J. Group Theory 27 (2024), 1059-1089
DOI 10.1515/jgth-2023-0050 © de Gruyter 2024
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Abstract. We study the average case complexity of the Uniform Membership Problem
for subgroups of free groups, and we show that it is orders of magnitude smaller than the
worst case complexity of the best known algorithms. This applies to subgroups given by
a fixed number of generators as well as to subgroups given by an exponential number of
generators. The main idea behind this result is to exploit a generic property of tuples of
words, called the central tree property. An application is given to the average case com-
plexity of the Relative Primitivity Problem, using Shpilrain’s recent algorithm to decide
primitivity, whose average case complexity is a constant depending only on the rank of the
ambient free group.

1 Introduction

Algorithmic problems have been prominent in the theory of infinite groups at least
since Dehn formulated the word problem for finitely presented groups [7]: a finite
group presentation (A|R) being fixed, the word problem asks whether a given
element of the free group on A (seen as a reduced word on the alphabet A U A~1)
is equal to the identity in the group presented by (A|R).

A problem is called decidable if one can exhibit an algorithm that solves it. It is
well known that the word problem is undecidable for certain finite group presen-
tations (Novikov [16]). For decidable problems, it is natural to try to evaluate the
complexity of an algorithm solving them, namely the amount of resources (time
or space) required to run the algorithm, as a function of the size of the input.

The most common complexity evaluation for an algorithm # is the worst case
complexity, which measures the maximum time required to run # on an input
of size n. In certain cases, it may be relevant to consider the generic complexity
of A: #A has generic complexity at most f(n) if the ratio of inputs of size n on
which 4 requires time at most f(n) tends to 1 as n tends to infinity. This notion
of complexity recognizes that the instances that are hard for 4 (the witnesses of
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the worst case complexity) may be few, but it does not attempt to quantify the time
required on the instances in a vanishing set.

Here we will be concerned with the more precise average case complexity,
namely the expected time required to run # on size n instances taken uniformly at
random. This measure of complexity takes into account the resources needed for
every input.

The specific problems we consider in this paper are the Uniform Membership
Problem and the Relative Primitivity Problem in finite rank free groups. Recall
that an element w of F(A), the free group on A, is primitive if F(A) admits
a free basis containing w. The Uniform Membership Problem (resp., the Relative
Primitivity Problem) is the following: given elements wg, wy, ..., w; of F(A),
decide whether wq belongs to (resp., is primitive in) the subgroup H of F(A)
generated by wy, ..., wg. In this paper, the length k of the tuple (wy,..., wg)
is not fixed, and the parameters we consider to gauge the size of an instance are
n =max{|w;| | | <i <k}, k as a function of n, and m = |wg|. In particular, the
total length of an input (wg, w1, ..., wy) is at most kn + m.

It is well known that both these problems are decidable, and can be solved in
polynomial time worst case complexity (see [20], [17, Fact 3.6], and Sections 4, 5
below). The most efficient solution (again, from the point of view of the worst case
complexity) of the Uniform Membership Problem uses the concept of the Stallings
graph of a subgroup, a finite A-labeled graph uniquely associated with a finitely
generated subgroup of F'(A), which can be easily computed and then gives a linear
time solution for the Uniform Membership Problem. More precisely, the Stallings
graph of H has at most kn vertices and it is computed in time @ (kn log* (kn))
(see [21]). After this computation, deciding whether wg € H is done in linear time
in m.

Our main result is an algorithm solving the Uniform Membership Problem,
whose average case complexity is asymptotically a little o of the worst case com-
plexity described above, at least when the number k grows at most polynomially
with n. It is notable that the dependance of our algorithm’s expected performance
on m (the length of the word wyg to be tested) is extremely low.

A specific instance of our main result shows, for instance, that if k is a constant,
then the Uniform Membership Problem can be solved in expected time

O(logn + mn~'eC@r=1))

where r = | A] is taken to be constant.

The fundamental ingredient in this result is the so-called central tree property
(ctp) for a tuple (wy, ..., wy). This property, formally introduced in [2, 3], holds
when the w; and their inverses have little initial cancellation (that is, they have
short common prefixes). This property turns out to hold with high probability and,
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when it holds, solving the Uniform Membership Problem is considerably simpler
than in the general case.

We then apply our result to the Relative Primitivity Problem: we give an algo-
rithm solving it whose average case complexity is much lower than its worst case
complexity. Here we use an algorithm recently proposed by Shpilrain [19] to solve
the Primitivity Problem (deciding whether a given word wy is primitive in F(A)).
Shpilrain’s algorithm has the remarkable property of having constant average case
complexity, that is, its expected time does not depend on the length of wq. As it
turns out, this constant average case complexity depends on the rank of the ambient
free group and this is important in the context of the Relative Primitivity Problem,
where we need to test for primitivity in the subgroup generated by wy, ..., wg,
whose rank may be as large as k.

The paper is organized as follows. Section 2 briefly discusses the fundamen-
tal notions on subgroups of free groups which we will use, especially the no-
tions of the Stallings graph and the growth function of a subgroup, as well as
the notion of average case complexity and the computational model which we
rely upon. Section 3 is dedicated to the central tree property, applied to a tu-
ple W = (wy, ..., wg), its definition, its consequences in terms of the rank and
the growth function of the subgroup generated by w, and the probability that it
holds (in terms of the parameters k and 7). Our main result on the average case
complexity of the Uniform Membership Problem is presented in Section 4. Fi-
nally, we discuss Shpilrain’s constant average case complexity algorithm for the
Primitivity Problem, and our application to the Relative Primitivity Problem in
Section 5.

2 Preliminaries

2.1 Subgroups of free groups

Throughout the paper, A is a finite non-empty set, called an alphabet. We say
that a directed graph I" is an A-graph if its edges are labeled with elements of A.
A rooted A-graphis a pair (I', v), where I is a finite A-graph and v is a vertex of I.
Finally, we say that a rooted A-graph (I, v) is reduced if T is finite and connected,
distinct edges with the same start (resp., end) vertex always have distinct labels,
and every vertex, except possibly the root v, is incident to at least two edges.

The set A = {a,a”! | a € A} (with cardinality 2| A|) is called the (symmetrized)
alphabet; its elements are called letters. We denote by A* the set of words on
A, that is, of finite sequences of letters. We also denote by A* the set of words
using only letters in A. A word in A* is said to be reduced if no letter a € A is
immediately preceded or followed by the letter a 1.
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_ For convenience, if A = {ay,...,ax}, weleta_; = ai_1 for 1 <i <k so that
A={a; |-k <i <k,i#0}.

Suppose that w = xj - - - Xy, is a word in F(A) (with each x; € A) and that P, q
are vertices of a reduced A-graph I'. We say that w labels a path in T from p
to q if there exists a sequence of vertices pg = p, p1,..., Pm = ¢ such that, for
every 1 <i <m, I' has an x;-labeled edge from p;_; to p; if x; € A, and an
X; 1 labeled edge from p; to p;_1 if X; I € A. If the start and end vertices of the
path are equal (that is, if p = ¢), we say that the path is a circuit at p.

The free group on A is written F(A4), and we identify it with the set of reduced
words in A*. It is well known that every subgroup of F(A) is free [15]. It is also
well known that every finitely generated subgroup H of F(A) can be associated
with a uniquely defined reduced rooted A-graph (I'(H), 1), called the Stallings
graph of H, with the following property: a reduced word is in H if and only if
it labels a circuit in I'(H) at vertex 1. We refer the reader to the seminal works
of Serre [18] and Stallings [20] who introduced this combinatorial tool, and to
[8,12—14,17] for some of its many applications.

Of particular interest for this paper are the following facts.

* Given w = (w1,...,wy) a tuple of reduced words in F(A), one can effec-
tively compute the Stallings graph (I'(H), 1) of the subgroup H generated by
the w;, and this graph has at most n = ) _;|w; | vertices. Touikan [21] showed
that (I'(H), 1) can be computed in time @ (n log™ n). Recall that log™ (n) is the
least integer k such that the k-th iterate of the logarithmic function yields a result
less than or equal to 1, that is, such that log® (n) < 1 < log® =V (n). Equiva-
lently, let by = 2 and by ; = 2% Then log*n = 1if n < by and log*n =k
if bp_1 <n < by.

e Once I['(H) is constructed, deciding whether a word wg € F(A) is an element
of H is done by checking whether wg labels a circuit in I'(H) at vertex 1. This
can be done in time O (Jwyg|).

e Let VV and E be the sets of vertices and edges of I'(H), respectively. Let T
be a spanning tree of I'(H) (that is, a subgraph of I'(H) which is a tree and
contains every vertex of I'(H)). Let E7 be the set of edges of 7'; then we have
|ET| = |V| — 1. For each vertex p of I'(H), let u(p) be the only reduced word
which labels a path in 7' from the root vertex 1 to vertex p (with u(1) the empty
word). For each edge e of I'(H) which is not in E7, say, e is an edge from
vertex p, to vertex g, with label a(e) € A, let b(e) = u(pe)a(e)u(ge)™'. Then
b(e) is a reduced word in F(A) which labels a circuit at 1 so that b(e) € H.
Moreover, the set {b(¢) | e € E \ ET} is abasis of H.

o If T is a fixed spanning tree of I'(H) and B is the corresponding basis of H,
in bijection with E \ E7, the expression of an element of H in that basis is
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obtained as follows. Given a reduced word w in H, consider the circuit at 1
labeled by H and the sequence of edges not in 7" traveled by this circuit, say
e‘le‘ e ezh, where the ¢; are in E \ E7, &; = 1 if ¢; is traversed in the direct
sense, and ¢; = —1 if ¢; is traversed backwards. Then w = b(e1)®' --- b(ep)*".

e One can compute a spanning tree of I'(H) in time O (|V| + |E|) (by classical
depth-first search). Since |E| < |V||A|, it follows that one can compute a span-
ning tree of I'(H), and therefore a basis of H, in time O (|V]|A]).

 The subgroup H has finite index if and only if every vertex of I"(H) is the origin
(and so the terminus) of an a-labeled edge for every letter a € A or, equivalently,
if |E| = |V||A]. In that case, the index of H is |V].

2.2 Growth modulus

The growth function of a set L of words over an alphabet A is the function sy, (1)
counting the words of length n in L. The following result belongs to the folklore
of combinatorial automata theory.

Fact 2.1. If L is a regular language, then its growth function (restricted to its sup-
port, which is the complement of an ultimately periodic sequence) is asymptot-
ically equivalent to an expression of the form CnkA”, with C > 0, k € N and
A>1. O

The real number A in Fact 2.1 is called the growth modulus of L.

Proof. A result usually attributed to Chomsky and Schiitzenberger [6] (see [9,
Proposition 1.3] for a quick proof) states that the generating function of L,

Se(z) =) sr(mz",
n>0

is a rational fraction. The partial fraction decomposition (over the reals) of this
rational fraction yields the stated asymptotic equivalent for the coefficients sz, (1)
of Sz (2). |

We record the following elementary remark.

Remark 2.2. If a language L has at most C A" words of lengthn (C > 0,1 > 1),
then the number of its words of length less than or equal to 7 is at most C %A",
which is ®(A"). |

The Perron-Frobenius theorem (see, e.g., [11, Theorem 8.4.4]) yields a more
precise characterization of the growth modulus of a regular language. If 4 is a
finite state automaton over alphabet A with state set Q, we denote by G4 the
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graph with vertex set Q and with an edge from vertex p to vertex ¢ for every letter
a € A labeling a transition from p to g. We also let M 4 be the associated incidence
(Q x Q)-matrix. Note that M 4 has only non-negative integer coefficients. We say
that A is irreducible if M 4 is, that is, if G 4 is strongly connected.

The period of + is defined to be the largest positive integer d such that Q can
be partitioned as Q = Q1 U---U Q4 in such a way that every transition from
a state in Q; leads to a state in Q;4; (indices are taken modulo ). For instance,
the minimal automaton of the language of words of length a multiple of d has
period d. Finally, we say that # is aperiodic if its period is 1.

The following result also belongs to the folklore; see [9, Proposition V.7].

Proposition 2.3. Let L be a regular language, accepted by a deterministic finite
state automaton A which is irreducible and aperiodic. The growth modulus of L
is equal to the dominant eigenvalue of the transition matrix of A.

The growth modulus of the free group F(A) is easily computed.

Example 2.4. It is clear that, for every integer n > 1, the number R, of reduced
words of length n is 2r(2r — 1)~ !, where r = |A]|.

Recall that we identify F(A) with the set of reduced words over the alphabet A.
Thus the growth modulus of F(A) is 2r — 1. O

2.3 Algorithmic problems: Average case complexity

In evaluating the complexity of an algorithm, one needs to specify the model of
computation and the input space. The input space is usually equipped with a notion
of size (a positive integer) such that there are finitely many inputs of any given size.
It is important, in particular, to make clear which parameters of the problem are
taken to be constants. Unless otherwise indicated, we consider in this paper that
the rank » = | A| of the ambient free group is a constant.

The model of computation we adopt is the standard RAM model. Concretely,
this means that if a word w is part of the input, it takes unit time to move the
reading head to a position i (where i has been computed before), and unit time
to read the letter of w in position i. Arithmetic operations on integers (addition,
multiplication) are also considered as taking unit time.

Remark 2.5. In the standard RAM model, figuring out the length of an input word
w (in order, for instance, to read its last letter) takes time O (log|w|), using an
instance of the so-called exponentiation search method [4]: one reads letters in
positions 1, 2, 4, 8, 16, etc., until one exceeds the length of the word after, say, b
steps. At that point, we know that 2b-1 < lw| < 25 that is, we know the leading
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bit of the binary expansion of |w|. The next bits are established by a classical
dichotomy method. Concretely, probing position ¢ = 26~ 4 26=2 allows us to
know the second bit: 1 if position c is still in the word, 0 if ¢ exceeds its length.
This is repeated for the successive bits of the binary expansion of |w|.

Since we are going to work with algorithms with very low, even constant, aver-
age case complexity, we do not want to have to add the logarithmic time needed
to compute the length of input words, and will therefore accompany every input
word with its length. o

Remark 2.6. When handling “very large” integers, or words on a “very large”
alphabet, it may be more appropriate to use the bitcost model: adding integers takes
time linear in the length of their binary representations (that is, in their logarithm),
and reading or comparing letters from a large alphabet A takes time proportional
to log| A| (since each letter can be encoded in a bit string of length [log|A[]). O

The worst case complexity of an algorithm 4 is the function f(n), defined
on N, which accounts for the maximum time required to run algorithm +4 on an
input of size n. If a distribution is specified on the set of size n inputs (in this paper,
the uniform distribution), the average case complexity of #A is the function g(n)
which computes the expected time required to run 4 on inputs of size n. Such
complexity functions are usually considered up to asymptotic equivalence.

The average case complexity of an algorithm is obviously bounded above by
the worst case complexity, and it may sometimes be much lower. The usual idea
in discussing average case complexity is to distinguish, within the input space,
between a subset of high probability where the algorithm performs very fast, and
its low-probability complement, containing all the hard instances (those which
witness the worst case complexity).

Finally, the worst case (resp., average case) complexity of a problem is the
lowest worst case (resp., average case) complexity of an algorithm solving this
problem.

A well-known example which will be useful in the sequel, is the Proper Prefix
Problem (PPP) on alphabet A: given two words u, v on alphabet A, decide whether
u is a proper prefix of v (that is, v = uu’ for some non-empty word u’). We also
consider the Prefix Problem (PP) (deciding whether u is a prefix of v) and the
Equality Problem (EqP) (deciding whether u = v). The following observation is
elementary: it is just an instance of the fact that the expected value of a geometric
distribution is constant.

Lemma 2.7. Let A be a finite alphabet with |A| > 2 and suppose that each set A"
(the words of length n) is equipped with the uniform distribution. Problems PPP,
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PP and EqP can be solved in constant expected time. The same holds for the set
R, of (reduced) words of length n in F(A).

Proof. We prove the statement for PPP. The proofs for PP and EqP are entirely
similar. Here is a simple and natural algorithm solving the PPP.

Algorithm PP L. On input u, v, read u and v from left to right one letter at
a time, comparing each letter of u with the corresponding letter of v, and stopping
when (i) a difference is detected (that is, the i-th letters of # and v are different for
some i); (ii) the end of u is reached but not the end of v; or (iii) the end of v is
reached.

It is clear that u is a proper prefix of v in case (ii), and not a proper prefix of v
in every other case. That is, Algorithm & solves the PPP. We now show that
it has constant average case complexity. In effect, this is due to the fact that, with
high probability, we will detect a difference between the words u and v without
having to read either word to its end.

Let u; (resp., v;) denote the i-th letter in u (resp., v). At each step, verify-
ing whether u; = v; is done in constant time, and it is the case with probability
p= %‘. Therefore, the probability that the algorithm stops after exactly k steps
(with k& < |ul, |v]) is pF~1(1 — p). Detecting whether we reached the end of u
or v is also done in constant time. It follows that the average case complexity of
Algorithm &£ £ P is bounded above, up to a multiplicative constant, by

1_|_p_|_..._|_p|“|_1< ! = 4] <2
“1-p [A]—1 =7

and this concludes the proof relative to A™*.

To transfer this result to F'(A), one can for instance rewrite the words in F'(A)
as follows. Let X = {x1,...,x2,—1} and A= {a—y,...,a—1,ay,...,a,} be or-
dered in the natural way. For each b € A, we let p be the order isomorphism from
A\{b}to X.

Givenaword w = by ---b, € F(A) oflengthn > 2, welet t(w) = bica---cp
be the word in AX"~!, where ¢; | = Cp—1(bi41) forevery 1 <i < n.Itis clear
that 7 is a bijection between R, and AX' 7=1 and hence it preserves the uniform
distribution.

The result follows if we modify Algorithm &P & as follows: on input © and v,
the algorithm first compares u; and vy, and then it compares {,,—1(u;41) and
e v (vi+1) until a difference is detected. l |

Remark 2.8. Lemma 2.7 establishes that the expected running time of Algorithm
P PP is bounded by a constant. This relies on our choice of the RAM model
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of computation, according to which it takes constant time to compare two letters
in A. As mentioned in Remark 2.6, if A4 is very large, it may take non-trivial time to
perform such a comparison (namely time (@ (log|A|)) and, in that case, the expected
running time of Algorithm &# P& is O (log|A|). |

3 The central tree property: A generic property of tuples of words

If d is a positive integer, we say that the k-tuple w = (wy,..., wy) of words
in F(A) has the central tree property of depth d (the d-ctp for short) if the w;
have length greater than 2d and the prefixes of length d of the w; and the w; !
are pairwise distinct. We also say that w has the ctp if it has the d-ctp for some
d < %min{|w,-| | 1 <i <k}. The central tree property was formally introduced
in [2] (see also [3]), but it was implicit in the literature, especially on the (expo-
nential genericity of the) small cancellation property since the ctp can be viewed
as a small initial cancellation property.

Let w = (wy, ..., wg) be a k-tuple of words in F(A). For convenience, we let
min|w| = min{|w;| | 1 <i <k} and max|w| = max{|w;| | 1 <i <k}, and we
write w—; for wl._1 (1<i<k).

Suppose that w has the d -ctp. Then we let pr; be the length d prefix of w—; and
let mf; (w;) be the middle factor of w; of length |w;| — 2d. In particular, we have
mfg(w—;) = mfz(w;)~! and

w; = pr_; - mig(w;) - pr; ' 3.1)

for—k <i <k,i #0.

Denote by L(w) the set of all the pr;. By definition of the d-ctp, |L(w)| = 2k.
Let also I'y () be the tree of prefixes of the w; and w;~ ! (rooted at the empty
word): this is the graph with vertices all the prefixes of the words w; and wi_1
(1 <i < k), including the empty word, and with an edge from a word v to a word
w exactly if w = va (a € A). We identify the words in L (w) with the correspond-
ing leaves of I'y(w). If H = (w) (i.e., H = {(wy,...,wg)), then I'(H) consists
of the central tree Tz(W), together with k disjoint paths: for every 1 <i <k,
there is such a path from vertex pr_; to vertex pr;, labeled mf; (w;). In view of
equation (3.1), the word w; labels a circuit at the root in I"(H'), going first through
Iz (w) to the leaf pr_;, and returning to the root through the leaf pr;.

Remark 3.1. It follows directly from the definition that one can decide whether
a k-tuple w has the d-ctp, and construct I'y (), in time O (kd). ]

We record the following property of k-tuples with the ctp, the first of which
is [2, Lemma 1.2].
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Proposition 3.2. Let d > 1, let W be a tuple of words in F(A) with the d-ctp and
let H = (w). Then H has infinite index and w is a basis of H.

Let . = min|w| and v = max|w|. If wo is a word in F(A) which belongs to H,
then the length £ of the expression of wq in the basis W satisfies

(n—2d)t < [wo| = ve.

Proof. The infinite index property is immediately verified since I (H ) has vertices
of degree 2, namely the leaves of I'; (w); see Section 2.1.

Let X = {x1,...,x%} be a k-letter alphabet and let ¢: F(X) — F(A) be the
morphism given by ¢(x;) = wj;. It is obvious that the image of ¢ is H. Recall that
we let x_; = xi_l for every 1 <i < k. Let x = x;, ---x;, be a non-empty word
in F(X). Then ¢(x) is the word obtained by reducing wj, - -- w;,. Because of the
ctp, reduction occurs only in segments of length at most 2d around the boundary
between w;, and w;,, ,, foreach 1 < h < £. In particular,

L —2d(—1) < l|p(x)| <{Lv.
It follows that ¢(x) # 1, and hence ¢ is injective and W is a basis of H. |

It is well known that an infinite index subgroup H of F(A) has growth modulus
smaller than 2r — 1. In the case where H is generated by a tuple with the ctp, its
growth modulus is greatly constrained.

Proposition 3.3. Let w be a k-tuple of words with the d-ctp and letl (4 = min|w)|.
Let H = (). Then the growth modulus of H is at most (2k — 1)1n—24 ,

Proof. Let X and ¢ be as in the proof of Proposition 3.2, let x € F(X) and
w = ¢(x) € H. Then (u —2d)|x| < |w|. If |[w| = m, then |x| < /ATW In par-
ticular, the set of words of H of length m is contained in the ¢-image of tlrzle words
in F(X) of length at most ﬁ. This set has cardinality ©((2k — 1)#—=24); see
Remark 2.2. The stated inequality follows since ¢ is a bijection between F(X)
and H. o

We also record the following fact, which is elementarily verified and is well
known (see, e.g., [1]).

Proposition 3.4. Let k > 1. The probability for a k-tuple W of words in F(A) of
length at most n to satisfy min|w| < % is O (k(2r — 1)7"/2),

Proof. The set of words of length / is 2r (2r — 1)"~!, so the set of words of length
at most /1 is

1
r—1°

14+2r +2rQ2r =) 4+ 2r@2r— 1)1 = Ll(y—l)h—
.
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The probability that a word in F(A) of length at most n actually has minimal
length at most % is therefore asymptotically equivalent to

CQr—n"?>™" =c@r—1)""?
for some constant C, and the result follows. O

We are interested in the d(n)-ctp, where d(n) is an increasing function of 7.
The following statement is derived from [2].

Proposition 3.5. Let r = |A| > 2 and let k > 2 be an integer. Let d(n) be a non-
decreasing function of n such that d(n) < % A random k-tuple of words in F(A)
of length at most n fails the d(n)-ctp with probability O (k*(2r — 1)~4®/2)),

Proof. Letn, = k2(2r — 1)=4®/2) Tt is shown in [2, proof of Proposition 3.17]"
that the probability that a k-tuple w = (w1, ..., wy) of words in F(A) of length
at most n fails to have the d(n)-ctp is bounded above by the sum of 57, and the
probability that k2(2r — 1)_d(mi“|i’|) > Ny

n

We note that, if min|w| > 5, then for all n, we have

k2(2r _ 1)—d(min\ﬁ)\) < k2(2r _ 1)—d(n/2) = .

Therefore, the probability that w fails to have the d(n)-ctp is bounded above by
the sum of the probability that min|w| < %, which is @ (k(2r — 1)~"/2) by Propo-
sition 3.4, and 57, = 5k2(2r —1)~2¢®/2)_This concludes the proof since k < k2

andd(%) < 7. o

If the size k of the tuple of words is itself a function of n, Proposition 3.5
directly yields the following statement.

Corollary 3.6. Let r = |A| > 2 and let k(n) be an integer function such that
k(n) < 2r —1)"/2,

(1) Ifk(n) is a constant function, then a random k(n)-tuple of words in F(A) of
length at most n fails the log n-ctp with probability O (n~log@r=1),

(i) If 0 > 0, k(n) = n? and 0 <y < 1, then a random k(n)-tuple of words in
F(A) of length at most n fails the (2n)Y -ctp with probability

Om*er-1™").

! Proposition 3.17 in [2] is formulated in the case of a so-called prefix-heavy distribution on
words of fixed length. This is the case for the distribution used here, namely the uniform distri-
bution on reduced words of fixed length. The parameters C and « in [2, Proposition 3.17] are,
respectively, 1 and (2r — 1)71; see [2, Example 3.2].
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(iil) Ardensity B (that is, if k(n) = 2r — 1)) for0 < p < %, andif 4 <y < %,
then a random k(n)-tuple of words in F(A) of length at most n fails the yn-
ctp with probability O((2r — 1)#B=v)n/2),

4 The Uniform Membership Problem

The Uniform Membership Problem (UMP) on alphabet A and for an integer k > 1

is the following: given wg, a word in F(A), and w = (w1, ..., wg), a k-tuple of

words in F(A), decide whether wg belongs to the subgroup H generated by w.
The notion of Stallings graphs provides a nice algorithmic solution for the UMP,

and to its extension where we also ask for the expression of wg in a basis of H, if
wo € H (see [20]).

Algorithm M P. On input a pair (wg, w) of a reduced word and a k-tuple of
words in F(A),
(1) compute the Stallings graph I'(H) of H = (w).

(2) Compute a spanning tree 7" of I'(H) (which specifies a basis B of H; see
Section 2.1).

(3) Try reading wo as a label of a path in I'(H ) starting at the root vertex, keeping
track of the sequence of edges traversed in the complement of 7. If one can
indeed read wy in this fashion and the resulting path is a circuit, then wg € H
and the sequence of edges not in 7 yields the reduced expression of wg in
basis B (see Section 2.1); otherwise wo ¢ H.

Remark 4.1. We do not assume the length k of the tuple w to be a constant. We
will see it instead as a function of n = max|w|. o

Proposition 4.2. The (worst case) complexity of Algorithm M P is
O(knlog*(kn) + rkn + m),

where n = max|w|, m = |wg|, and r = |A]|.

Proof. This is a direct application of Section 2.1. o

Remark 4.3. If we only want to know whether wg € H, step (2) can be skipped,
and the complexity is @ (kn log* (kn) + m). o

Let us now consider Algorithm M in more detail, in the case when w has the
d-ctp for some d. In this situation, we can exploit the shape of I'(H) described
in Section 3. In particular, we get a spanning tree by removing one edge from the
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mfy (w;)-labeled path from pr_; to pr; for each 1 <i < k, and the corresponding
basis is w. It does not, actually, matter which edge is removed. As we will see, we
do not even need to compute explicitly the full picture of I'(H ).

Let X be the k-letter alphabet X = {x1,...,x;} and let ¢: F(X) — F(A) be
the morphism which maps letter x; to w;, as in the proof of Proposition 3.2.

If wg € H, then step (3) of Algorithm M P starts with an initialization step,
identifying the first letter x;, of the expression x¢ of wo in basis w and reading
|wi, | — d letters of wy, followed by a potentially iterated step, which identifies
the next letter in xo. The important observation is that, along each of these steps,
a long factor of wo must be read (of length at least min|w| — 2d), and this factor
must match one of a fixed collection of at most 2k words.

This leads to the family of Algorithms M ,; below, indexed by functions
d:N — N, n — d(n), each of which solves the UMP. We then prove that, for
well-chosen d, the average case complexity of Algorithm M P ; is much lower
than the worst case complexity of Algorithm M 5.

Let d(n) be a non-decreasing function of  such that d(n) < 3.

Algorithm M P 5. The input is the (k + 1)-tuple (wo, ..., wg) of words in F(A).
We let w = (wy,...,wg) and H = (w). No assumption (in particular, no ctp
assumption) is made about the input. For convenience, we assume that we are
also given the k-tuple of lengths (Jwy], ..., |wg|) (see Remark 2.5), and we let
n = max|w|. We again let X = {x1,...,xx} and ¢: F(X) — F(A) be given by
p(xi) = w; (1 =i <k).

(1) Decide whether w has the d(n)-ctp and min|w| > %. This decision requires
computing the set L(w) of length d(n) prefixes of the w; and w;~ ! This set is
recorded in the form of the tree I'y(,) (W), which has at most 2kd (n) vertices
and edges. There are two cases.

(a) If w has the d(n)-ctp and min|w| > %, go to step (2).
(b) Otherwise, run Algorithm M to decide whether wog € H, and find an
expression of wy in a basis of H if it does.

(2) Start reading wo in I'g(,) (W) from the root vertex. There are two cases.

(a) We reach a leaf of T'y(,) (W), say pr_; (—k <i < k,i # 0, necessarily af-
ter reading exactly d (n) letters from wy), and the middle factor mfy ;) (w;)
is a proper prefix of the suffix of wq starting in position d(n) + 1, that
is, pr_;mfg () (w;) is a proper prefix of wg. In this case, move the read-
ing head to position d(n) + [mfg)(wi)| + 1 = [wi| —d(n) + 1 in wo,
record pr; as the last-leaf-visited, output letter x; € X and go to step (3).

(b) Otherwise, stop the algorithm and conclude that wo ¢ H.
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(3) Suppose that the reading head on wg is in position j and that the last-leaf-
visited is pr;. Resume reading wg (from position ;) in Fd(n)(ﬁ)), starting at pr;.
There are three cases.

(a) We reach the end of wo while reading it inside I'y(,) (1), landing at the
root vertex. In this case, stop the algorithm and conclude that wog € H.

(b) After reading d’ letters from wg, we reach a leaf of I'z(,) (W), say pr_;:
(necessarily 2 < d’ < 2d(n) and —i" # i), and the word mfg,)(w;’) is
a proper prefix of the suffix of wy starting in position j + d’ + 1. In this
case, move the reading head to position j + d’ + (Jw;/| —2d(n)) + 1
in wy, record pr;, as the last-leaf-visited, output letter x;/ € X and repeat
step (3).

(c) Otherwise, stop the algorithm and conclude that wg ¢ H.

Theorem 4.4. Let d(n) be a non-decreasing function of n such that d(n) < 5. Al-
gorithm M P 4 solves the Uniform Membership Problem in F(A) and, if wo € H,
finds an expression of wq in a basis of H.

Letr =|A|>2,0<§ < % and 0 < B/ < %—25/, and suppose d(n) < §'n.
If we restrict the input space to pairs of the form (wg, W), where max|w| = n
and W is a tuple of length k < (2r — 1)P'" then the average case complexity of
Algorithm MP ; is

O(kd(n) + k3n@2r — )"/ (- £ 10g* (kn)) + k2@2r — 1)740/2p),

where m = |wo|. If the space of inputs is further restricted to those inputs where
W has the d(n)-ctp and min|w| > %, then the expected running time is O (kd(n)),
independent of |wo|.

Proof. Algorithm M P ; always stops because every one of its steps takes a finite
amount of time and the only repeated step (step (3)) reads a positive number of
letters of wq. If Algorithm M5 ; stops at step (1), then it answers the question
whether wg € H and, in the affirmative case, finds an expression for it in a basis
of H. If it stops at step (2), then wo ¢ H. And if it stops at step (3), then Al-
gorithm M ; outputs a word x¢ on alphabet X, one letter at a time (one at the
completion of step (2) and one at the completion of each iteration of step (3) except
for the last one). As observed in the description of step (3), each new letter cannot
be the inverse of the preceding one (because I'y¢,) (W) is a tree) so that word xg
is always reduced, that is, xo € F(X). Moreover, the last iteration of step (3) con-
cludes either that wo ¢ H, or that wo € H and xo = ¢~ !(wg) (that is, xq is the
expression of wq in basis w).
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We now proceed with bounding the expected running time of Algorithm M ;.
We use the following notation:

© = min|w|,
p = 2k(2r — 1)7/2Hd®)
a = 2kQ2r — 1)—2—n/2+2d(n) = (2r — 1)d(n)—2p_

Our hypotheses on k and d imply that both p and g tend to 0 as n tends to infinity.

Step (1) first requires comparing the lengths of wy, ..., wr with 7, decid-
ing whether w has the d(n)-ctp and, if so, computing I'z(,)(w). This takes time
O(kd(n)) (see Remark 3.1). If 1w does not have the d(n)-ctp or if u < 5, step (1)
runs Algorithm M, in time O (knlog*(kn) + rkn + m) (see Proposition 4.2).
By Propositions 3.4 and 3.5, this happens with probability @ (k2(2r — 1)~4/2))
(since we assumed that d(n) < %, and hence k(2r — 1)™/2 < k2(2r — 1)=4(®/2)),

With the complementary probability, w has the d(n)-ctp, o > 5 and Algo-
rithm M P ; proceeds to step (2).

We now need to decide in which of the two cases of step (2) we are, that is,
we need to solve the PPP (Proper Prefix Problem) 2k times: for every pair of
input words (u, wo), where u = pr_;mf;(,)(w;) for some —k <i < k,i # 0. The
expected time for this is @ (k) (see Lemma 2.7). Note that, by the ctp, the output
will be positive for at most one of these u, thus uniquely identifying the leaf pr_;
of T'g(»)(w) which is first visited when reading wo. Moreover, the probability
that the algorithm does not stop here — and therefore moves to step (3) —, that
is, the probability that one of these words u is indeed a proper prefix of wg is’
O2k@2r —1)"#Tdm)) Ag ;i > 2 this probability is O (p).

Thus, with probability @ (p), we enter a loop where step (3) is repeated. Con-
sider one such iteration of step (3), starting with the reading head in position j
on wo and vertex pr; as the last-leaf-visited. Let w6 be the suffix of wy starting
at position j. To decide in which of the cases of step (3) we are, we first con-
sider whether |wg| = j + d(n), and if so, we solve the EqP (Equality Problem)
on input (pr; ', wy). If indeed wy = pr;’!, the algorithm stops and concludes that
wo € H. This is done in constant expected time. If wg # prl._l, we solve the PPP
2k — 1 times for every input pair (u, w;), where u = pri_lpr_i/mfd(n)(wi/) and
—k <i' <k,i’ #0,—i. By Lemma 2.7, this is done in expected time O (kd(n))
(the factor d(n) corresponds to the work needed to reduce pri_1 pr_;, before solv-
ing the PPP). The probability that the algorithm continues to a new iteration of
step (3), namely the probability that one of these words u is a proper prefix of wy,

2 The probability that u (of length £) is a prefix of wg (of length m) is O((2r — 1)~4). In the
present situation, £ = |w;| —d(n) = u —d(n).
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is O((2k — 1)(2r — 1)~@F1=2d()) Since pu > %, we have
2k — 1)(2r — 1)~ @Fr=2dm) < ¢

The expected time required for running Algorithm M ; can be analyzed as
follows. Step (1) runs in expected time

O(kd(n)) + Ok>@2r — 1)~ (knlog* (kn) + rkn + m))
= O(kd(n) + k>n2r — 1)~ 4 log*(kn)) + k?(2r — 1)~/ D),

With probability 1 — O (k2(2r — 1)~2¢®/2)) Algorithm M P ; proceeds to step (2).

Step (2) runs in expected time @ (k). With probability O (p), the algorithm pro-
ceeds to step (3) and stops with the complementary probability.

Each iteration of step (3) runs in expected time @ (kd(n)). Step (3) is repeated
with probability O (g), and the algorithm stops with the complementary probabil-
1ty.

It follows that the expected running time of step (2) and the ensuing iterations
of step (3) is O(k(1 + pd(n)(1 + q + g% + q> +---))), which is

O(kd(n)(l n %)).

Since p and g tend to O, this is O (kd(n)), independently of how many times
step (3) is iterated. The expected running time of Algorithm M P ; is therefore
at most

O (kd(n) + k>n(2r — 1)~2®/2 10g* (kn) + k>(2r — 1)_d("/2)m),

Finally, suppose that the input (wo,w) is such that min|w| > 5 and w has the
d(n)-ctp. Then step (1) consists only in computing I'g(,) (). The expected run-
ning time of Algorithm M ; is therefore, on this smaller set of inputs, O (kd(n)).

O

As a corollary, we get upper bounds on the average case complexity of the
Uniform Membership Problem.

Corollary 4.5. The Uniform Membership Problem (UMP) for F(A), with input
a k(n)-tuple of words of length at most n, and an additional word of length m,
can be solved in expected time C(n, m) as follows (where r = |A| is taken to be
constant).

(1) If k is constant, then C(n,m) = O(logn + mn~"°¢C"=D) improving on its
worst case complexity, namely O (nlog* n + m).
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(2) Let B>0,0<y < 1. Ifk = nP, then
Cn.m)=0OmP* + mn*2r — )™,

improving on its worst case complexity, namely (9(nﬂ Tlog* n + m).

(3) Ifk = nP for some B > 0, we also have
C(n.m) = OnPlogn +nlog*n +mn=?).
4) Forany0 < B < 1_18’ ifk = 2r — 1)P", then for every 0 <& < & — —,3
C(n.m) = O(n@r — YP" + m@r — 1)(%3—%“)"),
improving on its worst case complexity, namely O (n(2r — 1)#" log* n + m).

Proof. The worst case complexities mentioned in each item follow from Proposi-
tion 4.2. For every item, we apply Theorem 4.4 for an appropriate choice of the
function d(n).

(1) Suppose that k is a constant function and let d(n) = logn. Note that

2r — 1)len = plog@r=1)  anq  lim p!Tle@ D 4 log*(kn)) = 0.
n—>oo
Theorem 4.4 then shows that the average case complexity of Algorithm M P ; is
O(logn + mn~'°62r=1) a5 stated.

(2) Suppose now that k = n# and let d(n) = (2n)?. We can, again, apply The-
orem 4.4. Since lim,_so00 3811 (2r — 1) (r + log* (nP*1)) = 0, the average
case complexity of Algorithm MP z is O(nPTY + mn2P (2r —1)™"), as stated.

(3) Suppose, again, that k = nP and let

3
Then (2r — 1)~4®/2) = =3B Then Theorem 4.4 shows that, in this case, the
average case complexity of Algorithm M P ; is (9(nﬂ logn + nlog*n + mn=#).

4 Suppose that k = 2r — l)ﬂ” w1th 0 < B < +1z. This inequality guarantees
that 48 < 7 — é Let0 <e<g— ﬂandS = ——é—Zs(sothatS > 4f), and
letd(n) = é’n Then the hypotheses of Theorem 4.4 are satisfied with 8 = f and
8" = §. As aresult, the average case complexity of Algorithm M P 4 is

O(n@r — D" + n@r — 1B~ log* n 4+ m(2r — 1)@B=5n),

Since 48 < §, we have 38 — 5 < B, and the second summand is less than the first.
Moreover, 2 — 2 = 4,3 8 —|— ¢, and the stated result follows. |
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S The Primitivity and the Relative Primitivity Problems

An element w of a free group F(A) is said to be primitive (in F(A)) if F(A)
admits a basis containing w. Equivalently, w is primitive if the cyclic subgroup (w)
is a free factor of F(A). The Primitivity Problem (PrimP) on alphabet A consists
in deciding, given a word w € F(A), whether w is primitive in F'(A).

The Primitivity Problem is closely related to the following Whitehead problem:
given two words v, w € F(A), decide whether there exists an automorphism ¢ of
F(A) such that ¢(w) = v. The first step in Whitehead’s classical solution to this
problem [23] identifies the minimal length of the automorphic images of v and w.
The classical solution of PrimP is a by-product of this first step: a word is primitive
if and only if its orbit under the action of Aut(F(A)) contains a word (and so all
words) of length 1. This solution of PrimP is linear in m = |w|, but exponential
in r = | A| (relying, as it does, on an exploration of the action of the Whitehead
automorphisms, whose number is exponential in 7).

Roig, Ventura and Weil [17, Fact 3.6] modified Whitehead’s algorithm, resulting
in Algorithm & which solves the Primitivity Problem in time O (m?r3), where
m = |w|. We do not describe Algorithm & in this paper as we will use it as a
black box.

The Relative Primitivity Problem (RPrimP) on alphabet A and for an integer
k > 1 is the following: given a word wg in F(A) and a k-tuple w = (w1, ..., wg)
of words in F(A), decide whether wq belongs to H = (w) and, if it does, whether
it is primitive in H.

Solving RPrimP is done naturally by the combination of an algorithm solving
the Uniform Membership Problem and, in the case of affirmative answer, com-
puting the expression xo of wg in a basis B of H, and applying an algorithm for
solving PrimP in F(B) (for example, Algorithm J mentioned above, with worst
case complexity @ (m?r3)). By Proposition 4.2, this results in a worst case com-
plexity of

O (knlog*(kn) + rkn + m*k?)

(since the rank of H is at most k).

Recently, Shpilrain [19] gave an algorithm solving PrimP in F(A) with constant
average case complexity. This constant average case complexity assumes, as we
have done so far, that the rank r of the ambient free group F(A) is fixed. However,
we cannot make this assumption anymore since we need to solve PrimP in free
subgroups of F(A), whose rank may be as large as k. We therefore revisit this
algorithm in detail in Section 5.1, and we recompute its average case complexity
to ascertain its dependency in r. The average case complexity of the combination
of this algorithm with Algorithm M ; (Section 4) is discussed in Section 5.2.
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5.1 Shpilrain’s primitivity algorithm

Recall that a word u in F'(A) is cyclically reduced if its last letter is not the inverse
of its first letter, that is, if u? is reduced. It is clear that any word u factors in
a unique fashion as u = vwv ™! with w cyclically reduced, and we call w the
cyclic core of u, written «(u). It is immediate that u is primitive if and only if
Kk (u) is.

If u = x1---xp is a reduced word of length at least 2, let W(u) be the White-
head graph of u, namely the simple (undirected) graph on vertex set A, with an
edge from vertex x to vertex y if there exists 1 <i < n such that x;x; 11 = xy~!
or yx~! (here x,4 stands for x1). Observe that W(u) can be constructed one
edge at a time when reading u from left to right, in time O (|u|).

Recall finally that a vertex p of a connected graph G is a cut vertex if delet-
ing p from G (and all the edges adjacent to p) results in a disconnected graph.
Whitehead showed the following [22].

Proposition 5.1. Let u be a cyclically reduced word of length at least 2 in F(A).
If u is primitive, then either W(u) is disconnected, or W(u) admits a cut vertex.

Shpilrain’s Algorithm § (slightly modified) is as follows [19]. We let

— ! 4.6
gn)=n log@r — 1) log(n"r®).

Algorithm 8. On input a reduced word u € F(A) (together with its length n),

(1) compute k (u), the cyclic core of u, say k' (u) = x1---xp. It h = |k (u)| < g(n),
go to step (4). Otherwise, let i = 2, let W be the graph with vertex set A and
no edges (so that every vertex is its own connected component) and go to
step (2).

(2) Read x;, add the edge (x;—1, X;" 1) to W and update the list of connected com-
ponents of W. If W is connected and has no cut vertex, stop the algorithm: u
is not primitive in F'(A). Otherwise, if i < h, increment i by a unit and repeat
step (2), and if i = h, go to step (3).

(3) Add to W the edge (xp, xl_l) and update the list of connected components
of W.If W is connected and has no cut vertex, stop the algorithm: u is not
primitive in F'(A). Otherwise, go to step (4).

(4) Run Algorithm & on «(u) to decide whether u is primitive in F(A).
Algorithm & certainly solves the Primitivity Problem (using Proposition 5.1)

since the graph W constructed in steps (2) and (3) is an increasingly larger frag-
ment of W(x(u)). The algorithm stops when either W is connected and has no
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cut vertex, in which case W(x(u)) has the same property and u is therefore not
primitive in F'(A), or when Proposition 5.1 has failed to give us an answer and
Algorithm J has been called to settle the issue.

Shpilrain showed in [19] that the average case complexity of Algorithm & is
bounded above by a constant, independent of the length of the input word. This
constant does however depend on the ambient rank r, and we specify this depen-
dency in Proposition 5.5 below. Before we state this proposition, we need to record
a few results.

First recall that the number R, of reduced words of length n in F(A) is

2r2r — "l
The number CR,, of cyclically reduced words of length n satisfies
2r@2r — 1)"2Q2r —2) < CR, < 2r2r — )" ! = R,.

It follows that the probability that a reduced word is not cyclically reduced is at
most 1 — %::f = 2r1_1 (not exactly %, as asserted in [19], because the first and
last letter of a reduced word are random variables that are close to but not exactly
independent from each other).

The following (obvious!) algorithm computes the cyclic core of a word in F(A).

Algorithm € R. On input a reduced word u = ay ---a, of length n and as long
as n > 3, compare a, with al_l; if they are equal, delete the first and last letter of
u and repeat this step; if they are different, return the word u.

Lemma 5.2. The average case complexity of Algorithm € R is O(1), independent
of the size r of the alphabet.

Proof. Let p, be the probability that a length n reduced word is not cyclically
reduced. As observed before, p, < ﬁ }

Every step of Algorithm € compares two letters from A, and hence takes
constant time C. On input u, of length n, Algorithm € R concludes in 1 step (that
is, the case where u is cyclically reduced) with probability 1 — p,, and otherwise
repeats its single step, on a length n — 2 input. Thus the expected time is bounded
above by

(I +pn + PuPn—2 + PuPn—2Pn—4 +---) C < (Z(zr _ 1)—i>c‘

i>0

Since Zi20(2r — 1)_i = ;::; < %, this concludes the proof. O

We will also use the following fact.
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Lemma 5.3. The probability that the cyclic core of a length n element of F(A) has
length less than or equal to n — 24 is O((2r — 1)7%).

Proof. This is a side product of the proof of Lemma 5.2: as observed there, Algo-
rithm € R concludes in 1 step with probability 1 — p, < 1. It concludes in exactly
2 steps with probability p, (1 — pp—2) < (2r — 1)1, and it concludes in i + 1
steps with probability p,pr—2 - Pn—2h+2(1 — Pn—2n) < 2r — 1)~". Now, k(u)
has length n — 2h if and only if Algorithm €R terminates in & + 1 steps. So
|« (u)| < n — 2L if Algorithm € R terminates in at least £ + 1 steps, and this hap-
pens with probability at most (2r — 1)~¢ >oi@r— 1)~%. This quantity is

2r — 1
2r —2

3
Qr—1)"*‘< 50— Ht. o

An important observation is that if u is a random word in F'(A) of length n, then
with high probability, W(u) is connected and has no cut vertex. More precisely,
the following holds. If ¥ = x1---x, is a reduced word of length at least 2, let
W'(u) be the simple graph with vertex set A, and with an edge from vertex x to
vertex y if there exists 1 <i < n such that x;x; 11 = xy~! or yx~!. Note that
this is almost identical to the definition of the Whitehead graph W(u), except that
we do not consider the case where i = n. In particular, W'(u) is a subgraph of
W(u), and if W’'(u) is connected and has no cut vertex, then the same property
holds for W(u).

Proposition 5.4. Let v > 2 and let F = F(A), with |A| = r. There exists a pos-
itive number o(r) <1 — %r‘z with the following property: the probability for
a word u of length n in F(A) that W'(u) is disconnected, or is connected and
has a cut vertex, is @ (nFa(r)") for some k € N.

Proof. Let § be the set of simple graphs on vertex set A (that is, undirected loop-
free graphs without multiple edges). If G € €, let 4(G) be the A-automaton with
the same vertex set, whose edges are as follows: for every edge of G connecting
vertices a and b (a,b € A), A(G) has a b~ -labeled edge from state a to state
b1 and an a~!-labeled edge from state b to state . Let also L(G) be the set
of all words in A* which label a path in A(G), with no condition on its starting
and ending points; in particular, L(G) is a regular language. Finally, let M (G) be
the transition matrix of #(G), that is, the order 2r matrix whose (a, b)-entry is 1
if A4(G) has an edge from vertex a to vertex b, and 0 otherwise.

For G,G’ € g, say that G < G’ if every edge of G is also an edge of G'. It
is clear that if G < G’ and G is connected and has no cut vertex, then the same
holds for G’. Let Gq,..., Gy be the <-maximal elements of § which are either
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disconnected, or connected and with a cut vertex. Let A; be the growth modulus of
L(G;); then the union of the L(G;) has growth modulus A9 = maxj<;<x A;.

Now let X denote the set of reduced words u such that W’ (u) is disconnected,
or is connected and has a cut vertex. Observe thatif u € L(G;), then W'(u) < G,
and hence L(G;) is contained in X. That is, X contains the union of the L(G;)
(i €[1,h]). Moreover, for every word u with first letter a, we have u € a L (W' (u))
so that X is contained in the union of the a L(G;) (a € Aandi € [1, h]). Itis easily
verified that a L (G; ) and G; have the same growth rate, so both unions have growth
rate Ao, and hence so does X .

Thus the number of length n words in X is asymptotically equivalent to C nk A
where C > 0 and k € N (see Fact 2.1). As the growth modulus of the language of
all reduced words is 2r — 1 and «(r) was defined to be equal to 2?—21, it follows
that the probability that a length n word is in X is asymptotically equivalent to
Cnka(r).

In order to conclude the proof, we need to establish an explicit upper bound for
a(r), as a function of r. This is done rather abruptly (following reasoning similar
to that in [5]): for each a,b € A with b £a,a” ', let Gg,q be obtained from the
maximum element of § (which has an edge between every pair of distinct vertices
in A) by deleting the edge between a and a~!, and let G, p be obtained from the
same maximum element by deleting the edge between a and b (Figure 1). Then
every G; satisfies either G; < Gq4,4 0r G; < G, p, forsomea,b € A.In particular,
L(G;) is contained in L(Gg,q) or L(G, p), and hence A; is less than or equal to
the growth modulus of L(Gg,q) or L(G, ). Since Gq,4 and G, are irreducible
and aperiodic, Proposition 2.3 shows that these growth moduli are the leading
eigenvalues of M(Gg,q) or M(G, p), respectively.

It should be clear that these growth moduli do not depend on the choice of
a,b € A. Facts A.1 and A.2 from the appendix show that both are at most

1
2= (1= 5r72),
2r-1 5"
which completes the proof. o

Proposition 5.5. Let r > 2. There exists a positive number B(r) < 1 — %r‘z such
that the average case complexity of Algorithm & is O ((W)2 + r3). In partic-

ular, this average case complexity is O(r®).

Proof. Let k and a(r) be given by Proposition 5.4, and let 8(r) be a number such
thata(r) < B(r) < 1 — 4r=2. Note that n*a(r)" = O(B(r)").

Step (1) of Algorithm & takes constant expected time; see Lemma 5.2. It is
a classical result (usually referred to [10]) that connectedness and the presence
of a cut vertex in a graph with V' vertices and E edges can be decided in time
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00111111 101 1 1 111
00111 1T11 o1 01 1 111
11101111 1 1101111
11011111 01011111
11111011 and 1 1111011
I 1110111 1 1110111
11111110 11111110
11111101 1 1111101

Figure 1. The transition matrices of A(Gg,,q,) (on the left) and A(Gg, 4,) (on the
right) for r = 4, where the vertex setis {a;,a—1,as,a—>,...,a,,a—}, in that order.

O(V + E). For the graphs occurring in the algorithm, which are subgraphs of the
Whitehead graph W (u), we have

V =2r and E <2rQ2r-—1),

so O(V + E) = O(r?). It follows that each iteration of step (2) takes time O (r?)
since W has 2r vertices, and the same holds for step (3). Finally, step (4) takes
time @ (m?r3), where m is the length of the input word.

By Lemma 5.3, the probability that step (1) directly leads to step (4), that is, the
probability that |« (u)| < g(n), is

n—gn)

O@r—1)"" 2 )=0m"2r3).

So the contribution of this configuration to the average case complexity of Algo-
rithm 8 is O(n~2r=3)0(g(n)*r3) = O(1).

Let ¢ < |k(u)| and let p be the length g — 1 prefix of «(u). Step (2) is iterated
at least g times if the graph W'(p) is disconnected, or is connected and has a cut
vertex. This happens with probability at most CB(r)¢~! for some constant C > 0.

Thus the expected running time of Algorithm § is a big-O of

Xq:ﬂ(r)q_lqrz + B(r)E™n?r3 < (1_;[3(”)2 + B )E™p2y3,

The inequality above is justified as follows: for |s| < 1, we have

L d d
2 = %@Sq) - ()= (1—1s)2'
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Moreover, we have

B(r)E™n® < B(ry'n® < (1~ 2"%)”112.

If n is large enough with respect to r, this quantity is less than 1. More precisely,
suppose that 13- > 4r2. Then

1
log(B(r)8™n?) < 2logn +n log(l - 2—2) <2logn — zn_z < 0.
r r

This concludes the proof that the average case complexity of Algorithm & is

o((=e) +7)

The last part of the statement follows from the observation that

(l—;a(r))z < 4r®, O

Remark 5.6. The Perron—Frobenius theorem can be invoked to show that the spec-
tral radius of M(G) is less than 2r — 1 for each G € g that is not the clique on A.
As we saw, we need however an estimate of how much smaller than 2r — 1 these
spectral radii are. The method used in the proof of Proposition 5.4 is far from op-
timal: we estimate the spectral radius of M(G) for the graphs obtained from the
maximum element of § by removing a single edge. Such graphs are far from being
disconnected or having a cut vertex. Any upper bound of the spectral radius of the
M (G) where G is disconnected or has a cut vertex would lead to an improvement
in the expected running time of Algorithm §. There is considerable scope for such
an improvement. |

5.2 The Relative Primitivity Problem

We finally get to the Relative Primitivity Problem, RPrimP: on input a k-tuple
w = (wy,...,wy) of words in F(A) and a word wg in F(A), along with their
lengths, decide whether wg belongs to H = (w) and is primitive in it. As indicated
earlier, the idea is essentially to combine an Algorithm M 4, for a fast decision
of the Uniform Membership Problem, with Shpilrain’s Algorithm &, for a fast
decision of the Primitivity Problem, carefully distinguishing between the situations
where W has good properties (the d(n)-ctp for a well-chosen function d, and the
fact that min|w| > % max|w|), which will happen with high probability, and where
it does not.

More precisely, consider the following algorithm, parametrized by the choice
of a non-decreasing function d(n) such that d(n) < 7.
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Algorithm RP 4.

(1) Find out whether w has the d(n)-ctp and min|w| > 7 (this is the first step of
Algorithm M P ;). If one of these properties does not hold, go to step (2). If
both do, compute I'y(,) (W) and go to step (3).

(2) Run Algorithm M on input (wg, w) to decide whether wg € H = (w) and,
if it does, to compute xg, the expression of wg in a basis B of H. In the latter
case, run Algorithm & on xo in F(B), to decide whether x¢ is primitive in
F(B), equivalently, whether wy is primitive in H .

(3) Run steps (2) and (3), the latter iterated, of Algorithm M & ; to decide whether
wo € H and, if it does, to compute xg, the expression of wq in basis w. If
wo € H, run Algorithm § on x¢ in the rank k free group H = (w).

We prove the following theorem.

Theorem 5.7. Let d(n) be a non-decreasing function of n such that d(n) < 5.
Then Algorithm RSP ; solves RPrimP. i

Letr =|A|>2,0<§ <L o0<p <i-28andy=@r-nT=w' <.
Suppose that d(n) < §'n and k(n) < 2r — )™ for every n. If we restrict the
input space to pairs of the form (wg, W), where max|w| = n and W is a tuple of
length k(n), then the average case complexity of Algorithm RP 4 is a big-O of

k(n)d(n) + k(n)?@r — 1)~40/2) (k(m)nlog*(k(n)n) +m +k(n)°) + y"kn)°,

where m = |wy|.
If the input (wo, W) of RPrimP is limited to those pairs where W has the d(n)-
ctp and min|w| > %, then the average case complexity of Algorithm RP g is

O (k(n)d(n) + k(n)®y™).

Proof. 1tis clear that Algorithm R P ; solves RPrimP.

Step (1) of Algorithm R P ; takes time @ (k(n)d(n)); see the analysis of Algo-
rithm M P ; in the proof of Theorem 4.4.

The algorithm moves to step (2) with probability @ (k(n)%(2r — 1)~¢®/2)) and
to step (3) with the complementary probability; see Propositions 3.4 and 3.5.

In case we reach step (2), as in the proof of Theorem 4.4, Algorithm M S takes
time @ (k(n)n log*(k(n)n) + rk(n)n + m) = O (k(n)nlog* (k(n)n) + m). If Al-
gorithm M P concludes that wo € H, then it also outputs a word xo € F(B), for
a certain basis B of H; moreover, |B| < k and |x¢| < m. Running Algorithm &
takes time @ (k(n)®) on average (see Proposition 5.5).
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Otherwise, we reach step (3); we are in the situation where w has the d(n)-ctp
and min|w| > . In particular, the expected running time of step (2) and all itera-
tions of step (3) of Algorithm M P ; is O (k(n)d(n)); see the proof of Theorem 4.4
(here is where we use the hypothesis on k(n) and d(n)).

Moreover, the growth modulus y,, of H is at most

2

(2k(n) — 1)7=iam

by Proposition 3.3. Then, for every n, we have that

2

Vi < @k(n) — )0 < (2K (n)) 740

<Q@r— 1)13’")(1—4%3/»[ = 2(1—28’))1 -2r — 1)%'
Taking the limit, we get

B/
Vo < (@r—1)Ta <2r —1

since, by hypothesis, 28’ < 1 — 46'. It follows that the probability that wg € H is
(9((23;111 )™), and so @ (y™). If indeed wg € H, we run Algorithm -§ on the word
xo € F(X), in expected time O (k(n)®); see Proposition 5.5.

Thus the expected running time of this algorithm is bounded above by a big-O

of
k(n)d(n) + k(m)?@2r — 1)~/ (k(m)nlog* (k(n)n) +m + k(n)®) + y™k(n)°,

giving the stated asymptotic estimate.

Finally, if the input (wo, 1) is such that w has the d(n)-ctp and min|w| > 7,
then after step (1), we go directly to step (3), and the expected running time of the
algorithm is O (k(n)d(n) + y™k(n)®). |

As for the Uniform Membership Problem, this gives us upper bounds of the
average complexity of the RPrimP for interesting functions k(7).

Corollary 5.8. The Relative Primitivity Problem (RPrimP) for F(A), with input
a k(n)-tuple of words of length at most n, and an additional word of length m,
can be solved in expected time C(n, m) as follows (where r = |A| is taken to be
constant).
(1) Ifk is constant, then C(n,m) = O(logn + mn=1082r=1)),
() If0 > 0 and k(n) = n?,
2 m
Cn,m) = (9<n9+8 +n??0r — 1)_"8m + n%® (—) )
2r — 1
forany 0 <6 < 1.
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3) If 0 < B < & and k(n) = (2r — 1)P",
Cln.m) = O(n@r — 1" + @r — 1)~5B%m + (2r — 1)Bn—1-365m).

Proof. For the case where k is constant, apply Theorem 5.7 with d(n) = log(2n)
and arbitrary valid values of " and 8’. This shows (1).

For k(n) = n?, choose d(n) = (2n)%. Then the hypotheses of Theorem 5.7
are satisfied with §' = % and any B’ such that 0 < 8’ < %; the quantity y is then
y = (2r — 1)*#'~1. Choosing B’ such that (2r — 1)*#" = 2 yields the stated re-
sult. This shows (2).

Finally, suppose that k(n) = (2r — 1)#" with 0 < 8 < %. Let § = 148 and
d(n) = 6n.Note that § < % — % Then the hypotheses of Theorem 5.7 are satisfied
with 8/ = 8 and §’ = §. The asymptotic upper bound from that theorem now reads
as a big-O of

Q2r — l)ﬁ"n + 2r — 1)(3/3_%)” log*n + (2r — 1)(2B—%)nm
+@r — 1)EB=Dn 4 2 — 1)Snym,

1-2p—45 _1-588
where y = (2r — 1)~ 1-45 . Since § = 148, we have y = (2r — 1) 7968 the

second and fourth summands above are dominated by the first one, and the last

summand becomes s
2r — 1)%Pr—1=5e8"™

So our upper bound is a big-O of
—588
@r — )P0+ @r — 1) m 4 (2r — 1)9Bn— =565

as stated. This shows (3), concluding the proof. o

A Appendix

Fact A.1. The growth modulus of L(Gg 4) is

%(2}’ —34,J@r+1)2-8)=(r - 1)(1 - %r_z . gr_4 + (9(r_5)). o

Proof. Lete; (—r <i <r,i # 0)be the column vectors with coordinate at vertex
a; equal to 1 and all other coordinates equal to 0, the standard basis of the dimen-
sion 2r vector space. Let M, , be the transition matrix of A(Gy 4); see Figure 1.

It is an elementary verification that e; —e_j is in the kernel of M, 4, that
each e¢; —e—; (2 <i <r) is an eigenvector for the eigenvalue 1, and that each
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e +e—i —er —e—_r (2 <i <r)is an eigenvector for the eigenvalue —1. These
2r — 2 vectors, together with vy =ej +e—_y and vo = ) ;. ,(e; + e—;), form
a basis of the full space. -

Moreover, M, 4 - v1 = 2v and Mg 4 - v2 = (2r — 2)vy + (2r — 3)v,. There-
fore, the other eigenvalues of M, , are the eigenvalues of (g %;:% ), and the result
follows. O

Fact A.2. The growth modulus of L(G, ) is the maximum root of
X3 —@r—-DX%2+4(r—-1),
and it is bounded above by (2r — 1)(1 — 1r72). o

Proof. Lete; (—r <i <r,i # 0) be as in the proof of Fact A.1 and let M, ; be
the transition matrix of A(G, p); see Figure 1.
One verifies easily that ey — e is in the kernel of M, ; and that

Myp-(e—1—e—3) =ex—ej.

It also holds that each e¢; — e—; (3 < i < r) is an eigenvector for eigenvalue 1, and
eache; + e—; —e, —e—, (3 <i < r)isan eigenvector for eigenvalue —1.

These 2r — 3 vectors are linearly independent, and the vectors vi = e; + ez,
vy =e—1 +e—p and v3 = Zf=3(ei + e_;) complete them to a basis of the full
space.

In addition, we have M, 5 - vi = 2(v1 + v3), My p - v2 = v1 + 202 + 2v3 and
Mgp-v3=Q2r—4v + 2r —4)vy + 2r —5S)vs.

Thus, in this basis (suitably ordered), the matrix of the linear transformation
M, p consists of the following diagonal blocks:

0 ! 2 1 2r—4
(0 0), (1) (r — 2 times), (—1) (r — 3 times), 0 2 2r—4
2 2 2r—5

In particular, the remaining eigenvalues are the roots of the characteristic poly-
nomial of that (3, 3)-matrix, namely P(X) = X3 — 2r — ) X% 4+ 4(r — 1). We
note that the local extrema of P(X) are at 0 and %(2r —1),P0O)=40r—-1)>0
and P(r) = —r3 4 r? 4+ 4r — 4, which is negative for all » > 2. Therefore, P (X)
has three real roots.
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Since P(2r — 1) = 4(r — 1) > 0, the leading eigenvalue of M, j sits between
%(Zr — 1) and 2r — 1. For a closer estimate, let § = 2r — 1)(1 — %r‘z). Then

1,2 1
— _ _1)3 o o
PG)=4(r— 1)+ (2r—1) (1 2r2> (1 S 1)
@2r* —1)? 3
=40 —1) - —@r=1
_16r° +8r° —44r* 41677 +8r2 —6r + 1
- 8r6 ’

which is positive when r > 2. Thus the leading eigenvalue of M, ,, which is the

growth modulus of L(G, ), is at most § = (2r — 1)(1 — %r‘z), as stated. |

Remark A.3. Facts A.1 and A.2, while mathematically elementary, would have

been very difficult to establish without the help of a versatile computer algebra
system. The authors are grateful to the developers of SageMath [24]. o

Acknowledgments. The authors gratefully acknowledge the referee’s thorough
reading and insightful remarks, which helped correct inaccuracies and make the
paper more readable.
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