Abstract
Let 𝐺 be a group.
A subgroup 𝐻 of 𝐺 is called permutable if
Acknowledgements
The last three authors are supported by GNSAGA (INdAM) and are members of AGTA – Advances in Group Theory and Applications (www.advgrouptheory.com).
-
Communicated by: Evgenii I. Khukhro
References
[1] A. Ballester-Bolinches, J. C. Beidleman, R. Esteban-Romero and V. Pérez-Calabuig, Maximal subgroups and PST-groups, Cent. Eur. J. Math. 11 (2013), no. 6, 1078–1082. 10.2478/s11533-013-0222-zSearch in Google Scholar
[2] A. Ballester-Bolinches, L. A. Kurdachenko, J. Otal and T. Pedraza, Infinite groups with many permutable subgroups, Rev. Mat. Iberoam. 24 (2008), no. 3, 745–764. 10.4171/rmi/555Search in Google Scholar
[3] A. Ballester-Bolinches, L. A. Kurdachenko and T. Pedraza, On periodic radical groups in which permutability is a transitive relation, J. Pure Appl. Algebra 210 (2007), no. 3, 665–671. 10.1016/j.jpaa.2006.11.006Search in Google Scholar
[4] J. C. Beidleman, B. Brewster and D. J. S. Robinson, Criteria for permutability to be transitive in finite groups, J. Algebra 222 (1999), no. 2, 400–412. 10.1006/jabr.1998.7964Search in Google Scholar
[5] M. De Falco, F. de Giovanni and C. Musella, Groups whose proper subgroups of infinite rank have a transitive normality relation, Mediterr. J. Math. 10 (2013), no. 4, 1999–2006. 10.1007/s00009-013-0321-xSearch in Google Scholar
[6] M. De Falco, F. de Giovanni and C. Musella, Groups with normality conditions for subgroups of infinite rank, Publ. Mat. 58 (2014), no. 2, 331–340. 10.5565/PUBLMAT_58214_16Search in Google Scholar
[7] M. De Falco, F. de Giovanni and C. Musella, A note on groups of infinite rank with modular subgroup lattice, Monatsh. Math. 176 (2015), no. 1, 81–86. 10.1007/s00605-014-0610-xSearch in Google Scholar
[8] M. De Falco, F. de Giovanni and C. Musella, Groups in which every normal subgroup of infinite rank has finite index, Southeast Asian Bull. Math. 39 (2015), no. 2, 195–201. Search in Google Scholar
[9] M. De Falco, F. de Giovanni, C. Musella and N. Trabelsi, Groups with restrictions on subgroups of infinite rank, Rev. Mat. Iberoam. 30 (2014), no. 2, 537–550. 10.4171/rmi/792Search in Google Scholar
[10] M. De Falco and C. Musella, Groups with many subgroups having modular subgroup lattice, Ricerche Mat. 51 (2002), no. 2, 241–247. Search in Google Scholar
[11] F. de Giovanni and M. Trombetti, Infinite minimal non-hypercyclic groups, J. Algebra Appl. 14 (2015), no. 10, Article ID 1550143. 10.1142/S0219498815501431Search in Google Scholar
[12] M. R. Dixon, M. J. Evans and H. Smith, Locally (soluble-by-finite) groups with all proper insoluble subgroups of finite rank, Arch. Math. (Basel) 68 (1997), no. 2, 100–109. 10.1007/s000130050037Search in Google Scholar
[13] W. Gaschütz, Gruppen, in denen das Normalteilersein transitiv ist, J. Reine Angew. Math. 198 (1957), 87–92. 10.1515/crll.1957.198.87Search in Google Scholar
[14] B. Hartley, Finite groups of automorphisms of locally soluble groups, J. Algebra 57 (1979), no. 1, 242–257. 10.1016/0021-8693(79)90222-9Search in Google Scholar
[15] F. Menegazzo, Gruppi nei quali la relazione di quasi-normalità è transitiva, Rend. Semin. Mat. Univ. Padova 40 (1968), 347–361. Search in Google Scholar
[16] F. Menegazzo, Gruppi nei quali la relazione di quasi-normalità è transitiva. II, Rend. Semin. Mat. Univ. Padova 42 (1969), 389–399. Search in Google Scholar
[17] D. J. S. Robinson, Groups in which normality is a transitive relation, Proc. Cambridge Philos. Soc. 60 (1964), 21–38. 10.1017/S0305004100037403Search in Google Scholar
[18] D. J. S. Robinson, Finiteness Conditions and generalized Soluble Groups, Ergeb. Math. Grenzgeb. (3) 62, Springer, New York, 1972. 10.1007/978-3-662-07241-7Search in Google Scholar
[19] R. Schmidt, Subgroup Lattices of Groups, De Gruyter Exp. Math. 14, Walter de Gruyter, Berlin, 1994. 10.1515/9783110868647Search in Google Scholar
[20] S. E. Stonehewer, Permutable subgroups of infinite groups, Math. Z. 125 (1972), 1–16. 10.1007/BF01111111Search in Google Scholar
[21] G. Zacher, I gruppi risolubili finiti in cui i sottogruppi di composizione coincidono con i sottogruppi quasi-normali, Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Nat. (8) 37 (1964), 150–154. Search in Google Scholar
© 2024 Walter de Gruyter GmbH, Berlin/Boston
Articles in the same Issue
- Frontmatter
- Open mappings of locally compact groups
- Groups of profinite type and profinite rigidity
- On conjugate separability of nilpotent subgroups
- Groups whose proper subgroups of infinite rank have a permutability transitive relation
- A generalization of the Brauer–Fowler theorem
- On groups with large verbal quotients
- Conjugacy class numbers and nilpotent subgroups of finite groups
- On the common transversal probability
- Classifying primitive solvable permutation groups of rank 5 and 6
- Tuple regularity and 𝑘-ultrahomogeneity for finite groups
- Skew-morphisms of elementary abelian 𝑝-groups
- On algebraic normalisers of maximal tori in simple groups of Lie type
Articles in the same Issue
- Frontmatter
- Open mappings of locally compact groups
- Groups of profinite type and profinite rigidity
- On conjugate separability of nilpotent subgroups
- Groups whose proper subgroups of infinite rank have a permutability transitive relation
- A generalization of the Brauer–Fowler theorem
- On groups with large verbal quotients
- Conjugacy class numbers and nilpotent subgroups of finite groups
- On the common transversal probability
- Classifying primitive solvable permutation groups of rank 5 and 6
- Tuple regularity and 𝑘-ultrahomogeneity for finite groups
- Skew-morphisms of elementary abelian 𝑝-groups
- On algebraic normalisers of maximal tori in simple groups of Lie type