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Abstract. We define and investigate the property of being “exponent-critical” for a finite
group. A finite group is said to be exponent-critical if its exponent is not the least com-
mon multiple of the exponents of its proper non-abelian subgroups. We explore properties
of exponent-critical groups and give a characterization of such groups. This characteriza-
tion generalizes a classical result of Miller and Moreno on minimal non-abelian groups;
interesting families of p-groups appear.

1 Introduction

Often times in group theory, questions about a group can be reduced to questions
about its proper subgroups. This is especially true of various first-order properties
of groups. For example, the question “Does a group contain an element of a certain
order?” can be answered by examining all cyclic subgroups of the group. The
question “Is a given finite group solvable?” can be answered by examining all
2-generated subgroups of the group [7]. A more complicated and celebrated result
is Thompson’s classification of N-groups, finite groups all of whose subgroups
are either solvable or Fitting-free [14]. A famous and classical line of research
involved the question of what can be said about a non-abelian group all of whose
proper subgroups are abelian. These groups are known as minimal non-abelian and
were studied by Miller and Moreno in 1903 [12]. In this article, we introduce the
following question: “What do the exponents of the non-abelian proper subgroups
of G imply about the exponent of G?” More precisely, we make the following
definition.

Definition 1.1. A finite group G is exponent-critical if the exponent of G is not
the least common multiple of the exponents of its proper non-abelian subgroups.
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To give an example, we observe that the dihedral group D1e of order 16 is
exponent-critical: it has exponent 8, and any proper non-abelian subgroup of D¢
is isomorphic to the group Dg of exponent 4. As a non-example, we note that
D,4 is not exponent-critical: it has exponent 12 and contains proper non-abelian
subgroups isomorphic to D1, (of exponent 6) and Dg (of exponent 4).

We remark that if we drop the non-abelian condition in our definition above, the
problem becomes trivial. Indeed, the family of finite groups whose exponent is not
the least common multiple of the exponents of its proper subgroups is exactly the
family of non-trivial cyclic groups of prime power order.

In this paper, we investigate (finite) exponent-critical groups. An abelian group
G is exponent-critical if and only if it is non-trivial, so it is the non-abelian case
which is interesting. The exponent exp(G) of a non-cyclic group G is the least
common multiple of the exponents of its maximal subgroups, as every cyclic sub-
group is contained in a maximal subgroup. So at least one maximal subgroup of
a non-abelian exponent-critical group must be abelian. However, a finite group
with an abelian maximal subgroup is solvable. (This result originally appeared in
a paper by Herstein [9], is a weakening of a result in Scott [13, Theorem 13.4.6],
and is a homework problem in Dixon and Mortimer [6, Exercise 3.4.7].) So, in
particular, we may make use of the theory of Hall subgroups when investigating
exponent-critical groups.

Every minimal non-abelian group is exponent-critical, so our characterization of
exponent-critical groups is an extension of Miller and Moreno’s characterization of
minimal non-abelian groups. Since minimal non-abelian groups are well studied,
it is especially interesting to find exponent-critical groups that are not minimal
non-abelian. We will construct many such examples.

In this paper, we show that exponent-critical groups must lie in several explic-
itly defined families, and all groups in these families are exponent-critical. Before
discussing our results, we define the following (standard) notation. For a group G,
we write Z(G) for the center of G and ®(G) for the Frattini subgroup of G. If H
is a subgroup G (written H < G), we write Ng(H ) for the normalizer of H in
G and Cg(H) for the centralizer of H in G. We write exp(G) for the exponent
of G. For an element g € G, we write o(g) for the order of g.

We first show that exponent-critical groups cannot be divisible by a large num-
ber of distinct primes.

Theorem A. The order of a non-abelian exponent-critical group is divisible by at
most three distinct primes.

The exponent-critical groups divisible by exactly three primes are classified as
follows.
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Theorem B. Let G be a non-abelian finite group whose order is divisible by ex-
actly three distinct primes. Then G is exponent-critical if and only if G is a direct
product of a cyclic Sylow subgroup of G and its complement, which is minimal
non-abelian.

The complement in Theorem B is a minimal non-abelian group H whose or-
der is divisible by exactly two primes. Such groups H are well understood: see
Mastnak and Radjavi [11, Section 2.2], for example, for a description of Miller
and Moreno’s classification of such groups using modern notation.

We now turn to the case when an exponent-critical group has order divisible by
exactly two primes p and g. We need the following definition in order to state our
theorem. Recall that the p-part of a natural number n = p*m with gcd(p, m) = 1
is p4.

Definition 1.2. Let G be a finite group, and let p be a prime number. A subgroup
H of a group G is a p-witness for G if it is non-abelian, proper, and the p-parts of
exp(G) and exp(H ) are equal.

It is not hard to see that a finite group G is exponent-critical if and only if there
exists a prime p dividing the order of G such that no p-witness for G exists.

Theorem C. Let G be a non-abelian exponent-critical group whose order is divis-
ible by exactly two distinct primes p and q. Without loss of generality, swapping
p and q if necessary, we may suppose that G does not possess a p-witness for G.
Then G is isomorphic to one of the following families of exponent-critical groups.

(1) G is a direct product of a cyclic Sylow p-subgroup of G and its complement
which is minimal non-abelian.

(1) G is a semi-direct product of a normal abelian Sylow p-subgroup P of G by
a cyclic Sylow q-subgroup Q. The subgroup P is a direct product of cyclic
groups of order p™ for some positive integer m. We have |G : Cg(P)| = ¢,
and Q acts non-trivially and irreducibly on P/PP.

(iii) G is a semi-direct product of a normal abelian Sylow p-subgroup P of G by
a cyclic Sylow q-subgroup Q. The subgroup P is a direct product of a cyclic
group of order p™ and an elementary abelian group. We have m > 1. The
action of the subgroup Q on P preserves this direct product, acting non-
trivially and irreducibly on the elementary abelian group, and trivially on the
cyclic group of order p™. We have |G : Cg(P)| = q.

(iv) G is a semi-direct product of a (unique) normal Sylow q-subgroup Q by
a non-normal cyclic Sylow p-subgroup P. The subgroup Q is special in the
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sense of Gorenstein [8, p. 183], so Q is either elementary abelian or Q has
nilpotency class 2 with Q' = Z(Q) = ®(Q) and Q' is elementary abelian.
Further, if x € P generates P, then x acts irreducibly on Q / Q' and trivially

on Q.

Again, we comment that the structure of the complement in part (i) of this the-
orem, namely the structure of a minimal non-abelian g-group, is well understood;
see [11, Section 2.1] for example.

It remains to consider exponent-critical p-groups P. The problem naturally
splits into two cases, depending on the number of abelian maximal subgroups
of P. We say that an exponent-critical p-group P is of type + if P has exactly
one maximal subgroup which is abelian, and is of type B if P has more than one
abelian maximal subgroup. (If @ € P is an element of maximal order in a non-
abelian exponent-critical group P, then every maximal subgroup of P containing
a is abelian. So P possesses at least one non-abelian maximal subgroup. Thus ev-
ery exponent-critical p-group has type # or 8B.) The following theorem provides
a characterization of p-groups of type 8.

Theorem D. A non-abelian finite p-group has type B if and only if it is 2-gener-
ated with derived subgroup of order p.

Finally, we consider exponent-critical p-groups of type +. We construct a “uni-
versal” group as a quotient U/ D of a certain semi-direct product U. In order to
state our result, we now define this semi-direct product.

Definition 1.3. Let W be the abelian group defined by
W = (ao) x (ar) x -+ x (ap-1),

where ag has order p” and a; has order p”" ! for1 <i < p— 1.
Let ¢: W — W be the automorphism (see Lemma 4.5) of W such that

aiaj+1 forO0<i <p-2,
$lai) = 1t ()
ai [[j=ya; " fori=p-—1.

Let (bg) be the cyclic group generated by an element by of order p™~!. De-
fine U to be the semi-direct product U = W x (bg), where by acts on W via the
automorphism ¢. So bglwbo =¢(w) forallw € W.

Define D < U to be the normal subgroup of order p generated by the element

m—1 m—2
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Let NV be the set of normal subgroups N of U such that
D <N<®U), Nnia)=1{1}, and U’ £N.

Theorem E. The following statements hold.

(1) Let P be an exponent-critical p-group of exponent p™ and type 4. Then P
is isomorphic to U/N, where N € N.

(ii) Any group of the form U/ N with N € N is a non-abelian exponent-critical
p-group of exponent p™.

(iii) There are no exponent-critical 2-groups of exponent 2% and type 4. When p
is odd or m > 3, the converse to (i) holds: any group of the form U/N with
N € N is an exponent-critical p-group of exponent p™ and type A.

In particular, this theorem shows that, when p is odd or m > 3, there exists
a unique maximal exponent-critical p-group U/D of exponent p™ and type .
We believe these p-groups are particularly interesting.

We should mention that the characterization of exponent-critical groups has
applications to explicit computations involving varieties of groups [4, 5]; this was
how we originally came across this problem.

The rest of the paper proceeds as follows. Section 2 contains a proof of Theo-
rem A and Theorem B. In Section 3, we prove Theorem C. Finally, in Section 4,
we characterize exponent-critical p-groups and prove Theorems D and E.

2 Exponent-critical groups of order divisible by three primes

We will prove Theorems A and B in this section.

Proof of Theorem A. Let G be a non-abelian exponent-critical finite group. We
mentioned in the introduction that G is solvable. Suppose that the order of G is
divisible by four or more primes. Since G is non-abelian, it must be the case that
some Sylow p-subgroup P of G is not central. Let ¢ be a prime dividing the order
of G such that Cg(P) does not contain a Sylow g-subgroup of G. Let Hp, be
a pq-Hall subgroup of G, which is necessarily non-abelian. For any other prime r
dividing |G|, a Hall pgr-subgroup Hpg, of G is therefore non-abelian. Moreover,
Hpgy is proper since |G| is divisible by four or more primes. So Hpg, is a p-
witness, a g-witness and an r-witness for G. So there exists an £-witness for G
for all primes ¢ dividing the order of G, which contradicts G being exponent-
critical. |
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Theorem 2.1. Let G be a non-abelian, exponent-critical group. If the order of G
is divisible by three distinct primes, then G has a non-trivial central cyclic Sylow
subgroup and all Sylow subgroups of G are abelian.

Proof. By the same reasoning as in the proof of Theorem A, the group G has
a non-abelian pg-Hall subgroup for two primes p and ¢ dividing |G|. This sub-
group is proper as three primes divide the order of G, and so it is a p-witness and
g-witness for G. Suppose r is the third prime dividing |G|. If either the pr- or
qr-Hall subgroups are non-abelian, then we have an r-witness for G, and so G is
not exponent-critical. Therefore, both these Hall subgroups are abelian. Hence all
Sylow subgroups of G are abelian, and the Sylow r-subgroup centralizes a Sylow
p- and Sylow g-subgroup of G. If the Sylow r-subgroup is not cyclic, then G
would contain a proper subgroup which is an r-witness for G, which would imply
that G is not exponent-critical. o

We now prove Theorem B, which classifies exponent-critical groups whose or-
ders are divisible by only 3 distinct primes.

Proof of Theorem B. Suppose G is exponent-critical. Then G has a central cyclic
Sylow p-subgroup P by Theorem 2.1. Let H be a Hall gr-subgroup of G. Since
P is central, G is a direct product of P and H. If H were abelian, then G would
be abelian. Hence H is non-abelian. Suppose by way of contradiction that H has
anon-abelian proper subgroup K. Then PK < G and exp(G) is the least common
multiple of exp(PK) and exp(H ), which implies that G is not exponent-critical.
Hence H is minimal non-abelian.

Conversely, suppose that G is a direct product of a cyclic p-group P and a min-
imal non-abelian gr-group H. Any proper subgroup of G containing P is abelian,
since H is minimal non-abelian. So no subgroup of G is a p-witness for G, and
hence G is exponent-critical. o

3 Exponent-critical groups of order divisible by exactly two primes

Before proving Theorem C, we show that each of the four families of groups given
in Theorem C consists of exponent-critical groups, by showing that there is no
p-witness for any group G in the family.

Lemma 3.1. Let p and q be distinct primes. Let G be a direct product of a normal
cyclic Sylow p-subgroup P and a minimal non-abelian q-subgroup Q. Then G is
exponent-critical.
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Proof. Suppose, for a contradiction, H is a p-witness for G. Since P is cyclic,
P < H.Since H is proper, H = P x K for some proper subgroup K of Q. Since
Q is minimal non-abelian, K is abelian. But then H is abelian, so H is not a p-
witness for G. This contradiction shows that G is exponent-critical. o

Lemma 3.2. Let p and q be distinct primes. Suppose G is a non-abelian semi-
direct product of a normal abelian Sylow p-subgroup P of G by a cyclic q-
complement Q. Suppose that P is the direct product of cyclic groups of order p™,
where m is a positive integer. Furthermore, suppose that |G : Cg(P)| = q and Q
acts non-trivially and irreducibly on P/ PP. Then G is exponent-critical.

Proof. Suppose, for a contradiction, that H is a p-witness for G. We see that
H = P1Q1,where Py = P N H and where Q1 is a g-group. By replacing H by
a conjugate if necessary, we may assume that Q1 < Q. Since H is non-abelian,
Q is cyclic and |G : Cg(P)| = g, we see that Q1 = Q. Since P is normal and
Q < H, we see that P; is normalized by Q. Because H has exponent divisible
by the p-part p™ of the exponent of G, the quotient P; P?/P? is non-trivial. The
action of Q on P/PP? is irreducible and Py P?/PP? is Q-invariant, and hence
PiPP/PP = P/PP. So P is generated by P; and P?, and hence P; generates
P (as PP = ®(P)). Hence Py = P.Thus H = P1Q; = PQ = G,andso H is
not proper. This contradiction establishes the lemma. o

Lemma 3.3. Let p and g be distinct primes. Moreover, suppose G is a non-abelian
semi-direct product of a normal abelian Sylow p-subgroup P of G by a cyclic
q-complement Q. For m > 1, suppose that P is the direct product of a cyclic
group of order p™ and an elementary abelian p-group. Suppose Q centralizes the
cyclic group of order p™ and acts irreducibly on the elementary abelian group.
Furthermore, suppose that |G : Cg(P)| = q. Then G is exponent-critical.

Proof. We may write P = C x A, where C is a cyclic group of order p” and
where A is elementary abelian; Q centralizes C and acts irreducibly by conjuga-
tion on A. We choose a generator y for Q,so Q = (y).

Suppose, for a contradiction, that H is a p-witness for G. As in Lemma 3.2, we
may assume that H = P; Q, where P; is normalized by Q.

Since H is non-abelian, there exists an element g := ca € Pp, where ¢ € C
and a € A\ {1}. Now Q acts non-trivially on A, since G is non-abelian. Since
Q acts irreducibly and non-trivially on A, we deduce that C4(y) = {1}, and so
[g,v] € A\ {1}. Since P; is normalized by Q, we see that [g, y] € Py, and so
P1 N A # {1}. But Q acts irreducibly on A, and so A < P;. Since p™ divides
the exponent of H and since m > 1, we see that there exists an element x € Py
such that x ¢ AP?. Since AP? has index p in P, we find that (x)AP? = P,
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and so (x)A = P (since PP = ®(P)). But (x)4 < Py, and so P; = P. Thus
H = P1Q1 = PQ =G, and so H is not proper. This contradiction establishes
the lemma. o

Lemma 3.4. Let p and q be distinct primes. Let G = Q x P be a (non-abelian)
semi-direct product of a Sylow q-subgroup Q by a non-normal cyclic Sylow p-
subgroup P. Suppose that Q is special, so either Q is elementary abelian or
Q' =Z(Q) = ®(Q). Moreover, suppose that P acts (by conjugation) trivially
on Q' and irreducibly on Q/Q’. Then G is exponent-critical.

Proof. Let G = Q x P satisty the conditions of the lemma. We show that there is
no p-witness for exp(G).

Assume for a contradiction that H is a p-witness for exp(G). Without loss
of generality, we may assume that H = Q1 P; for some Q1 < Q and P; < P,
where Q1 is Pj-invariant. Clearly, P; contains an element x which is of maximal
order in P, and so (since P is cyclic) we see that Py = P = (x).

Suppose that Q1 € ®(Q). Since Q is special (whether elementary abelian
or not), Q' = ®(Q) < Z(Q). So Q1 < Z(Q) is abelian and, since P central-
izes Q’, we see that P centralizes Q1. But then H is abelian, and we have a con-
tradiction. We may deduce that Q; contains an element in Q \ ®(Q), and so
019(Q)/P(Q) is non-trivial.

Since Q is special, ®(Q) = Q’, and so P acts irreducibly on Q/®(Q). Since
Q1 is P-invariant, the non-trivial subgroup Q1 ®(Q)/®(Q) is a P-invariant sub-
group of Q/®(Q). So 01P(Q)/P(Q) = Q/P(Q), and thus 0, P(Q) = Q.
By the non-generation property of the Frattini subgroup, we may deduce that
01 = Q. and so it follows that H = G. This contradicts the fact that H is proper,
as required. o

We are now in a position to prove Theorem C.

Proof of Theorem C. Lemmas 3.1 to 3.4 show that the four families described in
the theorem consist entirely of exponent-critical groups. It suffices to show that
any non-abelian exponent-critical p, g-group lies in one of these four families.

Let G be a non-abelian exponent-critical group with |G| = p®¢®, where p
and g are distinct primes. Suppose that there is no p-witness for G. So all proper
subgroups containing a Sylow p-subgroup P of G are abelian, and in particular,
P is abelian. Moreover, either P is normal or Ng (P) is abelian.

Part I P is normal. Suppose that a complement Q of P is also normal, and so
G = P x Q. Since no non-abelian proper subgroup of G can contain P, we see
that Q is minimal non-abelian. Now suppose that P is not cyclic. Let x be an
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element of maximal order in P. Then (x)Q is a p-witness for G, which is a con-
tradiction. So P must be cyclic and G lies in the family described in Lemma 3.1.

Now let us consider the case when P is normal but its complement, say Q,
is not. So we can find an element y € Q which is not in Cg(P). Thus P(y) is
a non-abelian subgroup of G containing P.So G = P (y) and therefore Q = (y).
Furthermore, (y4) < Cg(P) since otherwise P (y?) is a p-witness for G. So
|G : Ca(P)| =gq.

Let the exponent of P be p™. Write P[p™~!] for the subgroup of elements
of P of order dividing p™~!, and note that P? < P[p™~!].Set V = P/PP. We
regard V' as a vector space over I,. Indeed, V' can be thought of as an IF, Q-
module, with the action of Q derived from conjugation. Now Q acts non-trivially
on P by conjugation, and the only automorphisms of P that induce the identity on
P /®(P) have p-power order. Since ®(P) = PP, we see that Q acts non-trivially
onV.

Let 7: P — V be the natural homomorphism. Now

U:=n(P[p" ') =Plp" "]/ PP

is an IF, O submodule of V. Indeed, U is a proper submodule, since P has ex-
ponent p™. Since the order of Q is coprime to p, the module V is completely
decomposable, and so we may write I/ as the sum

V=Uiol,d---oUrdW oW, o -0 W
of irreducible submodules, where U = U; @& U, & --- @ Uy and where
W=woeWwmao---oW,

forms a complement to U in V. We have k > 0 and, since U is proper, £ > 1.
Since all the elements in P \ P[p™~!] have order p™, we see that 7~ (W;) has
a subgroup of P of exponent p™. We divide our argument into two sub-cases.

Sub-case 1: Suppose that Q acts non-trivially on a submodule W;. We see that
(r=1(W;), Q) is a non-abelian subgroup of G of exponent p™, and (since G
has no p-witness) we deduce that G = (7~ 1(W;), Q). Hence k = 0, £ = 1 and
V = W} in this case. Since k = 0, we see that P is a direct product of cyclic
groups of order p™. Since W; is irreducible and W; = P/ PP, we see that Q acts
irreducibly on P/PP. Thus G lies in the family described in Lemma 3.2.
Sub-case 2: Q acts trivially on all submodules W;. Since Q acts non-trivially
on V, we see that Q acts non-trivially on one of the modules U;. (In particu-
lar, this implies that Q acts non-trivially on U, and so m > 1.) The subgroup
(=Y (U; @ W1), Q) is non-abelian and of exponent p™, and so

(7 (Ui @ W), Q) =G.
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Hence k =1 ={ and V = U, & W;. If Q acts non-trivially by conjugation on
PP, the subgroup (7~ 1(W;), Q) would be a p-witness, and so we deduce that O
centralizes P?.

Taking p-powers in P induces a surjective ]FI,Q -module homomorphism f
from V = P/P? to the F; Q-module PI’/PP Since m > 1, this homomor-
phism is non-trivial. Since Q centralizes P?/ PP and acts non- tr1v1ally and ir-
reducibly on Uj, we see that f(U;) =0 and f(W;) = PI’/PP . Since W is
trivial and irreducible, it has dimension 1, and so P is a direct product of a cyclic
group of order p™ with an elementary abelian group.

Let x € 7~ (W \ {0}). The element x € P has order p™ and (since |Q] is
coprime to p) x is centralized by Q. The action of Q by conjugation on P [p] gives
P[p] the structure of an F, O-module. Let 4 be a complement to the submodule
in P[p] generated by x?"~'. Then P = (x) x A, where the action of Q fixes x
and preserves the direct product. Since AP? /PP = Uy, we see that the action of
Q on A is irreducible. So G lies in the family described in Lemma 3.3.

Part 1I: P is not normal, and so Ng(P) is abelian. Clearly, in this case, we
have P < Z(Ng(P)) and by Burnside’s Normal p-Complement Theorem, G has
a normal p-complement Q. Therefore, G is a semi-direct product of its Sylow
g-subgroup Q by a non-normal abelian Sylow p-subgroup P.

Suppose, for a contradiction, that P is not cyclic. Let x € P have maximal
order. Then (x)Q is a proper subgroup, so must be abelian (otherwise, we have
a witness for the p-part of exp G). So all elements of maximal order lie in Cg(Q).
But P is generated by its elements of maximal order, and so P < Cg(Q). This
implies that P is normal, and we have our contradiction. Hence P is cyclic.

The subgroup P must centralize any proper P-invariant subgroup of Q; other-
wise, we have a witness to the p-part of exp(G). So a generator x of P gives
rise (via conjugation) to an automorphism of Q that acts trivially on any proper
subgroup of Q. This automorphism is non-trivial, since P is not normal. Hence,
by [8, Theorem 5.3.7], Q is special, P acts trivially on Q’, and P acts irreducibly
on Q/Q’. So G lies in the family described in Lemma 3.4, and the theorem
follows. o

4 Exponent-critical p-groups

We now examine exponent-critical p-groups. We will prove Theorems D and E in
this section.

Let P be a non-abelian p-group of order p”. We denote by Mp the set of
elements of P of maximal order, or equivalently the set of elements that have order
equal to exp(P). Note that P is exponent-critical if and only if Mp N M = @ for
all non-abelian maximal subgroups M of P.
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Theorem 4.1. Let P be a finite non-abelian exponent-critical p-group. Then we
have P = (a,b), where a € P has maximal order and b € P. Moreover, P is
solvable of derived length 2.

Proof. The Frattini subgroup ®(P) is contained in all maximal subgroups. Since
at least one maximal subgroup is abelian, it follows that ®(P) is abelian. Since
P’ < P’PP? = ®(P) and since P is non-abelian, P is solvable of derived length 2.

We now show that P is 2-generated. Suppose, for a contradiction, that all ele-
ments in Mp are central. Let a € Mp, and let x, y € P be such that [x, y] # 1.
As x is not central, it does not have maximal order. Hence, using the fact that
[a, x] = 1, we see that xa has maximal order. Since « is central,

[xa,y] = [x,y]%[a.y] = [x,y] # 1.

Thus we have a contradiction as required, and we may deduce that there exists an
element a € Mp of maximal order that is not central. Let b € P be such that
[a,b] # 1. Thus (a,b) is a non-abelian subgroup of exponent exp(P), and so
P = (a, b). Hence the theorem follows. o

Proof of Theorem D. Suppose P is a non-abelian finite group which is 2-gener-
ated and | P'| = p. We show that P is exponent-critical of type B. Let P = (a, b).
Since P is nilpotent, [P’, P] is a proper subgroup of P’. Thus P has nilpotency
class 2. In particular, P’ < Z(P). Since P has nilpotency class 2, we get that
1 =la,b)? = [a?,b] = [a,bP]. So a? and b? are central. Hence ®(P) < Z(P)
as, in a p-group, ®(P) is the subgroup generated by P’ and the p-th powers of
a generating set. Let M be a maximal subgroup. Then ®(P) < M. Since P is
2-generated, ®(P) has index p? in P and so has index p in M. Since ®(P) is
central in P, we see that Z(M) > ®(P), and so the center of M has index at most
p in M. But then M must be abelian (and Z(M) = M). Thus P is a minimal non-
abelian group and hence exponent-critical of type 8B, as required.

Conversely, suppose that P is exponent-critical of type 8. By Theorem 4.1,
P = {(a,b) for elements a,b € P with a € Mp. Since P has type B, it con-
tains distinct abelian maximal subgroups M1 and M>. For x,y € P, we see that
[x,y] € P/ < ®(P) < My N M, and so [x, y] commutes with all elements of
M, and M,. Since P = M M>, we deduce that P’ is central in P, and so P has
nilpotency class 2. Hence [x, yz] = [x, y][x, z] and [xy, z] = [x, z][y, z] for all
X, y,zin P. Using this, we see that P’ = ([a, b]). Let M, be a maximal subgroup
of P such that a € M. Since a has maximal order and P is exponent-critical, we
see that M, is abelian. Clearly, b? € M,. Since P has nilpotency class 2, we see
that 1 = [a,b?] = [a,b]? = [a?,b]. Soo([a,b]) = p = |P’|, and part (iii) of the
theorem follows. |
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We comment that the isomorphism classes of p-groups of type B are known
precisely, as part of the (more general) classifications of Blackburn [3] or Ahmad,
Magidin and Morse [1] (see also [2, 10]). Using the approach in [1], we have the
following list.

Theorem 4.2. Let P be an exponent-critical finite non-abelian p-group of type B
of order p". Then

P {ab:lab? =[aba=][abbl=1a"" =ab? b?" =, b)),

where o, B, p, 0 are integers suchthata > > 1, a+B=n—-1,0<p,0 <1.
When p is odd, P is isomorphic to exactly one of the groups whose parameters
(a, B, p, 8) are listed below:
(1) (@) («,p,0,1) witha > B >1,

b) (o, B, 1, ) witha >8> 1,

©) (o,B,1,0) witha > B > 1,
2) (@ (o,0,0, 1) witha > 1,

(b) (a,a,1,1) witho > 1.
When p = 2, P is isomorphic to exactly one of the groups whose parameters
(o, B, p, ) are
(1) (@) («,B,0,1) witha > 8 >1,

b) (o, B, 1, ) witha > B > 1,

©) (o,B,1,0) witha > B > 1,
2) (@) (o,®,0,1)witha > 1,

(b) (a,a,1,1) witho > 1,
(3) (@ (1,1,0,0),

(b) (1,1,1,1).

We now turn to exponent-critical groups of type <A, with an aim of proving

Theorem E. In the lemma below, we write [x,; b] for the i-times iterated com-

mutator of x and b. So, for example, [x,1 b] = [x, b], [x,3 b] = [[[x, b], b], b] and
[x,0b] = x. We write Z,m for the cyclic group of order p™.

Lemma 4.3. Let P be a non-abelian exponent-critical p-group of type A. Let A
be a maximal subgroup containing an element of maximal order p™.

(1) A is abelian, normal, and contains all elements of order p™.

m—1

(i) A= Zpm x S, where S has exponent dividing p

m—1

(iii) P’ is abelian, of exponent dividing p
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Proof. A is normal, since all maximal subgroups of a p-group are normal. If A
were non-abelian, P would have a proper non-abelian subgroup of exponent p™
and hence P would not be exponent-critical. This contradiction shows that A is
abelian. Since P is of type +4, we have that A is the unique maximal subgroup of
P which is abelian. Clearly, A will contain all the elements of maximal order and
part (i) of the lemma follows.

To prove part (ii), first note that A has exponent p”, and so A = (Z,m)" x S,
where 7 is a positive integer and S has exponent dividing p™~!. Define K to be the
subgroup of all elements of A of order dividing p”*~!. Every element of 4 \ K has
order p™, and A/ K is elementary abelian of order p”. Letb € P \ A. Since b acts
nilpotently on A/ K, there exists a subgroup L containing K such thatb € Np (L)
and L has index p in A. Note that L is normal in P, since {b} U A C Np(L).
Consider the subgroup M generated by L and b. Since A has index p in P, we get
that b? € A. Since b € P \ A, the order of b divides pm_l, andsob? € K < L.
Hence M has index p in P and so is maximal. If » > 1, then L contains elements
of A\ K, and so L contains an element of maximal order. Hence M must be
abelian (as P is exponent-critical) and therefore M = A. Butb € M and b ¢ A.
This contradiction shows that r = 1, and so part (ii) is established.

To prove (iii), we note that K has index p in A by part (ii) and hence K has
index p?in P.So P/K is abelian and therefore P’ < K. Hence the exponent of
P’ divides p™~!, as required. O

Lemma 4.4. Let P be a p-group. Suppose P possesses an abelian maximal sub-
group A. Letb € P\ A.

(1) The map k: A — A defined by k(x) = [x, b] is a homomorphism.

(ii) Forx € A,andb € P\ A,

i—1 .
(bx)' = b'x" []lxy 51U+ 4.1)
j=1

(iii) Forx € A,andb € P \ A,

p—1
[e.p b = [ e b=

i=1

Proof. To prove (i), we note that, for all x € A, [x,b] € A as A is normal in P. So
[x,b]” = [x,b] forall y € A, since A is abelian. Hence

[xy.b] = [x.b)[y.b] = [x.b][y.bl.

and « is a homomorphism, as required.
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We prove equality (4.1) by induction on i. Equality (4.1) clearly holds when
i = 1. Assume the equality holds for a fixed value of i. Since P/A is abelian, all
commutators lie in the abelian subgroup A. Hence

i1 A
(bx)'bx = bixi( [x. b](-f-lH))bx by our inductive hypothesis
j=1

i—1 . i—1 .
= b1 x[x,b) (1_[ [x,; b](i-lH))( [x.+1 b](jj’l))x
=1 j=1

by part (i)
i : i 4
_ bi+1xi+1[x’b](’l)+(§)(l_[[x’j b](_/-li-l))(l_[[x’j b](}))
j=2 =2
as x € A,

i . _ .
=y T ]GRO ( ’ )zo
by n[xj 1Y i’ since P

Jj=1

i
. . i+1
=bl+1xl+l | |[x’j b] J+1),
j=1

and so part (ii) follows by induction.

Finally, we prove part (iii) of the lemma. We first prove that, for any positive
integer i,

l
bixb = x [ lxy 510 4.2)
j=1
To show this, we note that 5~ 'xb = x[x, b], and so (4.2) holds when i = 1.
If (4.2) holds for a given value of i, we see that
1

p=UFD pi+l = b—lx(]_[[x,j b](j‘))b

j=1
- x[x,b](l‘[[x,,- b](”) (H[x,m b](”)
Jj=1 Jj=1
i+1 X .
—x H[x’j b](})+(j’—1)
j=1
i+1

= x [T 0105,
j=1
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and so, by induction, equation (4.2) holds for all i. Now b? € A since A is maxi-
mal. As A is abelian, b PxbP = x, and so

P
X =x H[x,j b](ﬁ).

j=1
Hence part (iii) of the lemma follows. O

Recall that we defined a group U and normal subgroup D in Definition 1.3.
Our aim now is to construct a “universal” group for the exponent-critical p-groups
of exponent p” and type -, as the quotient U/ D of the semi-direct product U'.
Before this, in the two lemmas below, we examine some of the properties of the
group U.

Lemma 4.5. The automorphism ¢ defined in Definition 1.3 has order p. In partic-
ular, the definition of U as a semi-direct product is well-defined.

Proof. We see that, for0 < j < p—1,

¢'(ao) = ] a,(;),

j=0
and so a short calculation shows that ¢?(ag) = ¢($P~(ag)) = ag. The lemma
now follows since W is generated by ¢/ (ag) for0 < j < p — 1. |
Lemma 4.6. Let U = W x (bo) be the semi-direct product defined above.

(1) We have a;j = [ag,; bo] for 0 <i < p — 1. In particular, U = {(ag, by).

(ii) We see that |U| = p—D@+D+1,

(ii1) The group U is defined by the relations
[lao.i bol.[ao.j boll =1 forO=<i<j=<p—1,

p—1
—(7
[a07p ,bO] = l_[[aO’j bO] (J)’
j=1
aé’ =1,
[ao.i bol?" ' =1 forl<i<p—1,
m—1

by =1

in the generating set {ag, bo}.
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(iv) The group U is solvable of class 2. The subgroup (bg YW is abelian and
maximal.

(v) The derived subgroup U’ of U is given by
U'=(ar.az.....ap—1) = ([ag.ibo] : 1 <i < p—1).

In particular, U’ is abelian of exponent p™~' and order p@™—1DP=1)

(vi) The Frattini subgroup ®(U) of U is given by

OU) = (a2, ar.ax.....ap-1,b).

(vii) Any non-trivial subgroup of U’ that is normal in U must contain the (non-
. . -2
trivial) element [ag,p—1 bol?"

Proof. Parts (i) to (vi) of the lemma are straightforward to prove, and we leave
them to the reader. Note that Lemma 4.6 (iv) allows us to use Lemma 4.4 when
reasoning about U'.

To prove (vii), note that the map «: U’ — U’ defined by «(x) = [x,bg] is a
homomorphism with kernel (aﬁfl_ ) of order p. Since U is nilpotent, k' is trivial
for some positive integer i. Let K < U’ be a non-trivial subgroup of U’ that is
normal in U. Let i be the smallest integer such that ' (K) = {1}. Then

m—2

Ki_l(K) = (all;]_l ).

Since K is normal in U, we have k' ~1(K) < K, and so part (vii) of the lemma
follows. |

Proof of Theorem E. Let P be a non-abelian exponent-critical p-group of expo-
nent p" of type 4. We prove part (i) of the theorem by showing that P =~ U/N
for some normal subgroup N € N.

By Theorem 4.1, we have that P = (a, b), where a, b € P with a of order p™.
Consider the free group F generated by ag and bg. Let 7 be the (surjective) homo-
morphism from F to P mapping ag to a and bg to b. We show that P is a quotient
U/N of U by checking that the relations defining U are all satisfied under 7.
(Here we are making use of the fact, see Lemma 4.6 (i), that U = (ao, bo).)

Let A be the abelian maximal subgroup containing a. Since P is not abelian,
b e P\ A. Lemma 4.3 (i) shows that b has order dividing p™~!, since all ele-
ments of order p™ lie in A. Hence a?”" = pP" " = 1. Since P’ < d(P) <A,
we see that the subgroup generated by P’ and a is abelian. In particular,

la,b).[a;b]]=1 for0<i<j<p-—1.
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m—1

Lemma 4.3 (iii) implies that [ag.; , bo]? = 1for1 <i < p — 1. Finally, Lem-
ma 4.4 (iii) shows that [ag,p bo] = 1—[;:11 [ao,; bo]_(f). Hence P =~ U/ N for some
normal subgroup N. Moreover, under this isomorphism, the element a € P corre-
sponds to the coset ag N, and b corresponds to bo V.

We now check that the normal subgroup N lies in . Since ag and a both
have order p™, we see that N N {ag) = {1}. Since P is non-abelian, we see that
U’ £ N. Since U and P are 2-generated, we see that N < ®(U). So to prove
part (i) of the theorem, it remains to show that D < N. It suffices to show that
a?" a1 b]?" 7 =1in P.

Consider the element ba € P; since ba ¢ A, we see that ba has order dividing
p™ 1, by Lemma 4.3 (i). Now, by Lemma 4.4 (ii),

p—1 p—2
(ba)? = bPa? []lay b1 = ala.ps b]bl’(]_[ la.; b](jil)/l’)p,

J=1 J=1

since p divides all the binomial coefficients in the product and since all the factors
lie in the abelian subgroup A. But b has order dividing p™~! and the commutators
all have order dividing p™~! by Lemma 4.3 (iii). Hence (ha)? = a”[a,p—1 b]x,
where x € A has order dividing p™ 2. So

L= a)”" = (@a)")" =a" apa b7

as required. Hence part (i) follows.

To prove part (ii), we first investigate the orders of elements in the quotient
Q =U/D. Since D N {(ap) = {1}, the element agD € Q has order p™. Hence
the exponent of Q is divisible by p™. Define M to be the subgroup M := (bJ)W
By Lemma 4.6 (iv), M is maximal and abelian of exponent p™. Since D < M,
the subgroup M/ D is maximal in Q. Moreover, since agD € M/ D, we see that
M/ D of Q has exponent p™. Our next aim is to show that

any element g € Q \ (M/D) has order dividing p™ 1. 4.3)

To see this, write g € Q \ (M/D) in the form g = b{xD,where 1 <r < p—1
and x € M. Replacing g by g”~' mod » does not change the order of g, and so
we may assume without loss of generality that » = 1. Since M/ D is an abelian
maximal subgroup of O, Lemma 4.4 (ii) shows that

-1
(hox)? D = bExP ]_[ x,j bo]U¥) D,
ji=1
The factors in this product all lie in the abelian subgroup M/ D of Q. The factor
bp D has order dividing p™~2 as by has order p™~!. The factors [x,; bo](1+' D
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m—2

for I < p — 2 have order dividing p , since (by Lemma 4.6 (v)) the derived
subgroup of U has exponent p™ ! and ( ; #,) is divisible by p. Hence

m—2

= X" [x.,p—1bo]?" " D.

m— ]

(box)”

Define
m—2

[X,p_l b()]p € D}

S={xeM P
The map x — xP" isa homomorphism on M. Moreover, the map x + [x, bo]
is a homomorphism on M by Lemma 4.4 (i), and so the map x — [x,,—1 bo] is
also a homomorphism. Thus the set S is in fact a subgroup of M. To prove (4.3),
it suffices to show that S = M. Let x = [ag,; bo], where 1 <i < p — 1. Then x
has order dividing p"™~1 since x € U’. Now, the order of [x,,_; bo] divides the
order of [x,,—; bo]. But the order of [x,,—; bo] divides p™~2 since

[x.p—i bo] = [ao.p bo] = ]‘[ lao.; B]~ () € U
i=1

Hence x = [ag,; bg] € S for 1 <i < p — 1. By Lemma 4.6 (v), this implies that
U' <8. 1Clearly, by €. S since the order of b} is p™ 2 Flnally, we have ag € S
as al) P [@0.p— 1b0] *> e D. Since M is generated by ag, b{ and U’, we see
that (4.3) holds, as required.

We are now in a position to prove part (ii) of the theorem. Clearly, U/N is non-
abelian, since N does not contain U’. Since U/ D has exponent p™, the exponent
of U/N divides p™. But U/N contains the element agN of order p™ (since
N N {ap) = {1}),s0 U/N has exponent p™.

Since N < ®(U), every maximal subgroup of U/N is of the form H/N for
some maximal subgroup of U. Suppose a maximal subgroup H/N contains an
element 4N of maximal order p™. Then h € U, and since D < N, we get that
hD has order p™. By (4.3), hD € M.By Lemma 4.6 (vi), we may write h = agx
for some x € ®(U), where 1 <r < p — 1. By replacing & by a suitable power
of h, we may assume that r = 1. Since H is maximal, H contains ®(U), and so
{(ap, ®(U)) < H. But {(ag, P(U)) = M, a maximal subgroup of U,so H = M.
But then H/N is abelian, since it is a quotient of the abelian group M . This shows
that U/ N is exponent-critical of exponent p™, and so part (ii) follows.

To prove the first statement of part (iii), suppose that p = 2 and m = 2. For a
contradiction, let P be an exponent-critical 2-group of exponent 22 and of type .
By part (i), we have that P =~ U/N for some N € N. Hence

|P| =|U/N| <|U/D| =2
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Since P is a non-abelian group, it must have order 8 and be 2-generated. So it
cannot have a unique maximal subgroup. Further, any maximal subgroups will
have order 22, and so are all abelian. Hence P is not of type #. This contradiction
shows that the first statement of part (iii) holds.

Assume now that p is odd, orm > 3.Let N € N. Suppose, for a contradiction,
that N ﬂ U’ is non- tr1v1a1 By Lemma 4.6 (vii), we see that [ao,p—1 bo]p ZeN.
But aO - [ao,p 1bo]?" " € D < N, and so ao € N. This contradicts the

condition that N N {ag) = {1}. So N N U’ = {1} forall N € .N. Hence
(U/N)| = U] = pt=De=.

Since we are assuming that p is odd or m > 3, we see that |(U/N)’| > p. Since
the derived subgroup of an exponent-critical p-group of type B has order p, we
see that U/N has type 4 when p is odd or m > 3. So part (iii) of the theorem
follows. H

Corollary 4.7. There is a unique largest non-abelian exponent-critical p-group of
exponent p™ of type . This p-group has cardinality p—DP+1),

Proof. The corollary follows since D € N. o

The views expressed are those of the authors and do not reflect the official policy
or position of the Department of the Army, the Department of Defense or the US
Government.
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