Home Groups whose proper subgroups of infinite rank have a permutability transitive relation
Article
Licensed
Unlicensed Requires Authentication

Groups whose proper subgroups of infinite rank have a permutability transitive relation

  • Adolfo Ballester Bolinches , Maria De Falco , Francesco de Giovanni EMAIL logo and Carmela Musella
Published/Copyright: May 17, 2024

Abstract

Let 𝐺 be a group. A subgroup 𝐻 of 𝐺 is called permutable if H X = X H for all subgroups 𝑋 of 𝐺. Permutability is not in general a transitive relation, and 𝐺 is called a PT -group if, whenever 𝐾 is a permutable subgroup of 𝐺 and 𝐻 is a permutable subgroup of 𝐾, we always have that 𝐻 is permutable in 𝐺. The property PT is not inherited by subgroups, and 𝐺 is called a PT ̄ -group if all its subgroups have the PT -property. We prove that if 𝐺 is a soluble group of infinite rank whose proper subgroups of infinite rank have the PT -property, then 𝐺 is a PT ̄ -group.

Acknowledgements

The last three authors are supported by GNSAGA (INdAM) and are members of AGTA – Advances in Group Theory and Applications (www.advgrouptheory.com).

  1. Communicated by: Evgenii I. Khukhro

References

[1] A. Ballester-Bolinches, J. C. Beidleman, R. Esteban-Romero and V. Pérez-Calabuig, Maximal subgroups and PST-groups, Cent. Eur. J. Math. 11 (2013), no. 6, 1078–1082. 10.2478/s11533-013-0222-zSearch in Google Scholar

[2] A. Ballester-Bolinches, L. A. Kurdachenko, J. Otal and T. Pedraza, Infinite groups with many permutable subgroups, Rev. Mat. Iberoam. 24 (2008), no. 3, 745–764. 10.4171/rmi/555Search in Google Scholar

[3] A. Ballester-Bolinches, L. A. Kurdachenko and T. Pedraza, On periodic radical groups in which permutability is a transitive relation, J. Pure Appl. Algebra 210 (2007), no. 3, 665–671. 10.1016/j.jpaa.2006.11.006Search in Google Scholar

[4] J. C. Beidleman, B. Brewster and D. J. S. Robinson, Criteria for permutability to be transitive in finite groups, J. Algebra 222 (1999), no. 2, 400–412. 10.1006/jabr.1998.7964Search in Google Scholar

[5] M. De Falco, F. de Giovanni and C. Musella, Groups whose proper subgroups of infinite rank have a transitive normality relation, Mediterr. J. Math. 10 (2013), no. 4, 1999–2006. 10.1007/s00009-013-0321-xSearch in Google Scholar

[6] M. De Falco, F. de Giovanni and C. Musella, Groups with normality conditions for subgroups of infinite rank, Publ. Mat. 58 (2014), no. 2, 331–340. 10.5565/PUBLMAT_58214_16Search in Google Scholar

[7] M. De Falco, F. de Giovanni and C. Musella, A note on groups of infinite rank with modular subgroup lattice, Monatsh. Math. 176 (2015), no. 1, 81–86. 10.1007/s00605-014-0610-xSearch in Google Scholar

[8] M. De Falco, F. de Giovanni and C. Musella, Groups in which every normal subgroup of infinite rank has finite index, Southeast Asian Bull. Math. 39 (2015), no. 2, 195–201. Search in Google Scholar

[9] M. De Falco, F. de Giovanni, C. Musella and N. Trabelsi, Groups with restrictions on subgroups of infinite rank, Rev. Mat. Iberoam. 30 (2014), no. 2, 537–550. 10.4171/rmi/792Search in Google Scholar

[10] M. De Falco and C. Musella, Groups with many subgroups having modular subgroup lattice, Ricerche Mat. 51 (2002), no. 2, 241–247. Search in Google Scholar

[11] F. de Giovanni and M. Trombetti, Infinite minimal non-hypercyclic groups, J. Algebra Appl. 14 (2015), no. 10, Article ID 1550143. 10.1142/S0219498815501431Search in Google Scholar

[12] M. R. Dixon, M. J. Evans and H. Smith, Locally (soluble-by-finite) groups with all proper insoluble subgroups of finite rank, Arch. Math. (Basel) 68 (1997), no. 2, 100–109. 10.1007/s000130050037Search in Google Scholar

[13] W. Gaschütz, Gruppen, in denen das Normalteilersein transitiv ist, J. Reine Angew. Math. 198 (1957), 87–92. 10.1515/crll.1957.198.87Search in Google Scholar

[14] B. Hartley, Finite groups of automorphisms of locally soluble groups, J. Algebra 57 (1979), no. 1, 242–257. 10.1016/0021-8693(79)90222-9Search in Google Scholar

[15] F. Menegazzo, Gruppi nei quali la relazione di quasi-normalità è transitiva, Rend. Semin. Mat. Univ. Padova 40 (1968), 347–361. Search in Google Scholar

[16] F. Menegazzo, Gruppi nei quali la relazione di quasi-normalità è transitiva. II, Rend. Semin. Mat. Univ. Padova 42 (1969), 389–399. Search in Google Scholar

[17] D. J. S. Robinson, Groups in which normality is a transitive relation, Proc. Cambridge Philos. Soc. 60 (1964), 21–38. 10.1017/S0305004100037403Search in Google Scholar

[18] D. J. S. Robinson, Finiteness Conditions and generalized Soluble Groups, Ergeb. Math. Grenzgeb. (3) 62, Springer, New York, 1972. 10.1007/978-3-662-07241-7Search in Google Scholar

[19] R. Schmidt, Subgroup Lattices of Groups, De Gruyter Exp. Math. 14, Walter de Gruyter, Berlin, 1994. 10.1515/9783110868647Search in Google Scholar

[20] S. E. Stonehewer, Permutable subgroups of infinite groups, Math. Z. 125 (1972), 1–16. 10.1007/BF01111111Search in Google Scholar

[21] G. Zacher, I gruppi risolubili finiti in cui i sottogruppi di composizione coincidono con i sottogruppi quasi-normali, Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Nat. (8) 37 (1964), 150–154. Search in Google Scholar

Received: 2023-12-30
Revised: 2024-03-05
Published Online: 2024-05-17
Published in Print: 2024-11-01

© 2024 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 24.9.2025 from https://www.degruyterbrill.com/document/doi/10.1515/jgth-2023-0296/html?lang=en
Scroll to top button