
J. Group Theory 28 (2025), 811–833
DOI 10.1515/ jgth-2024-0075

CAT(0) cube complexes and asymptotically rigid
mapping class groups
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Abstract. The present paper contributes to the study of asymptotically rigid mapping class
groups of infinitely punctured surfaces obtained by thickening planar trees. In a paper from
2022, Genevois, Lonjou and Urech study the latter groups using cube complexes. We
determine in which cases their cube complexes are CAT.0/. From this study, we develop
a family of CAT.0/ cubes complexes on which the asymptotically rigid mapping class
groups act.

1 Introduction

Thompson’s groups have been the subject of intense study in group theory and
have proven to be a rich source of interesting examples [2,4,15]. They inspired the
construction of other groups through variations of their concepts, called Thomp-
son-like groups [13, 14]. Much recent work has been devoted to the study of
braided versions of Thompson-like groups [3,6], i.e. extensions of Thompson-like
groups by infinite braid groups, which turn out to be closely linked to mapping
class groups of surfaces of infinite type [1, 7].

Genevois, Lonjou and Urech study in [11] a particular family of braided Thomp-
son-like groups called asymptotically rigid mapping class groups. Their frame-
work is inspired from [8, 9]. These groups are subgroups of big mapping class
groups of infinitely punctured surfaces obtained by thickening planar trees An;m,
having one vertex of valencem, while all the others have valence nC 1. Briefly, we
give a rigid structure S ].An;m/ to the latter surfaces and consider the group of iso-
topy classes of homeomorphisms that preserve this structure “almost everywhere”.
To investigate the finiteness properties of these groups, denoted mod.An;m/, the
aforementioned authors present a novel family of cube complexes called C .An;m/.
In [11, Section 3.3], they raise the question of whether their cube complexes are
non-positively curved. The answer to this question is the following result (Theo-
rem 3.14 in the text).

This work was partially supported by the Luxembourg National Research Fund OPEN grant
O19/13865598.

Open Access. © 2024 the author(s), published by De Gruyter. This work is licensed
under the Creative Commons Attribution 4.0 International License.



812 M. Abadie

Theorem. The cube complex C .An;m/ is CAT.0/ if and only if 1 � m � nC 1.

To study the casem� n, we consider different rigid structures S �.An;m/which
are related to the previous one through the following observation (Lemma 2.1).

Lemma. For all m; n � 1, there is a group isomorphism

mod.S ].An;m// Š mod.S �.An;m�nC1//:

In [12], the authors suggested that it may be possible to modify their construc-
tion. Hence we introduce a cube complex D.An;m/ that is CAT.0/ for allm; n � 1,
and upon which the asymptotically rigid mapping class groups of S �.An;m/ act
(Theorem 3.20 and Corollary 3.21 in the text).

Theorem. For all m; n � 1, the cube complex D.An;m/ is CAT.0/.

Thus we define a collection of CAT.0/ cube complexes,

E.An;m/ WD

´
D.An;m�nC1/ if m � n � 1;
C .An;m/ if 1 � m < n:

Corollary. For allm; n � 1, mod.An;m/ acts on the cube complex E.An;m/which
is CAT.0/.

2 Preliminaries

Let A be a locally finite planar tree. Its arboreal surface is the surface S .A/

obtained by embedding A into the plane and thickening it. Let S ].A/ be the sur-
face obtained from S .A/ by adding a puncture for each vertex of the underlying
tree A. We give a rigid structure to S ].A/ by dividing the surface into polygons
with a family of pairwise non-intersecting arcs whose endpoints are on the bound-
ary of the surface such that
� each arc intersects one unique edge of A and this intersection is transverse,
� each polygon contains exactly one puncture in its interior.

An admissible subsurface† � S ].A/ is defined as a connected subsurface that
can be written as a finite union of polygons from the rigid structure. The height
of †, denoted as h.†/, refers to the number of punctures present within †. The
frontier of † refers to the union of all the arcs, called frontier arcs, from the rigid
structure lying in the boundary of †. It is denoted as Fr.†/. A polygon H is
adjacent to † if it shares an arc with the frontier of †.

An asymptotically rigid homeomorphism of S ].A/ is a homeomorphism �

from S ].A/ to itself which respects the rigid structure almost everywhere. That
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Figure 1. From left to right, pictures of A2;4, S .A2;4/ and S ].A2;4/.

is, there exists an admissible surface supp� , called the support of �, such that

� its image �.supp�/ is an admissible surface,

� outside its support supp� , � sends polygons to polygons.

The group of isotopy classes of orientation-preserving asymptotically rigid ho-
meomorphisms of S ].A/ is denoted by mod.A/ or mod.S ].A// and is called
the asymptotically rigid mapping class group associated to A. Let � 2 mod.A/,
and † an admissible surface, � is rigid outside † if each polygon of the rigid
structure not in † is mapped to a polygon.

Funar and Kapoudjian were the first to consider the group corresponding to
a regular tree of degree three and to study its generators and relations [8]. In [11],
Genevois, Lonjou and Urech extend the definition to explore the finiteness proper-
ties of these groups when the tree A is considered to be An;m.

We define an equivalence relation on the set of pairs .†; �/, where † is an
admissible surface of S ].A/ and � lies in mod.A/. Two pairs are related by
.†; �/ � .†0; �0/ if �0�1� is isotopic to an asymptotically rigid homeomorphism
that is rigid outside † and maps † to †0. Observe that .†; �/ � .†; �0/ if � is
isotopic to �0. We denote the equivalence class of the pair .†; �/ by Œ†; ��.

In [11], the authors introduce a new family of cube complexes to explore the
finiteness properties of this group when the tree A is considered to be An;m. They
define the cube complex C .An;m/ as follows:

� vertices Œ†; �� for each admissible surface† of S ].An;m/ and � 2mod.An;m/;

� edges between any two vertices of the form Œ†; �� and Œ† [H;��, where H is
a polygon adjacent to †;

� k-cubes with underlying subgraphs of the form°h
† [

[
i2I

Hi ; �
i ˇ̌̌
I � ¹1; : : : ; kº

±
;

where Œ†; �� is a vertex and H1; : : : ;Hk are distinct adjacent polygons to †.
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Let g 2 mod.An;m/ and let Œ†; �� be a vertex in C .An;m/; we define

g � Œ†; �� WD Œ†; g ı ��:

This gives an action of mod.An;m/ on C .An;m/.
Now, let us vary the rigid structure associated to S .A/. Let S �.An;m/ denote

the punctured arboreal surface obtained from S .An;m/ by adding a puncture for
each vertex of the tree excepting the vertex of valence m. We define another rigid
structure on S �.An;m/. To this end, we divide the surface into polygons with
a family of pairwise non-intersecting arcs whose endpoints are on the boundary of
the surface such that

� each arc crosses once and transversely a unique edge of the tree,

� each polygon contains exactly one vertex of the underlying tree in its interior.
Since each vertex corresponds to a puncture except the m-valence one, each
polygon contains a puncture except the central one.

The definitions of admissible surface, height and frontier arc remain the same
as for S ].An;m/. It is worth noting that the central polygon has height zero in
this new formalism. An asymptotically rigid homeomorphism of S �.An;m/ is
a homeomorphism � from S �.An;m/ to itself which respects the rigid structure
almost everywhere. That is, there exists a minimal admissible surface called the
support of �, denoted supp�� , such that

� its image �.supp��/ is an admissible surface,

� � sends polygons to polygons outside supp�� .

We call mod.S �.An;m// the group of isotopy classes of orientation-preserving
asymptotically rigid homeomorphisms of S �.An;m/. To simplify the notation, we
set mod�.An;m/ WD mod.S �.An;m//.

Lemma 2.1. There is a group isomorphism

mod.An;m/ Š mod�.An;m�nC1/:

Proof. The following argument closely follows the proof of [11, Lemma 2.4]. We
fix u to be the central vertex in An;m and v one of its neighbours. We let A0n;m
be the tree obtained from An;m by collapsing the edges between u and v. Observe
that A0n;m D An;mCn�1. Let M and B denote the polygons of S �.An;m/ con-
taining u and v, respectively. We define a new rigid structure on S �.An;m/ by
removing the arc common to M and B , and denote it by S ı.An;m/. Note that
S ı.An;m/ coincides with S ].A0n;m/ up to a homeomorphism that preserves the
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Figure 2. From left to right, pictures of S �.A2;4/, S ı.A2;4/ and S ].A02;4/.

Figure 3

rigid structure. Figure 2 illustrates the case n D 2. Therefore, there exists a homeo-
morphism  WS ].A0n;m/! S �.An;m/ that sends each polygon of S ].A0n;m/ to
a polygon of S �.An;m/ except one that is sent to a union of two polygons. Hence
conjugation by  gives an isomorphism mod�.An;m/ Š mod.An;mCn�1/, so
mod�.An;m�nC1/ Š mod.An;m/. See Figure 3 for the cases n D 1; 2.

In the following definition, we work with the rigid structure S �.An;m/. Let
D.An;m/ be the cube complex defined as follows:

� vertices Œ†; ��, where† � S �.An;m/ is an admissible surface that contains the
central polygon and � 2 mod�.An;m/;

� edges between any two vertices of the form Œ†; �� and Œ† [H;��, where H is
a polygon adjacent to †;

� k-cube with underlying subgraph of the form°h
† [

[
i2I

Hi ; �
i ˇ̌̌
I � ¹1; : : : ; kº

±
;

where Œ†; �� is a vertex and H1; : : : ;Hk are distinct adjacent polygons to †.

Note that here two pairs are related by .†; �/ � .†0; �0/ if �0�1� is isotopic to an
element of mod�.An;m/ that is rigid outside † and maps † to †0.

Next, we present some properties about C .An;m/ and D.An;m/.
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Figure 4

Lemma 2.2 ([11, Lemma 3.4]). Let x D Œ†; �� and y be two adjacent vertices of
C .An;m/, resp. D.An;m/. If h.y/ > h.x/, then there exists a polygon H adjacent
to † such that y D Œ† [H;��.

The height orientation is obtained by giving an orientation to all the edges of
C .An;m/, resp. D.An;m/, from lower height to higher height. Given a vertex x,
we say that an incident edge of x points outwards if it is oriented from x to another
vertex; otherwise, it points towards x. The height of a vertex x D Œ†; ��, denoted
by h.x/, refers to the height of the admissible surface †.

Lemma 2.3. Let S be a 2-cube in C .An;m/, resp. D.An;m/. Then S has a unique
height orientation. More precisely, one of the vertices has some height h 2 Z>0, its
two adjacent vertices have height hC 1 and the remaining vertex has height hC 2.

Proof. We work with C .An;m/; the proof remains exactly the same for D.An;m/.
Give an orientation to each edge of S with respect to height; this leads us to con-
sider the four cases depicted in Figure 4. Applying Lemma 2.2, starting from the
vertex A, allows us to keep only the third case which is a square of the desired
form. Indeed, the second and fourth cases are excluded because of a contradic-
tion with the height of the vertices. For the first case, we assume that the vertex A
(resp. C ) is Œ†; id� (resp. Œ�; ��). On one hand, by Lemma 2.2 applied from A to B
and from C to B , one has Œ† [H1; id� D Œ� [ I1; �� for some polygons H1 and
I1 adjacent to † and � , respectively. Hence �.� [ I1/ D † [H1 and � is rigid
outside � [ I1. On the other hand, by Lemma 2.2 applied from A to D and from
C toD, one has Œ† [H2; id� D Œ� [ I2; ��. By definition, �.� [ I2/ D † [H2
and � is rigid outside � [ I2. Thus �.Ii / D Hi for i D 1; 2. Consequently, we
get Œ�; �� D Œ†; id�, which is a contradiction.

Corollary 2.4. Any 3-cube must have a specific orientation with respect to the
height function. In particular, it must have one smallest vertex x, then three ver-
tices of height h.x/C 1, three vertices of height h.x/C 2, and one maximal vertex
of height h.x/C 3.
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Let � be a graph; its cube-completion �� is the cube complex obtained from
� by filling every subgraph isomorphic to the 1-skeleton of a cube with a cube of
the corresponding dimension. The cube complex C .An;m/ is the cube completion
of its underlying graph. This is the content of the following proposition.

Proposition 2.5. Let �An;m
be the underlying graph of C .An;m/, resp. D.An;m/.

Then ��
An;m

D C .An;m/ (resp. D.An;m/).

Proof. We work with C .An;m/, but the proof remains the same for D.An;m/. The
inclusion C .An;m/ � �

�
An;m

follows from the definitions. Let S be an n-cube in
��
An;m

. We show by induction that its vertices form an n-cube in C .An;m/ as well.
In other words, we need to show that its vertices have the form°h

† [
[
i2I

Hi ; �
i ˇ̌̌
I � ¹1; : : : ; nº

±
for some admissible surface †, an asymptotically rigid homeomorphism �, and
distinct polygons H1; : : : ;Hn adjacent to †.

Claim 2.6. We label the vertices of S by bit strings e D e1 : : : en with ei 2 ¹0; 1º
so that the height function h attains a minimum at 0 D 0 : : : 0 (and two adjacent
vertices differ by one bit). Then h.e/ D h.0/C

Pn
iD1 ei for each e. In particular,

the function h has a unique global minimum and a unique global maximum on the
vertices of S .

Proof of the claim. We show this by induction on n. For n D 1, this is the content
of Lemma 2.2. We will need the base case n D 2 (treated by Lemma 2.3) in the
proof. Observe that, along any edge, the height must increase by 1 or decrease
by 1. Assume that it holds for any .n � 1/-cube and consider the n-cube S .

Pick a vertex in S with minimal height and give it the label 0 D 0 : : : 0. La-
bel the rest of the cube coherently. Any vertex of S except 1 D 1 : : : 1 shares an
.n � 1/-cube with 0; thus, by the induction hypothesis, we have

h.e/ D h.0/C
Pn
iD1 ei for all e ¤ 1:

In particular, all the neighbours of 1 have height h.0/C .n � 1/. Thus 1must have
height h.0/C n or h.0/C .n � 2/. The latter case cannot happen. Indeed, it would
mean that one can find a 2-cube called S 0 containing 1, two of its neighbours and
a neighbour of them so that we would have two points with maximal height in S 0,
as in Case 1 of Figure 4. Thus 1 has height h.0/C n and we are done.
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Fix a labelling of the vertices of S as in the above claim. By Lemma 2.2, the
n neighbours of 0 must correspond to the attachment of n distinct polygons to †.
More precisely, the vertex with the 1 in the i -th entry has the form Œ† [Hi ; ��,
and the polygons H1; : : : ;Hn are all distinct and adjacent to †.

Now, the vertices with exactly two 1’s in their label are also determined by the
above. For example, the vertex with 1’s in entries i and j must have the form
Œ† [Hi [Hj ; ��. This follows from the base case n D 2. By induction, we are
able to identify all vertices in the cube S (each time using the base case n D 2).
More precisely, the vertex whose label has 1’s in entries i1; : : : ; ik must have the
form Œ† [Hi1 [ � � � [Hik ; ��. This concludes the proof.

3 Studying the CAT(0)-ness of the cube complexes C .An;m/

and D.An;m/

In the first part of this section, we derive some properties on C .An;m/, D.An;m/ in
order to deduce, in the second part, under which conditions C .An;m/ is CAT.0/.
Finally, in the third part, we study the CAT.0/-ness of D.An;m/.

Recall that a cube complex is said to be CAT.0/ if it is simply connected and
the link of every vertex is a flag. In the context of a cube complex X , a 1-corner
refers to a square with two adjacent edges identified. Similarly, a 2-corner consists
of two squares that share two consecutive edges. Hence having a 2-corner implies
that the 1-skeleton contains a copy of the bipartite graph K3;2. A 3-corner in X
consists of 3 pairwise distinct squares that share a vertex, pairwise share an edge,
and are not contained in a 3-cube of X . The common vertex of these squares is
referred to as the root of the 3-corner.

The next proposition provides a tool to show that a cube complex is CAT.0/. It
refers to [10, Theorem 3.3.1] and [5, Theorem 6.1].

Proposition 3.1. Let X be a connected graph. Assume that

(1) the cube completion X� is simply connected,

(2) X has no 1-corner,

(3) X� also satisfies the 3-cube condition (every 3-corner must span a 3-cube),

(4) X does not contain a copy of the complete bipartite graph K3;2.

Then X� is a CAT.0/ cube complex.

By definition, for all n;m � 1, there is no 1-corner in the 1-skeleton of C .An;m/
and D.An;m/, respectively.
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Figure 5

Lemma 3.2. There is no copy of the bipartite graph K2;3 in the 1-skeleton of both
C .An;m/ and D.An;m/.

Proof. We work with C .An;m/, but the proof is the same for D.An;m/. Assume
by contradiction that K2;3 exists in the 1-skeleton of C .An;m/ and give the height
orientation to each edge. This leads us to consider the eight cases depicted in Fig-
ure 5.

By Lemma 2.3, it remains to study Case 6. We mark with a red dot the ver-
tices from which all incident edges point outwards. Let us assume the red point is
Œ†;  �. By Lemma 2.2, its adjacent vertices are Œ† [H1;  �, Œ† [H2;  � and
Œ† [H3;  �, where H1, H2 and H3 are some polygons adjacent to †. Then,
by Lemma 2.2, the remaining vertex, whose incident edges all point towards it,
is Œ† [H1 [H2;  � D Œ† [H2 [H3;  � D Œ† [H1 [H3;  �. Consequently,
H1 D H2 D H3, which contradicts the distinctness of the vertices.

3.1 Completing roots of 3-corners

In this subsection, we study the 3-cube condition in C .An;m/ and D.An;m/. A root
of a 3-corner is defined as an attracting root if all its incident edges point towards
it. A root with at least one incident edge pointing outwards is referred to as a non-
attracting root. The main obstacle for C .An;m/ to be CAT.0/ comes from the ab-
sence of polygons of height zero in the rigid structure. Indeed, there exist 3-corners
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Figure 6

with three vertices of height 1, three of height 2 and one of height 3. However, by
Corollary 2.4, the only way to complete such a 3-corner into a 3-cube would be
to add a vertex of height 0. Hence, in the absence of polygons of height zero,
3-corners exist and the CAT.0/ property cannot be verified by Proposition 3.1.
By construction, D.An;m/ contains a polygon of height zero, the central polygon,
which avoids the presence of 3-corners.

Lemma 3.3. Every 3-corner in C .An;m/, resp. D.An;m/, having a non-attracting
root can be completed into a 3-cube.

Proof. We consider C .An;m/, but the proof remains the same for D.An;m/. In
Figure 6, we illustrate the three possible 3-corners with non-attracting roots in
C .An;m/. In each case, our objective is to identify a vertex that completes the
3-corner into a 3-cube. We mark with a red dot the vertices from which all incident
edges point outwards.

Consider Case 1 in Figure 6. In this case, there is only one red point written
as Œ†;  �. By Lemma 2.2, there are three polygons H; I; J adjacent to †, so that
the vertices adjacent to the red point are Œ† [H; �, Œ† [ J; � and Œ† [ I;  �.
Again by Lemma 2.2, the common adjacent vertices of the previous vertices are
Œ† [H [ J; �, Œ† [H [ I;  � and Œ† [ I [ J; �. The vertex

Œ† [H [ I [ J; �

completes the 3-corner into a 3-cube.
Here we consider Case 2 in Figure 6. There is only one red point which can

be written as Œ†;  �. As for the case above, by Lemma 2.2, its adjacent vertices
are Œ† [H; �, Œ† [ J; � and Œ† [ I;  �. The common adjacent vertices of the
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Figure 7

previous vertices are Œ† [H [ I;  � and Œ† [ I [ J; �. The remaining vertex is
Œ† [H [ J; � and we take the vertex Œ† [H [ J; � to complete the 3-corner
into a 3-cube.

For the third case in Figure 6, we proceed in the same way as above. Assume
that the red point is Œ†;  �. Again by Lemma 2.2, the adjacent vertices of the
latter are Œ† [H; � and Œ† [ J; �. Consequently, the root of the 3-corner is
Œ† [H [ J; �. The remaining adjacent vertices of Œ† [H; � and Œ† [ J; �
are written Œ† [H [K1;  � and Œ† [ J [K2;  �, respectively. Next, the com-
mon adjacent vertices of Œ† [H [K1;  �, Œ† [ J [K2;  � and Œ† [H [ J; �
must have height equal to h.†/C 3, so I WD K1 D K2. The remaining vertex,
having all its edges pointing towards it, is

Œ† [H [ J [ I;  �:

The vertex Œ† [ I; �� completes the 3-corner into a 3-cube.

In this section, we denote byM the central polygon in C .An;m/, resp. D.An;m/,
which is the polygon whose underlying vertex has valence m. If m D nC 1, the
central polygon in C .An;m/ is an arbitrary polygon that we fix. We use the no-
tation in Figure 7 to describe a 3-corner in C .An;m/, resp. D.An;m/, having an
attracting root.

Our last goal in this subsection is to show the following proposition.

Proposition 3.4. If .m; n/ ¤ .1; 2/; .2; 1/, then every 3-corner with an attracting
root in D.An;m/ can be completed into a 3-cube. If 1 � m � nC 1, then this also
holds in C .An;m/.

The following facts can be deduced from the equalities associated with each
vertex in Figure 7:

(i) �.� [ I1/ D † [H1 and � is rigid outside � [ I1,

(ii) �.� [ J3/ D † [H3 and � is rigid outside � [ J3,
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(iii) ��1�.� [ J2/ D � [ I2 and ��1� is rigid outside � [ J2,

(iv) �.� [ I1 [ I2/ D † [H1 [H3 and � is rigid outside � [ I1 [ I2,

(v) �.� [ J2 [ J3/ D † [H1 [H3 and � is rigid outside � [ J2 [ J3,

(vi) ��1�.� [ J2 [ J3/ D � [ I1 [ I2 and ��1� is rigid outside� [ J2 [ J3.

We need the four following lemmata to prove Proposition 3.4.

Lemma 3.5. Assume that we are in the situation of a 3-corner with an attracting
root in C .An;m/, resp. D.An;m/, as depicted in Figure 7. The image of the polygon
I1 by � is contained in † and includes ]Fr.I1/ � 1 frontier arcs from polygons
lying outside † and distinct from H1 and H3.

Proof. We use the same notation as depicted in Figure 7. On one hand, by facts (iii)
and (vi), we deduce that ��1�.J3/ D I1. Moreover, by (i), �.I1/ � † [H1. On
the other hand, by fact (ii), �.J3/ � † [H3. So we deduce that

�.I1/ D �.J3/ � †:

The polygon I1 is adjacent to �; more precisely, it shares one frontier arc with
� and the remaining frontier arcs are shared with polygons lying outside � [ I2.
Then �.I1/ is not necessarily a polygon of the rigid structure. However, since
� is rigid outside � [ I1, it respects the adjacency of polygons outside � [ I1.
Hence, among the ]Fr.I1/ images of the frontier arcs of I1 by � , ]Fr.I1/ � 1 are
shared with polygons lying outside �.� [ I2/ D † [H3, whereas one image of
a frontier arc is shared with �.�/ � † [H1.

Consider a 3-corner with an attracting root in D.An;m/, as depicted in Figure 7.
By the previous proof, �.I1/ � †, so we deduce that † is an admissible surface
containing at least one puncture: h.†/ � 1.

Corollary 3.6. Let x be a vertex with minimal height in a 3-corner with an attract-
ing root in D.An;m/. Then h.x/ � 1.

Remark 3.7. Let † be an admissible surface in C .An;m/ and let k be the height
of †. If † contains the central polygon, then the number of frontier arcs of † is
given by ]Fr.†/ D mC .n � 1/.k � 1/; otherwise,

]Fr.†/ D nC 1C .n � 1/.k � 1/ D k.n � 1/C 2:

Lemma 3.8. Let 1 � m � nC 1 and let x be a vertex with minimal height in a
3-corner with an attracting root in C .An;m/. Then h.x/ � 2.
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Proof. Consider a 3-corner with an attracting root in C .An;m/ as depicted in Fig-
ure 7; we use the same notation. By Lemma 3.5, �.I1/ lies in †. Therefore, †
has enough frontier arcs so that �.I1/ shares its boundary with ]Fr.I1/ � 1 poly-
gons lying outside† [H1 and distinct fromH3 D �.I2/ (since I1 and I2 are not
adjacent). Consequently, the number of frontier arcs of † minus two (for the one
shared with H1 and H3) must be greater than (or equal to) ]Fr.I1/ � 1,

]Fr.†/ � 2 � ]Fr.I1/ � 1: (3.1)

First, we assume that I1 is not the central polygon M and let

k WD h.†/ D h.�/ D h.�/:

Hence (3.1) becomes

mC .k � 1/.n � 1/ � 2 if M � †;
k.n � 1/ otherwise

µ
� n:

Both cases imply directly that k � 2.
Secondly, we assume that I1 is the central polygon. Observe that ifm D nC 1,

inequality (3.1) directly implies that k � 2. Then, by fact (i), we have the following
equality:

]Fr.� [ I1/ D ]Fr.† [H1/:

Under our assumptions, this equality becomes

mC k.n � 1/ D

´
mC k.n � 1/ if M � † [H1;
.k C 1/.n � 1/C 2 otherwise:

So if M 6� † [H1, we obtain m D nC 1 and so k � 2. We consider the remain-
ing case where I1 DM and † [H1 contains M .

Assume H1 DM , and so † does not contain M . By (ii) and (v), �.J2/ D H1,
and by the rigidity of � outside � [ J3, we deduce that J2 DM . Now, since
I1 DM , the subsurface � [ I2 does not contain M . Moreover, by (ii), one has
]Fr.� [ I2/ D ]Fr.� [ J2/, which becomes

.k C 1/.n � 1/C 2 D mC k.n � 1/;

so m D nC 1 and k � 2.
Assume † contains M . By (iii) and (vi), ��1�.J3/ D I1, and by the rigidity

of ��1� outside � [ J2, we deduce that J3 DM . By contradiction, assume that
k D 1 and thus† DM . Recall that, by Lemma 3.5, one has �.I1/ � †; on top of
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that, by (i), � is rigid outside � [H1. Similarly, one has �.J3/ � †, and by (v),
� is rigid outside � [ J3. Hence, on one side, �.I1/ DM and �.J3/ DM . But,
on the other side, this implies that �.I1/ is adjacent toH3 D �.I2/ and, similarly,
�.J3/ is adjacent to H1 D �.J2/, which contradicts the rigidity of � and � at I2
and J2, respectively. We conclude that k � 2.

Let mod�.An;m/ denote either mod.An;m/ or mod�.An;m/.

Lemma 3.9. Let † be an admissible surface in C .An;m/, resp. D.An;m/, with
h.†/ � 2. Let D � † be a one-punctured disk such that

� † XD is connected andD contains exactly either n orm � 1 frontier arcs from
the polygons of the rigid structure;

� if D contains m � 1 frontiers arcs, then either m D nC 1 or † contains the
central polygon.

Then there exist � 2 mod�.An;m/ and an admissible surface � such that

Œ�; �� D Œ†; id�

and ��1.D/ � � is a polygon from the rigid structure.

Proof. Let † be an admissible surface in C .An;m/ (the proof is the same for
D.An;m/), and let D � † be a one-punctured disk. We assume that the assump-
tions in the statement above hold. Let K be a polygon inside † with as many arcs
from the rigid structure as D. There exists a minimal admissible surface � con-
taining both D and K and an asymptotically rigid homeomorphism � permuting
cyclically the frontier arcs of � and such that the n (resp. m � 1) frontiers arcs
contained inD are sent onto those ofK; see Figure 8. Then � WD ��1 satisfies the
statement with � WD �.†/.

Figure 8
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Lemma 3.10. Consider a 3-corner with an attractive root whose minimum vertex
height is at least 2. Assume that we are in one of the following situations:

� 1 � m � nC 1, and we are considering a 3-corner with an attracting root in
C .An;m/;

� .m; n/ ¤ .1; 2/; .2; 1/, and we are considering a 3-corner with an attracting
root in D.An;m/.

Then the attracting root can be completed into a 3-cube.

Proof. Consider a 3-corner with an attracting root and the notation as in Figure 7.
Assume that we are in one of the situations described by the assumptions of the
statement; in particular, h.†/ � 2. Let D D �.I1/; first we show that D satisfies
the assumptions of Lemma 3.9.

� Recall that, in the case of a 3-corner with an attracting root,

�.� [ I1/ D † [H1;

where I1 is adjacent to � and �.I1/ � †. Thus † XD is connected. Moreover,
I1 shares either n orm � 1 frontier arcs with polygons outside � [ I2. By rigid-
ity of � outside � [ I1, we deduce thatD D �.I1/ contains n orm � 1 frontier
arcs from the polygons of the rigid structure.

� Assume that D contains m frontier arcs. If m D nC 1, the second assumption
is satisfied. Otherwise, m ¤ nC 1 and I1 is the central polygon M . Recall
that, in our situation, one has ]Fr.� [ I1/ D ]Fr.† [H1/. On one side, we
have ]Fr.� [ I1/ D mC k.n � 1/. On the other side, if M is not contained in
† [H1, then ]Fr.† [H1/ D .k C 1/.n � 1/C 2, and so m D nC 1, which
is excluded. Hence M is contained in † [H1; if M is contained in †, then
the assumption is satisfied. By contradiction, if H1 DM , then † does not con-
tain M . By (ii) and (v), �.J2/ D H1, and by the rigidity of � outside � [ J3,
we deduce that J2 DM . Now, since I1 DM , the subsurface � [ I2 does not
contain M . Moreover, by (ii), one has ]Fr.� [ I2/ D ]Fr.� [ J2/, which be-
comes .k C 1/.n � 1/C 2 D mC k.n � 1/, so m D nC 1, which is excluded.

By Lemma 3.9 applied with D D �.I1/, we can rewrite

Œ† [H1 [H3; id� D Œ� [H 01 [H
0
3; �� D Œ.� XK/ [K [H

0
1 [H

0
3; ��;

where K WD ��1.D/ is a polygon of the rigid structure and H 0i D �
�1.Hi /. Ob-

serve that � XK is connected. Thus we complete our 3-corner into a 3-cube by
adding the vertex Œ� XK;��. See Figure 9.
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Figure 9

Proof of Proposition 3.4. Consider a 3-corner with an attracting root and the no-
tation as in Figure 7. Let 1 � m � nC 1; by Lemma 3.8, in the case of a 3-corner
with an attracting root in C .An;m/, one has h.†/ � 2, and by Lemma 3.10, the
3-corner can be completed in a 3-cube. By the same lemma and Corollary 3.6,
it remains to consider the 3-corners in D.An;m/ with an attracting root such that
h.†/ D 1.

First assume that m � 3 and consider a 3-corner with an attracting root in
D.An;m/ such that h.†/ D 1; then there exists a polygon, denoted as H , adja-
cent to the central polygon in such a way that † DM [H . If the Hi are both
adjacent to M , we are done since, in this case, the vertex ŒM; id� completes the
3-corner into a 3-cube. Otherwise,

� either H1 and H3 are not adjacent to M ; thus they are both adjacent to H and
lie in the R1 strand. Since m � 3, one can push R1 into R2 using  as depicted
in Figure 10. Then let � WD  �1, � WD  .†/ and H 0i D �

�1.Hi /.

� Or H1 is adjacent to M , whereas H3 is not. We proceed as in the previous case,
but we need to be careful to push the strands where H3 lies into the one where
H1 does not lie (this is valid since here m � 3).

In both cases, we complete our 3-corner into a 3-cube by adding the vertex ŒM; ��.

Figure 10
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Secondly, assume that m D 1, n � 2 and let h.†/ D 1. Since m D 1, one has
† D � D � DM [H and M shares no arcs with polygons distinct from H .
By fact (i), the n � 1 frontier arcs of I1 (not shared with H ) can only be sent to
those of H and those of H1 (not shared with resp. H1 and H ). Thus there exists
some � homotopic to � such that �.M/ DM . Hence we have ŒM; id� D ŒM; ��.
In the same way, we obtain ŒM; �� D ŒM; id�, and so the latter vertex completes
the 3-corner into a 3-cube.

Thirdly, let m D 2, n � 2 and let h.†/ D 1. A priori, we have two possible
configurations: either the Hi ’s (resp. Ii ’s, J ’s) are not adjacent to M or one of
them is. Assume that, for instance, Œ† [H1 [H3; id� has the second configura-
tion. Then, sincem D 2 and n � 2, there exists  2 mod�.An;m/ rigid outside †
which cyclically permutes the frontier arcs of † so that Œ� [H 01 [H

0
3;  

�1� has
the first configuration, where � WD  .† [H1 [H3/. Hence

Œ† [H1 [H3; id� D Œ� [H 01 [H
0
3;  

�1�;

where  .Hi / D H 0i , and so we reduce our work to the first configuration. In this
case, with reasoning similar to the case m D 1 (excepting that † DM [H may
differ to � DM [H 0), we complete the 3-corner by adding ŒM; id�.

3.2 When is C .An;m/ a CAT(0) cube complex?

In this section, we determine for which subfamilies of An;m the associated cube
C .An;m/ is CAT.0/. Let us first consider some examples.

Example 3.11. The cube complexes C .A1;1/ and C .A1;2/ are CAT.0/. The two
cases are similar, so we consider C .A1;2/. By [11, Theorem 3.3], C .A1;2/ is sim-
ply connected. By Lemma 3.2, there is no copy of K2;3. By definition, we do not
have 1-corners, and by Lemma 3.3, it only remains to show that, in C .A1;2/, ev-
ery 3-corner with an attracting root can be completed into a 3-cube. This follows
from the fact that C .A1;2/ is a square-complex (there are only two ways to remove
or add adjacent polygons). Since �.I2/ D H3 and � is rigid outside � [ I1, one
cannot have �.I1/ � †. Thus �.I1/ D H1, �.�/ D † and so Œ†; id� D Œ�; ��.
Consequently, there are no 3-corners. And we conclude that C .A1;2/ is CAT.0/.
Similarly, one can show that C .A1;1/, D.A1;1/ and D.A1;2/ are CAT.0/.

Remark 3.12. As noted in [11], C .A1;3/ is not CAT.0/, and this observation can
be extended to A1;m for m � 3.

Consider the cube complex C .An;m/ and denote by R1; : : : ; Rm the m trees
branching out the central polygonM . An infinite ray of polygonsL inRj is a semi-
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Figure 11

infinite chain of polygons L D .A1j ; A
2
j ; : : : / starting from the polygon adjacent

to M in Rj and such that Akj and AkC1j are adjacent for all k � 1.

Example 3.13. For m > nC 1, the cube complex C .An;m/ is not CAT.0/. The
key obstacle here is that there is no vertex in C .An;m/ of height 0. Consider the
3-corner in C .An;m/ with the same notation as in Figure 7. We construct a 3-
corner with 3 vertices of height 1, 3 of height 2, and 1 of height 3 so that, by
Corollary 2.4, the only way to complete it to a 3-cube would be to add a vertex of
height 0. We take the following vertices: let †,� and � be the central polygonM
and let I1 D J3 (resp. H1 D J2, H3 D I2) be the polygons in R1 (resp. R2, R3)
adjacent to the central polygon. See Figure 11.

Fix three infinite rays of polygons L1 D .A11; A
2
1; : : :/ (resp. L2, L3) in R1

(resp. R2, R3). The ray Li is built recursively as follows. Start by letting A1i be
the polygon adjacent to M and lying in the branch Ri . Then, as A2i , take the ad-
jacent polygon whose puncture corresponds to the right-most child of the vertex
corresponding to the puncture ofA1i . Then we iterate the process. See Figure 12 for
an illustration of the infinite ray L1. Let � be an asymptotically rigid homeomor-
phism that shifts each polygon of L1 [M [ L2 by one polygon such that �.A11/
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Figure 12

lies in the central polygon. Let � be an asymptotically rigid homeomorphism that
shifts each polygon of L1 [M [ L3 by one polygon such that �.A11/ is the cen-
tral polygon. See Figure 11 for an illustration with m D 4 and n D 2. Then, by
construction, we cannot complete this 3-corner into a 3-cube because we do not
have a vertex of height zero. So the link of the vertex x D Œ† [H1 [H3; id� rep-
resented in Figure 11 is not a flag and C .An;m/ is not CAT.0/ for m > nC 1

Theorem 3.14. If n � 1, then the cube complex C .An;m/ is CAT.0/ if and only if
1 � m � nC 1.

Proof. Let n � 1 and 1 � m � nC 1. The case n D 1 is given by Example 3.11.
By [11, Theorem 3.3], C .An;m/ is contractible and thus simply connected. Propo-
sition 2.5 allows us to use Proposition 3.1 with C .An;m/ in order to prove Theo-
rem 3.14. Thus we need to show that C .An;m/ satisfies the assumptions in Propo-
sition 3.1. By definition, we do not have 1-corners, and by Lemma 3.2, there is no
2-corner. By Proposition 3.4 every 3-corner with an attracting root can be com-
pleted into a 3-cube; the same holds for non-attracting root by Lemma 3.3. By
Proposition 3.1, we conclude that C .An;m/ is CAT.0/.

For the converse, let m > nC 1; if n D 1, by Remark 3.12, C .A1;m/ is not
CAT.0/ for m � 3. If n > 1, m > nC 1, then C .An;m/ is not CAT.0/ by Exam-
ple 3.13. This concludes the proof of Theorem 3.14.

Remark 3.15. Let m; n � 1; the subcomplex of C .An;m/ generated by the ver-
tices of the form Œ†; ��, where † is an admissible surface containing the central
polygon, is called the spine. This contractible complex was first introduced in [11]
and is denoted by S C .An;m/. With similar work, we can show that S C .An;m/
is CAT.0/ if and only if n � 1 and 1 � m � nC 1.
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3.3 CAT(0)-ness of the cube complex D.An;m/

First, we show that D.An;m/ is contractible. To do this, we follow closely the proof
of the contractibility of C .An;m/ in [11, Section 3.2]. Let x be a vertex in D.An;m/
and † � S �.An;m/ an admissible surface. If there exists a finite path of vertices
x0; x1; : : : ; xn from x0 D x to xn D Œ†; id� such that h.xi / > h.xi�1/, one says
that Œ†; id� dominates x. Let S be a finite collection of vertices in D.An;m/. We
denote byX.S ; †/ the subcomplex in D.An;m/ generated by the height-increasing
paths from a vertex in S to Œ†; id�.

Lemma 3.16 ([11, Claim 3.6]). Let S be a finite collection of vertices in D.An;m/.
Then there exists an admissible surface † such that Œ†; id� dominates all the ver-
tices in S .

Proof. Let S D .Œ�i ; �i �/i2I and let †i be the admissible surface supporting
�i for each i 2 I . We denote by �i the smallest admissible surface such that
†i [�i � �i for each i 2 I . Then let † be an admissible surface containing
all the �.�i /. One obtains a height-increasing path from Œ�i ; �i � to Œ�i ; �i � by
adding polygons. Similarly, by definition of†, one has a second height-increasing
path from Œ�i ; �i � to Œ†; id�. By concatenating the two paths we obtain a height-
increasing path from Œ�i ; �i � to Œ†; id�. Thus Œ†; id� dominates all the vertices
in S .

For the next lemma, the proof follows the same steps as in [11, Section 3.2],
where the case of C .An;m/ is considered. We review the proof.

Lemma 3.17. Let S be a finite collection of vertices in D.An;m/. Then there exists
an admissible surface † such that X.S ; †/ is contractible.

Proof. Let S be a finite collection of vertices in D.An;m/. By Lemma 3.16, there
exists an admissible surface † such that Œ†; id� dominates all the vertices in S .
If X.S ; †/ D Œ†; id�, we are done. Assume that X.S ; †/ ¤ Œ†; id�. Now, take
a vertex x 2 X.S ; †/ with minimal height. Since X.S ; †/ ¤ Œ†; id�, x admits
x1; : : : ; xk as neighbours in X.S ; †/. By Lemma 2.2, we assume that

x D Œ�; �� and xi D Œ� [Hi ; �� for 1 � i � k;

where � is an admissible surface and H1; : : : ;Hk are some adjacent polygons.

Claim 3.18. The cube generated by the vertices ¹Œ� [i2I Hi ; ��ºI�¹1;:::;kº lies
in X.S ; †/
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Proof of the claim. One has a height-increasing path from x to Œ†; id�. Thus, by
Lemma 2.2, Œ†; id� D Œ� [ J1 [ � � � [ Jp; ��, where J1; : : : ; Jp are some poly-
gons. Similarly, since one also has an increasing path from xi D Œ� [Hi ; �� to
Œ†; id�, by Lemma 2.2, one has Œ†; id� D Œ� [Hi [M i

2 [ � � � [M
i
l
; ��, where

M i
2; : : : ;M

i
l

are some polygons. To sum up,

Œ†; id� D Œ� [ J1 [ � � � [ Jp; �� D Œ� [Hi [M i
1 [ � � � [M

i
l ; ��;

so l D p and Ji D H�.i/ for some permutation � . Hence one can add to � the
adjacent polygons Hi and next the remaining Ji to obtain a path from x to Œ†; id�
passing through ¹Œ� [i2I Hi j I � ¹1; : : : ; kº�º.

In particular, all the direct neighbours xi of x in X.S ; †/ are contained in
a cube in X.S ; †/. Thus it follows that the complex X.S ; †/ deformation re-
tracts onto X..S X ¹xº/ [ ¹x1; : : : ; xkº; †/. Since Œ†; id� dominates the vertices
in .S X ¹xº/ [ ¹x1; : : : ; xkº, we iterate the process. Hence we find a sequence

X.S ; †/ � X.S1; †/ � � � � :

This sequence stops since X.S ; †/ contains finitely many cells. Hence we obtain,
from a certain rank k,X.Sk; †/ D Œ†; id� for some finite collection Sk dominated
by Œ†; id�. Thus X.S ; †/ deformation retracts onto Œ†; id�, so is contractible

Proposition 3.19. If m; n � 1, the cube complex D.An;m/ is contractible.

Proof. Let n � 1 and let  WSn ! D.An;m/ be a continuous map. The image of
 lies in a compact subcomplex which has a finite collection of vertices S . By
Lemma 3.16, there exists an admissible surface † such that Œ†; id� dominates all
the vertices in S . Thus the image of  lies in X.S ; †/, which is contractible by
Lemma 3.17. Hence  is homotopically trivial. By Whitehead’s theorem, we de-
duce that D.An;m/ is contractible.

Proposition 3.20. Let m; n � 1; then the cube complex D.An;m/ is CAT.0/.

Proof. Let n;m � 1. By Proposition 3.19, D.An;m/ is contractible and thus sim-
ply connected. Proposition 2.5 allows us to use Proposition 3.1 with D.An;m/ in
order to show that D.An;m/ is CAT.0/. Thus we need to show that D.An;m/ sat-
isfies the assumptions in Proposition 3.1. By definition, we do not have 1-corners,
and by Lemma 3.2, there is no 2-corner. In Example 3.11, we show that we do not
have 3-corners in D.A1;1/ and D.A1;2/, so by Proposition 3.4, every 3-corner
with an attracting root can be completed into a 3-cube. By Lemma 3.3, every
3-corner with a non-attracting root can be completed into a 3-cube. Hence, by
Proposition 3.1, we conclude that D.An;m/ is CAT.0/.
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Now, we define the collection of cube complexes

E.An;m/ WD

´
D.An;m�nC1/ if m � n � 1;
C .An;m/ if 1 � m < n:

Corollary 3.21. For allm; n � 1, mod.An;m/ acts on the cube complex E.An;m/,
which is CAT.0/.

Proof. Letm;n� 1. If 1�m<n, then mod.An;m/ acts on E.An;m/DC .An;m/,
which is CAT.0/ by Theorem 3.14. Otherwise, m � n, and by Lemma 2.1,

mod.An;m/ Š mod�.An;m�nC1/I

now the latter group acts on E.An;m/ D D.An;m�nC1/, which is CAT.0/ by The-
orem 3.20.
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