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Visual right-angled Artin subgroups of
two-dimensional right-angled Coxeter groups
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Abstract. There is a procedure, due to Dani and Levcovitz, for taking a finite simplicial
graph � and a subgraph ƒ of its complement, checking some conditions, and, if satisfied,
producing a graph � such that the right-angled Artin group with presentation graph �
is a finite index subgroup of the right-angled Coxeter group with presentation graph � .
They do not tell us how to find ƒ, given � . We show, in the 2-dimensional case, that the
existence of such a ƒ is connected to the graph property of satellite-dismantlability of � ,
and we use this connection to give an algorithm for producing a suitable ƒ or deciding
that one does not exist.

1 Introduction

Every right-angled Artin group (RAAG) is a finite index subgroup of a right-
angled Coxeter group (RACG), and given the presentation graph � of the RAAG
A�, there is a simple graph operation that turns it into a graph � that is the pre-
sentation graph of the RACG supergroup W� (see [8]). The converse is not true;
RACGs are more varied, and there are invariants such as divergence that show that
some RACGs are not even quasiisometric to a RAAG. So what graph conditions
on � imply that W� is commensurable to a RAAG?

Consider the case that � is a square. Each pair of diagonal vertices generate
an infinite dihedral group, and these two dihedral groups commute. Each of the
dihedral groups has an index two, infinite cyclic subgroup, and these make an
index four, Z2 subgroup of W� . This is the basic example of a finite index visual
RAAG subgroup; it is “visual” in the sense that we “see” the RAAG generators as
pairs of non-adjacent vertices of � , and they commute when the vertex pairs from
� make a square.

This situation generalizes as follows: let ƒ be a subgraph of the complement
graph �c of � , that is, �c has the same vertex set as � , and has an edge if and only
if � does not. Edges of ƒ give pairs of generators of W� that generate an infinite
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dihedral subgroup. Let � be the graph with one vertex for each edge of ƒ, and an
edge between two vertices if the corresponding subgroups commute, which is the
case exactly when they span a square in � . There is a homomorphism from A� to
W� given by sending a generator of A� to the product inW� of the two endpoints
of the corresponding edge of ƒ. In general, however, this homomorphism is not
injective, nor does it have finite index image. Based on initial results of LaForge
[12], Dani and Levcovitz [5] give conditions on ƒ that determine whether the nat-
ural homomorphism is injective when ƒ has at most two connected components.
In the 2-dimensional case, when � is triangle-free, visual RAAG subgroups only
occur for ƒ with at most two components [5, Lemma 4.7], and in this case, they
give necessary and sufficient conditions onƒ for A� to be a finite index subgroup
of W� .

We focus on the 2-dimensional case, and call a ƒ < �c satisfying their condi-
tions a finite index Dani–Levcovitz ƒ (FIDL-ƒ). Checking that a given subgraph
of �c is a FIDL-ƒ is algorithmic, and since � is finite, one can simply enumerate
subgraphs of �c and check them all. This is slow, even for rather small examples.
We are interested in a more efficient algorithm for starting from � alone and either
producing a FIDL-ƒ or deciding that one does not exist.

We give such an algorithm as Global Search Algorithm 5.3. The key step, The-
orem 4.7, is that a FIDL-ƒ exists if and only if � admits a satellite-dismantling
sequence that reduces it to a square and satisfies some additional conditions that
can be checked only from � . We apply this algorithm to a large number of exam-
ples via computer computations in forthcoming work.

2 Preliminaries

2.1 Graphs

The join ofA and B is denoted by A � B , that is, the complete bipartite graph with
one part the elements of A and the other the elements of B . A graph is complete
if, for every pair of vertices, there exists an edge between them. It is incomplete
if there exist two vertices that are not joined by an edge. The empty graph and
a graph consisting of a single vertex are complete. A clique is a complete subgraph.
A graph � is separated by a clique if there is a clique C such that � � C has
more than one connected component. A disconnected graph is separated by the
empty clique. The link lk.v/ of a vertex v in a graph is the induced subgraph on
its neighboring vertices. The star st.v/ of a vertex v is ¹vº � lk.v/. A loop is an
edge path that starts and ends at the same vertex, and a cycle is a loop that has no
repeated vertices. A set of vertices V of � , or the vertex set of a subgraph, are said
to span or induce the maximal subgraph of � with V as its vertex set. A subgraph
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of � is induced or full if it spans itself. Given a cycle 
 , an n-chord, or just chord
when n D 1, is a path of length n between vertices x and y of 
 such that both
subsegments of 
 between x and y have length greater than n.

Vertices v ¤ w are twins if lk.v/ D lk.w/, and v is a satellite of w if v ¤ w
and lk.v/ � lk.w/, so v is a satellite of each of its twins, but not of itself. A vertex
is a satellite if it is a satellite of some vertex. A graph � is satellite-dismantlable to
a square if there exists a sequence � D �0 � �1 � � � � � �n such that �i � �iC1
is a single satellite and �n is a square. This is reminiscent of the more common
graph-theoretic notion of a dismantlable graph, in which a vertex v is dominated
by w if st.v/ � st.w/, and a graph is dismantlable if it is possible to reduce it to
a single vertex by removing one dominated vertex at a time.

2.2 RACGs and RAAGs

See [7] and [4, Section 2.6] for background on RACGs and RAAGs.

Definition 2.1. The right-angled Coxeter group (RACG) W� defined by a finite,
simplicial graph � is

W� D hs 2 � j s
2
D 1 for all s 2 �; st D ts if .s; t/ 2 Edges.�/i:

The right-angled Artin group (RAAG) A� defined by a finite, simplicial graph �
is

A� D hm 2 � j mn D nm if .m; n/ 2 Edges.�/i:

The graphs are called the presentation graphs1.

Definition 2.2. If W� is a RACG and ‡ is an induced subgraph of � , then the
subgroup of W� generated by vertices of ‡ is called a special subgroup. It is
a RACG with presentation graph ‡ , and is denoted WV.‡/ or W‡ . The analogous
statement and terminology also applies to RAAGs.

We will restrict to one-ended groups. A RACG is one-ended if and only if its
presentation graph is incomplete and has no separating clique [7, Theorem 8.7.2].
A RAAG is one-ended if and only if its presentation graph is connected and has
at least two vertices. To further simplify the set-up, we consider only RACGs and
RAAGs whose Davis and Salvetti complexes, respectively, are two-dimensional.
This is satisfied for both RACGs and RAAGs if the presentation graph is triangle-
free, in addition to the above conditions for one-endedness.

1 This is different from the conventions used to define the Coxeter graph, which is more com-
monly used for not-necessarily right-angled Coxeter groups.
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There is a quasiisometry invariant known as divergence. In particular, if a group
has polynomial divergence, then the degree of the polynomial is a quasiisome-
try invariant. RAAGs have at most quadratic divergence [1, Corollary 4.8], thus
so does every group quasiisometric to a RAAG. By work of Dani and Thomas
[6, Theorem 1.1], a one-ended, two-dimensional RACG has at most quadratic di-
vergence if and only if its presentation graph has a property known as CF S (com-
ponent of full support/constructed from squares). This was generalized to higher
dimension in [2, Definition 1.3].

Definition 2.3. The diagonal graph �.�/ of � is the graph whose vertices are
diagonals of induced squares in � , with ¹a; bº and ¹c; dº connected by an edge if
¹a; bº � ¹c; dº is an induced square in � .

The support supp.¹a; bº/ of a vertex ¹a; bº of �.�/ is the pair of vertices ¹a; bº
in � . The support of a subset of �.�/ is the union of the supports of its vertices.

When � is triangle-free and has no separating cliques,2 it is CF S if �.�/ has
a connected component whose support is all of � .

The graph � is strongly CF S if it is CF S and �.�/ is connected.

Remark. The usual definition of CF S uses a graph �.�/ whose vertices are in-
duced squares of � , with an edge between two vertices if they intersect in a diago-
nal. The graphs �.�/ and �.�/ carry the same information, but �.�/ is topolog-
ically simpler, since many squares intersecting in a common diagonal form a star
in �.�/ but a clique in �.�/. The diagonal graph is also more natural for our
purposes because, when we have � with a FIDL-ƒ, then the commuting graph �
of ƒ sits as a subgraph in �.�/; see Remark 2.6.

Theorem 2.4 ([6]). If � is an incomplete, triangle-free graph without separating
cliques such that W� is quasiisometric to a RAAG, then � is CF S .

Lemma 2.5. If � is incomplete, triangle-free, and CF S , then it has no separating
clique.

Proof. Take a; b 2 � . If a and b are the diagonal of some square, then they are not
separated by a clique. Otherwise, there is a path ¹p0; q0º; : : : ; ¹pn; qnº in the full
support component of �.�/ with n > 0, p0 D a, and pn D b. This path corre-
sponds to a chain of squares ¹pi ; qiº � ¹piC1; qiC1º in � , with successive squares
sharing a diagonal. The union of the squares is not separated by a clique.

2 In the general case, � is CF S if �.�/ has a connected component whose support is all non-
cone vertices of � . If � is triangle-free and not a star, then it has no cone vertices.
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2.3 Dani–Levcovitz conditions

Let ‚ D ‚.�;ƒ/ be the graph with vertex set � , with edges from both � and
ƒ < �c . The edges coming from � are �-edges, and the edges coming from ƒ

are ƒ-edges. Similarly, a path consisting only of �-edges is a �-path, etc. The ƒ-
hull, hullƒ, of a subset of vertices of ‚ is the vertex set of their convex hull in ƒ.
A set of vertices is ƒ-convex if it is equal to its ƒ-hull.

Dani and Levcovitz [5] give subgroup conditions R1–R4 to determine that the
RAAGA� on the commuting graph� associated toƒ is a visual RAAG subgroup
of W� . They give index conditions F1 and F2 to ensure that the visual RAAG
subgroup is of finite index in W� . They show in the 2-dimensional case that it
always suffices to find ƒ with two components, and for two-component ƒ, their
conditions are necessary and sufficient.

The conditions are as follows, simplified by specializing to the case that � is an
incomplete, triangle-free graph without separating cliques. Let ƒr (red) and ƒb

(blue) be disjoint, connected subgraphs of �c , with ƒ D ƒr tƒb.

R1: ƒr and ƒb are trees.

R2: ƒr and ƒb are induced subgraphs of ‚.

F1: ƒ spans � .

These conditions are true if and only if � is bipartite, with a bicoloring r=b (every
vertex is colored either r or b, and adjacent vertices have different colors), and
ƒr and ƒb are trees in �c spanning the r and b parts, respectively. We will not
state F2. In our case, it is always satisfied if R2 and F1 are [5, Remark 4.3]. As-
suming these conditions, we can state the remaining two conditions in simplified
form.

R3: If ¹a; bº � ¹c; dº is a square in � , then hullƒ¹a; bº � hullƒ¹c; dº � � .

R4: If a b is an edge in a cycle 
 of � , then there is a square ¹a; a0º � ¹b; b0º
with a0; b0 2 hullƒ.
/.

Remark 2.6. Notice that the assumption that � is incomplete with no separating
clique implies W� is 1-ended, so A� is 1-ended, so � is connected and has more
than one vertex. Thus, every edge of ƒ is a diagonal of a square in � , since oth-
erwise it would have nothing to commute with, so would give an isolated vertex
in �. Thus, we may identify � with a subgraph of �.�/.

One nice application of these conditions in [5] is to connect them to condi-
tions given by Nguyen and Tran [15] on deciding when a planar graph � defines
a RACG that is quasiisometric to a RAAG. The conclusion is that, for planar � ,
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Figure 1. A bicycle wheel.
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Figure 2. Example of � , a 2-component FIDL-ƒ and the commuting graph � of its
edges for � the 1-skeleton of a 3-cube with one space diagonal.

W� being quasiisometric to a RAAG implies graph conditions that imply R1–R4

and F1 and F2, so W� actually has a finite index visual RAAG subgroup, which
happens always to be defined by a tree �. Dani and Levcovitz also give two fami-
lies of non-planar graphs to which their conditions apply and yield � that are not
trees. We mention one of these families here.

Example 2.7. A bicycle wheel is a graph consisting of adjacent vertices x and y,
the “hub”, a circle of even length 2n � 6 given by c1, d1, c2,. . . , dn, the “rim”,
and edges from each ci to x, and from each di to y, the “spokes”.

A bicycle wheel admits a 2-component FIDL-ƒ consisting of the opposite of
the spokes: one star consisting of an edge from x to each di and another consisting
of an edge from y to each ci . The commuting graph� is a circle of the same length
as the rim.

In Figure 2, the case n D 3 is also recognizable as the 1-skeleton of a 3-cube
with one space diagonal.

2.4 Splittings of RACGs

We have mentioned thatW� is one-ended when it is incomplete with no separating
clique. This corresponds to not having a splitting as an amalgamated product over
a finite group. The next simplest splittings are over two-ended, or virtually Z,
groups.
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A JSJ decomposition of a finitely presented group is a certain maximal graph
of groups decomposition (see [11] for the precise definition) with two-ended edge
groups and vertex groups in three categories: two-ended, hanging or rigid. A hang-
ing vertex group is essentially the fundamental group of a surface with boundary
and a rigid vertex group does not split any further with respect to its incident edge
groups. JSJ decompositions are not unique, but there is a way to encode all of them
simultaneously in a JSJ graph of cylinders. It is the canonical representative for
the deformation space of JSJ decompositions of the group and it can be used to
deduce quasiisometry invariants, by [3]. The idea is that some of the two-ended
edge and vertex groups in a JSJ decomposition may be commensurable, and these
can be grouped together to form cylinders, and from this, a new decomposition is
derived. For RACGs, all of this is visible in the presentation graph: Mihalik and
Tschantz [14] show a one-ended, two-dimensional RACG W� admits a splitting
over a two-ended subgroup if and only if � has a cut

�
a
b

�
.

Definition 2.8. If � is an incomplete and triangle-free graph without separating
cliques, a cut

�
a
b

�
means one of the following, both of which have the property that

the element ab 2 W� generates an infinite cyclic subgroup that is finite index in
W.a

b/
.

� A cut pair
�
a
b

�
D ¹a; bº: a pair of non-adjacent vertices such that � � ¹a; bº is

not connected.

� A 2-path cut triple
�
a
b

�
D ¹a; b; cº: a triple of vertices with c 2 lk.a/ \ lk.b/

such that � � ¹a; bº is connected but � � ¹a; b; cº is not.

Definition 2.8 implies that every component of � �
�
a
b

�
contains a neighbor of

each vertex in
�
a
b

�
.

A cut pair ¹a; bº is crossed by another, disjoint, cut pair ¹c; dº if a and b lie in
different connected components of � � ¹c; dº. A cut

�
a
b

�
D ¹a; b; cº is crossed by

a cut
�
d
e

�
D ¹d; e; f º if c is equal to f and a and b lie in different connected com-

ponents of � � ¹d; e; cº. Cut pairs and 2-path cut triples do not cross each other.
To see this, suppose a � c � b is a 2-path separating � and ¹x; yº is a cut pair
such that ¹a; b; cº has vertices in different complementary components of ¹x; yº.
Without loss of generality, c D x and y … ¹a; bº. Let z be a vertex in a different
complementary component of ¹a; b; cº than y. There are no separating cliques,
and ¹a; cº is a clique, so ¹a; b; cº separates z from y, but ¹a; cº does not, so there
is a shortest path 
 0

b
from z to y that goes through b and avoids a and c. Let 
b

be the initial segment of 
 0
b

that ends at b. Similarly, let 
 0a be a shortest path from
z to y that goes through a and avoids b and c, and let 
a be the initial segment
ending at a. The concatenation of the inverse of 
a with 
b is a path from a to b
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that avoids y and c D x, contradicting the supposition that a and b are in different
complementary components of ¹x; yº.

A cut that is not crossed by any other cut is uncrossed. Crossing cuts are re-
sponsible for hanging vertices in the JSJ decomposition, but RAAGs do not have
these [13], so they cannot appear in groups quasiisometric to RAAGs.

Theorem 2.9 ([9, Theorem 3.29]). Let � be an incomplete, triangle-free graph
without separating cliques. If the JSJ graph of cylinders of W� has no hanging
vertices, it consists of the following.

� For every pair ¹a; bº such that there is an uncrossed cut
�
a
b

�
, there is a cylinder

vertex with vertex group W¹a;bº[.lk.a/\lk.b//.

� For every set B of essential (valence at least 3) vertices in � satisfying the
following conditions, there is a rigid vertex with vertex group WB .

(B1) No cut separates B .

(B2) The set B is maximal among all sets satisfying (B1).

(B3) jBj � 4.

Furthermore, a pair of vertices is connected by an edge if and only if the pair
consists of a cylinder vertex and a rigid vertex whose vertex groups intersect in
a subgroup containing the two-ended cut defining the cylinder. The edge group is
the intersection of its vertex groups.

3 FIDL-ƒ convexity

If ƒ is a forest and x and y are in the same component, let Œx; y�ƒ denote the
unique ƒ-geodesic joining them.

Lemma 3.1. Let � be an incomplete, triangle-free graph with no separating clique
that admits a FIDL-ƒ. Let

�
v
v0

�
be a cut of � . Every component of � �

�
v
v0

�
con-

tains a common neighbor of v and v0, that is, a single vertex that is adjacent to
both v and v0.

Proof. Pick a component of � �
�
v
v0

�
; let b be a vertex in that component, and let a

be a vertex from a different component. By Theorem 2.4, we can choose a geodesic
¹p0; q0º; : : : ; ¹pn; qnº in �.�/ such that a 2 ¹p0; q0º and b 2 ¹pn; qnº. Let i0 be
the least index such that ¹pi0 ; qi0º contains a vertex, say pi0 , in the same compo-
nent of � �

�
v
v0

�
as b.

If i0 D 0, then qi0 D a and there is a square with one diagonal containing ver-
tices in different components of the cut. This is only possible if the cut

�
v
v0

�
is
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a cut pair ¹v; v0º and the square is ¹a; p0º � ¹v; v0º, in which case p0 is a common
neighbor of v and v0 in the b-component.

If i0 > 0, then ¹pi0�1; qi0�1º � ¹pi0 ; qi0º is a square with pi0 in the b-com-
ponent and with pi0�1 and qi0�1 non-adjacent vertices that are both adjacent to
pi0 , but neither of which are in the same component of � �

�
v
v0

�
as pi0 . Then

¹pi0�1; qi0�1º D ¹v; v
0º.

Lemma 3.2. Let � be an incomplete, triangle-free graph with no separating clique
that admits a FIDL-ƒ. Let

�
v
v0

�
be a cut of � . Then ƒ contains an edge between v

and v0.

Proof. By Lemma 3.1, it is possible to choose vertices a and b that are common
neighbors of v and v0 and contained in different components of � �

�
v
v0

�
. Every

common neighbor of a and b must lie in the cut, so the triangle-free condition
implies the only common neighbors of a and b are v and v0.

Now, ¹a; bº � ¹v; v0º is a square, so R3 implies ¹a; bº � hullƒ¹v; v0º � � , so
hullƒ¹v; v0º D ¹v; v0º, so there is a ƒ-edge between v and v0.

Lemma 3.3. Let � be an incomplete, triangle-free graph with no separating clique
that admits a FIDL-ƒ. The link of every vertex is ƒ-convex.

Proof. Suppose not. Then there exist a; b; v with a; b 2 lk.v/ such that

lk.v/ \ hullƒ¹a; bº D ¹a; bº

and a and b are not adjacent in ƒ. Assume v 2 ƒr and a; b 2 ƒb. Let

a D c0; c1; : : : ; cn D b; n � 2;

be the vertices of Œa; b�ƒ. According to Remark 2.6, each pair ¹ci ; ciC1º is the
diagonal of some square ¹ci ; ciC1º � ¹di ; d 0i º of � . None of the di and d 0i equal v,
since the ci for i ¤ 0; n are not in lk.v/.

We build a cycle 
 as follows: start with b, v, a D c0, and d0. Next add cj0
,

where j0 � 1 is the largest index such that cj0
is adjacent to d0. Then add dj0

.
Continue, where, having most recently added di , we next add cj such that j is
the maximal index with di adjacent to cj . If j < n, then add dj and repeat. The
point is that, while dj is adjacent to cjC1, the previous di that occur in 
 are not
adjacent to any ck for k > j , so we guarantee that no d is repeated in 
 .

Thus, 
 is a cycle in � with hullƒb
.
/ D hullƒ¹a; bº D ¹c0; : : : ; cnº. Condition

R4 implies there exists a square ¹a; a0º � ¹v; v0º with a0; v0 2 hullƒ.
/. However,
a and b are the only vertices of lk.v/ \ hullƒ.
/, so a0 D b. Condition R3 implies
¹vº � hullƒ¹a; bº � � , contradicting hullƒ¹a; bº 6� lk.v/.
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Corollary 3.4. Let
�
v
v0

�
be a cut of � , and let � 0 be a connected component of

� �
�
v
v0

�
. Let N� 0 WD � 0 [

�
v
v0

�
. The intersection of each component of ƒ with N� 0 is

ƒ-convex.

Proof. For every pair of vertices a; b 2 N� 0, there exists an embedded �-path

c0 D a; : : : ; cn D b

such that ci 2 � 0 for all i ¤ 0; n. Suppose a and b are in the same component
of ƒ. Then n is even, and for i odd, lk.ci / � N� 0 is ƒ-convex and contains ci�1
and ciC1, so Œc0; c2�ƒ C � � � C Œcn�2; cn�ƒ is aƒ-path from a to b with vertices inS
i odd lk.ci / � N� 0.

Corollary 3.5. For any two vertices a; b 2 � , lk.a/ \ lk.b/ is ƒ-convex.

Proof. For c; d 2 lk.a/ \ lk.b/, Lemma 3.3 says Œc; d �ƒ is contained in both
lk.a/ and lk.b/.

Here are some consequences of these convexity results.

Proposition 3.6. Let � be an incomplete, triangle-free graph with no separating
clique that admits a FIDL-ƒ. Then every cycle of � has even length, every cycle of
length greater than 6 has a 1 or 2-chord, and an induced cycle of length 6 occurs
only as the rim of a bicycle wheel subgraph of � .

Proof. The graph � is bipartite, since its vertices are 2-colored r=b according to
which componentƒr orƒb ofƒ they belong. Thus, � has no odd cycles. Suppose

 WD c0; c1; : : : ; cn�1 is a cycle of length n > 4 with no 1 or 2-chords. We always
take subscripts modulo n, without further comment.

Construct a ƒ-loop at c0 by taking Œc0; c2�ƒ C Œc2; c4�ƒ C � � � C Œcn�2; cn�ƒ.
This is a loop in a tree, so it is degenerate. In particular, each edge is crossed an
even number of times. By Lemma 3.3, Œc2m; c2mC2�ƒ � lk.c2mC1/. Since the
cycle has no 1 or 2-chords, for odd j > i , we have that lk.ci / and lk.cj / in-
tersect only if j D i C 2 or i D 1 and j D n � 1, so only Œc2m�2; c2m�ƒ and
Œc2mC2; c2mC4�ƒ potentially share edges with Œc2m; c2mC2�ƒ. Since a geodesic
uses an edge once or not at all, to have all of the edges of Œc2m; c2mC2�ƒ crossed
evenly in total by the loop, we need that each edge of Œc2m; c2mC2�ƒ is also
contained in exactly one of Œc2m�2; c2m�ƒ and Œc2mC2; c2mC4�ƒ. Thus, there is
x 2 Œc2m; c2mC2�ƒ such that

Œc2m; x�ƒ D Œc2m�2; c2m�ƒ \ Œc2m; c2mC2�ƒ;

Œx; c2mC2�ƒ D Œc2m; c2mC2�ƒ \ Œc2mC2; c2mC4�ƒ:



Visual RAAG subgroups of 2-dimensional RACGs 1247

Such an x is in lk.c2m�1/ \ lk.c2mC1/ \ lk.c2mC3/. But then

d�.c2m�1; c2mC3/ D 2;

so since 
 has no 2-chords, d
 .c2m�1; c2mC3/ D 2, so n D 6. The same argument,
reversing evens and odds, shows there exists y 2 lk.c0/ \ lk.c2/ \ lk.c4/.

Consider the cycle 
 0 WD y; c0; c1; x; c3; c4. By condition R4, there is a square
¹c0; vº � ¹c1; wº with v;w 2 hullƒ.
 0/ D ¹x; c0; c4º t ¹y; c1; c3º, so v 2 ¹x; c4º
and w 2 ¹y; c3º. But since 
 has no chords, c1 is not adjacent to c4 and c3 is not
adjacent to c0, so v D x and w D y, implying x and y are adjacent. Thus, 
 is the
rim of a bicycle wheel with hub ¹x; yº.

Proposition 3.7. Let � be an incomplete, triangle-free graph with no separating
clique. Suppose � has an uncrossed cut

�
a
b

�
. Let �i be the components of � �

�
a
b

�
,

and let N�i WD �i [
�
a
b

�
. Then � admits a FIDL-ƒ if and only if each N�i admits

a FIDL-ƒi that contains an edge a b.

Proof. The “only if” direction follows easily from Lemma 3.2 and Corollary 3.4.
For the converse, suppose ƒ�i

WD ƒ�i ;r [ƒ�i ;b contains an edge a b in
ƒ�i ;r for all i . This is the only intersection of any of the r trees, since

�
a
b

�
D \i N�i ,

so ƒr WD
S
i ƒ�i ;r is a tree.

For ƒb, there are two cases. If
�
a
b

�
D ¹a; bº is a cut pair, then the ƒ�i ;b are

disjoint. For each i , choose ci 2 �i \ lk.a/ \ lk.b/, which exists by Lemma 3.1.
Define ƒb as the union of the ƒ�i ;b, together with a tree spanning the ci . If�
a
b

�
D ¹a; b; cº is a 2-path cut triple, then c is a vertex in all ƒ�i ;b, so

ƒb WD

[
i

ƒ�i ;b

is a tree. In this case, set each ci WD c, so that we can write a common argument.
Let ƒ WD ƒr tƒb. Condition R1 we arranged by constructing trees. Condi-

tions R2 and F1 are immediate. We check conditions R3 and R4. The only inter-
esting cases are squares and cycles that include vertices from different components
of � �

�
a
b

�
.

Suppose x1 2 �1 and x2 2 �2 are the diagonals of a square. Since
�
a
b

�
is a cut,

the square is ¹x1; x2º � ¹a; bº. Since the only ƒb connection between �1 and �2
is through c1 and c2, we have

hullƒ¹a; bº � hullƒ¹x1; x2º

D ¹a; bº � .hullƒ�1;b
¹x1; c1º [ hullƒ�2;b

¹c2; x2º [ hullƒb
¹c1; c2º/:
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This join is indeed contained in � , because xi ; ci 2 lk N�i
.a/ \ lk N�i

.b/, and by
Corollary 3.5, lk N�i

.a/ \ lk N�i
.b/ isƒ N�i

-convex, so all of hullƒ�i ;b
¹xi ; ciº are com-

mon neighbors of a and b, whereas hullƒb
¹c1; c2º � lk.a/ \ lk.b/ by construc-

tion. Thus, R3 is satisfied.
If R4 is violated, there is a shortest cycle 
 containing an edge e that is not

included in a square with vertices in hullƒ.
/. We may assume such a cycle is
induced, since if it has vertices that are adjacent in � and not in 
 , we could use
that edge to cut 
 into two strictly shorter cycles whose union contains all the edges
of 
 . In particular, e is in one of these shorter cycles, 
 0. But hullƒ.
 0/ � hullƒ.
/,
so e is not included in a square with vertices in hullƒ.
 0/, contradicting that 
 was
a shortest counterexample.

So consider an induced cycle 
 that contains, without loss of generality, vertices
from �1 and �2. Since the cycle crosses the cut, it contains a and b. Since it
is induced, either 
 \ N�1 D a c1 b, or c1 … 
 . In the first case, both edges
a c1 and c1 b are in the square ¹c1; c2º � ¹a; bº, and c2 2 hullƒ.
/ since the
onlyƒb-connection between �1 and �2 is through c2. On the other hand, if c1 … 
 ,
then there is a cycle 
 0 made from 
 \ N�1 and the segment a c1 b that is
completely contained in N�1, so its edges all participate in squares with vertices in
hullƒ�1

.
 0/, which is contained in hullƒ�
.
/, since the vertex c1 D 
 0 � 
 is in

the ƒb-hull of 
 , being the only ƒb-connection between N�1 and N�2. This shows
that all N�1-edges of 
 are contained in a square with vertices in hullƒ.
/.

4 Satellite-dismantlability and the coning algorithm

In this section we take a graph with a FIDL-ƒ apart and then put it back together
again.

Theorem 4.1. Let � be an incomplete, triangle-free graph with no separating
clique that admits a FIDL-ƒ. Then � is satellite-dismantlable to a square through
a sequence of graphs �0 D � � �1 � � � � � �n such that, for all i , �i is incom-
plete, triangle-free with no separating clique and has ƒ \ �i as a FIDL-ƒ, with
the satellite vertex �i � �iC1 being a leaf in ƒ \ �i .

Proof. Our goal is to find a leaf v of ƒ such that v is a satellite in � and such that
�1 WD � � ¹vº has the desired properties. The proof is easy if � is a suspension,
so assume not.

Identify � with its image in �.�/, as in Remark 2.6. This graph is connected,
sinceW� andA� are one-ended. We claim that every vertex of �.�/ is adjacent to
a vertex of�. Suppose that ¹a; bº 2 �.�/ ��. By definition, ¹a; bº is a diagonal
of some square, so a and b have at least two common neighbors. By Corollary 3.5,
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lk.a/ \ lk.b/ is ƒ-convex, so it contains a subtree of ƒ with at least one edge.
Any such edge gives a vertex of� adjacent to ¹a; bº in �.�/. Note that this shows
� is strongly CF S .

The vertex v is a leaf of ƒ if and only if it has a unique neighbor v0 in ƒ.
Equivalently, ¹v; v0º is the unique vertex of � containing v. We claim that v
is a satellite of v0. Let w 2 lk.v/. Since ¹v; v0º is the diagonal of some square,
jlk.v/ \ lk.v0/j � 2, so there exists c 2 .lk.v/ \ lk.v0// � ¹wº. Since the edge
v c is not a separating clique, there is a path from v0 to w that does not go
through v or c, so there is a cycle 
 that goes from v to c to v0 to w and then
back across the edge between v and w. By R4, there is a square ¹v; xº � ¹w; uº
with x; u 2 hullƒ.
/. But then R3 implies ¹wº � hullƒ¹v; xº � � . Since v was
a ƒ-leaf, v0 2 hullƒ¹v; xº, so w is adjacent to v0. Thus, lk.v/ � lk.v0/.

The claim that ƒ � ¹vº is a FIDL-ƒ is automatic; all of the defining properties
are inherited from ƒ. The key for this is that, since only a leaf of ƒ was deleted,
convex sets in ƒ � ¹vº are still convex in ƒ.

We must show it is possible to choose a leaf of ƒ such that � � ¹vº is not
separated by a clique. First, let v be a ƒ-leaf and ¹v; v0º the unique vertex of �
containing v, and suppose that ¹v; v0º is not a cut vertex of�. Then �.�/ � ¹v; v0º
consists of leaves of �.�/ that were connected only to ¹v; v0º, plus one additional
component � containing � � ¹v; v0º. The reason for this is that � being triangle-
free implies �.�/ is triangle-free, so if ¹a; bº is adjacent to ¹v; v0º, but is not a leaf
of �.�/, then it is also adjacent to some other vertex ¹c; dº, which is adjacent to
a vertex of �, but not to ¹v; v0º.

We further note that � has support � � ¹vº. Since � is not a suspension, v0 is
not a ƒ-leaf, so it is contained in at least one other vertex of �, so v0 2 supp.�/.
For other vertices, we only worry about those appearing in a leaf ¹a; bº of �.�/
connected to ¹v; v0º. Since ¹v; v0º is not a cut vertex of �, ¹a; bº … �. But ƒ
spans � , so there is some vertex of � with a in its support, and likewise for b.

Now consider �.� � ¹vº/. If ¹a; bº is a leaf of �.�/ connected only to ¹v; v0º,
then the only square of � with ¹a; bº as a diagonal is ¹a; bº � ¹v; v0º, so ¹a; bº
is not the diagonal of a square in � � ¹vº and does not appear as a vertex of
�.� � ¹vº/. Since ¹v; v0º was the unique vertex of �.�/ containing v,

�.� � ¹vº/ D �;

which is connected, by hypothesis, and has full support in � � ¹vº. Thus, � � ¹vº
is strongly CFS, and Lemma 2.5 says � � ¹vº has no separating clique.

Now we argue that there always exists a ƒ-leaf not giving a cut vertex of �, so
we can find it and apply the previous argument. Suppose the first chosen ƒ-leaf v
does give a cut vertex ¹v; v0º of �. This implies that � has a cut

�
v
v0

�
, since W�

andA� split over a two-ended subgroup commensurable to hvv0i. Let v0 WD v and
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v00 WD v
0. By Corollary 3.4, for each component � 0 of � �

�v0

v00

�
, the intersection of

each component of ƒ with N� 0 is ƒ-convex, so � 0 contains at least one ƒ-leaf v1.
If v1 uniquely appears as ¹v1; v01º in � and ¹v1; v01º is not a cut vertex of �, we
are done. Otherwise,

�v1

v01

�
is a cut of � . Since � has no crossing cuts,

�v0

v00

�
�
�v1

v01

�
is

a non-empty set contained in a single component of � �
�v1

v01

�
. Choose a component

� 00 of � �
�v1

v01

�
not containing

�v0

v00

�
�
�v1

v01

�
and repeat, always choosing a comple-

mentary component of the most recent cut that does not contain the previous cuts,
so that the size of the components strictly decreases at each step. If viC1 is the
lone vertex in its component of � �

�vi

v0
i

�
, then it cannot be part of a cut, since the

cut would cross
�vi

v0
i

�
, so eventually, this process produces a ƒ-leaf that does not

appear in a cut vertex of �.

Corollary 4.2. If � is an incomplete, triangle-free graph with no separating clique
and no satellite vertex, then � does not admit a FIDL-ƒ.

Also, in the proof of Theorem 4.1, we found that every vertex of �.�/ is adja-
cent to a vertex of the connected graph �, so �.�/ is connected, hence we have
the following corollary.

Corollary 4.3. If � is an incomplete, triangle-free graph with no separating clique
and it admits a FIDL-ƒ, then it is strongly CF S .

Now we go in the other direction.

Coning Algorithm 4.4. We perform the following inductive procedure to build
a graph � with an associated graph ƒ � �c with two connected components.

(1) The initial graph �0 is a square, the associated graph ƒ0 D �c0 is the comple-
ment graph of �0.

(2) Build a sequence of pairs ..�0; ƒ0/; .�1; ƒ1/; : : : ; .�n; ƒn// by applying the
induction step: given .�i ; ƒi /, pick a vertex vi and a set Ni � lk�i

.vi / of at
least two vertices that is ƒi -convex. Define �iC1 by coning-off Ni to xiC1,
and define ƒiC1 by adding an edge from vi to xiC1 to ƒi .

Note that, at each step, xiC1 is a satellite of vi in �iC1.

Theorem 4.5. If the pair .�;ƒ/ can be constructed by Coning Algorithm 4.4, then
� is incomplete, triangle-free and has no separating cliques, and ƒ is a FIDL-ƒ
for � .

Proof. The proof is by induction on n. The initial graph‚.�0; ƒ0/ satisfies all the
conditions. Assume ‚.�i ; ƒi / does too. We show that ‚.�iC1; ƒiC1/ satisfies
R3 and R4. The other conditions are easy to verify.
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Since ‚.�i ; ƒi / satisfies condition R3, we only need to check squares in �iC1
containing the new vertex xiC1. By construction of ƒiC1, any such square is of
the form ¹xiC1; lº � ¹n; n0º with n; n0 2 Ni , and since Ni D lk�iC1

.xiC1/ is ƒi -
convex, ¹xiC1º � hullƒiC1

¹n; n0º � �iC1.
The vertex xiC1 is only connected to vi in ƒiC1. Hence,

hullƒiC1
¹xiC1; lº � ¹xiC1º D hullƒiC1

¹vi ; lº D hullƒi
¹vi ; lº:

Since �i is triangle-free, vi and l are not adjacent, so ¹vi ; lº � ¹n; n0º � �i is
a square. Condition R3 for ‚.�i ; ƒi / implies hullƒi

¹vi ; lº � hullƒi
¹n; n0º � �i .

Condition R3 is satisfied, since

hullƒiC1
¹xiC1; lº � hullƒiC1

¹n; n0º

D ¹xiC1º � hullƒi
¹n; n0º [ hullƒi

¹vi ; lº � hullƒi
¹n; n0º � �iC1

Since ‚.�i ; ƒi / satisfies condition R4, we only need to check cycles contain-
ing xiC1. Let 
 be a cycle containing xiC1. Since lk�iC1

.xiC1/ D Ni , 
 is of the
form 
 D .xiC1; n; l1; : : : ; lk; n

0/ for n; n0 2 Ni . The edges incident to xiC1 are
contained in the square ¹xiC1; viº � ¹n; n0º, all of whose vertices are in 
 , except
possibly vi . But xiC1 is a leaf of ƒiC1 connected only to vi , so vi is certainly in
hullƒiC1

.
/. For the remaining edges of 
 , replace 
 by 
 0 D .vi ; n; l1; : : : ; lk; n0/,
which is a loop in �i that can be split into at most two cycles in �i . Condition R4

for ‚.�i ; ƒi / implies each of these edges belongs to a square with vertices in the
ƒi -hull of its cycle, which is a subset of the ƒiC1-hull of 
 .

Example 4.6. The graph � of Example 2.7 that is the 1-skeleton of a 3-cube with
one space diagonal has a FIDL-ƒ. The pair .�;ƒ/ can be constructed by Coning
Algorithm 4.4. A coning sequence .xi ; �i ; ƒi ; vi ; Ni / is illustrated in Figure 3.

Next we want to combine Theorem 4.1 and Theorem 4.5 to get necessary and
sufficient conditions for the existence of a FIDL-ƒ, phrased only in terms of � .
Notice that Theorem 4.1 has a conclusion that is stronger than just existence of
a satellite-dismantling sequence; it also says something like that ƒ is compatible
with all the terms in the sequence. Similarly, Coning Algorithm 4.4 requires more
than just the existence of the inverse of a dismantling sequence; it requires link
ƒ-convexity at each step. We want to express these additional restrictions with-
out reference to ƒ, so we fix a satellite-dismantling sequence of � and define
a technical condition (�). Theorem 4.7 consists of showing that (�) is sufficient
to allow us to make the choices of the coning algorithm, and that existence of
a FIDL-ƒ compatible with this dismantling sequence implies (�), so (�) is also
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y

c2d3

x

(a) .�0; ƒ0; x; ¹y; c2º/

y
d1

c2d3

x

(b) .d1; �1; ƒ1; y; ¹x; d3º/

y
d1

c2d3

xc1

(c) .c1; �2; ƒ2; x; ¹y; c1º/

y
d1

c2d3

xc1

d2

(d) .d2; �3; ƒ3; y; ¹x; d1; d2º/

y
d1

c2d3

xc1

d2 c3

(e) .c3; �4; ƒ4/

Figure 3. Example of a coning sequence.

necessary. Section 5 deals with turning Theorem 4.7 into a search algorithm. Sec-
tion 6 says a few words about the practical performance of such an algorithm, and
gives an example that shows that the satisfiability of (�) can depend on the choice
of satellite-dismantling sequence.

Theorem 4.7. Let � be an incomplete, triangle-free graph without separating
cliques. The graph � admits a FIDL-ƒ if and only if it admits a satellite-dis-
mantling sequence � D �n � �n�1 � � � � � �0 such that �0 is a square, each �i
is incomplete and triangle-free with no separating clique, and the following condi-
tion is satisfied. For 0 � i < n, let ¹xiC1º WD �iC1 � �i andNi WD lk�iC1

.xiC1/.
Then

for all i < n; there exists vi 2 Vi WD ¹v 2 �i j Ni � lk�i
.v/º;

such that, for all j > i; if xiC1 2 Nj and Nj \ �i ¤ ;; then vi 2 Nj : (�)

Proof. Suppose that we have a satellite-dismantling sequence for � satisfying the
given conditions. Let ƒ0 WD �c0 , and construct ƒiC1 from ƒi by choosing vi sat-
isfying (�), and adding aƒ-edge from vi to xiC1. To apply Theorem 4.5, we must
verify that Nj is ƒj -convex for each j . Given j , let kj � 0 be the minimum in-
dex such that Nj \ �kj

¤ ;. The vertices of Nj are pairwise at distance 2 from
one another, so they all have the same color; assume it is b. If y 2 Nj , then either
y 2 �kj

or y D xiC1 for some kj � i < j . In the second case, by (�), y is ƒj -
adjacent to vi 2 Nj , which is in a lower stratum. In this way, (�) implies that every
vertex in Nj can be ƒj -connected through vertices in Nj to a vertex in Nj \ �kj

.
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If kj > 0, then �kj
� �kj�1 is a single vertex, and if kj D 0, then the two vertices

ƒ0;b are connected by an edge. Thus, Nj is ƒj -convex.
Conversely, if � admits a FIDL-ƒ, then by Theorem 4.1, it admits a satellite-

dismantling sequence, leading to a square through graphs with the desired proper-
ties. For each satellite xiC1, there is a unique ƒiC1-edge at xiC1 connecting it to
a vi 2 Vi . We check that this vi satisfies (�).

Suppose that, for some j , there is an i such that xiC1 2 Nj and there exists
y 2 �i \Nj . Assume Nj � ƒr. Lemma 3.3 says Nj WD lk�jC1

.xjC1/ is ƒjC1-
convex, but hullƒj

.Nj / D hullƒjC1
.Nj /, so Nj is ƒj -convex. Now we have two

points xiC1 and y that are contained in two different subtrees of ƒj;r: one is
Nj \ƒj;r and the other is ƒiC1;r. Thus, the ƒj;r-geodesic from xiC1 to y, the
Nj \ƒj;r-geodesic from xiC1 to y and the ƒiC1;r-geodesic from xiC1 to y
coincide. We know that the ƒiC1;r-geodesic from xiC1 to y goes through vi ,
since xiC1 is a leaf of ƒiC1;r connected only to vi . Thus, vi 2 Nj , and (�) is
satisfied.

We give a family of examples to which Theorem 4.7 applies.

Proposition 4.8. Let T be a finite tree, with at least one edge, whose vertices are
labeled by natural numbers n.v/ such that 1 occurs only on leaves, and if T is
a single edge, then both labels are greater than 1. Let � be the graph that has, for
each v 2 T , n.v/ vertices .v; 0/; : : : ; .v; n.v/ � 1/. Connect .v; i/ to .w; j / by an
edge if and only if v is adjacent to w in T . Then � admits a FIDL-ƒ.

Proof. We describe a satellite-dismantling and then say why it satisfies Theo-
rem 4.7.

If v 2 T with n.v/ > 1, then for i C 1 � n.v/ � 1, .v; i C 1/ is a satellite of
.v; i/, coning off ¹.w; j / j w 2 lkT .v/; 0 � j < n.w/º. Pick any such v and it-
eratively remove .v; n.v/ � 1/, . . . , .v; 2/. Repeat for all v with n.v/ > 2. This
reduces us to the case that n is bounded by 2.

If � is not a square and there is a leaf v of T attached to w with n.v/ D 1, then
there exists x 2 T at distance 2 from v. In � , .v; 0/ is a satellite of .x; 0/ coning-
off ¹.w; 0/; .w; 1/º. In this way, remove all T -leaves with n-value 1, until either
we reach a square or have smaller � and T with n � 2.

Suppose n � 2 and � is not a square, so T is not a single edge. If v is a leaf
of T attached to w, then .v; 1/ is a satellite of .v; 0/ coning-off ¹.w; 0/; .w; 1/º.
Thus, we reduce n to 1 on each of the leaves of T , and then rerun the case in the
previous paragraph.

Iterating gives a satellite-dismantling reducing � to a square. Furthermore, in
the dismantling, we specified for each satellite which vertex we were considering
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it as the satellite of, which allows an explicit construction of ƒ. It is observed that
the coned-off set is ƒ-convex at each step, so this is a FIDL-ƒ.

Remark. The proof relies on the fact that T is a tree because, after reducing to
n � 2, the dismantling proceeds by removing T -leaves. Proposition 4.8 cannot be
true for arbitrary graphs, because if the underlying graph has a long isometrically
embedded loop, then so does � , which prevents the existence of a FIDL-ƒ, by
Proposition 3.6. Interestingly, an arbitrary connected graph with n � 2 does pro-
duce a � that defines a RACG commensurable to a RAAG, by the construction
of Davis and Januszkiewicz [8], so this class of examples highlights differences
between Davis and Januszkiewicz’s and Dani and Levcovitz’s approaches.

Figure 4 works out an example of a tree as in Proposition 4.8 in detail.

5 A search algorithm

Definition 5.1. A FIDL-ƒ for � relative to a collection of pairs of vertices

¹¹p0; q0º; : : : ; ¹pn; qnºº

of � is a FIDL-ƒ that contains each of the pairs ¹pi ; qiº as an edge of ƒ.

Relative Search Algorithm 5.2. Given an incomplete, triangle-free graph � with-
out separating cliques, find a FIDL-ƒ relative to ¹¹p0; q0º; : : : ; ¹pn; qnºº or decide
that one does not exist as follows.

(1) If � is not strongly CF S , stop; no FIDL-ƒ exists.

(2) If � contains a cycle violating Proposition 3.6, stop; no FIDL-ƒ exists.

(3) If there exist x0; x1; : : : ; xn�1 such that, for each i < n, there exists j with
¹xi ; xiC1º D ¹pj ; qj º, then stop; no relative FIDL-ƒ exists.

(4) Enumerate satellite-dismantling sequences reducing � to a square through
graphs without separating cliques. If none exist, stop; no FIDL-ƒ exists.

(5) For each such satellite-dismantling sequence, check, in the notation of Theo-
rem 4.7, if condition (�) is satisfied. Moreover, if we assume for each k that,
for all i , qk 2 �i ) pk 2 �i , then we require for each k that either ¹pk; qkº
is a diagonal of the square �0 or that, for i such that qk D xiC1, we have that
vi D pk is a choice for vi 2 Vi satisfying condition (�).

(6) If a suitable satellite-dismantling sequence is found, then Theorem 4.7 pro-
vides the relative FIDL-ƒ. Otherwise, no relative FIDL-ƒ exists.
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(a) T
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(b) ‚.�;ƒ D ƒr tƒb/

b0b1

c0c1

b0b2

b0b3

b0d0
b0d1

c0c2

a0c0

c1c2
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b1b3
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b2b3

b2d0
b2d1
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b3d1

d0d1

(c) � sitting in �.�/

Figure 4. An example of Proposition 4.8, showing a tree T with vertices labeled by
natural numbers, the corresponding graph � and bicolored ƒ making up ‚.�;ƒ/,
and the resulting presentation graph � of a finite index visual RAAG subgroup sit-
ting as a subgraph in �.�/, with every vertex of �.�/ adjacent to a vertex of �.

Proof. Item (1) is Corollary 4.3. If the given ¹¹p0; q0º; : : : ; ¹pn; qnºº contains
a cycle as described in (3), then the resulting ƒ contains a cycle, violating R1.
Item (4) is Theorem 4.1. Item (5) describes how it is possible to achieve the
¹pk; qkº as edges of a FIDL-ƒ from the argument of Theorem 4.7.

Global Search Algorithm 5.3. Given an incomplete, triangle-free graph � with-
out separating cliques, find a FIDL-ƒ or decide that one does not exist as follows.

(1) If � is not strongly CF S , stop; no FIDL-ƒ exists.

(2) If � contains a cycle violating Proposition 3.6, stop; no FIDL-ƒ exists.
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(3) Compute the JSJ graph of cylinders for W� in terms of � as described in
[9, Theorem 3.29] (recall Theorem 2.9). If it has a hanging vertex, stop;W� is
not even quasiisometric to a RAAG.

(4) For each subgraph � 0 corresponding to a rigid vertex of the graph of cylinders,
use Relative Search Algorithm 5.2 to find a FIDL-ƒ for � 0 relative to the pairs
¹p; qº � � 0 such that � has a cut

�
p
q

�
. If this search fails for any rigid vertex,

stop; no FIDL-ƒ exists.

(5) If all rigid vertices have relative FIDL-ƒ, then they can be assembled into
a FIDL-ƒ of � .

Proof. Proposition 4.43 in [10] shows that if � 0 is the subgraph corresponding to
a rigid vertex, then it has no separating cliques and is CF S . Iterating the cutting
direction of Proposition 3.7 implies that if � has a FIDL-ƒ, then its restriction
to � 0 is a FIDL-ƒ for � 0 relative to the cuts. Together with Corollary 4.3, this
explains the necessity of items (3) and (4).

Torsion-generated groups do not surject to Z, so the underlying graph of the
graph of cylinders is a tree. Iterating the assembly direction of Proposition 3.7
over the cuts combines the relative FIDL-ƒ’s of the subgraphs of the rigid vertices
into a FIDL-ƒ for � , establishing item (5).

6 Performance

We have not analyzed the complexity of the naive “enumerate and check ƒ” vs
satellite-dismantling algorithms. We have an older implementation of the naive al-
gorithm and of the one in this paper, and observe that the satellite-dismantling
algorithm performs faster on batches of smallish (at most 12 vertices) graphs.
However, this is not a fair comparison, as the new algorithm also incorporates
other results from this paper, such as that the presence of a long embedded cycle
obstructs the existence of a FIDL-ƒ, and that if W� has a non-trivial JSJ decom-
position, then it suffices to patch together FIDL-ƒ for the rigid components. These
could have also been used to improve the naive algorithm. Nevertheless, we con-
jecture that the satellite-dismantling algorithm has better generic-case complexity
than the naive algorithm, because it can fail fast: most graphs do not admit a FIDL-
ƒ and the naive algorithm must enumerate and test all ƒ to confirm none work,
but the satellite-dismantling algorithm can quit immediately if the graph has no
satellite-dismantling sequence.

One might also wonder about the efficiency of the search for a suitable satellite-
dismantling sequence. For example, if � is a triangle-free strongly CF S graph
that has a satellite-dismantling sequence to a square through strongly CF S graphs
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� D 0

1

2

3

4
5 6

Figure 5. Graph for Example 6.1.

and if v is some satellite vertex of � such that � � ¹vº is strongly CF S , does
� � ¹vº admit a satellite-dismantling sequence to a square through strongly CF S

graphs? That is, does finding a full sequence depend on choosing satellites in
the right order? If the order does not matter, this would speed up the search for
satellite-dismantling sequences: upon the first failure to extend a dismantling se-
quence all the way to a square, we could immediately quit rather than backtracking
to try different dismantling sequences. However, once we know that dismantling
sequences exist, the story is different; satisfying condition (�) of Theorem 4.7 does
depend on the chosen sequence, as can be seen in the following example.

Example 6.1. Consider the graph shown in Figure 5. The vertex sequence 6, 5, 0
yields a satellite-dismantling sequence reducing � to the square

�0 D ¹1; 3º � ¹2; 4º;

such that all of the �i are strongly CF S , and

x1 D 0; N0 D ¹1; 3º; V0 D ¹2; 4º;

x2 D 5; N1 D ¹0; 2º; V1 D ¹1; 3º;

x3 D 6; N2 D ¹0; 4º; V2 D ¹1; 3º:

For i D 0, xiC1 D 0 2 N1 \N2, both of which intersect �i , so to satisfy con-
dition (�) of Theorem 4.7, we would need to choose v0 2 V0 \N1 \N2 D ;. If
we reconstruct � by a coning sequence from this data, we see that there are two
possibilities up to symmetry, shown in Figure 6 (a) and (b), and both contain a ver-
tex with non-ƒ-convex link.

Consider instead the vertex sequence 6, 5, 4, which yields a satellite-dismantling
sequence reducing � to the square �0 D ¹0; 2º � ¹1; 3º with all �i strongly CF S ,
and

x1 D 4; N0 D ¹1; 3º; V0 D ¹0; 2º;

x2 D 5; N1 D ¹0; 2º; V1 D ¹1; 3º;

x3 D 6; N2 D ¹0; 4º; V2 D ¹1; 3º:
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(a) (b) (c) (d)

Figure 6. Some potential ƒ for � from reverse coning of a satellite-dismantling.
Cases (a) and (b) contain a vertex with a non-ƒ-convex link. Cases (c) and (d) give
valid FIDL-ƒ.

For i D 0, xiC1 D 4 2 N2 and N2 \ �i ¤ ;, but xiC1 … N1, so we satisfy (�)
by choosing v0 2 V0 \N2 D ¹0º. For i D 1; 2, (�) imposes no condition except
vi 2 Vi . The two possibilities, up to symmetry, shown in Figure 6 (c) and (d), are
both FIDL-ƒs.
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