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Abstract. We define and investigate the property of being “exponent-critical” for a finite
group. A finite group is said to be exponent-critical if its exponent is not the least com-
mon multiple of the exponents of its proper non-abelian subgroups. We explore properties
of exponent-critical groups and give a characterization of such groups. This characteriza-
tion generalizes a classical result of Miller and Moreno on minimal non-abelian groups;
interesting families of p-groups appear.

1 Introduction

Often times in group theory, questions about a group can be reduced to questions
about its proper subgroups. This is especially true of various first-order properties
of groups. For example, the question “Does a group contain an element of a certain
order?” can be answered by examining all cyclic subgroups of the group. The
question “Is a given finite group solvable?” can be answered by examining all
2-generated subgroups of the group [7]. A more complicated and celebrated result
is Thompson’s classification of N -groups, finite groups all of whose subgroups
are either solvable or Fitting-free [14]. A famous and classical line of research
involved the question of what can be said about a non-abelian group all of whose
proper subgroups are abelian. These groups are known as minimal non-abelian and
were studied by Miller and Moreno in 1903 [12]. In this article, we introduce the
following question: “What do the exponents of the non-abelian proper subgroups
of G imply about the exponent of G?” More precisely, we make the following
definition.

Definition 1.1. A finite group G is exponent-critical if the exponent of G is not
the least common multiple of the exponents of its proper non-abelian subgroups.
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To give an example, we observe that the dihedral group D16 of order 16 is
exponent-critical: it has exponent 8, and any proper non-abelian subgroup of D16
is isomorphic to the group D8 of exponent 4. As a non-example, we note that
D24 is not exponent-critical: it has exponent 12 and contains proper non-abelian
subgroups isomorphic to D12 (of exponent 6) and D8 (of exponent 4).

We remark that if we drop the non-abelian condition in our definition above, the
problem becomes trivial. Indeed, the family of finite groups whose exponent is not
the least common multiple of the exponents of its proper subgroups is exactly the
family of non-trivial cyclic groups of prime power order.

In this paper, we investigate (finite) exponent-critical groups. An abelian group
G is exponent-critical if and only if it is non-trivial, so it is the non-abelian case
which is interesting. The exponent exp.G/ of a non-cyclic group G is the least
common multiple of the exponents of its maximal subgroups, as every cyclic sub-
group is contained in a maximal subgroup. So at least one maximal subgroup of
a non-abelian exponent-critical group must be abelian. However, a finite group
with an abelian maximal subgroup is solvable. (This result originally appeared in
a paper by Herstein [9], is a weakening of a result in Scott [13, Theorem 13.4.6],
and is a homework problem in Dixon and Mortimer [6, Exercise 3.4.7].) So, in
particular, we may make use of the theory of Hall subgroups when investigating
exponent-critical groups.

Every minimal non-abelian group is exponent-critical, so our characterization of
exponent-critical groups is an extension of Miller and Moreno’s characterization of
minimal non-abelian groups. Since minimal non-abelian groups are well studied,
it is especially interesting to find exponent-critical groups that are not minimal
non-abelian. We will construct many such examples.

In this paper, we show that exponent-critical groups must lie in several explic-
itly defined families, and all groups in these families are exponent-critical. Before
discussing our results, we define the following (standard) notation. For a group G,
we write Z.G/ for the center of G and ˆ.G/ for the Frattini subgroup of G. If H
is a subgroup G (written H � G), we write NG.H/ for the normalizer of H in
G and CG.H/ for the centralizer of H in G. We write exp.G/ for the exponent
of G. For an element g 2 G, we write o.g/ for the order of g.

We first show that exponent-critical groups cannot be divisible by a large num-
ber of distinct primes.

Theorem A. The order of a non-abelian exponent-critical group is divisible by at
most three distinct primes.

The exponent-critical groups divisible by exactly three primes are classified as
follows.
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Theorem B. Let G be a non-abelian finite group whose order is divisible by ex-
actly three distinct primes. Then G is exponent-critical if and only if G is a direct
product of a cyclic Sylow subgroup of G and its complement, which is minimal
non-abelian.

The complement in Theorem B is a minimal non-abelian group H whose or-
der is divisible by exactly two primes. Such groups H are well understood: see
Mastnak and Radjavi [11, Section 2.2], for example, for a description of Miller
and Moreno’s classification of such groups using modern notation.

We now turn to the case when an exponent-critical group has order divisible by
exactly two primes p and q. We need the following definition in order to state our
theorem. Recall that the p-part of a natural number n D pam with gcd.p;m/ D 1
is pa.

Definition 1.2. Let G be a finite group, and let p be a prime number. A subgroup
H of a group G is a p-witness for G if it is non-abelian, proper, and the p-parts of
exp.G/ and exp.H/ are equal.

It is not hard to see that a finite group G is exponent-critical if and only if there
exists a prime p dividing the order of G such that no p-witness for G exists.

Theorem C. LetG be a non-abelian exponent-critical group whose order is divis-
ible by exactly two distinct primes p and q. Without loss of generality, swapping
p and q if necessary, we may suppose that G does not possess a p-witness for G.
Then G is isomorphic to one of the following families of exponent-critical groups.

(i) G is a direct product of a cyclic Sylow p-subgroup of G and its complement
which is minimal non-abelian.

(ii) G is a semi-direct product of a normal abelian Sylow p-subgroup P of G by
a cyclic Sylow q-subgroup Q. The subgroup P is a direct product of cyclic
groups of order pm for some positive integer m. We have jG W CG.P /j D q,
and Q acts non-trivially and irreducibly on P=P p.

(iii) G is a semi-direct product of a normal abelian Sylow p-subgroup P of G by
a cyclic Sylow q-subgroup Q. The subgroup P is a direct product of a cyclic
group of order pm and an elementary abelian group. We have m > 1. The
action of the subgroup Q on P preserves this direct product, acting non-
trivially and irreducibly on the elementary abelian group, and trivially on the
cyclic group of order pm. We have jG W CG.P /j D q.

(iv) G is a semi-direct product of a (unique) normal Sylow q-subgroup Q by
a non-normal cyclic Sylow p-subgroup P . The subgroup Q is special in the
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sense of Gorenstein [8, p. 183], so Q is either elementary abelian or Q has
nilpotency class 2 with Q0 D Z.Q/ D ˆ.Q/ and Q0 is elementary abelian.
Further, if x 2 P generates P , then x acts irreducibly onQ=Q0 and trivially
on Q0.

Again, we comment that the structure of the complement in part (i) of this the-
orem, namely the structure of a minimal non-abelian q-group, is well understood;
see [11, Section 2.1] for example.

It remains to consider exponent-critical p-groups P . The problem naturally
splits into two cases, depending on the number of abelian maximal subgroups
of P . We say that an exponent-critical p-group P is of type A if P has exactly
one maximal subgroup which is abelian, and is of type B if P has more than one
abelian maximal subgroup. (If a 2 P is an element of maximal order in a non-
abelian exponent-critical group P , then every maximal subgroup of P containing
a is abelian. So P possesses at least one non-abelian maximal subgroup. Thus ev-
ery exponent-critical p-group has type A or B.) The following theorem provides
a characterization of p-groups of type B.

Theorem D. A non-abelian finite p-group has type B if and only if it is 2-gener-
ated with derived subgroup of order p.

Finally, we consider exponent-critical p-groups of type A. We construct a “uni-
versal” group as a quotient U=D of a certain semi-direct product U . In order to
state our result, we now define this semi-direct product.

Definition 1.3. Let W be the abelian group defined by

W D ha0i � ha1i � � � � � hap�1i;

where a0 has order pm and ai has order pm�1 for 1 � i � p � 1.
Let �WW ! W be the automorphism (see Lemma 4.5) of W such that

�.ai / D

8<:aiaiC1 for 0 � i � p � 2;

ai
Qp�1
jD1 a

�.pj/
j for i D p � 1:

Let hb0i be the cyclic group generated by an element b0 of order pm�1. De-
fine U to be the semi-direct product U D W Ì hb0i, where b0 acts on W via the
automorphism �. So b�10 wb0 D �.w/ for all w 2 W .

Define D E U to be the normal subgroup of order p generated by the element

a
pm�1

0 a
pm�2

p�1 :
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Let N be the set of normal subgroups N of U such that

D � N � ˆ.U /; N \ ha0i D ¹1º; and U 0 6� N:

Theorem E. The following statements hold.

(i) Let P be an exponent-critical p-group of exponent pm and type A. Then P
is isomorphic to U=N , where N 2 N .

(ii) Any group of the form U=N with N 2 N is a non-abelian exponent-critical
p-group of exponent pm.

(iii) There are no exponent-critical 2-groups of exponent 22 and type A. When p
is odd or m � 3, the converse to (i) holds: any group of the form U=N with
N 2 N is an exponent-critical p-group of exponent pm and type A.

In particular, this theorem shows that, when p is odd or m � 3, there exists
a unique maximal exponent-critical p-group U=D of exponent pm and type A.
We believe these p-groups are particularly interesting.

We should mention that the characterization of exponent-critical groups has
applications to explicit computations involving varieties of groups [4, 5]; this was
how we originally came across this problem.

The rest of the paper proceeds as follows. Section 2 contains a proof of Theo-
rem A and Theorem B. In Section 3, we prove Theorem C. Finally, in Section 4,
we characterize exponent-critical p-groups and prove Theorems D and E.

2 Exponent-critical groups of order divisible by three primes

We will prove Theorems A and B in this section.

Proof of Theorem A. Let G be a non-abelian exponent-critical finite group. We
mentioned in the introduction that G is solvable. Suppose that the order of G is
divisible by four or more primes. Since G is non-abelian, it must be the case that
some Sylow p-subgroup P of G is not central. Let q be a prime dividing the order
of G such that CG.P / does not contain a Sylow q-subgroup of G. Let Hpq be
a pq-Hall subgroup of G, which is necessarily non-abelian. For any other prime r
dividing jGj, a Hall pqr-subgroupHpqr of G is therefore non-abelian. Moreover,
Hpqr is proper since jGj is divisible by four or more primes. So Hpqr is a p-
witness, a q-witness and an r-witness for G. So there exists an `-witness for G
for all primes ` dividing the order of G, which contradicts G being exponent-
critical.
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Theorem 2.1. Let G be a non-abelian, exponent-critical group. If the order of G
is divisible by three distinct primes, then G has a non-trivial central cyclic Sylow
subgroup and all Sylow subgroups of G are abelian.

Proof. By the same reasoning as in the proof of Theorem A, the group G has
a non-abelian pq-Hall subgroup for two primes p and q dividing jGj. This sub-
group is proper as three primes divide the order of G, and so it is a p-witness and
q-witness for G. Suppose r is the third prime dividing jGj. If either the pr- or
qr-Hall subgroups are non-abelian, then we have an r-witness for G, and so G is
not exponent-critical. Therefore, both these Hall subgroups are abelian. Hence all
Sylow subgroups of G are abelian, and the Sylow r-subgroup centralizes a Sylow
p- and Sylow q-subgroup of G. If the Sylow r-subgroup is not cyclic, then G
would contain a proper subgroup which is an r-witness for G, which would imply
that G is not exponent-critical.

We now prove Theorem B, which classifies exponent-critical groups whose or-
ders are divisible by only 3 distinct primes.

Proof of Theorem B. Suppose G is exponent-critical. Then G has a central cyclic
Sylow p-subgroup P by Theorem 2.1. Let H be a Hall qr-subgroup of G. Since
P is central, G is a direct product of P and H . If H were abelian, then G would
be abelian. Hence H is non-abelian. Suppose by way of contradiction that H has
a non-abelian proper subgroupK. Then PK � G and exp.G/ is the least common
multiple of exp.PK/ and exp.H/, which implies that G is not exponent-critical.
Hence H is minimal non-abelian.

Conversely, suppose thatG is a direct product of a cyclic p-group P and a min-
imal non-abelian qr-groupH . Any proper subgroup ofG containing P is abelian,
since H is minimal non-abelian. So no subgroup of G is a p-witness for G, and
hence G is exponent-critical.

3 Exponent-critical groups of order divisible by exactly two primes

Before proving Theorem C, we show that each of the four families of groups given
in Theorem C consists of exponent-critical groups, by showing that there is no
p-witness for any group G in the family.

Lemma 3.1. Let p and q be distinct primes. Let G be a direct product of a normal
cyclic Sylow p-subgroup P and a minimal non-abelian q-subgroup Q. Then G is
exponent-critical.
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Proof. Suppose, for a contradiction, H is a p-witness for G. Since P is cyclic,
P � H . SinceH is proper,H D P �K for some proper subgroupK ofQ. Since
Q is minimal non-abelian, K is abelian. But then H is abelian, so H is not a p-
witness for G. This contradiction shows that G is exponent-critical.

Lemma 3.2. Let p and q be distinct primes. Suppose G is a non-abelian semi-
direct product of a normal abelian Sylow p-subgroup P of G by a cyclic q-
complementQ. Suppose that P is the direct product of cyclic groups of order pm,
wherem is a positive integer. Furthermore, suppose that jG W CG.P /j D q andQ
acts non-trivially and irreducibly on P=P p. Then G is exponent-critical.

Proof. Suppose, for a contradiction, that H is a p-witness for G. We see that
H D P1Q1, where P1 D P \H and where Q1 is a q-group. By replacing H by
a conjugate if necessary, we may assume that Q1 � Q. Since H is non-abelian,
Q is cyclic and jG W CG.P /j D q, we see that Q1 D Q. Since P is normal and
Q � H , we see that P1 is normalized by Q. Because H has exponent divisible
by the p-part pm of the exponent of G, the quotient P1P p=P p is non-trivial. The
action of Q on P=P p is irreducible and P1P p=P p is Q-invariant, and hence
P1P

p=P p D P=P p. So P is generated by P1 and P p, and hence P1 generates
P (as P p D ˆ.P /). Hence P1 D P . ThusH D P1Q1 D PQ D G, and soH is
not proper. This contradiction establishes the lemma.

Lemma 3.3. Let p and q be distinct primes. Moreover, supposeG is a non-abelian
semi-direct product of a normal abelian Sylow p-subgroup P of G by a cyclic
q-complement Q. For m > 1, suppose that P is the direct product of a cyclic
group of order pm and an elementary abelian p-group. SupposeQ centralizes the
cyclic group of order pm and acts irreducibly on the elementary abelian group.
Furthermore, suppose that jG W CG.P /j D q. Then G is exponent-critical.

Proof. We may write P D C � A, where C is a cyclic group of order pm and
where A is elementary abelian; Q centralizes C and acts irreducibly by conjuga-
tion on A. We choose a generator y for Q, so Q D hyi.

Suppose, for a contradiction, thatH is a p-witness forG. As in Lemma 3.2, we
may assume that H D P1Q, where P1 is normalized by Q.

Since H is non-abelian, there exists an element g WD ca 2 P1, where c 2 C
and a 2 A n ¹1º. Now Q acts non-trivially on A, since G is non-abelian. Since
Q acts irreducibly and non-trivially on A, we deduce that CA.y/ D ¹1º, and so
Œg; y� 2 A n ¹1º. Since P1 is normalized by Q, we see that Œg; y� 2 P1, and so
P1 \ A ¤ ¹1º. But Q acts irreducibly on A, and so A � P1. Since pm divides
the exponent of H and since m > 1, we see that there exists an element x 2 P1
such that x … AP p. Since AP p has index p in P , we find that hxiAP p D P ,
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and so hxiA D P (since P p D ˆ.P /). But hxiA � P1, and so P1 D P . Thus
H D P1Q1 D PQ D G, and so H is not proper. This contradiction establishes
the lemma.

Lemma 3.4. Let p and q be distinct primes. Let G D Q Ì P be a (non-abelian)
semi-direct product of a Sylow q-subgroup Q by a non-normal cyclic Sylow p-
subgroup P . Suppose that Q is special, so either Q is elementary abelian or
Q0 D Z.Q/ D ˆ.Q/. Moreover, suppose that P acts (by conjugation) trivially
on Q0 and irreducibly on Q=Q0. Then G is exponent-critical.

Proof. LetG D Q Ì P satisfy the conditions of the lemma. We show that there is
no p-witness for exp.G/.

Assume for a contradiction that H is a p-witness for exp.G/. Without loss
of generality, we may assume that H D Q1P1 for some Q1 � Q and P1 � P ,
where Q1 is P1-invariant. Clearly, P1 contains an element x which is of maximal
order in P , and so (since P is cyclic) we see that P1 D P D hxi.

Suppose that Q1 � ˆ.Q/. Since Q is special (whether elementary abelian
or not), Q0 D ˆ.Q/ � Z.Q/. So Q1 � Z.Q/ is abelian and, since P central-
izes Q0, we see that P centralizes Q1. But then H is abelian, and we have a con-
tradiction. We may deduce that Q1 contains an element in Q nˆ.Q/, and so
Q1ˆ.Q/=ˆ.Q/ is non-trivial.

Since Q is special, ˆ.Q/ D Q0, and so P acts irreducibly on Q=ˆ.Q/. Since
Q1 is P -invariant, the non-trivial subgroup Q1ˆ.Q/=ˆ.Q/ is a P -invariant sub-
group of Q=ˆ.Q/. So Q1ˆ.Q/=ˆ.Q/ D Q=ˆ.Q/, and thus Q1ˆ.Q/ D Q.
By the non-generation property of the Frattini subgroup, we may deduce that
Q1 D Q, and so it follows thatH D G. This contradicts the fact thatH is proper,
as required.

We are now in a position to prove Theorem C.

Proof of Theorem C. Lemmas 3.1 to 3.4 show that the four families described in
the theorem consist entirely of exponent-critical groups. It suffices to show that
any non-abelian exponent-critical p; q-group lies in one of these four families.

Let G be a non-abelian exponent-critical group with jGj D p˛qˇ , where p
and q are distinct primes. Suppose that there is no p-witness for G. So all proper
subgroups containing a Sylow p-subgroup P of G are abelian, and in particular,
P is abelian. Moreover, either P is normal or NG.P / is abelian.

Part I: P is normal. Suppose that a complement Q of P is also normal, and so
G D P �Q. Since no non-abelian proper subgroup of G can contain P , we see
that Q is minimal non-abelian. Now suppose that P is not cyclic. Let x be an
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element of maximal order in P . Then hxiQ is a p-witness for G, which is a con-
tradiction. So P must be cyclic and G lies in the family described in Lemma 3.1.

Now let us consider the case when P is normal but its complement, say Q,
is not. So we can find an element y 2 Q which is not in CG.P /. Thus P hyi is
a non-abelian subgroup ofG containing P . SoG D P hyi and thereforeQ D hyi.
Furthermore, hyqi � CG.P / since otherwise P hyqi is a p-witness for G. So
jG W CG.P /j D q.

Let the exponent of P be pm. Write P Œpm�1� for the subgroup of elements
of P of order dividing pm�1, and note that P p � P Œpm�1�. Set V D P=P p. We
regard V as a vector space over Fp. Indeed, V can be thought of as an FpQ-
module, with the action of Q derived from conjugation. Now Q acts non-trivially
on P by conjugation, and the only automorphisms of P that induce the identity on
P=ˆ.P / have p-power order. Sinceˆ.P / D P p, we see thatQ acts non-trivially
on V .

Let � WP ! V be the natural homomorphism. Now

U WD �.P Œpm�1�/ D P Œpm�1�=P p

is an FpQ submodule of V . Indeed, U is a proper submodule, since P has ex-
ponent pm. Since the order of Q is coprime to p, the module V is completely
decomposable, and so we may write V as the sum

V D U1 ˚ U2 ˚ � � � ˚ Uk ˚W1 ˚W2 ˚ � � � ˚W`

of irreducible submodules, where U D U1 ˚ U2 ˚ � � � ˚ Uk and where

W WD W1 ˚W2 ˚ � � � ˚W`

forms a complement to U in V . We have k � 0 and, since U is proper, ` � 1.
Since all the elements in P n P Œpm�1� have order pm, we see that ��1.Wi / has
a subgroup of P of exponent pm. We divide our argument into two sub-cases.
Sub-case 1: Suppose that Q acts non-trivially on a submodule Wi . We see that
h��1.Wi /;Qi is a non-abelian subgroup of G of exponent pm, and (since G
has no p-witness) we deduce that G D h��1.Wi /;Qi. Hence k D 0, ` D 1 and
V D Wi in this case. Since k D 0, we see that P is a direct product of cyclic
groups of order pm. Since Wi is irreducible and Wi D P=P p, we see that Q acts
irreducibly on P=P p. Thus G lies in the family described in Lemma 3.2.
Sub-case 2: Q acts trivially on all submodules Wi . Since Q acts non-trivially
on V , we see that Q acts non-trivially on one of the modules Ui . (In particu-
lar, this implies that Q acts non-trivially on U , and so m > 1.) The subgroup
h��1.Ui ˚W1/;Qi is non-abelian and of exponent pm, and so

h��1.Ui ˚W1/;Qi D G:
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Hence k D 1 D ` and V D U1 ˚W1. If Q acts non-trivially by conjugation on
P p, the subgroup h��1.W1/;Qi would be a p-witness, and so we deduce that Q
centralizes P p.

Taking p-powers in P induces a surjective FpQ-module homomorphism f

from V D P=P p to the FqQ-module P p=P p
2

. Since m > 1, this homomor-
phism is non-trivial. Since Q centralizes P p=P p

2

and acts non-trivially and ir-
reducibly on U1, we see that f .U1/ D 0 and f .W1/ D P p=P p

2

. Since W1 is
trivial and irreducible, it has dimension 1, and so P is a direct product of a cyclic
group of order pm with an elementary abelian group.

Let x 2 ��1.W1 n ¹0º/. The element x 2 P has order pm and (since jQj is
coprime to p) x is centralized byQ. The action ofQ by conjugation on P Œp� gives
P Œp� the structure of an FpQ-module. Let A be a complement to the submodule
in P Œp� generated by xpm�1 . Then P D hxi � A, where the action of Q fixes x
and preserves the direct product. Since AP p=P p D U1, we see that the action of
Q on A is irreducible. So G lies in the family described in Lemma 3.3.
Part II: P is not normal, and so NG.P / is abelian. Clearly, in this case, we
have P � Z.NG.P // and by Burnside’s Normal p-Complement Theorem, G has
a normal p-complement Q. Therefore, G is a semi-direct product of its Sylow
q-subgroup Q by a non-normal abelian Sylow p-subgroup P .

Suppose, for a contradiction, that P is not cyclic. Let x 2 P have maximal
order. Then hxiQ is a proper subgroup, so must be abelian (otherwise, we have
a witness for the p-part of expG). So all elements of maximal order lie in CG.Q/.
But P is generated by its elements of maximal order, and so P � CG.Q/. This
implies that P is normal, and we have our contradiction. Hence P is cyclic.

The subgroup P must centralize any proper P -invariant subgroup of Q; other-
wise, we have a witness to the p-part of exp.G/. So a generator x of P gives
rise (via conjugation) to an automorphism of Q that acts trivially on any proper
subgroup of Q. This automorphism is non-trivial, since P is not normal. Hence,
by [8, Theorem 5.3.7], Q is special, P acts trivially on Q0, and P acts irreducibly
on Q=Q0. So G lies in the family described in Lemma 3.4, and the theorem
follows.

4 Exponent-critical p-groups

We now examine exponent-critical p-groups. We will prove Theorems D and E in
this section.

Let P be a non-abelian p-group of order pn. We denote by MP the set of
elements of P of maximal order, or equivalently the set of elements that have order
equal to exp.P /. Note that P is exponent-critical if and only if MP \M D ; for
all non-abelian maximal subgroups M of P .
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Theorem 4.1. Let P be a finite non-abelian exponent-critical p-group. Then we
have P D ha; bi, where a 2 P has maximal order and b 2 P . Moreover, P is
solvable of derived length 2.

Proof. The Frattini subgroup ˆ.P / is contained in all maximal subgroups. Since
at least one maximal subgroup is abelian, it follows that ˆ.P / is abelian. Since
P 0 �P 0P p Dˆ.P / and since P is non-abelian, P is solvable of derived length 2.

We now show that P is 2-generated. Suppose, for a contradiction, that all ele-
ments in MP are central. Let a 2MP , and let x; y 2 P be such that Œx; y� ¤ 1.
As x is not central, it does not have maximal order. Hence, using the fact that
Œa; x� D 1, we see that xa has maximal order. Since a is central,

Œxa; y� D Œx; y�aŒa; y� D Œx; y� ¤ 1:

Thus we have a contradiction as required, and we may deduce that there exists an
element a 2MP of maximal order that is not central. Let b 2 P be such that
Œa; b� 6D 1. Thus ha; bi is a non-abelian subgroup of exponent exp.P /, and so
P D ha; bi. Hence the theorem follows.

Proof of Theorem D. Suppose P is a non-abelian finite group which is 2-gener-
ated and jP 0j D p. We show thatP is exponent-critical of type B. LetP D ha; bi.
Since P is nilpotent, ŒP 0; P � is a proper subgroup of P 0. Thus P has nilpotency
class 2. In particular, P 0 � Z.P /. Since P has nilpotency class 2, we get that
1 D Œa; b�p D Œap; b� D Œa; bp�. So ap and bp are central. Hence ˆ.P / � Z.P /
as, in a p-group, ˆ.P / is the subgroup generated by P 0 and the p-th powers of
a generating set. Let M be a maximal subgroup. Then ˆ.P / �M . Since P is
2-generated, ˆ.P / has index p2 in P and so has index p in M . Since ˆ.P / is
central in P , we see thatZ.M/ � ˆ.P /, and so the center ofM has index at most
p inM . But thenM must be abelian (andZ.M/ DM ). Thus P is a minimal non-
abelian group and hence exponent-critical of type B, as required.

Conversely, suppose that P is exponent-critical of type B. By Theorem 4.1,
P D ha; bi for elements a; b 2 P with a 2MP . Since P has type B, it con-
tains distinct abelian maximal subgroups M1 and M2. For x; y 2 P , we see that
Œx; y� 2 P 0 � ˆ.P / �M1 \M2, and so Œx; y� commutes with all elements of
M1 and M2. Since P DM1M2, we deduce that P 0 is central in P , and so P has
nilpotency class 2. Hence Œx; yz� D Œx; y�Œx; z� and Œxy; z� D Œx; z�Œy; z� for all
x; y; z in P . Using this, we see that P 0 D hŒa; b�i. LetMa be a maximal subgroup
of P such that a 2Ma. Since a has maximal order and P is exponent-critical, we
see that Ma is abelian. Clearly, bp 2Ma. Since P has nilpotency class 2, we see
that 1 D Œa; bp� D Œa; b�p D Œap; b�. So o.Œa; b�/ D p D jP 0j, and part (iii) of the
theorem follows.
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We comment that the isomorphism classes of p-groups of type B are known
precisely, as part of the (more general) classifications of Blackburn [3] or Ahmad,
Magidin and Morse [1] (see also [2, 10]). Using the approach in [1], we have the
following list.

Theorem 4.2. Let P be an exponent-critical finite non-abelian p-group of type B

of order pn. Then

P Š ha; b W Œa; b�p D Œa; b; a� D Œa; b; b� D 1I ap
˛

D Œa; b�p
�

; bp
ˇ

D Œa; b�p
�

i;

where ˛; ˇ; �; � are integers such that ˛ � ˇ � 1, ˛ C ˇ D n � 1, 0 � �; � � 1.
When p is odd, P is isomorphic to exactly one of the groups whose parameters
.˛; ˇ; �; ı/ are listed below:

(1) (a) .˛; ˇ; 0; 1/ with ˛ > ˇ � 1,
(b) .˛; ˇ; 1; 1/ with ˛ > ˇ � 1,
(c) .˛; ˇ; 1; 0/ with ˛ > ˇ � 1,

(2) (a) .˛; ˛; 0; 1/ with ˛ � 1,
(b) .˛; ˛; 1; 1/ with ˛ � 1.

When p D 2, P is isomorphic to exactly one of the groups whose parameters
.˛; ˇ; �; ı/ are

(1) (a) .˛; ˇ; 0; 1/ with ˛ > ˇ � 1,
(b) .˛; ˇ; 1; 1/ with ˛ > ˇ � 1,
(c) .˛; ˇ; 1; 0/ with ˛ > ˇ � 1,

(2) (a) .˛; ˛; 0; 1/ with ˛ > 1,
(b) .˛; ˛; 1; 1/ with ˛ > 1,

(3) (a) .1; 1; 0; 0/,
(b) .1; 1; 1; 1/.

We now turn to exponent-critical groups of type A, with an aim of proving
Theorem E. In the lemma below, we write Œx;i b� for the i -times iterated com-
mutator of x and b. So, for example, Œx;1 b� D Œx; b�, Œx;3 b� D ŒŒŒx; b�; b�; b� and
Œx;0 b� D x. We write Zpm for the cyclic group of order pm.

Lemma 4.3. Let P be a non-abelian exponent-critical p-group of type A. Let A
be a maximal subgroup containing an element of maximal order pm.

(i) A is abelian, normal, and contains all elements of order pm.

(ii) A Š Zpm � S , where S has exponent dividing pm�1.

(iii) P 0 is abelian, of exponent dividing pm�1.
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Proof. A is normal, since all maximal subgroups of a p-group are normal. If A
were non-abelian, P would have a proper non-abelian subgroup of exponent pm

and hence P would not be exponent-critical. This contradiction shows that A is
abelian. Since P is of type A, we have that A is the unique maximal subgroup of
P which is abelian. Clearly, A will contain all the elements of maximal order and
part (i) of the lemma follows.

To prove part (ii), first note that A has exponent pm, and so A Š .Zpm/r � S ,
where r is a positive integer and S has exponent dividing pm�1. DefineK to be the
subgroup of all elements ofA of order dividing pm�1. Every element ofA nK has
order pm, andA=K is elementary abelian of order pr . Let b 2 P n A. Since b acts
nilpotently on A=K, there exists a subgroup L containingK such that b 2 NP .L/
and L has index p in A. Note that L is normal in P , since ¹bº [ A � NP .L/.
Consider the subgroupM generated by L and b. Since A has index p in P , we get
that bp 2 A. Since b 2 P n A, the order of b divides pm�1, and so bp 2 K � L.
Hence M has index p in P and so is maximal. If r > 1, then L contains elements
of A nK, and so L contains an element of maximal order. Hence M must be
abelian (as P is exponent-critical) and therefore M D A. But b 2M and b … A.
This contradiction shows that r D 1, and so part (ii) is established.

To prove (iii), we note that K has index p in A by part (ii) and hence K has
index p2 in P . So P=K is abelian and therefore P 0 � K. Hence the exponent of
P 0 divides pm�1, as required.

Lemma 4.4. Let P be a p-group. Suppose P possesses an abelian maximal sub-
group A. Let b 2 P n A.

(i) The map �WA! A defined by �.x/ D Œx; b� is a homomorphism.

(ii) For x 2 A, and b 2 P n A,

.bx/i D bixi
i�1Y
jD1

Œx;j b�
. i
jC1/: (4.1)

(iii) For x 2 A, and b 2 P n A,

Œx;p b� D

p�1Y
iD1

Œx;i b�
�.pi /:

Proof. To prove (i), we note that, for all x 2 A, Œx; b� 2 A as A is normal in P . So
Œx; b�y D Œx; b� for all y 2 A, since A is abelian. Hence

Œxy; b� D Œx; b�y Œy; b� D Œx; b�Œy; b�;

and � is a homomorphism, as required.
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We prove equality (4.1) by induction on i . Equality (4.1) clearly holds when
i D 1. Assume the equality holds for a fixed value of i . Since P=A is abelian, all
commutators lie in the abelian subgroup A. Hence

.bx/ibx D bixi
� i�1Y
jD1

Œx;j b�
. i
jC1/

�
bx by our inductive hypothesis

D biC1xi Œx; b�i
� i�1Y
jD1

Œx;j b�
. i
jC1/

�� i�1Y
jD1

Œx;jC1 b�
. i
jC1/

�
x

by part (i)

D biC1xiC1Œx; b�.
i
1/C.

i
2/
� i�1Y
jD2

Œx;j b�
. i
jC1/

�� iY
jD2

Œx;j b�
. ij/
�

as x 2 A;

D biC1xiC1
iY

jD1

Œx;j b�
. i
jC1/C.

i
j/ since

�
i

i C 1

�
D 0

D biC1xiC1
iY

jD1

Œx;j b�
. iC1jC1/;

and so part (ii) follows by induction.
Finally, we prove part (iii) of the lemma. We first prove that, for any positive

integer i ,

b�ixbi D x

iY
jD1

Œx;j b�
. ij/: (4.2)

To show this, we note that b�1xb D xŒx; b�, and so (4.2) holds when i D 1.
If (4.2) holds for a given value of i , we see that

b�.iC1/xbiC1 D b�1x

� iY
jD1

Œx;j b�
. ij/
�
b

D xŒx; b�

� iY
jD1

Œx;j b�
. ij/
�� iY

jD1

Œx;jC1 b�
. ij/
�

D x

iC1Y
jD1

Œx;j b�
. ij/C.

i
j�1/

D x

iC1Y
jD1

Œx;j b�
.iC1j /;
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and so, by induction, equation (4.2) holds for all i . Now bp 2 A since A is maxi-
mal. As A is abelian, b�pxbp D x, and so

x D x

pY
jD1

Œx;j b�
.pj/:

Hence part (iii) of the lemma follows.

Recall that we defined a group U and normal subgroup D in Definition 1.3.
Our aim now is to construct a “universal” group for the exponent-critical p-groups
of exponent pm and type A, as the quotient U=D of the semi-direct product U .
Before this, in the two lemmas below, we examine some of the properties of the
group U .

Lemma 4.5. The automorphism � defined in Definition 1.3 has order p. In partic-
ular, the definition of U as a semi-direct product is well-defined.

Proof. We see that, for 0 � j � p � 1,

�i .a0/ D

iY
jD0

a
. ij/
j ;

and so a short calculation shows that �p.a0/ D �.�p�1.a0// D a0. The lemma
now follows since W is generated by �j .a0/ for 0 � j � p � 1.

Lemma 4.6. Let U D W Ì hb0i be the semi-direct product defined above.

(i) We have ai D Œa0;i b0� for 0 � i � p � 1. In particular, U D ha0; b0i.

(ii) We see that jU j D p.m�1/.pC1/C1.

(iii) The group U is defined by the relations

ŒŒa0;i b0�; Œa0;j b0�� D 1 for 0 � i < j � p � 1;

Œa0;p ; b0� D

p�1Y
jD1

Œa0;j b0�
�.pj/;

a
pm

0 D 1;

Œa0;i b0�
pm�1

D 1 for 1 � i � p � 1;

b
pm�1

0 D 1

in the generating set ¹a0; b0º.
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(iv) The group U is solvable of class 2. The subgroup hbp0 iW is abelian and
maximal.

(v) The derived subgroup U 0 of U is given by

U 0 D ha1; a2; : : : ; ap�1i D hŒa0;i b0� W 1 � i � p � 1i:

In particular, U 0 is abelian of exponent pm�1 and order p.m�1/.p�1/.

(vi) The Frattini subgroup ˆ.U / of U is given by

ˆ.U / D ha
p
0 ; a1; a2; : : : ; ap�1; b

p
0 i:

(vii) Any non-trivial subgroup of U 0 that is normal in U must contain the (non-
trivial) element Œa0;p�1 b0�p

m�2

.

Proof. Parts (i) to (vi) of the lemma are straightforward to prove, and we leave
them to the reader. Note that Lemma 4.6 (iv) allows us to use Lemma 4.4 when
reasoning about U .

To prove (vii), note that the map �WU 0 ! U 0 defined by �.x/ D Œx; b0� is a
homomorphism with kernel hap

m�2

p�1 i of order p. Since U is nilpotent, �i is trivial
for some positive integer i . Let K � U 0 be a non-trivial subgroup of U 0 that is
normal in U . Let i be the smallest integer such that �i .K/ D ¹1º. Then

�i�1.K/ D ha
pm�2

p�1 i:

Since K is normal in U , we have �i�1.K/ � K, and so part (vii) of the lemma
follows.

Proof of Theorem E. Let P be a non-abelian exponent-critical p-group of expo-
nent pm of type A. We prove part (i) of the theorem by showing that P Š U=N
for some normal subgroup N 2 N .

By Theorem 4.1, we have that P D ha; bi, where a; b 2 P with a of order pm.
Consider the free group F generated by a0 and b0. Let � be the (surjective) homo-
morphism from F to P mapping a0 to a and b0 to b. We show that P is a quotient
U=N of U by checking that the relations defining U are all satisfied under � .
(Here we are making use of the fact, see Lemma 4.6 (i), that U D ha0; b0i.)

Let A be the abelian maximal subgroup containing a. Since P is not abelian,
b 2 P n A. Lemma 4.3 (i) shows that b has order dividing pm�1, since all ele-
ments of order pm lie in A. Hence ap

m

D bp
m�1

D 1. Since P 0 � ˆ.P / � A,
we see that the subgroup generated by P 0 and a is abelian. In particular,

ŒŒa;i b�; Œa;j b�� D 1 for 0 � i � j � p � 1:
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Lemma 4.3 (iii) implies that Œa0;i ; b0�p
m�1

D 1 for 1 � i � p � 1. Finally, Lem-
ma 4.4 (iii) shows that Œa0;p b0�D

Qp�1
jD1 Œa0;j b0�

�.pj/. HenceP Š U=N for some
normal subgroupN . Moreover, under this isomorphism, the element a 2 P corre-
sponds to the coset a0N , and b corresponds to b0N .

We now check that the normal subgroup N lies in N . Since a0 and a both
have order pm, we see that N \ ha0i D ¹1º. Since P is non-abelian, we see that
U 0 6� N . Since U and P are 2-generated, we see that N � ˆ.U /. So to prove
part (i) of the theorem, it remains to show that D � N . It suffices to show that
ap

m�1

Œa;p�1 b�
pm�2 D 1 in P .

Consider the element ba 2 P ; since ba … A, we see that ba has order dividing
pm�1, by Lemma 4.3 (i). Now, by Lemma 4.4 (ii),

.ba/p D bpap
p�1Y
jD1

Œa;j b�
. p
jC1/ D apŒa;p�1 b�b

p

�p�2Y
jD1

Œa;j b�
. p
jC1/=p

�p
;

since p divides all the binomial coefficients in the product and since all the factors
lie in the abelian subgroup A. But b has order dividing pm�1 and the commutators
all have order dividing pm�1 by Lemma 4.3 (iii). Hence .ba/p D apŒa;p�1 b�x,
where x 2 A has order dividing pm�2. So

1 D .ba/p
m�1

D ..ba/p/p
m�2

D ap
m�1

Œa;p�1 b�
pm�2 ;

as required. Hence part (i) follows.
To prove part (ii), we first investigate the orders of elements in the quotient

Q D U=D. Since D \ ha0i D ¹1º, the element a0D 2 Q has order pm. Hence
the exponent ofQ is divisible by pm. DefineM to be the subgroupM WD hbp0 iW .
By Lemma 4.6 (iv), M is maximal and abelian of exponent pm. Since D �M ,
the subgroup M=D is maximal in Q. Moreover, since a0D 2M=D, we see that
M=D of Q has exponent pm. Our next aim is to show that

any element g 2 Q n .M=D/ has order dividing pm�1: (4.3)

To see this, write g 2Q n .M=D/ in the form g D br0xD, where 1� r � p � 1
and x 2M . Replacing g by gr�1 mod p does not change the order of g, and so
we may assume without loss of generality that r D 1. Since M=D is an abelian
maximal subgroup of Q, Lemma 4.4 (ii) shows that

.b0x/
pD D b

p
0 x

p

p�1Y
jD1

Œx;j b0�
. p
jC1/D:

The factors in this product all lie in the abelian subgroup M=D of Q. The factor
b
p
0D has order dividing pm�2 as b0 has order pm�1. The factors Œx;j b0�.

p
jC1/D
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for 1 � p � 2 have order dividing pm�2, since (by Lemma 4.6 (v)) the derived
subgroup of U has exponent pm�1 and

�
p
jC1

�
is divisible by p. Hence

.b0x/
pm�1D D xp

m�1

Œx;p�1 b0�
pm�2D:

Define
S D ¹x 2M W xp

m�1

Œx;p�1 b0�
pm�2

2 Dº:

The map x 7! xp
m�1

is a homomorphism on M . Moreover, the map x 7! Œx; b0�

is a homomorphism on M by Lemma 4.4 (i), and so the map x 7! Œx;p�1 b0� is
also a homomorphism. Thus the set S is in fact a subgroup of M . To prove (4.3),
it suffices to show that S DM . Let x D Œa0;i b0�, where 1 � i � p � 1. Then x
has order dividing pm�1 since x 2 U 0. Now, the order of Œx;p�1 b0� divides the
order of Œx;p�i b0�. But the order of Œx;p�i b0� divides pm�2 since

Œx;p�i b0� D Œa0;p b0� D

p�1Y
iD1

Œa0;i b�
�.pi / 2 .U 0/p:

Hence x D Œa0;i b0� 2 S for 1 � i � p � 1. By Lemma 4.6 (v), this implies that
U 0 � S . Clearly, bp0 2 S , since the order of bp0 is pm�2. Finally, we have a0 2 S
as ap

m�1

0 Œa0;p�1 b0�
pm�2 2 D. Since M is generated by a0, bp0 and U 0, we see

that (4.3) holds, as required.
We are now in a position to prove part (ii) of the theorem. Clearly, U=N is non-

abelian, since N does not contain U 0. Since U=D has exponent pm, the exponent
of U=N divides pm. But U=N contains the element a0N of order pm (since
N \ ha0i D ¹1º), so U=N has exponent pm.

Since N � ˆ.U /, every maximal subgroup of U=N is of the form H=N for
some maximal subgroup of U . Suppose a maximal subgroup H=N contains an
element hN of maximal order pm. Then h 2 U , and since D � N , we get that
hD has order pm. By (4.3), hD 2M . By Lemma 4.6 (vi), we may write h D ar0x
for some x 2 ˆ.U /, where 1 � r � p � 1. By replacing h by a suitable power
of h, we may assume that r D 1. Since H is maximal, H contains ˆ.U /, and so
ha0; ˆ.U /i � H . But ha0; ˆ.U /i DM , a maximal subgroup of U , so H DM .
But thenH=N is abelian, since it is a quotient of the abelian groupM . This shows
that U=N is exponent-critical of exponent pm, and so part (ii) follows.

To prove the first statement of part (iii), suppose that p D 2 and m D 2. For a
contradiction, let P be an exponent-critical 2-group of exponent 22 and of type A.
By part (i), we have that P Š U=N for some N 2 N . Hence

jP j D jU=N j � jU=Dj D 23:
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Since P is a non-abelian group, it must have order 8 and be 2-generated. So it
cannot have a unique maximal subgroup. Further, any maximal subgroups will
have order 22, and so are all abelian. Hence P is not of type A. This contradiction
shows that the first statement of part (iii) holds.

Assume now that p is odd, orm � 3. LetN 2 N . Suppose, for a contradiction,
that N \ U 0 is non-trivial. By Lemma 4.6 (vii), we see that Œa0;p�1 b0�p

m�2

2 N .
But ap

m�1

0 Œa0;p�1 b0�
pm�2 2 D � N , and so ap

m�1

0 2 N . This contradicts the
condition that N \ ha0i D ¹1º. So N \ U 0 D ¹1º for all N 2 N . Hence

j.U=N/0j D jU 0j D p.m�1/.p�1/:

Since we are assuming that p is odd or m � 3, we see that j.U=N/0j > p. Since
the derived subgroup of an exponent-critical p-group of type B has order p, we
see that U=N has type A when p is odd or m � 3. So part (iii) of the theorem
follows.

Corollary 4.7. There is a unique largest non-abelian exponent-critical p-group of
exponent pm of type A. This p-group has cardinality p.m�1/.pC1/.

Proof. The corollary follows since D 2 N .

The views expressed are those of the authors and do not reflect the official policy
or position of the Department of the Army, the Department of Defense or the US
Government.
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