proper, as required. \square

We are now in a position to prove Theorem C.

Proof of Theorem C. Lemmas 3.1 to 3.4 show that the four families described in the theorem consist entirely of exponent-critical groups. It suffices to show that any non-abelian exponent-critical p, q -group lies in one of these four families.

Let G be a non-abelian exponent-critical group with $|G| = p^\alpha q^\beta$, where p and q are distinct primes. Suppose that there is no p -witness for G . So all proper subgroups containing a Sylow p -subgroup P of G are abelian, and in particular, P is abelian. Moreover, either P is normal or $N_G(P)$ is abelian.

Part I: P is normal. Suppose that a complement Q of P is also normal, and so $G = P \times Q$. Since no non-abelian proper subgroup of G can contain P , we see that Q is minimal non-abelian. Now suppose that P is not cyclic. Let x be an

element of maximal order in P . Then $\langle x \rangle Q$ is a p -witness for G , which is a contradiction. So P must be cyclic and G lies in the family described in Lemma 3.1.

Now let us consider the case when P is normal but its complement, say Q , is not. So we can find an element $y \in Q$ which is not in $\mathbf{C}_G(P)$. Thus $P\langle y \rangle$ is a non-abelian subgroup of G containing P . So $G = P\langle y \rangle$ and therefore $Q = \langle y \rangle$. Furthermore, $\langle y^q \rangle \leq \mathbf{C}_G(P)$ since otherwise $P\langle y^q \rangle$ is a p -witness for G . So $|G : \mathbf{C}_G(P)| = q$.

Let the exponent of P be p^m . Write $P[p^{m-1}]$ for the subgroup of elements of P of order dividing p^{m-1} , and note that $P^p \leq P[p^{m-1}]$. Set $V = P/P^p$. We regard V as a vector space over \mathbb{F}_p . Indeed, V can be thought of as an $\mathbb{F}_p Q$ -module, with the action of Q derived from conjugation. Now Q acts non-trivially on P by conjugation, and the only automorphisms of P that induce the identity on $P/\Phi(P)$ have p -power order. Since $\Phi(P) = P^p$, we see that Q acts non-trivially on V .

Let $\pi: P \rightarrow V$ be the natural homomorphism. Now

$$U := \pi(P[p^{m-1}]) = P[p^{m-1}]/P^p$$

is an $\mathbb{F}_p Q$ submodule of V . Indeed, U is a proper submodule, since P has exponent p^m . Since the order of Q is coprime to p , the module V is completely decomposable, and so we may write V as the sum

$$V = U_1 \oplus U_2 \oplus \cdots \oplus U_k \oplus W_1 \oplus W_2 \oplus \cdots \oplus W_\ell$$

of irreducible submodules, where $U = U_1 \oplus U_2 \oplus \cdots \oplus U_k$ and where

$$W := W_1 \oplus W_2 \oplus \cdots \oplus W_\ell$$

forms a complement to U in V . We have $k \geq 0$ and, since U is proper, $\ell \geq 1$. Since all the elements in $P \setminus P[p^{m-1}]$ have order p^m , we see that $\pi^{-1}(W_i)$ has a subgroup of P of exponent p^m . We divide our argument into two sub-cases.

Sub-case 1: Suppose that Q acts non-trivially on a submodule W_i . We see that $\langle \pi^{-1}(W_i), Q \rangle$ is a non-abelian subgroup of G of exponent p^m , and (since G has no p -witness) we deduce that $G = \langle \pi^{-1}(W_i), Q \rangle$. Hence $k = 0$, $\ell = 1$ and $V = W_i$ in this case. Since $k = 0$, we see that P is a direct product of cyclic groups of order p^m . Since W_i is irreducible and $W_i = P/P^p$, we see that Q acts irreducibly on P/P^p . Thus G lies in the family described in Lemma 3.2.

Sub-case 2: Q acts trivially on all submodules W_i . Since Q acts non-trivially on V , we see that Q acts non-trivially on one of the modules U_i . (In particular, this implies that Q acts non-trivially on U , and so $m > 1$.) The subgroup $\langle \pi^{-1}(U_i \oplus W_1), Q \rangle$ is non-abelian and of exponent p^m , and so

$$\langle \pi^{-1}(U_i \oplus W_1), Q \rangle = G.$$

Hence $k = 1 = \ell$ and $V = U_1 \oplus W_1$. If Q acts non-trivially by conjugation on P^P , the subgroup $\langle \pi^{-1}(W_1), Q \rangle$ would be a p -witness, and so we deduce that Q centralizes P^P .

Taking p -powers in P induces a surjective $\mathbb{F}_p Q$ -module homomorphism f from $V = P/P^P$ to the $\mathbb{F}_q Q$ -module P^P/P^{P^2} . Since $m > 1$, this homomorphism is non-trivial. Since Q centralizes P^P/P^{P^2} and acts non-trivially and irreducibly on U_1 , we see that $f(U_1) = 0$ and $f(W_1) = P^P/P^{P^2}$. Since W_1 is trivial and irreducible, it has dimension 1, and so P is a direct product of a cyclic group of order p^m with an elementary abelian group.

Let $x \in \pi^{-1}(W_1 \setminus \{0\})$. The element $x \in P$ has order p^m and (since $|Q|$ is coprime to p) x is centralized by Q . The action of Q by conjugation on $P[p]$ gives $P[p]$ the structure of an $\mathbb{F}_p Q$ -module. Let A be a complement to the submodule in $P[p]$ generated by $x^{p^{m-1}}$. Then $P = \langle x \rangle \times A$, where the action of Q fixes x and preserves the direct product. Since $AP^P/P^P = U_1$, we see that the action of Q on A is irreducible. So G lies in the family described in Lemma 3.3.

Part II: P is not normal, and so $\mathbf{N}_G(P)$ is abelian. Clearly, in this case, we have $P \leq Z(\mathbf{N}_G(P))$ and by Burnside's Normal p -Complement Theorem, G has a normal p -complement Q . Therefore, G is a semi-direct product of its Sylow q -subgroup Q by a non-normal abelian Sylow p -subgroup P .

Suppose, for a contradiction, that P is not cyclic. Let $x \in P$ have maximal order. Then $\langle x \rangle Q$ is a proper subgroup, so must be abelian (otherwise, we have a witness for the p -part of $\exp(G)$). So all elements of maximal order lie in $C_G(Q)$. But P is generated by its elements of maximal order, and so $P \leq C_G(Q)$. This implies that P is normal, and we have our contradiction. Hence P is cyclic.

The subgroup P must centralize any proper P -invariant subgroup of Q ; otherwise, we have a witness to the p -part of $\exp(G)$. So a generator x of P gives rise (via conjugation) to an automorphism of Q that acts trivially on any proper subgroup of Q . This automorphism is non-trivial, since P is not normal. Hence, by [8, Theorem 5.3.7], Q is special, P acts trivially on Q' , and P acts irreducibly on Q/Q' . So G lies in the family described in Lemma 3.4, and the theorem follows. \square

4 Exponent-critical p -groups

We now examine exponent-critical p -groups. We will prove Theorems D and E in this section.

Let P be a non-abelian p -group of order p^n . We denote by \mathcal{M}_P the set of elements of P of maximal order, or equivalently the set of elements that have order equal to $\exp(P)$. Note that P is exponent-critical if and only if $\mathcal{M}_P \cap M = \emptyset$ for all non-abelian maximal subgroups M of P .

Theorem 4.1. *Let P be a finite non-abelian exponent-critical p -group. Then we have $P = \langle a, b \rangle$, where $a \in P$ has maximal order and $b \in P$. Moreover, P is solvable of derived length 2.*

Proof. The Frattini subgroup $\Phi(P)$ is contained in all maximal subgroups. Since at least one maximal subgroup is abelian, it follows that $\Phi(P)$ is abelian. Since $P' \leq P'P^P = \Phi(P)$ and since P is non-abelian, P is solvable of derived length 2.

We now show that P is 2-generated. Suppose, for a contradiction, that all elements in \mathcal{M}_P are central. Let $a \in \mathcal{M}_P$, and let $x, y \in P$ be such that $[x, y] \neq 1$. As x is not central, it does not have maximal order. Hence, using the fact that $[a, x] = 1$, we see that xa has maximal order. Since a is central,

$$[xa, y] = [x, y]^a[a, y] = [x, y] \neq 1.$$

Thus we have a contradiction as required, and we may deduce that there exists an element $a \in \mathcal{M}_P$ of maximal order that is not central. Let $b \in P$ be such that $[a, b] \neq 1$. Thus $\langle a, b \rangle$ is a non-abelian subgroup of exponent $\exp(P)$, and so $P = \langle a, b \rangle$. Hence the theorem follows. \square

Proof of Theorem D. Suppose P is a non-abelian finite group which is 2-generated and $|P'| = p$. We show that P is exponent-critical of type \mathcal{B} . Let $P = \langle a, b \rangle$. Since P is nilpotent, $[P', P]$ is a proper subgroup of P' . Thus P has nilpotency class 2. In particular, $P' \leq Z(P)$. Since P has nilpotency class 2, we get that $1 = [a, b]^p = [a^p, b] = [a, b^p]$. So a^p and b^p are central. Hence $\Phi(P) \leq Z(P)$ as, in a p -group, $\Phi(P)$ is the subgroup generated by P' and the p -th powers of a generating set. Let M be a maximal subgroup. Then $\Phi(P) \leq M$. Since P is 2-generated, $\Phi(P)$ has index p^2 in P and so has index p in M . Since $\Phi(P)$ is central in P , we see that $Z(M) \geq \Phi(P)$, and so the center of M has index at most p in M . But then M must be abelian (and $Z(M) = M$). Thus P is a minimal non-abelian group and hence exponent-critical of type \mathcal{B} , as required.

Conversely, suppose that P is exponent-critical of type \mathcal{B} . By Theorem 4.1, $P = \langle a, b \rangle$ for elements $a, b \in P$ with $a \in \mathcal{M}_P$. Since P has type \mathcal{B} , it contains distinct abelian maximal subgroups M_1 and M_2 . For $x, y \in P$, we see that $[x, y] \in P' \leq \Phi(P) \leq M_1 \cap M_2$, and so $[x, y]$ commutes with all elements of M_1 and M_2 . Since $P = M_1 M_2$, we deduce that P' is central in P , and so P has nilpotency class 2. Hence $[x, yz] = [x, y][x, z]$ and $[xy, z] = [x, z][y, z]$ for all x, y, z in P . Using this, we see that $P' = \langle [a, b] \rangle$. Let M_a be a maximal subgroup of P such that $a \in M_a$. Since a has maximal order and P is exponent-critical, we see that M_a is abelian. Clearly, $b^p \in M_a$. Since P has nilpotency class 2, we see that $1 = [a, b^p] = [a, b]^p = [a^p, b]$. So $o([a, b]) = p = |P'|$, and part (iii) of the theorem follows. \square

We comment that the isomorphism classes of p -groups of type \mathcal{B} are known precisely, as part of the (more general) classifications of Blackburn [3] or Ahmad, Magidin and Morse [1] (see also [2, 10]). Using the approach in [1], we have the following list.

Theorem 4.2. *Let P be an exponent-critical finite non-abelian p -group of type \mathcal{B} of order p^n . Then*

$$P \cong \langle a, b : [a, b]^p = [a, b, a] = [a, b, b] = 1; a^{p^\alpha} = [a, b]^{p^\rho}, b^{p^\beta} = [a, b]^{p^\sigma} \rangle,$$

where $\alpha, \beta, \rho, \sigma$ are integers such that $\alpha \geq \beta \geq 1$, $\alpha + \beta = n - 1$, $0 \leq \rho, \sigma \leq 1$. When p is odd, P is isomorphic to exactly one of the groups whose parameters $(\alpha, \beta, \rho, \delta)$ are listed below:

- (1) (a) $(\alpha, \beta, 0, 1)$ with $\alpha > \beta \geq 1$,
- (b) $(\alpha, \beta, 1, 1)$ with $\alpha > \beta \geq 1$,
- (c) $(\alpha, \beta, 1, 0)$ with $\alpha > \beta \geq 1$,
- (2) (a) $(\alpha, \alpha, 0, 1)$ with $\alpha \geq 1$,
- (b) $(\alpha, \alpha, 1, 1)$ with $\alpha \geq 1$.

When $p = 2$, P is isomorphic to exactly one of the groups whose parameters $(\alpha, \beta, \rho, \delta)$ are

- (1) (a) $(\alpha, \beta, 0, 1)$ with $\alpha > \beta \geq 1$,
- (b) $(\alpha, \beta, 1, 1)$ with $\alpha > \beta \geq 1$,
- (c) $(\alpha, \beta, 1, 0)$ with $\alpha > \beta \geq 1$,
- (2) (a) $(\alpha, \alpha, 0, 1)$ with $\alpha > 1$,
- (b) $(\alpha, \alpha, 1, 1)$ with $\alpha > 1$,
- (3) (a) $(1, 1, 0, 0)$,
- (b) $(1, 1, 1, 1)$.

We now turn to exponent-critical groups of type \mathcal{A} , with an aim of proving Theorem E. In the lemma below, we write $[x, i, b]$ for the i -times iterated commutator of x and b . So, for example, $[x, 1, b] = [x, b]$, $[x, 3, b] = [[[x, b], b], b]$ and $[x, 0, b] = x$. We write Z_{p^m} for the cyclic group of order p^m .

Lemma 4.3. *Let P be a non-abelian exponent-critical p -group of type \mathcal{A} . Let A be a maximal subgroup containing an element of maximal order p^m .*

- (i) A is abelian, normal, and contains all elements of order p^m .
- (ii) $A \cong Z_{p^m} \times S$, where S has exponent dividing p^{m-1} .
- (iii) P' is abelian, of exponent dividing p^{m-1} .

Proof. A is normal, since all maximal subgroups of a p -group are normal. If A were non-abelian, P would have a proper non-abelian subgroup of exponent p^m and hence P would not be exponent-critical. This contradiction shows that A is abelian. Since P is of type \mathcal{A} , we have that A is the unique maximal subgroup of P which is abelian. Clearly, A will contain all the elements of maximal order and part (i) of the lemma follows.

To prove part (ii), first note that A has exponent p^m , and so $A \cong (Z_{p^m})^r \times S$, where r is a positive integer and S has exponent dividing p^{m-1} . Define K to be the subgroup of all elements of A of order dividing p^{m-1} . Every element of $A \setminus K$ has order p^m , and A/K is elementary abelian of order p^r . Let $b \in P \setminus A$. Since b acts nilpotently on A/K , there exists a subgroup L containing K such that $b \in N_P(L)$ and L has index p in A . Note that L is normal in P , since $\{b\} \cup A \subseteq N_P(L)$. Consider the subgroup M generated by L and b . Since A has index p in P , we get that $b^p \in A$. Since $b \in P \setminus A$, the order of b divides p^{m-1} , and so $b^p \in K \leq L$. Hence M has index p in P and so is maximal. If $r > 1$, then L contains elements of $A \setminus K$, and so L contains an element of maximal order. Hence M must be abelian (as P is exponent-critical) and therefore $M = A$. But $b \in M$ and $b \notin A$. This contradiction shows that $r = 1$, and so part (ii) is established.

To prove (iii), we note that K has index p in A by part (ii) and hence K has index p^2 in P . So P/K is abelian and therefore $P' \leq K$. Hence the exponent of P' divides p^{m-1} , as required. \square

Lemma 4.4. *Let P be a p -group. Suppose P possesses an abelian maximal subgroup A . Let $b \in P \setminus A$.*

- (i) *The map $\kappa: A \rightarrow A$ defined by $\kappa(x) = [x, b]$ is a homomorphism.*
- (ii) *For $x \in A$, and $b \in P \setminus A$,*

$$(bx)^i = b^i x^i \prod_{j=1}^{i-1} [x, j b]^{(j+1)}. \quad (4.1)$$

- (iii) *For $x \in A$, and $b \in P \setminus A$,*

$$[x, p b] = \prod_{i=1}^{p-1} [x, i b]^{-\binom{p}{i}}.$$

Proof. To prove (i), we note that, for all $x \in A$, $[x, b] \in A$ as A is normal in P . So $[x, b]^y = [x, b]$ for all $y \in A$, since A is abelian. Hence

$$[xy, b] = [x, b]^y [y, b] = [x, b][y, b],$$

and κ is a homomorphism, as required.

We prove equality (4.1) by induction on i . Equality (4.1) clearly holds when $i = 1$. Assume the equality holds for a fixed value of i . Since P/A is abelian, all commutators lie in the abelian subgroup A . Hence

$$\begin{aligned}
 (bx)^i bx &= b^i x^i \left(\prod_{j=1}^{i-1} [x, j b]^{(j+1)} \right) bx \quad \text{by our inductive hypothesis} \\
 &= b^{i+1} x^i [x, b]^i \left(\prod_{j=1}^{i-1} [x, j b]^{(j+1)} \right) \left(\prod_{j=1}^{i-1} [x, j+1 b]^{(j+1)} \right) x \\
 &\quad \text{by part (i)} \\
 &= b^{i+1} x^{i+1} [x, b]^{(i)} + (i) \left(\prod_{j=2}^{i-1} [x, j b]^{(j+1)} \right) \left(\prod_{j=2}^i [x, j b]^{(j)} \right) \\
 &\quad \text{as } x \in A, \\
 &= b^{i+1} x^{i+1} \prod_{j=1}^i [x, j b]^{(j+1)} + (i) \quad \text{since } \binom{i}{i+1} = 0 \\
 &= b^{i+1} x^{i+1} \prod_{j=1}^i [x, j b]^{(j+1)},
 \end{aligned}$$

and so part (ii) follows by induction.

Finally, we prove part (iii) of the lemma. We first prove that, for any positive integer i ,

$$b^{-i} x b^i = x \prod_{j=1}^i [x, j b]^{(j)}. \quad (4.2)$$

To show this, we note that $b^{-1} x b = x[x, b]$, and so (4.2) holds when $i = 1$. If (4.2) holds for a given value of i , we see that

$$\begin{aligned}
 b^{-(i+1)} x b^{i+1} &= b^{-1} x \left(\prod_{j=1}^i [x, j b]^{(j)} \right) b \\
 &= x [x, b] \left(\prod_{j=1}^i [x, j b]^{(j)} \right) \left(\prod_{j=1}^i [x, j+1 b]^{(j)} \right) \\
 &= x \prod_{j=1}^{i+1} [x, j b]^{(j)} + (i) \\
 &= x \prod_{j=1}^{i+1} [x, j b]^{(j+1)},
 \end{aligned}$$

and so, by induction, equation (4.2) holds for all i . Now $b^p \in A$ since A is maximal. As A is abelian, $b^{-p}xb^p = x$, and so

$$x = x \prod_{j=1}^p [x, j \ b]^{(p)_j}.$$

Hence part (iii) of the lemma follows. \square

Recall that we defined a group U and normal subgroup D in Definition 1.3. Our aim now is to construct a “universal” group for the exponent-critical p -groups of exponent p^m and type \mathcal{A} , as the quotient U/D of the semi-direct product U . Before this, in the two lemmas below, we examine some of the properties of the group U .

Lemma 4.5. *The automorphism ϕ defined in Definition 1.3 has order p . In particular, the definition of U as a semi-direct product is well-defined.*

Proof. We see that, for $0 \leq j \leq p-1$,

$$\phi^i(a_0) = \prod_{j=0}^i a_j^{(j)},$$

and so a short calculation shows that $\phi^p(a_0) = \phi(\phi^{p-1}(a_0)) = a_0$. The lemma now follows since W is generated by $\phi^j(a_0)$ for $0 \leq j \leq p-1$. \square

Lemma 4.6. *Let $U = W \rtimes \langle b_0 \rangle$ be the semi-direct product defined above.*

- (i) *We have $a_i = [a_0, i \ b_0]$ for $0 \leq i \leq p-1$. In particular, $U = \langle a_0, b_0 \rangle$.*
- (ii) *We see that $|U| = p^{(m-1)(p+1)+1}$.*
- (iii) *The group U is defined by the relations*

$$\begin{aligned} [[a_0, i \ b_0], [a_0, j \ b_0]] &= 1 \quad \text{for } 0 \leq i < j \leq p-1, \\ [a_0, p, b_0] &= \prod_{j=1}^{p-1} [a_0, j \ b_0]^{-(p)_j}, \\ a_0^{p^m} &= 1, \\ [a_0, i \ b_0]^{p^{m-1}} &= 1 \quad \text{for } 1 \leq i \leq p-1, \\ b_0^{p^{m-1}} &= 1 \end{aligned}$$

in the generating set $\{a_0, b_0\}$.

(iv) The group U is solvable of class 2. The subgroup $\langle b_0^p \rangle W$ is abelian and maximal.

(v) The derived subgroup U' of U is given by

$$U' = \langle a_1, a_2, \dots, a_{p-1} \rangle = \langle [a_{0,i} b_0] : 1 \leq i \leq p-1 \rangle.$$

In particular, U' is abelian of exponent p^{m-1} and order $p^{(m-1)(p-1)}$.

(vi) The Frattini subgroup $\Phi(U)$ of U is given by

$$\Phi(U) = \langle a_0^p, a_1, a_2, \dots, a_{p-1}, b_0^p \rangle.$$

(vii) Any non-trivial subgroup of U' that is normal in U must contain the (non-trivial) element $[a_{0,p-1} b_0]^{p^{m-2}}$.

Proof. Parts (i) to (vi) of the lemma are straightforward to prove, and we leave them to the reader. Note that Lemma 4.6(iv) allows us to use Lemma 4.4 when reasoning about U .

To prove (vii), note that the map $\kappa: U' \rightarrow U'$ defined by $\kappa(x) = [x, b_0]$ is a homomorphism with kernel $\langle a_{p-1}^{p^{m-2}} \rangle$ of order p . Since U is nilpotent, κ^i is trivial for some positive integer i . Let $K \leq U'$ be a non-trivial subgroup of U' that is normal in U . Let i be the smallest integer such that $\kappa^i(K) = \{1\}$. Then

$$\kappa^{i-1}(K) = \langle a_{p-1}^{p^{m-2}} \rangle.$$

Since K is normal in U , we have $\kappa^{i-1}(K) \leq K$, and so part (vii) of the lemma follows. \square

Proof of Theorem E. Let P be a non-abelian exponent-critical p -group of exponent p^m of type \mathcal{A} . We prove part (i) of the theorem by showing that $P \cong U/N$ for some normal subgroup $N \in \mathcal{N}$.

By Theorem 4.1, we have that $P = \langle a, b \rangle$, where $a, b \in P$ with a of order p^m . Consider the free group F generated by a_0 and b_0 . Let π be the (surjective) homomorphism from F to P mapping a_0 to a and b_0 to b . We show that P is a quotient U/N of U by checking that the relations defining U are all satisfied under π . (Here we are making use of the fact, see Lemma 4.6(i), that $U = \langle a_0, b_0 \rangle$.)

Let A be the abelian maximal subgroup containing a . Since P is not abelian, $b \in P \setminus A$. Lemma 4.3(i) shows that b has order dividing p^{m-1} , since all elements of order p^m lie in A . Hence $a^{p^m} = b^{p^{m-1}} = 1$. Since $P' \leq \Phi(P) \leq A$, we see that the subgroup generated by P' and a is abelian. In particular,

$$[[a_{i,j} b], [a_{i,j} b]] = 1 \quad \text{for } 0 \leq i \leq j \leq p-1.$$

Lemma 4.3 (iii) implies that $[a_{0,i}, b_0]^{p^{m-1}} = 1$ for $1 \leq i \leq p-1$. Finally, Lemma 4.4 (iii) shows that $[a_{0,p} b_0] = \prod_{j=1}^{p-1} [a_{0,j} b_0]^{p \choose j}$. Hence $P \cong U/N$ for some normal subgroup N . Moreover, under this isomorphism, the element $a \in P$ corresponds to the coset $a_0 N$, and b corresponds to $b_0 N$.

We now check that the normal subgroup N lies in \mathcal{N} . Since a_0 and a both have order p^m , we see that $N \cap \langle a_0 \rangle = \{1\}$. Since P is non-abelian, we see that $U' \not\leq N$. Since U and P are 2-generated, we see that $N \leq \Phi(U)$. So to prove part (i) of the theorem, it remains to show that $D \leq N$. It suffices to show that $a^{p^{m-1}} [a_{p-1} b]^{p^{m-2}} = 1$ in P .

Consider the element $ba \in P$; since $ba \notin A$, we see that ba has order dividing p^{m-1} , by Lemma 4.3 (i). Now, by Lemma 4.4 (ii),

$$(ba)^p = b^p a^p \prod_{j=1}^{p-1} [a_{,j} b]^{p \choose j+1} = a^p [a_{,p-1} b] b^p \left(\prod_{j=1}^{p-2} [a_{,j} b]^{p \choose j+1} \right)^p,$$

since p divides all the binomial coefficients in the product and since all the factors lie in the abelian subgroup A . But b has order dividing p^{m-1} and the commutators all have order dividing p^{m-1} by Lemma 4.3 (iii). Hence $(ba)^p = a^p [a_{,p-1} b] x$, where $x \in A$ has order dividing p^{m-2} . So

$$1 = (ba)^{p^{m-1}} = ((ba)^p)^{p^{m-2}} = a^{p^{m-1}} [a_{,p-1} b]^{p^{m-2}},$$

as required. Hence part (i) follows.

To prove part (ii), we first investigate the orders of elements in the quotient $Q = U/D$. Since $D \cap \langle a_0 \rangle = \{1\}$, the element $a_0 D \in Q$ has order p^m . Hence the exponent of Q is divisible by p^m . Define M to be the subgroup $M := \langle b_0^p \rangle W$. By Lemma 4.6 (iv), M is maximal and abelian of exponent p^m . Since $D \leq M$, the subgroup M/D is maximal in Q . Moreover, since $a_0 D \in M/D$, we see that M/D of Q has exponent p^m . Our next aim is to show that

$$\text{any element } g \in Q \setminus (M/D) \text{ has order dividing } p^{m-1}. \quad (4.3)$$

To see this, write $g \in Q \setminus (M/D)$ in the form $g = b_0^r x D$, where $1 \leq r \leq p-1$ and $x \in M$. Replacing g by $g^{r-1 \bmod p}$ does not change the order of g , and so we may assume without loss of generality that $r = 1$. Since M/D is an abelian maximal subgroup of Q , Lemma 4.4 (ii) shows that

$$(b_0 x)^p D = b_0^p x^p \prod_{j=1}^{p-1} [x_{,j} b_0]^{p \choose j+1} D.$$

The factors in this product all lie in the abelian subgroup M/D of Q . The factor $b_0^p D$ has order dividing p^{m-2} as b_0 has order p^{m-1} . The factors $[x_{,j} b_0]^{p \choose j+1} D$

for $1 \leq p - 2$ have order dividing p^{m-2} , since (by Lemma 4.6(v)) the derived subgroup of U has exponent p^{m-1} and $\binom{p}{j+1}$ is divisible by p . Hence

$$(b_0 x)^{p^{m-1}} D = x^{p^{m-1}} [x,_{p-1} b_0]^{p^{m-2}} D.$$

Define

$$S = \{x \in M : x^{p^{m-1}} [x,_{p-1} b_0]^{p^{m-2}} \in D\}.$$

The map $x \mapsto x^{p^{m-1}}$ is a homomorphism on M . Moreover, the map $x \mapsto [x, b_0]$ is a homomorphism on M by Lemma 4.4(i), and so the map $x \mapsto [x,_{p-1} b_0]$ is also a homomorphism. Thus the set S is in fact a subgroup of M . To prove (4.3), it suffices to show that $S = M$. Let $x = [a_0, i b_0]$, where $1 \leq i \leq p - 1$. Then x has order dividing p^{m-1} since $x \in U'$. Now, the order of $[x,_{p-1} b_0]$ divides the order of $[x,_{p-i} b_0]$. But the order of $[x,_{p-i} b_0]$ divides p^{m-2} since

$$[x,_{p-i} b_0] = [a_0, p b_0] = \prod_{i=1}^{p-1} [a_0, i b]^{-\binom{p}{i}} \in (U')^p.$$

Hence $x = [a_0, i b_0] \in S$ for $1 \leq i \leq p - 1$. By Lemma 4.6(v), this implies that $U' \leq S$. Clearly, $b_0^p \in S$, since the order of b_0^p is p^{m-2} . Finally, we have $a_0 \in S$ as $a_0^{p^{m-1}} [a_0,_{p-1} b_0]^{p^{m-2}} \in D$. Since M is generated by a_0 , b_0^p and U' , we see that (4.3) holds, as required.

We are now in a position to prove part (ii) of the theorem. Clearly, U/N is non-abelian, since N does not contain U' . Since U/D has exponent p^m , the exponent of U/N divides p^m . But U/N contains the element $a_0 N$ of order p^m (since $N \cap \langle a_0 \rangle = \{1\}$), so U/N has exponent p^m .

Since $N \leq \Phi(U)$, every maximal subgroup of U/N is of the form H/N for some maximal subgroup of U . Suppose a maximal subgroup H/N contains an element hN of maximal order p^m . Then $h \in U$, and since $D \leq N$, we get that hD has order p^m . By (4.3), $hD \in M$. By Lemma 4.6(vi), we may write $h = a_0^r x$ for some $x \in \Phi(U)$, where $1 \leq r \leq p - 1$. By replacing h by a suitable power of h , we may assume that $r = 1$. Since H is maximal, H contains $\Phi(U)$, and so $\langle a_0, \Phi(U) \rangle \leq H$. But $\langle a_0, \Phi(U) \rangle = M$, a maximal subgroup of U , so $H = M$. But then H/N is abelian, since it is a quotient of the abelian group M . This shows that U/N is exponent-critical of exponent p^m , and so part (ii) follows.

To prove the first statement of part (iii), suppose that $p = 2$ and $m = 2$. For a contradiction, let P be an exponent-critical 2-group of exponent 2^2 and of type \mathcal{A} . By part (i), we have that $P \cong U/N$ for some $N \in \mathcal{N}$. Hence

$$|P| = |U/N| \leq |U/D| = 2^3.$$

Since P is a non-abelian group, it must have order 8 and be 2-generated. So it cannot have a unique maximal subgroup. Further, any maximal subgroups will have order 2^2 , and so are all abelian. Hence P is not of type \mathcal{A} . This contradiction shows that the first statement of part (iii) holds.

Assume now that p is odd, or $m \geq 3$. Let $N \in \mathcal{N}$. Suppose, for a contradiction, that $N \cap U'$ is non-trivial. By Lemma 4.6(vii), we see that $[a_{0,p-1} b_0]^{p^{m-2}} \in N$. But $a_0^{p^{m-1}} [a_{0,p-1} b_0]^{p^{m-2}} \in D \leq N$, and so $a_0^{p^{m-1}} \in N$. This contradicts the condition that $N \cap \langle a_0 \rangle = \{1\}$. So $N \cap U' = \{1\}$ for all $N \in \mathcal{N}$. Hence

$$|(U/N)'| = |U'| = p^{(m-1)(p-1)}.$$

Since we are assuming that p is odd or $m \geq 3$, we see that $|(U/N)'| > p$. Since the derived subgroup of an exponent-critical p -group of type \mathcal{B} has order p , we see that U/N has type \mathcal{A} when p is odd or $m \geq 3$. So part (iii) of the theorem follows. \square

Corollary 4.7. *There is a unique largest non-abelian exponent-critical p -group of exponent p^m of type \mathcal{A} . This p -group has cardinality $p^{(m-1)(p+1)}$.*

Proof. The corollary follows since $D \in \mathcal{N}$. \square

The views expressed are those of the authors and do not reflect the official policy or position of the Department of the Army, the Department of Defense or the US Government.

Bibliography

- [1] A. Ahmad, A. Magidin and R. F. Morse, Two generator p -groups of nilpotency class 2 and their conjugacy classes, *Publ. Math. Debrecen* **81** (2012), no. 1–2, 145–166.
- [2] M. R. Bacon and L.-C. Kappe, The nonabelian tensor square of a 2-generator p -group of class 2, *Arch. Math. (Basel)* **61** (1993), no. 6, 508–516.
- [3] S. R. Blackburn, Groups of prime power order with derived subgroup of prime order, *J. Algebra* **219** (1999), no. 2, 625–657.
- [4] W. Cocke and D. Skabelund, The free spectrum of A_5 , *Internat. J. Algebra Comput.* **30** (2020), no. 4, 685–691.
- [5] W. Cocke and D. Skabelund, The maximal class 2-groups generate the same variety, *Algebra Universalis* **82** (2021), no. 1, Paper No. 17.
- [6] J. D. Dixon and B. Mortimer, *Permutation Groups*, Grad. Texts in Math. 163, Springer, New York, 1996.

- [7] P. Flavell, Finite groups in which every two elements generate a soluble subgroup, *Invent. Math.* **121** (1995), no. 2, 279–285.
- [8] D. Gorenstein, *Finite Groups*, Harper & Row, New York, 1968.
- [9] I. N. Herstein, A remark on finite groups, *Proc. Amer. Math. Soc.* **9** (1958), 255–257.
- [10] L.-C. Kappe, M. P. Visscher and N. H. Sarmin, Two-generator two-groups of class two and their nonabelian tensor squares, *Glasg. Math. J.* **41** (1999), no. 3, 417–430.
- [11] M. Mastnak and H. Radjavi, Structure of finite, minimal nonabelian groups and triangularization, *Linear Algebra Appl.* **430** (2009), no. 7, 1838–1848.
- [12] G. A. Miller and H. C. Moreno, Non-abelian groups in which every subgroup is abelian, *Trans. Amer. Math. Soc.* **4** (1903), no. 4, 398–404.
- [13] W. R. Scott, *Group Theory*, Dover Publications, New York, 1987.
- [14] J. G. Thompson, Nonsolvable finite groups all of whose local subgroups are solvable, *Bull. Amer. Math. Soc.* **74** (1968), 383–437.

Received August 29, 2024

Author information

Corresponding author:

Simon R. Blackburn, Department of Mathematics, Royal Holloway,
University of London, Egham TW20 0EX, United Kingdom.
E-mail: s.blackburn@rhul.ac.uk

William Cocke, Language Technologies Institute,
Carnegie Mellon University, Pittsburgh, PA 15213, USA.
E-mail: cocke@cmu.edu

Andrew Misseldine, Department of Mathematics,
Southern Utah University, Cedar City, UT 84720, USA.
E-mail: andrewmisseldine@suu.edu

Geetha Venkataraman, School of Liberal Studies,
Dr. B. R. Ambedkar University Dehli, Dehli, India.
E-mail: geetha@aud.ac.in