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The relational complexity of linear groups
acting on subspaces
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Abstract. The relational complexity of a subgroup G of Sym(£2) is a measure of the way
in which the orbits of G on QF for various k determine the original action of G. Very
few precise values of relational complexity are known. This paper determines the exact
relational complexity of all groups lying between PSL,, (') and PGL,, (), for an arbitrary
field IF, acting on the set of 1-dimensional subspaces of F”7. We also bound the relational
complexity of all groups lying between PSL,,(¢) and PT'L,,(¢), and generalise these results
to the action on m-spaces for m > 1.

1 Introduction

The study of relational complexity began with work of Lachlan in model the-
ory as a way of studying homogeneous relational structures: those in which every
isomorphism between induced substructures extends to an automorphism of the
whole structure. For the original definition, see, for example, [10]; an equivalent
definition in terms of permutation groups was given by Cherlin [1] and, apart from
a slight generalisation to group actions, is the one we now present.

Let Q be an arbitrary set and let H be a group acting on 2. Fix k € Z, and
let X := (x1,....x%), Y :=(y1,..., k) € Q. Forr <k, we say that X and Y
are r-equivalent under H, denoted X ~pg , Y, if, for every r-subset of indices
{i1,...,ir} ©{1,...,k}, there exists an h € H such that

(xfll,...,xihr) = (Viys-osViy)-

fX~grY,ieifY e X#  then X and Y are equivalent under H. The rela-
tional complexity of H, denoted RC(H, 2), or RC(H) when Q is clear, is the
smallest > 1 such that X ~g , Y implies ¥ € XH for all X,Y € QF and all
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k > r. Equivalently, RC(H) is the smallest r such that r-equivalence of tuples
implies equivalence of tuples. Note that RC(H) > 2if H # 1 and |Q] > 1,as X
or Y may contain repeated entries.

Calculating the precise relational complexity of a group is often very difficult.
A major obstacle is that if K < H < Sym(£2), then there is no uniform relation-
ship between RC(K, 2) and RC(H, 2). For example, if n > 4, then the relational
complexities of the regular action of C,, and natural actions of A, and S, are 2,
n — 1 and 2, respectively. In [1], Cherlin gave three families of finite primitive bi-
nary groups (groups with relational complexity two) and conjectured that this list
was complete. In a dramatic recent breakthrough, this conjecture was proved by
Gill, Liebeck and Spiga in [5]; this monograph also contains an extensive literature
review.

In [1, 2], Cherlin determined the exact relational complexity of S,, and A, in
their actions on k-subsets of {1, ...,n}. The relational complexity of the remain-
ing large-base primitive groups is considered in [4]. Looking at finite primitive
groups more generally, Gill, Loda and Spiga proved in [6] that if H < Sym(2) is
primitive and not large-base, then RC(H, ) < 91log|2| + 1 (our logarithms are
to the base 2). This bound was tightened by the second and third author in [9] to
5log|2| 4+ 1. Both [6] and [9] bounded the relational complexity via base size,
and the groups with the largest upper bounds are classical groups acting on sub-
spaces of the natural module, and related product action groups. This motivated us
to obtain further information about the relational complexity of these groups; this
paper confirms that these bounds are tight, up to constants.

We now fix some notation for use throughout this paper. Let n be a positive
integer, F a (not necessarily finite) field, V = F”, and Q,, = £F,,(V), the set
of m-dimensional subspaces of V. We shall study the relational complexity of the
almost simple groups H with PSL,,(F) << H < PT'L,(FF), acting on ,,. We will
generally work with the corresponding groups H with SL,(IF) < H < I'L,(F),
as these naturally have the same relational complexity when acting on €2,,.

Several of our results focus on the case IF = ;. We begin with the following
theorem of Cherlin.

Theorem 1.1 ([1, Example 3]). The relational complexity of GLy(q) acting on the
nonzero vectors of ¥y is equal to n when q¢ = 2, and n + 1 when q > 3. Hence
also in the action on 1-spaces, we find that RC(PGL,(2), 21) = n.

More generally, for
PSL,(q) < H < PGL,(g),

Loda [11, Corollary 5.2.7] shows that RC(H, Q1) < 21og|2;| + 1. Other results
imply an alternative upper bound on RC(H, €21). We first note that the height of
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a permutation group K on a set €2, denoted H(K) or H(K, €2), is the maximum
size of a subset A of €2 with the property that Ky < K(a) foreach I' ¢ A. It
is easy to show (see [6, Lemma 2.1]) that RC(K) < H(K) + 1. By combining
this with immediate generalisations of results of Hudson [8, §§5.3-5.4] and Loda
[11, Proposition 5.2.1], we obtain the following (for |IF| = 2, see Theorem 1.1; we
also omit a few small exceptional cases for brevity).

Proposition 1.2. Let PSL,(F) < H < PGL,(F) and |F| > 3.
() Suppose thatn = 2, with |F| = q > 7 if H # PGLy(F). If [F| > 4, then

H(H,Q1) =3 and RC(H,Q1)=n+2=4,

whilst RC(PGL,(3), Q1) = n = 2.
(i) Ifn >3, then H(H, Q1) = 2n — 2 and RC(H, Q1) < 2n — 1.

The following theorem gives the exact relational complexity of groups between
PSL, (IF) and PGL,, (IF) for n > 3, acting naturally on 1-spaces.

Theorem A. Let n > 3, and let F be any field. Then the following hold.

(i) We have
n if |[F| <3,

RC(PGL,(F), 1) = {n +2 if|F[>4

(i) If PSL,(F) < H < PGL,(F), then

RC(T. 1) — {2n —1 ifn=3,
2n—2 ifn>4.

For most groups, we see that the relational complexity is very close to the bound
in Proposition 1.2 (ii). However, the difference between the height and the rela-
tional complexity of PGL,, (IF) increases with n when |[F| > 3. This addresses a re-
cent question of Cherlin and Wiscons (see [5, p. 23]): there exists a family of finite
primitive groups that are not large-base, where the difference between height and
relational complexity can be arbitrarily large. Theorem A also provides infinitely
many examples of almost simple groups H with RC(Soc(H)) > RC(H).

One way to interpret the gap between the relational complexity of PGL,, (IF)
and its proper almost simple subgroups with socle PSL,(IF) is to observe that
preserving linear dependence and independence is a comparatively “local” phe-
nomenon, requiring information about the images of n-tuples of subspaces but not
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(very much) more, whereas restricting determinants requires far richer informa-
tion. This mimics the difference between the relational complexity of S, and A,
in their natural actions, where requiring a map to be a permutation is “local”, but
requiring a permutation to be even is a “global” property.

We next bound the relational complexity of the remaining groups with socle
PSL,, (¢g) that act on 21. For k € Z~¢, the number of distinct prime divisors of k
is denoted by w(k), with w(1) = 0.

Theorem B. Let H satisfy PSL,(q) < H < PT'L,(q), and let
e:=|H : HNPGL,(q)|.

Suppose that e > 1 so that ¢ > 4 and H £ PGL,(q).
(1) Ifn =2and q > 8, then

4+ w(e) > RC(H, Q) > 4,

except that RC(PXL,(9), ;) = 3.
(i1) Ifn > 3, then

n+2 always,
2n—1+w(e) >RC(H, Q1) >{n+3 ifPGL,(q) < H,
2n =2 if H <PXLy(q) # PTLa(q).

In fact, the lower bound of 2n — 2 holds for a larger family of groups; see Propo-
sition 3.7.

Theorem C. Let H satisfy PSL,(q) < H < PT'L,(q) and let

H : HNPGL,(q)|.

e =
Fixm €{2,....|5]}. Then
(m+ Dn—2m +2+ w(e) > RC(H, Q) > mn —m? + 1.

GAP [13] calculations using [3] yield RC(PT'L,(3°), 1) = 5 = 4 + «(5) and
RC(PT'L4(9), 21) = 8 = 7 4+ w(2), so the upper bounds of Theorem B cannot be
improved in general. On the other hand, RC(PT'L3(2°), Q1) achieves the lower
bound of 6 =3+ 3 <7 =5+ w(6). Additionally, RC(PSL4(2), 25) achieves
the lower bound of 5 from Theorem C, while RC(PSL4(3), 253) = 6 and

RC(PGL4(3), Q) = RC(PSL4(4), 2,) = RC(PTL4(4), Q,) = 8.
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It is straightforward to use our results to bound the relational complexity in
terms of the degree. For example, RC(PGL,(g), 21) < log(|21]) 4+ 3. Many of
our arguments also apply to the case where [ is an arbitrary field; see Theorem 3.1,
Lemmas 3.5 and 3.6, and Propositions 3.7 and 4.1.

This paper is structured as follows. In Section 2, we fix some more notation
and prove some elementary lemmas, then prove upper bounds on the relational
complexity of the relevant actions on 1-spaces. In Section 3, we shall prove corre-
sponding lower bounds, and then prove Theorems A and B. Finally, in Section 4,
we prove Theorem C.

2 Action on 1-spaces: Upper bounds

In this section, we present several preliminary lemmas, and then determine upper
bounds for the relational complexity of groups H, with SL,(IF) < H < GL,(F),
acting on 7.

We begin with some notation that we will use throughout the remainder of the
paper. Let {eq,...,e,} be a basis for V. For a set I, a tuple X = (xi)f.‘:1 eTk
and a permutation 0 € Sy, we write X to denote the k-tuple (xjo—!, ..., Xgo—1).
For a tuple X € an, we write (X) to denote the subspace of V' spanned by all
entries in X. Fori € {1,...,k}, we shall write (X \ x;) to denote the subtuple
of X obtained by deleting x;.

In the remainder of this section, let Q2 := Q; = P& (V) and let H be a group
such that

SL,(F) < H < GL,(F).
Recall from Theorem 1.1 that RC(GL, (FF), ) = n when |F| = 2. Thus we shall
assume throughout this section that |F| > 3 and n > 2.

We write D to denote the subgroup of diagonal matrices of GL, (IF) (with re-
spect to the basis {e1,...,e,}), and A := {(ei) |ied{l,..., n}}. Observe that D
is nontrivial since |IF| > 2, and that D N H is the pointwise stabiliser Ha). For
avectorv =Y 7, ae; €V, the support supp(v) of v is the set

{i e{l,...,n} | a; #0}.

Additionally, the support supp(W) of a subset W of V' is the set |, ey supp(w),
and similarly for tuples. In particular, A is the set of subspaces of V' with support
of size 1, and supp(W) = supp((W)) for all subsets W of V.

2.1 Preliminaries

We begin our study of the action of H on 2 with a pair of lemmas that will enable
us to consider only tuples of a very restricted form.
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Lemma 2.1. Let k > n, and let X,Y € Q¥ be such that X ~Hn Y. Additionally,
let a := dim((X)). Then there exist X' = (x{,...,x), Y = (y],..., ) € Qk
such that

() x! =y ={e;) fori €{l,....,a}, and
() X ~gr Y ifandonlyif X' ~pg, Y' foreachr € {1,... k}.

Proof. Observe that there exists 0 € Si such that (X%) = (x1071, ..., xg071).
Since X ~pg, Y and a < n, the definition of a-equivalence yields X ~g , Y.
Hence there exists an f € H such that xij:,—l = yjo~! foralli € {1,...,a}, and
s0 (Y%) = (y1o7 L, ..., ygo~1). Since SL, (IF) is transitive on n-tuples of linearly
independent 1-spaces, there exists # € SL, () < H such that

xi{,’il = yiha—l = (e;) fori e{l,...,a}.

Define X', Y’ € QF by
fh

’ r_ h
X; = Xjo—1 and y; = yjo—!

sothat X’ = X" and ¥’ = Y°" Then X’ ~p, Y'ifand only if X% ~p, Y°,
which holds if and only if X ~p , Y. O

Lemma2.2. Letk >r > n,andlet X,Y € QF be such that X ~m,r Y. Addition-
ally, let a := dim({X)) and assume thata < n. Ifa = 1, or if

RC(GLy(F), P€1(F%)) < r,
thenY € XH.

Proof. 1f a = 1, then all entries of X are equal, so since r > n > 2, we see that
X ~py, Y directly implies Y € X . We will therefore suppose that ¢ > 2 and
RC(GL, (F), #§1(F%)) < r.By Lemma 2.1, we may assume without loss of gen-
erality that (X) = (Y) = (e1.....eq). As X ~g, Y and

RC(GLy(F), Pg1(F9)) <,

there exists an element g € GL,(IF) mapping X to Y, considered as tuples of
subspaces of (e1, ..., es). We now let i be the diagonal matrix

diag(det(g™1), 1,....1) € GL,_4(F)

and observe that g @ h € SL,,(IF) maps X to Y and lies in H, since SL, (F) lies
in H.Thus Y € XH. O
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We now begin our study of some particularly nice k-tuples.

Lemma 2.3. Letk > n + 1, and let X,Y € Q¥ be such that x; = yvi = (e;) for
ie{l,....,nyand X ~gn+1 Y. Then supp(x;) = supp(y;) foralli € {1,... k}.

Proof. 1t is clear that supp(x;) = {i} = supp(y;) when i € {1,...,n}. Assume
therefore thati > n. Since X ~pg ,4+1 Y, there exists g € H such that

((e1). ... {en). x0)¥ = ((er). ... (en). i)
Observe that g € Ha) = D N H, and so supp(x;) = supp(y;). |

Our final introductory lemma collects several elementary observations regard-
ing tuples of subspaces in A := Q \ A, the set of 1-dimensional subspaces of
support size greater than 1. For » > 1 and A, B € A", we let M A, B consist of all
matrices in M, , () that fix (e;) for 1 <7 <nandmapa; intob; forl < j <r.
Notice that all matrices in M 4 p are diagonal, and that if g,# € M4 p, then
asth = 48 +a <bj, so My, g is a subspace of M, ,. For an n X n matrix
g = (gij) and a subset I of {1,...,n}, we write g|; to denote the submatrix of g
consisting of the rows and columns with indices in /.

Lemma 2.4. Letr > 1, and let A = (ay,...,a;), B = (b1,...,b;) € A".

(i) Let a; and a;j be (possibly equal) elements of A such that

supp(a;) N supp(a;) # 2,
and let g € M4 4. Then g|supp(ai,aj) is a scalar.

(i) Suppose A ~p.1 B. Then, for 1 <i <r, the space (M (4;),5;)) |supp(a;) IS one-
dimensional, so the dimension of Ml(4,) (»,) is equal to n + 1 — [supp(a;)|.

(iii) For a subtuple A" of A, let S := {1, ...,n} \ supp(A4’). Then

dim((M47,4)]s) = |S].

Proof. Part (i) is clear. For part (ii), by assumption, there is an invertible diagonal
matrix mapping a; to b;, so supp(a;) = supp(b;). Let k and £ be distinct elements
of supp(a;), which exist as a; € A If a;.g < b;, then e,f = Aey for some A € IF,
and the value of A completely determines the image jte; of ey under g. The result
follows. Part (iii) holds since, for all g € My 4/, s € S, A € F and a € A’, the
matrix obtained from g by adding A to its s-th diagonal entry fixes a. |
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2.2 Upper bounds for SL,(F) < H < GL,(F) on 1-spaces

In this subsection, we will suppose that n > 4 and |F| > 3, and let H be any group
such that SL,(F) < H < GL, (F). Our main result is Theorem 2.7, which gives
upper bounds on RC(H, 2).

Lemma 2.5.If X ~gon—o Y implies that X ~pgon—1 Y forall X,Y € Q271
with x; = y; = {ej) fori € {1,...,n}, thenRC(H, Q) <2n —2.

Proof. Letk be atleast2n — 1, and let A, B € Qk satisfy A ~pg 2n—2 B. Let A’
be a subtuple of A of length 2n — 1, and B’ the corresponding (2n — 1)-subtuple
of B. We shall show that B’ € A’ for all such A’ and B’ so that A ~H.2n—1 B.
It will then follow from Proposition 1.2 (ii) that A € BH  as required.

Let a := dim({A’)), and suppose first that @ < n. We observe from Proposi-
tion 1.2 thatifa > 2, then RC(GL,(F), PE1(F?)) <2n —2.As A ~gon—2 B,
Lemma 2.2 yields B’ € A’ H. If instead a = n, then by Lemma 2.1, there exist
X and Y in Q277! such that x; = y; = (e;) for each i € {1,...,n}, and such
that, for all » > 1, the relations A’ ~g, B’ and X ~pg , Y are equivalent. Now,
A’ ~H2n-2 B',so X ~H2n—2 Y. It X ~H2n—2 Y implies that X ~H.2n—1 Y,
then B’ € A’ H, as required. o

We shall therefore let X and Y be elements of 22"~ ! with x; = y; = (e;) for
i €{l,...,n}suchthat X ~g 5,5 Y. Additionally, fori € {1,...,2n — 1} and
j €{l1,...,n}, define

n n
aij,Pij € F sothat x; = <Zal~jej> and y; = <Zﬁijej>.
J=1 =1

Lemma 2.6. With the notation above, if at least one of the following holds, then
Y e X,

(i) Thereexisti,j € {n+1,...,2n — 1} withi # j and supp(x;) < supp(x;).
(ii) There exists a nonempty R C{n +1,...,2n — 1} with |();cg supp(x;)| = 1.
(iii) There existsi € {n + 1,...,2n — 1} such that supp(x;) > 4.

Proof. We begin by noting that Lemma 2.3 yields supp(y;) = supp(x;) for all
ief{l,....2n—1}.

(i) Since X ~g 24— Y, there exists an 4 € H mapping (X \ x;) to (Y \ y;),
and such an / is necessarily diagonal, with fixed entries in supp(x;) (up to scalar
multiplication).
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Now, let£ € {n + 1,...,2n — 1} \ {i, j } (this is possible as n > 4). There ex-
ists an i’ € H mapping (X \ x¢) to (Y \ y¢), and as before, each such A’ is di-
agonal. Hence every matrix in H# N D mapping x; to y; maps x; to y;, and in
particular, xl.h = yi, and so Xh=v.

(i) Let {£} :=();cr supp(x;). Then a;j; # O foralli € R. Since X ~gopn—2 7Y,
there exists & € H such that (X \ xy)" = (Y \ yg). Forallk € {1,...,n}\ {€}, it
follows that there exists y; € F* such that e,}c’ = yre. Thus, foreach i € R,

== Y )= (et Y e

k esupp(x;) kesupp(x;)\{£}
Since «;y # 0, we deduce that supp(eg) C supp(y;) = supp(x;). As this holds for
alli € R, we obtain supp(eé’) = {{}. Thus x? = (eg)" = (eg) = yp,s0 XM =Y.
(iii) Permute the last n — 1 coordinates of X and Y so that supp(x,+1) > 4.
By (ii), we may assume that x; ¢ A foralli > n + 1. We define

X,’f+1 = (Xp+1,...,Xg) and Ynk+1 = Vn+1s--s Vk)

foreach k e {n + 1,...,2n — 1}. As supp(x;) = supp(y;) for all i, we see that
X,lf_H ~D.1 Ynk_H, SO X,’fﬂ and Ynk+1 satisfy the conditions of Lemma 2.4 (ii).
Suppose first that there exists j € {n 4+ 2,...,2n — 1} such that

J J = Jj=1 yi—1
MXn+1’Yn+l MXn+l’Yn+1 .

As X ~g2p—2 Y, thereexists h € H N D such that (X \Xj)h = (Y \ y;). Hence

i _
heMX;f+1aYnj+1’ andso h e My/

Therefore, x;’ =yjand X" =Y.
Hence we may assume instead that

J
n+l’Yn+] :

Myx/, v/, <My/i-ly

JLY S S forall j e {n+2,...,2n —1}.

Then
dim(Mix], , v7,,) = dim(Mx/-y/o) — 1.
Lemma 2.4 (ii) yields

dim(Mxpflyfht) <n =3,

and hence

2n—2 y2n—2 — = 2n—1 2n—2
ManlH ’Yn—?—l {0} MXnil ’Yn-’i1-l ’

contradicting our assumption. |
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‘We now prove the main result of this subsection.

Theorem 2.7. Suppose that n > 4 and |F| > 3, and let H be any group with
SL,(F) < H < GL,(FF). Then RC(H,Q2) <2n — 2.

Proof. Let X, Y € Q27~1 pe as defined before Lemma 2.6. By Lemma 2.5, it
suffices to show that ¥ € X | so assume otherwise. We may also assume that all
subspaces in X are distinct so that

[supp(x;)| € {2,3} foreachi e{n+1,...,2n—1}

by Lemma 2.6 (iii). For k € {2, 3}, let Ry be the setofalli € {n + 1,...,2n — 1}
such that |supp(x;)| = k. Then

Ra| + |Rs| = n — 1. 2.1)

Observe from Lemma 2.6 (1)—(ii) that if i € R», then supp(x;) N supp(x;) = &
foreach j e {n +1,...,2n — 1} \ {i}. Hence 2|R,| < n and

1= | suppep)| = {1\ (U supp)| =0 = 20Ral. 22)
JER3 i€R>

Observe next that | R3| > 1, else | Rz| =n — 1 by (2.1), contradicting 2| Rz | < n.

We shall determine an expression for |U | involving | R3], by considering the max-

imal subsets P of R3 that correspond to pairwise overlapping supports. To do so,

define a relation ~ on R3 by i ~ j if supp(x;) N supp(x;) # &, let P be the set

of equivalence classes of the transitive closure of ~, and let P € . We claim that

‘ |J supp(xc)

ceP

=2+|P|.

By Lemma 2.6 (i)—(ii), |supp(x;) N supp(x;)| € {0,2} for all distinct i, j € R3.
Thus our claim is clear if | P| € {1,2}.

If instead |P| > 3, then there exist distinct ¢y, c2,c3 € P with ¢ ~ ¢3 and
cy~c3. Letl = ﬂ,~3=1 supp(x¢,; ). We observe that |/ | # 0, and so Lemma 2.6 (ii)
shows that / has size two and is equal to supp(x¢,) N supp(x¢;). Hence ¢ ~ ¢3
and

3 3
| suppley) = 1 U (U(supp(xc» \ 1)).
i=1 i=1
If | P| > 3, then there exists ¢4 € P \ {c1, c2, ¢3} such that, without loss of gener-
ality, c4 ~ c¢1. Ascy ~ ¢j foreach j € {2, 3}, the above argument shows that
4 4
M supplee) =1 and | supp(ae) =10 (U(supp<xci) \ 1)).

i€{l,j,4} i=1 i=1
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Repeating this argument inductively on | P | shows that

U supp(xe) = I U (U (supp(x¢) \ 1)),

ceP ceP
which has size 2 + | P|, as claimed.
Finally, let 7 > 1 be the number of parts of #. As |R3| = )" pcp|P|, it follows
from our claim that |U| = 2r + |R3| > 2 + |R3]|. Thus (2.2) yields

24 |R3| = n—2[Ry|.

Hence 2|Ry| + |R3| <n—2 <n—1, which is equal to |Rz| + |R3| by (2.1),
a contradiction. o

2.3 Upper bounds for GL,(F) on 1-spaces

In this subsection, we determine a much smaller upper bound on RC(GL, (IF), 2)
via our main result, Theorem 2.12. We shall assume throughout that # and |[F| are
at least 3, and write G := GL,(IF). Since D is the pointwise stabiliser of A in G,
we will prove Theorem 2.12 by combining Lemmas 2.1 and 2.2 with information
about the action of D on r-tuples 4 and B of subspaces in A = Q \ A. If these
tuples are (r — 1)-equivalent under D, then by acting on one with a suitable ele-
ment of A, we may assume that their first  — 1 entries are equal. We shall denote
the nonzero entries of elements g of D by just g1, ..., g, rather than g11,..., gnn
since g is necessarily diagonal.

Lemma 2.8. Ler r > 3, and let A, B € A" be such that
(ai.....ar—1) = (b1,....by—1), A ~ B, and B ¢ AP.

D,r—1
Let C ={ay,...,ar—1} and assume also that supp(C) = {1, ...,n}. Then (after
reordering the basis for V and (ay,...,ar—1) if necessary) the following state-

ments hold.
(i) There exist integers
2<i1<ip<-+<lip_1=n
such that, for eacht € {1,...,r — 1}, supp(ay,...,a;) isequalto{l,...,is}.
(ii) Lett € {1,...,r —3}. Then
supp(a;) Nsupp(ay) = @ forallue{t +2,...,r —1}.
(iii) The support of a does not contain 1.
@iv) Lett € {1,...,r —1}. Then iy € supp(a;) N supp(as+1).

(v) Each integer in supp(ay) lies in the support of a unique subspace in C.
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Proof. We begin by fixing notation related to

ar = <Zageg> and b, = <Z,Bgeg>.
(=1 {=1

Since A ~p -1 B, there exists an element in D mapping a, to b,, and so it
follows that supp(b,) = supp(a,). On the other hand, B ¢ AP, and so a, # b;.
Therefore, by scaling the basis vectors for a, and b, there exist j,k € {1,...,n}
suchthat j < k,a; = B; = 1, and o and B are distinct and nonzero. Reordering
{e1,..., ey} if necessary, we may assume that j = 1. Then each element of D
that maps a, to b, also maps (e; + are) to (e; + Brer); we will use this fact
throughout the proof.

(i) We show first that there is no partition of C into proper subsets C’ and
C" such that supp(C’) N supp(C”) = @, so suppose otherwise, for a contradic-
tion. Then, as |C’| < r —1and A ~p 1 B, there exists an f € D¢ such that
ay = by. Multiplying f by a scalar if necessary, we may assume that f; = 1.
Then f; = B;/a; foreachi € supp(a,). Similarly, there exists g € D) with the
same properties. As supp(C)’ N supp(C)” = @, there exists an & € D such that
h|supp(C)’ = flsupp(C)’ and h|supp(C)” = glsupp(C)”- Since supp(C) = {1,...,n},
we observe that /|supp(a,) = S lsuppa,) = &lsupp(a,)- Hence af = b,. Furthermore,
by construction, 2 € D¢y N D(c»y = Dc. Thus B € AP a contradiction.

By reordering ay,...,a,—1 if necessary, we may assume that 1 € supp(ay).
Then, by reordering {e,...,e,} if necessary, we may assume that supp(ay) is
equal to {1,2,...,i1} for some i; > 2 since a; € A. Thus the result holds for
t = 1. We will use induction to prove the result in general, and to show that, for
alls € {2,...,r — 1},

there exists w € {1,...,s — 1} such that supp(as) N supp(ay) # . (2.3)
Lett € {2,...,r —1},letUs—; :={ay,...,as—1}, and assume inductively that
supp(Ur—1) ={1.2,... i¢r—1}.

If t > 3, assume also that (2.3) holds for all s € {2,...,¢ — 1}. Since C cannot be
partitioned into two parts whose support has trivial intersection,

supp(azi,...,as—1) Nsupp(ay,...,ar—1) # O,

so we may reorder {a;,...,ar—1} so that (2.3) holds when s = t.
Suppose for a contradiction that supp(a;) € supp(Us—1). Then (2.3) (applied
toeach s € {2,...,7 —1}) and Lemma 2.4 imply that D c) is equal to D(c\q4,)-
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Since A ~p r—1 B, the latter stabiliser contains an element mapping a, to by.
Hence the same is true for D(c), contradicting the fact that B ¢ AD . Therefore,
we can reorder {€;,_,+1,....ep} so that supp(a;) contains {i;—1 + 1,...,i;} for
some i; > i;—1, and the result and (2.3) follow by induction. Note in particular
that i,—; = n since supp(C) = {1,...,n}.

(ii) Let m € {1,...,r — 1} be such that supp(a,,) contains the integer k from
the first paragraph of this proof, and let d := {1,...,m}. Then, using (2.3) (for
each s € 4 \ {1}) and Lemma 2.4 (i), we observe that every g € D(q,,... 4,,) Sat-
isfies g1 = gi. Therefore, af # by forall g € D4, ... a,)- As A ~pr—1 B, we
deduce that m = r — 1. In particular, a,—; is the unique subspace in C whose
support contains k. Swapping e and e, if necessary, we may assume that k = n.

Now, for a contradiction, suppose that

supp(a;) N supp(ay) # @

forsomet € {l,...,r —3}andu € {t +2,...,r — 1}, and assume that u is the
largest integer with this property. Then (2.3) and the maximality of » imply that
supp(as) Nsupp(as—1) # @ forall s € {u + 1,...,r — 1}. It now follows from
Lemma 2.4 (i), together with a further application of (2.3) to each s € {2,...,¢},
that every ¢ € E := D4, ... a,.ay,....ar—;) Satisfies g1 = g,. Therefore, af #b,
for all g € E. However, |(ay,...,as,ay,...,ar—1)| <r —1, contradicting the
factthat A ~p 1 B.

(iii)—(iv) As in the proof of (ii), we may assume that k = n. We observe from (ii)
and (2.3) that supp(a;) N supp(as+1) # @ forallt <r —2. Hence if 1 € supp(as),
then Lemma 2.4 (i) shows that every g € D(q,,.. 4,_,) satisfies g1 = g, (since
k = n). This contradicts the fact that A ~p ,_; B, and so (iii) holds. Finally,
since supp(a;) N supp(a;+1) # @ for each t < r — 2, we obtain (iv) by defining
ip := 1 and reordering the vectors in {¢;,_,+1, ..., €;, } if necessary. In particular,
fort = r — 1, the assumption thati,_; = n = k € supp(a;) gives the result.

(v) Suppose for a contradiction that some £ € supp(a,) lies in the support of
more than one subspace in C. If r = 3, then £ € supp(ay) N supp(az) and we
define ¢ := 2. If instead r > 3, then (ii) implies that £ € supp(a;) for at least one
t €{2,...,r —2}. In either case, we deduce £ # 1 since 1 ¢ supp(az) by (iii),
and 1 ¢ supp(ay) for u € {3,...,r — 2} by (i)-(ii). Furthermore, (i) shows that
L 75 ir—l =n.

Suppose first that oy = B (% 0). Since the supports of a;, a¢+1,...,ar—1 con-
secutively overlap, Lemma 2.4 (i) shows that gy = g, foreach g € D, . 4, )
Since oy, # Bn. no such g maps a, to by, contradicting the fact that A ~p 1 B.
Hence oy # B¢. However, each g € D, satisfies g1 = g, if r = 3, as does each
g € D(a,,....a,) if r > 3. Again, no such matrix g maps a, to b,, a contradic-
tion. |
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Recall that G denotes GL,, (IF), with n, |IF| > 3. Our next result is a key ingre-
dient in the proof that RC(G, 2) is at most n + 2.

Lemma2.9. Let r > 2, and let A, B € A" be such that A ~pr—1 Band B ¢ AD.
Then there exists a subset T of A of size n + 2 — r such that B ¢ AC®.

Proof. If r = 2, then set I' = A. Since Gy = D and B ¢ AP we are done.
Assume therefore that r > 3. We will suppose for a contradiction that n is the
smallest dimension for which the present lemma does not hold, for this value of r.
Since A ~p -1 B, we may also assume that (a1,....ar—1) = (b1....,.br—1).
LetC ={ay,...,ar—1}. As B ¢ AP no element of D(c) maps a, to b,. There-
fore, B ¢ A9™ for a given subset I' of A if and only if no element of Gruc)
maps a, to b,. We split the remainder of the proof into two cases, depending on
whether or not |supp(C)| = n.

Case |supp(C)| < n. Let

Ac = {{e;) | j € supp(C)},

let L be the subspace (Ac) of V, and let ay and by be the projections onto L of a;
and b,, respectively. Lemma 2.4 (iii) shows that the diagonal entries correspond-
ing to {1,...,n} \ supp(C) of elements of D c) can take any multiset of nonzero
values. Since no element of D¢y maps a; to by, it follows that there is no matrix
in D(cy whose restriction to L maps ay to bg. By the minimality of 7, there exists
a subset I'c of Ac of size |Ac| + 2 — r such that no element of GL(L).uc)
maps ag to by. Setting ' to be I'c U (A \ A¢) so that [I'| =n + 2 —r, we ob-
serve that no element of G(ryc) maps a, to b,. This is a contradiction, and so the
lemma follows in this case.

Case |supp(C)| = n. In this case, Lemma 2.8 applies, so with the notation of that
lemma, let

[i=AN{en), ... (ei, o))

Then |[I'| =n + 2 —r and (e;), {(en) € [ sincei; > 2 and i,—1 = n.

Let g € Gruc). To complete the proof, we will show that af =a, # by,
by showing that glspp(a,) is scalar. We will first show that g is lower triangu-
lar. It is clear that g stabilises (e;) € I'. Suppose inductively that g stabilises

(e1,e2,...,es) forsomes € {1,...,n — 1}.If (es+1) € I, then g stabilises
Egi1:=(e1,e2,....e5) + {eg41) = (e1.e2,....€541).

Otherwise, s + 1 = i; forsome ¢t € {1,...,r — 2}, and then Lemma 2.8 (i) shows

that

{s + 1} S supp(a;) € {1,...,s + 1}.
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In this case, g again stabilises (e1, e2,...,es) + a; = Es4+1. Hence, by induction,
g is lower triangular.

Now, let J := {iy,...,ir—1}, let U be the set of integers that each lie in the
support of a unique subspace in C, and let § := 4 U U. We will show next that
glg is diagonal, by fixing j € ¢ and proving that gg; = 0 whenever k > j. First,
if {ex) € I, then it is clear that gz; = 0, and so g,; = 0. Hence we may also
assume thatk € 4 \ {i;—1}.

Suppose inductively that

8iy,j = 0 forsomeu > 2

(the base case here is ¥ = r — 1 so that i;, = n). We will show that if i, > j,
then g;,,_,,; = 0. By Lemma 2.8 (iv), the indices iy—1, iy € supp(a)y, and further-
more, Lemma 2.8 (i)—(ii) shows that supp(ay) N d = {iy—1, iy }. Thus, by the pre-
vious paragraph and our inductive assumption,

gkj =0 forallk € supp(ay) \ {/.iu—1}.

In fact, Lemma 2.8 (i)—(ii) shows that each integer in supp(a,) less than i,_;
lies in supp(ay—1). As iy—1 > j € §, we deduce from the definition of ¢ that
J ¢ supp(ay). Thus g ; = Oforall k € supp(ay) \ {iu—1}. As g stabilises a,, we
deduce that g;,_,,; = 0. Therefore, by induction, g; = 0 for all k # j, and so
glg is diagonal.

Finally, we will show that g|g4 is scalar. Let j,k € ¢ Nsupp(a;) for some
t €{l,...,r —1}. As g stabilises a,, and as g|g is diagonal, we deduce that

8jj = 8kk- 2.4)

Now, by Lemma 2.8 (iv), i; € supp(a;) N supp(a;+1) foreacht € {1,...,r — 2},
soi; € ¢ Nsupp(as) N supp(as+1). Thus, starting from ¢ = 1 and proceeding by
induction on ¢, it follows from (2.4) that g;; = gxx for all j,k € ¢, ie. g|q is
a scalar. Since supp(a,) € ¢ by Lemma 2.8 (v), we deduce that af = a, # b, as
required. o

The following lemma is strengthening of Lemma 2.9 in the case |F| = 3 and
r = 2, in which the subset I" now hassizen +1—r =n — 1.

Lemma 2.10. Suppose |F| = 3, and let A, B € A?. Suppose also that A ~p 1 B
and B ¢ AP. Then there exists a subset T of A of size n — 1 such that B ¢ A®,

Proof. Since A ~p,1 B, without loss of generality, a; = by, and there exists an
element of D mapping as to b,. Hence a; and b, have equal supports. Reordering
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the basis for V' if necessary, we may also assume that supp(ay) = {1,2,...,m}
for some m > 2. Then, by Lemma 2.4, the upper left m x m submatrix of each
matrix in Dg, is a scalar, while the remaining diagonal entries can be chosen
independently. As B ¢ AP, no matrix in D, maps a; to b,. We may therefore
assume (by reordering the basis vectors in {eq, ..., e} and/or swapping A and
B if necessary) that the projections of a, and b, onto (ey, e3) are (e; + e2) and
(e1 — e2), respectively.

Now, let I' := A\ {{e2)}, let g € G(ru{q,})» and notice that g is diagonal out-
side of the second row. Write a; as

<iai€i>,

i=1

with o1 = 1 and «; # 0 for all i € {2,...,m}. Since af = a1, we deduce that,
without loss of generality, the top left 2 x 2 submatrix of g is

1 0
g21 14 a8 )

Let v be the projection of (e; + e3)8 onto (ey, e2). Recall that oy # 0, and note

that go» # 0 as g is invertible. Hence if g1 = I, thenapy = l and v = —ej — e3;
if go1 = —1, then o = —1 and v = —ep; and if go; = 0, then v = e; + e5.
Hence, in each case, v does not span {e1 — e2) = b2|(¢, e,)- Therefore, a§ # by,
and hence B ¢ AGm, o

Although the next result holds for all I, it will only be useful in the case
|F| = 3.

Proposition 2.11. Let X, Y € Q"+ such that X ~G., Y, and suppose (X) = V.
ThenY € X©.

Proof. As dim({X)) = n, we may assume by Lemma 2.1 that x; = y; = (e;) for
ief{l,...,n}. Let S := supp(xp+1) and T := supp(yn+1). We will show that
S =T, it will then follow that there exists an element of D = G(A) mapping
Xn+1t0 Ypt1,andso Y € X6,

If S={l,...,n} =T, then we are done. Otherwise, exchanging X and Y
if necessary (note that (Y') = V'), we may assume that there exists an element
te{l,....,n}\S. Let I" := A\ {{e;)}. Then, since X ~¢, Y, there exists an
element of G(ry mapping X,+1 to yn+1. As G(r) stabilises each subspace (e;)
with i € S, it follows that S = T, as required. O

We are now able to prove this section’s main theorem.
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Theorem 2.12. Suppose that n and |F| are at least 3. Then RC(GL,,(F), Q) is at
most n + 2. Moreover, RC(GL,(3), ) < n.

Proof. Letk € {n,n + 1,n + 2}, with k = n 4 2 if |F| > 3. Additionally, let X
and Y be tuples in Q¥ withu > k and X ~g Y, where G = GL,(IF). It suffices
to prove that ¥ € X . Suppose, for a contradiction, that n is the minimal dimen-
sion for which the theorem does not hold (for a fixed IF), and that Y ¢ X G, Then,
for each m € {2,...,n — 1}, using Proposition 1.2 (i) in the case m = 2, we ob-
tain RC(GL,,(F), 28 1(F™)) < k. Since Y ¢ X©, Lemma 2.2 yields (X) = V.
Hence, by Lemma 2.1, we may assume without loss of generality' that

xl:yl:(el) fOl’iG{l,...,n},

and furthermore that all subspaces in X are distinct, so that x;, y; € A for each
i>n+1.

We will first consider the case k > n 4 1. Since X ~g 41 Y, Lemma 2.3
yields supp(x;) = supp(y;) for all i. However, Y ¢ X Y. Hence there exist an
integer r > 2 and subtuples A of X and B of Y, with 4, B € AT, such that
(X1,...,Xp,a1,...,ar) and (x1,...,Xn,b1,...,by) are (n + r — 1)-equivalent,
but not equivalent, under G. Equivalently, A ~p ,—1 B and B ¢ AP,

If Kk =n + 2, then by Lemma 2.9, there exists a set I' := {(e;,),....(€i,_,)}
such that B ¢ A%@™_ However, this means that the subtuples

(XiyseeosXip_,na1,....ar) and  (Xj,....X;_,.b1,...,by)

are not equivalent under G. This contradicts the assumption that X ~¢ r Y. Hence,
in this case, ¥ € X, as required, so RC(G) < n + 2. If [F| > 3, then we are
done.

Therefore, assume for the rest of the proof that |F| = 3 and suppose first that
k = n + 1. By the previous paragraph, RC(G) < n + 2. Therefore, to prove that
RC(G) =< k, it suffices to show that X ~gG ,12 Y whenever X ~g s Y. Thus,
by replacing X and Y by suitable subtuples, if necessary, we may assume that
u = n + 2. In this case, r = 2, and by Lemma 2.10, there exists a subset " of
A of size k — r such that B ¢ A9 Arguing as in the previous paragraph, this
contradicts the assumption that X ~g x Y. Thus RC(G) <n + 1.

Finally, suppose that we have k = n. Since RC(G) < n + 1, we may assume
that u = n + 1. However, since X ~g, Y and (X) = V, Proposition 2.11 shows
that Y € X©. Therefore, RC(G) < n. |

U If the basis vectors for V' are reordered, as required by several of this section’s earlier proofs,
then we can reorder the subspaces in (x, ..., Xp)and (y1,..., Y ) in the same way to preserve
this equality.
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3 Action on 1-spaces: Lower bounds

In this section, we again assume that || > 3, and write Q := Q1 = PG 1(V).
We drop the assumption that n > 3 and permit n = 2. We shall now prove lower
bounds for the relational complexity of each group H satisfying

SLa(F) < H < T'Ly(F),

acting on €2.

For some results in this section, we will assume that ' = IF; is finite, and when
doing so, we fix a primitive element o, and assume that ¢ = p/ for p prime.
Additionally, we will write

PI'Ln(q)/PSLa(q) = (8,¢), with PGL,(q)/PSLn(q) = ().

Here, the automorphism ¢ can be chosen to be induced by the automorphism of
GL;,(¢) which raises each matrix entry to its p-th power, and with a slight abuse
of notation, we will also write ¢ to denote this automorphism of GL,(g), and to
denote a generator for Aut(IF,). If [F is an arbitrary field, then the group I'L,, (IF)
is still a semi-direct product of GL, (FF) by Aut(F) (see, for example, [12, Theo-
rem 9.36]), but of course, GL, (IF)/SL;, (IF) and Aut(IF) need not be cyclic.

We let Z := Z(GL,(F)) and will write 7, for the n x n identity matrix, and
E;; for the n x n matrix with 1 in the (7, j)-th position and 0 elsewhere. We write
A & B for the block diagonal matrix with blocks 4 and B.

Our first result is completely general and easy to prove, although we shall later
prove much tighter bounds for various special cases.

Theorem 3.1. Let IF be arbitrary, and let H satisfy SL,,(F) << H < 'L, (F). Then
RC(H, Q) > n.

Proof. Define X,Y € Q" by x; = y; = (e;) fori € {1,...,n — 1}, with

=[S =[5

i=1 i=1

Then dim({X)) = n and dim({(Y)) = n — 1, so no element of I'L, (IF) maps X
toY.Hence Y ¢ XH.
Now, let hy := I, — Ey, foreach £ € {1,...,n — 1}, and hy, := I,,. Then

he € SL,(F) < H and (X \ xp)" = (Y \ yg) foreachf e {l,...,n}.
Therefore, X ~p ,—1 Y, and so the result follows. O

Our next two results focus on the special casesn = 2 and n = 3.
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Lemma 3.2. Assume that q¢ > 8, and let H satisfy SLo(q) < H < T'L,(q). Then
RC(H) > 4, except that RC(X1L;(9)) = 3.

Proof. The claim about X1.,(9) is an easy computation in GAP using [3], so
exclude this group from now on. We divide the proof into two cases. For each,
we define X,Y € Q% such that X ~g3YbutY ¢ X In both cases, we set
(X \ x4) = (Y \ ya) = ({e1), (€2), {e1 + €2)).
Case (a): either g is even, or H £ (Z,XL5,(q)), where Z = Z(GL, (IF)). If ¢
is odd, then let & € F; \ {1}, and otherwise, let « = w3 so that « is not in the
orbit w!®). Then let x4 = (e1 + wez) and y4 = (e1 + aer).

The stabiliser in H of (X \ x4) = (Y \ y4) is contained in (Z, ¢). As o ¢ »'®),
no element of this stabiliser maps x4 to y4, and so ¥ ¢ X H On the other hand,
for each j € {1,2, 3,4}, the matrix g; € GL2(g) given below maps (X \ x;) to

Y\ y)):
(1 (0 —w)(1 —w)™!
&1 = (o 1—(a—w)(1—w)—1)’

1= (wa ' —D(w—-1)"1 0
27\ we ' = Dw-1"1 1)

(! 0 _ g
83 = 0 aw-1) 84 = I2.

If g is even, then some scalar multiple of g; liesin H forall j,so X ~g3 7Y,
and we are done. If instead ¢ is odd, then our assumption that H £ (Z, ¥L»(q))
implies that H contains a scalar multiple of an element diag(w, 1)¢’ for some
i >0, as diag(w, 1) induces the automorphism & of PSL,(g). Hence, for each j,
there exists ¢/ € Aut(F,) such that a scalar multiple of g; ¢ lies in H. Since
o € F7, each @' fixes Y, and thus X ~p 3 Y.

Case (b): g isodd and H < (Z, X1,(q)). Since H # XL5(9) and since Propo-
sition 1.2 (i) yields the result when H = SL;(9), we may assume that ¢ > 9. We
generalise Hudson’s [8, §5.4] proof that RC(SL2(g), 2) > 4. First, let

§:=F,\{0.1,—1} and T :=TF,\{0,1},

and for each A € §, define amap 0,: T — F, by pu > (1 —A2p)(1 —p)~L. We
will show that there exist elements A € § and t € T satisfying the following con-
ditions:

(i) ()6, is a square in F*, and

(ii) no automorphism of IF; maps 7 to A%t
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It is easy to see that, for each A € 8, the image im(6,) = F, \ {1, A2}, so the map
0, is injective, and the preimage of any nonzero square in im(6,) lies in 7 and
satisfies condition (i). Hence, for each A € &, there are precisely (g — 1)/2 —2
choices for 7 € T satisfying condition (i).

Given A € 8, since A2 # 1, condition (ii) is equivalent to requiring that

A2t £ P forallk € {l,..., f —1},

ie. A2 # t7°=1 for all k. There are exactly (¢ —3)/2 = (qg —1)/2 — 1 distinct
squares of elements of §, and precisely (¢ — 1)/(p — 1) elements in F that are
(p — 1)-th powers. Hence if p > 3, then there exists A € & such that AZ is not
a (p — 1)-th power in ;. Observe that then A? is not a (p¥ — 1)-th power for
any k, and so this A and any corresponding 7 from the previous paragraph satisfy
both conditions.

Suppose instead that p = 3, and ﬁx A € §. The number of elements 7 € F},
not satisfying (ii), i.e. with A2 = 31 for some k € {I,..., f—1},isat most

G-D+@E-D+-+3 -1
=G+ 4+ +3H—(f -1

On the other hand, we established that the number of elements t € T satisfying
(i) is equal to

G/ —1)/2-2=03-1D1+34+32+---+3/7H2-2
=@B+32+-- 431

Since ¢ > 9, and hence f > 2, there again exists T € T satisfying both conditions.
Finally, fix sucha A € § and r € T, and complete the definition of X, Y € Q*
by setting

x4 = {e1 +71ez) and ys = {e1 + Azrez).

The stabiliser in H of (X \ x4) = (Y \ y4) is contained in (Z, ¢). By condi-
tion (ii), no such element maps x4 to y4, so Y ¢ X . However, the proof of
[8, Theorem 5.4.6] uses condition (i) to exhibit explicit elements of SL,(g) map-
ping each 3-tuple of X to the corresponding 3-tuple of Y. Therefore, X ~g 3 Y,
and the result follows. ]

Lemma 3.3. Assume that PSL3(F) # PGL3(F), and let H be any group satisfying
SL3(F) < H < TL3(F). If F is finite, or if H < GL3(IF), then RC(H) > 5.



The relational complexity of linear groups 919

Proof. If |F| = 4, then we verify the result in GAP using [3], so assume that
|F| > 7. If F is finite, then let A := @, whilst if F is infinite, then let A be any
element of F'* of multiplicative order at least 3. Define X, Y € Q7 by

i = yi = {e;) fori €{1,2.3},
X4 = ya = (e1 + ez + e3),

x5 = (e] + Aes + A2es),

s = (e1 + A7 ez + A1 %es)

so that x5 # ys.

We first show that ¥ ¢ X . The stabiliser in H of (X \ x5) = (Y \ ys) lies
in H N (Z, Aut(FF)), so if I is infinite, then we are done. Assume therefore that
F =F,. If x?l = ys, then AP =171 =22" -1 Since i € {0,..., f—1} and
A = w, we deduce that (p, f,7) € {(2,2,1), (3, 1,0)}, contradicting ¢ > 7. Thus
Y ¢ XH,

Next, for all F, we show that X ~g 4 Y. Let

A A+1 A 4+271 -2 0 0
gri=]10 -1 0 , g2 =|A+1 1 14171},
0 0 A1 0o o0 —al
—A 0 0 A2 0 0
g3 = 0 -1 0, ga:=|0 1 0 |, gs5:=1Is.
A+A7L 1470 QT 0 0 A2

Observe that det(gy) = 1 foreach £ € {1,...,5}, and so g € SL3(IF) < H.Itis
also easy to check that (X \ x;)8¢ = (Y \ y¢) foreach £. Thus X ~g 4 Y, and so
RC(H) > 5. O

Our remaining results hold for all sufficiently large n. The first is specific to
GL, (F).

Proposition 3.4. [fn > 3 and |F| > 4, then RC(GL,(F), Q) > n + 2.

Proof. As |F| > 4, there exists an element A € F* suchthat A £ A~! (so A # —1).
Define X,Y € Q"12 by

xlzylz(el) fOI‘iE{l,...,n},
n
Xn+1 = Yn+1 =<Zei>,
i=1

Xn42 = {e1 +Aez) and  y,42 = (e1 + )t_lez).
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The stabiliser in GL,, (IF) of (X \ x442) = (Y \ yn+2) is the group of scalar
matrices, so it follows that ¥ ¢ X Gl» (), Additionally, it is easily verified that, for
each j € {1,...,n + 2}, the matrix g; € GL,(¢q) given below maps (X \ x;) to

Y \yj):
A 14+A
= @AI —Z>
81 (0 1 ) n—2
-1 0
= O A s,
82 (1 At A—l) "2
gni1 = diag(A, A7 AL LR,
g = gnr1+(A—=A"HEj forj €{3,....n},
gn+2 = In.
Hence X ~gr,(F),n+1 Y, and so the result follows. O

In the light of Proposition 3.4, the next result in particular bounds the relational
complexity of all remaining groups when PSL, (F) = PGL, (IF).

Lemma 3.5. Let ¥ be arbitrary, assume that n > 3, and let H be any group satis-
fing GL,(F) < H <TL,(F) and H # GL,(FF). Then RC(H) > n + 3.

Proof. Since GL, (IF) is a proper subgroup of H, there exist a nontrivial
Y € H N Aut(F)

and an element A € F* with AV # 1. We define X, Y € Q"3 by x; = y; = (¢;)
fori € {1,...,n},

n
Xn+1 = Yn+1 = <Z€i>,
i=1
Xn+2 = Ynt+2 = (€1 + ez + Aes),
Xn43 = (e1 + Aea).  yni3 = (e1 + AVen).

We claimthat X ~g 40 Y, butY ¢ X H | from which the result will follow.
The stabiliser in H of

(xlavxn-f—l) - (y17---,yn+1)

is contained in (Z, Aut(IF)). However, no element of (Z, Aut(IF)) maps

(Xn+2,Xn+3) 10  (Yn+2, Yn+3),
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so Y ¢ XH The reader may verify that, for each j € {1,...,n + 3}, the element
hj € (GL,(IF), ¥) < H given below maps (X \ x;) to (Y \ y;), where we define
7:= (A —1)"! (notice that A # 1):

1 —t(A¥ =)
hy = In-a.
' (o 1+f(w—x))$ "2

(1=t HY =1 0
h2 - ( r(A(A‘l)‘” _ l) 1) @ In—2v

1—z(AA~HY ™ — 1) 0 0

hs = 0 1l—tAHWY ' =) o] & L3 |v.
" HY T 0N LA D B |
hj = (diag(1, LA7AY 1L D)+ (=27 Y Y Es)y

for j € {4,...,n},
. _ —1
hpg1 = diag(L, LATIAY L., DY, hpgo =Y. hpys = In.

Hence X ~g 42 Y, and the result follows. O

Lemma 3.6. Let ¥ be arbitrary, assume that n > 4, and let H be any group satis-
fying SL,,(F) < H < T'L,(F) and H £ GL,,(IF). Then RC(H) > n + 2.

Proof. Since H # GL,(IF), there exist elements 7y € H and A € F* such that
h € GLy(q), ¥ € Aut(F,), and AY # A. Let X, Y € Q"2 be as in the proof of
Lemma 3.5, but supported only on the first n — 1 basis vectors so that (e, ) lies in
neither X nor Y, and x,, = y, = (Z?;ll e;). Just as in that proof, one may check
that Y ¢ X but X ~p 41 7. o

The next result applies, in particular, to all groups H such that SL,(F) < H
and either H < GL,(F) or H < XL, (F) # T'L, (F). We write F*" for the sub-
group of F* consisting of n-th powers, which is the set of possible determinants
of scalar matrices in GL, (I).

Proposition 3.7. Assume that n > 4 and |F| > 3, and let H be any group satisfy-
ing SL,,(F) < H < 'L, (IF). Assume also that the set

{det(g)YF*" | gy € H with g € GL,(F), ¥ € Aut(F)}

is a proper subset of T* /F>*", Then RC(H) > 2n — 2.
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Proof. By assumption, there exists an o € F* such that o # det(gz)¥ for all
gV € Handz € Z. Define X, Y € Q212 4 follows:

X = ((e2), ..., (en), (e1 + €2),..., (€1 + en)),
Y = ({e2),...,{en), {@er +e2),...,{xe; + ez)).

We show first that ¥ ¢ X . Suppose for a contradiction that there exists gy € H,
with g € GL,,(F) and ¥ € Aut(F), such that XV =Y. As gy fixes (e;) and
(e3), and maps (e; + e») and (e; + e3) to (e + e2) and (xe; + e3), respec-
tively, we deduce that

e‘;’”ﬁ € (e1.e2) N (e, e3) = (e1).

Therefore, we see that (¢;)8¥ = (e;) foreachi € {1,...,n}, and so g is diagonal.
Letpu := av' As (e1 + €;)8V = (aey + e;) foreachi € {2,...,n}, we deduce
that g = diag(u, 1,...,1)z for some z € Z. Hence (det(gz" ')V = u¥ =, a
contradiction. Hence ¥ ¢ X .

Now, for each i € {2,...,n}, let h; := diag(e, 1, ..., l,a™b,1,...,1), where
the o~ ! appears in entry i. First, for j € {I,...,n — 1}, let k := j + 1 so that
xj = y; = (ex). It is easy to verify that hy + (1 — o) Exq has determinant 1 and
maps (X \ x;) to (Y \ y;). Finally, for j € {n,...,2n =2}, letk :== j +2—n
so that x; = (e1 + ex) and y; = (aey + ex). Then hy has determinant 1 and
maps (X \ xj) to (Y \ y;). Thus X ~g 5,3 Y,and so RC(H) > 2n — 2. o

Proof of Theorem A. When || = 2, this result is clear from Theorem 1.1. For the
remaining fields I, the fact that part (i) gives an upper bound on RC(PGL,, (IF))
is proved in Theorem 2.12, whilst we prove that it gives a lower bound in The-
orem 3.1 for |F| = 3 and Proposition 3.4 for |F| > 4. That part (ii) gives upper
bounds on RC(H) is immediate from Theorem 1.2 (ii) for n = 3, and from Theo-
rem 2.7 for n > 4. Lemma 3.3 and Proposition 3.7 show that these are also lower
bounds. |

Recall that w(k) denotes the number of distinct prime divisors of the positive
integer k.

Lemma 3.8 ([7, Lemma 3.1]). Let K < Sym(I") be a finite group with normal
subgroup N such that K/ N is cyclic. Then H(K,T') < H(N,T') + o(|K/N).

Proof of Theorem B. For the upper bound in (i), we combine Proposition 1.2 (i)
with Lemma 3.8 to deduce that H(H, 1) = 3 + w(e), soRC(H, Q1) < 4 + w(e).
The lower bound (and the case H = PXL,(9)) is Lemma 3.2.

For the upper bound in part (ii), we similarly combine Proposition 1.2 (ii) with
Lemma 3.8. As for the lower bound, first let # = 3, and notice that, in this case,
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2n —2 =4 <n+2=>5.1f H properly contains PGL3(g), then the lower bound
of 6 is proved in Lemma 3.5. Otherwise, PSL3(g) # PGL3(¢q), and so the lower
bound of 5 follows from Lemma 3.3. Now assume that n > 4. The general lower
bound is Lemma 3.6, the bound of n 4 3 for groups properly containing PGL, (¢)
is Lemma 3.5, and the bound of 2n — 2 is Proposition 3.7. |

4 Action on m-spaces for m > 2

In this section, we consider the action of the group H on Q,, = £, (V), where
SL,(F) < H <TL,(IF), as before, but now 2 < m < % The main work is to
prove a lower bound on RC(H, Q2,,), as the upper bound follows from existing
literature.

Proposition 4.1. Let F be arbitrary, let n > 2m > 4, and let H be any group sat-
isfying SL,,(F) < H < T'L,(F). Then RC(H, Q) > mn —m? + 1.

Proof. Foreachi € {1,...,m}and j e {m +1,...,n— 1}, let

Bi :={e1,ea,....em} \ {ei},
Uij = (Bi,ej) = (el,...,ei_l,ei+1,...,em,ej),
Vi:=(Bi,ei +en), and W;:= (B;, ep)

so that Ujj, Vi, Wi € Q. Define X, Y € Q%"‘mzﬂ as follows:

n
xmn—m2+1 = <€1 +627"-ae1 + €m, E ei>1

i=1
n
Ymn—m24+1 = <€1 +ez,....e1+ep, —e1+ Z €i>,
i=m+1

X = (Ul(m+1)7 Ul(m+2)7 L] Um(n—1)7 Vla V27 L] va xmn—mz-‘rl),

Y = (Uign+1): Utm+2)s - - - Un=1)- W1, Wa, . ... Wi, Ymn—m2+1).
We shall first show that ¥ ¢ XTl@) 5o in particular Y ¢ X, and then that
X ~H,mn—m?> Y.

Assume for a contradiction that ¥ € XTL»®) Since each subspace in Y is
spanned by vectors of the form

n
inei with A; € {—1,0, 1},

i=1
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it follows that there exists g € GL,(IF) with X& = Y. For each i € {1,...,m},
choose

ke{l,....m}\ {i}.
Then

=" () UmtnnVi= (] Utn+nyN Wi,
et m\{i} e, mI\{i}

so g fixes (e;). Similarly, g fixes

m
(ej) = mUij foreach j e {m +1,...,n—1}.

i=1

Therefore, there exist A1, ..., A, € F*and w1, ..., un—1 € F such that g maps

ej to Aje; foralli € {1,...,n — 1}, and maps e, to A,e, + Z:’;ll Hiei. It now
follows that, for each i € {2,...,m}, the element g maps e; + ¢; € Xmn—m2+1
to Arer + Aje;, which must lie in y,,,_,,241, and hence A; = A;. Similarly,
Vig = W; foreachi € {1,...,m}, and so W; = (B;, e,) contains
n—1
(ei + en)g = A1e; + Ayey + Z M€k -
k=1

Hence t; = —Aq,and uj = Oforall j € {m +1,...,n — 1}. It now follows that

g maps
n n
Zei € Xmn—-m2+1 1O Z Aiei,
i=1 i=m+1
which is clearly not in ypn—m2+1, a contradiction. Thus ¥ ¢ X #.
We now show that X ~g un—m2 Y, by identifying an element

8¢ € SLn(F) <H

that maps (X \ x¢) to (Y \ yg) for each £ € {1,...,mn —m? + 1}. We divide
the proof into three cases, which together account for all values of £. To sim-
plify our expressions, let z :=e; + €2 + -+ 4+ em, o1 := —1, and o, := 1 for all
r € {2,...,m}. In each case, the element g, will be lower unitriangular and so
will have determinant 1.

Case (a): L €{l,....m(n—m—1)}. Letr e{l,....m},se{m+1,...,n—1}
besuchthat{ = (n —m — 1)(r — 1) 4+ (s — m) so that xy = yy = U,. Addition-
ally, let gy fix e; foralli ¢ {s,n}, map es to es + ore,, and map e, to e, — z. Then
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gy fixes U;; provided (i, j) # (r,s), and maps e; + e, € Vi toe; +e, —z € W;,
and hence V; to W;, foralli € {1, ..., m}. Finally,

n

8¢ n
(Zei) =arer + Z € € Ymn—m2+1,

i=1 i=m+1
where we have used the fact that
n n
er + Z ej = (e1 +er) + (—e1 + Z e,-)
i=m+1 i=m+1
when r > 1. Hence gy maps X, n—m2+1 tO Ymn—m2+1, as required.
Case (b): £ =m(n —m — 1)+ r,wherer € {1,...,m}. Here,
xe =V, and y;,=W,.

Let gy fix e; foreach i € {l,...,n — 1} and map e, to are, + e, —z. Then gy
fixes U;; forall i and j, and maps e; + e, € V; toe; + aye, + e, —z € W;, and
hence V; to W, foralli € {1,...,m} \ {r}. Finally,

n gy n
(Zei) = arer + Z € € Ymn—m2+1,

i=1 i=m+1
as in Case (a).
Case (c): { = mn —m? + 1. Let gy fixe; foreachi € {1,...,n — 1},and map e,
to e, — z. Then g fixes U;; foralli, j,andmapse; + e, € Vitoe; +e, —z € W;
for all i, as required. O

The irredundant base size I(K, ') of a group K acting faithfully on a set I is
the largest size of a tuple («q, . .., ax) of elements of I such that

K > Ky, > K(al,az) > e > K(al,_“,ak) =1,

with all inclusions strict. It is clear that I(K, I') is bounded below by the height
H(K,I"), which we recall (from Section 1) is bounded below by RC(K, I") — 1.

Proof of Theorem C. In [9, Theorem 3.1], it is proved that
I(PGL,(F), Q) < (m + Dn —2m + 1.

Since the irredundant base size of a subgroup is at most the irredundant base size
of an overgroup, and the height is at most the irredundant base size, we deduce
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that H(H, Q) < (m 4+ 1)n —2m + 1 for all H < PGL,,(FF). From Lemma 3.8,
we then see that, for all H as in the statement,

H(H,Qm) < (m+ Dn —2m + 1+ w(e),

and hence the upper bound follows. The lower bound is immediate from Proposi-
tion 4.1, so the proof is complete. |
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