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Abstract. In a recent paper by A. A. Klyachko, V. Y. Miroshnichenko, and A. Y. Olshan-
skii, it is proven that the center of any finite strongly verbally closed group is a direct factor.
In this paper, we extend this result to the case of finite normal subgroups of any strongly
verbally closed group. It follows that finitely generated nilpotent groups with nonabelian
torsion subgroups are not strongly verbally closed.

1 Introduction

A subgroup H of a group G is called verbally closed [14] if any equation of the
form

w.x1; x2; : : : ; xn/ D h;

where w is an element of the free group F.x1; : : : ; xn/ and h 2 H , having so-
lutions in G has a solution in H . If each system of equations with coefficients
from H ,

¹w1.x1; : : : / D 1; : : : ; wm.x1; : : : / D 1º;

where wi 2 H � F.x1; : : : ; xn/ (and � means the free product), having solutions
in G has a solution in H , then the subgroup H is said to be algebraically closed
in G. Note that if the subgroup H is algebraically closed in the group G, then it is
verbally closed in G.

A group G is called strongly verbally closed if it is algebraically closed in any
group containingG as a verbally closed subgroup. Thus, verbal closedness (as well
as algebraic closedness) is a property of a subgroup, while strong verbal closedness
is a property of an abstract group. The class of strongly verbally closed groups is
fairly wide. For example, it includes

� all abelian groups [12],

� all free groups [7],

� all virtually free groups containing no nontrivial finite normal subgroups [7, 8],
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� all groups decomposing nontrivially into a free product [13],

� fundamental groups of all connected surfaces except the Klein bottle [6, 12],

� all finite groups with nonabelian monolith [9],

� the infinite dihedral group [8] and any finite dihedral group whose order is not
divisible by 8 (see [9]),

� all acylindrically hyperbolic groups with no nontrivial finite normal subgroups
[2].

The class of non-strongly-verbally-closed groups is fairly wide too. Among such
groups are the following:

� the already mentioned fundamental group of the Klein bottle [6],

� the discrete Heisenberg group [9],

� any finite group whose center is not its direct factor (in particular, any finite
nonabelian nilpotent group) [7, 9, 17].

Proving the strong verbal closedness (or otherwise) of a group is not easy. In [9],
for example, a question is raised.

Question 1. Does there exist a finitely generated nilpotent nonabelian strongly
verbally closed group?

A negative answer to this question would yield a broad generalization of the last
two examples of non-strongly-verbally-closed groups mentioned above. In this pa-
per, we give a partial answer to this question. More precisely, we use Theorem 3.6
to establish the following result.

Theorem 1.1. Let G be a finitely generated nilpotent group with nonabelian tor-
sion subgroup. Then G is not strongly verbally closed.

Some further results towards a negative answer to Question 1 are proved in
the final section of the paper. For example, we prove that some finitely generated
nilpotent nonabelian groups with abelian torsion subgroups are not strongly ver-
bally closed.

A property that is stronger than the strong verbal closedness is the property of
being a strong retract [9]. A group H is called a strong retract if it is a retract
of any group G > H from the variety generated by the group H (recall that the
variety generated by a class of groups K is the class of all groups satisfying all
identities that hold in all groups from K; see [15]). This definition gives raise to
the following question from [9].
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Question 2. What is an arbitrary finite strong retract?

In [9], some examples of strong retracts are provided. In this paper, we describe
the structure of all nilpotent strong retracts. In particular, we prove the following
result.

Theorem 1.2. LetG be a nilpotent strong retract. ThenG is abelian. Moreover,G
is either divisible, or it has bounded period and its decomposition as a direct sum
of primary cyclic factors has the property that the orders of any distinct summands
are either equal or coprime.

Below, we provide a brief list of notation we use. If x; y are elements of some
group, then the symbol Œx; y� denotes their commutator x�1y�1xy. The symbol
ord.x/ denotes the order of an element x of a group G. The center of a group G is
denoted by Z.G/, and its commutator subgroup is denoted by G0. The centralizer
of a subset X of a group G is denoted by C.X/, and if H is a subgroup of G,
then CH .X/ D C.X/ \H . The symbol hhXii stands for the normal closure of
a subset X of a group G (that is the intersection of all normal subgroups of G
containing X ). The free group with a basis X is denoted as F.X/ or Fn in case X
has n 2 N elements. The identity mapping from X to itself is denoted by id. We
use the symbol H Š G to express the fact that groups H and G are isomorphic.
The symbol H 6 G denotes the fact that a group H is a subgroup of G. The
symbol H E G denotes the fact that H is a normal subgroup of G.

2 Nilpotent strong retracts

Let us recall some terminology:

� a subgroup H of a group G is called a retract if there exists an endomorphism
'WG ! H such that ' ı ' D ',

� a variety of groups is the class of all groups K satisfying a given set of identi-
ties X ,

� the variety generated by a group G is designated by varG,

� a group G is called divisible if, for any g 2 G and n 2 N, the equation xn D g
has a solution in G,

� the period of a group G is the least number n 2 N such that xn D 1 for any
x 2 G. If such a number exists, then G is a group of bounded period.

Note that if G is an abelian group, then H 6 G is its retract if and only if H is
a direct summand of G. This means that the property of being a strong retract for
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the abelian group G is equivalent to the property of G being a direct summand of
any group H 2 varG containing G. For the subsequent discussion, we need the
description of all varieties of abelian groups (see [3, Paragraph 18, Exercise 7]).

Lemma 2.1. Varieties of abelian groups are precisely the following classes of
groups: (1) the class of all abelian groups; (2) the class of all abelian groups
with period dividing some fixed positive integer n.

Proof. Let K be a variety of abelian groups. Since any set X of identities fol-
lows from the set of identities X 0, consisting of relation xn D 1, where n > 0,
and of commutator relations, i.e. relations of the form w.x1; : : : ; xk/ D 1, where
w.x1; : : : ; xk/ 2 Fk and k 2 N (see [15, Theorem 12.12]), K is the class of all
groups satisfying the identities xn D 1 and Œx; y� D 1, where n > 0. This com-
pletes the proof.

The following is true of divisible abelian groups (see, for example, [10, §23]).

Lemma 2.2. If G is a divisible abelian group andH is an abelian group such that
G 6 H , then G is a direct summand of H .

To begin with, consider the case when G is not a group of bounded period.

Proposition 2.3. An abelian group G of unbounded period is a strong retract if
and only if it is divisible.

Proof. Sufficiency follows from Lemma 2.2. Let G be an abelian group of un-
bounded period. From Lemma 2.1, it follows that varG is the class of all abelian
groups. In particular, varG contains a divisible group H containing G (see [10,
§23]). Though, if G is not divisible itself, it is not a direct summand of H (as
direct summands of a divisible group are divisible themselves; see [10, §23]), so
G is not a strong retract.

Let us move on to abelian groups of bounded period. Prüfer’s first theorem
provides a complete description of these groups [10, §24].

Proposition 2.4. An abelian group G of bounded period d is a direct sum of pri-
mary cyclic groups, i.e. G Š

L
i2I Zpki

i
, where pi are prime numbers and ki are

natural numbers such that pki

i j d , i 2 I (I is an index set).

Now, we are ready to proceed with our description.
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Proposition 2.5. An abelian group G of bounded period is a strong retract if and
only if, in its decomposition into the direct sum of primary cyclic groups, the orders
of any distinct direct summands are either equal or coprime. That is,

G Š

mM
iD1

Cpki
i
.ni /;

where Cpki
i
.ni / is equal to the direct sum of ni copies of the group Zpki

i
, pi are

distinct prime numbers, m and ki are positive integers, and ni are some cardinal
numbers.

Proof. Suppose that G cannot be decomposed into such a direct sum. We may
assume that

G D

mM
iD1

M
j2Ii

Zpkj
i
; (2.1)

wherem 2 N, jIi j D ni , and among kj , j 2 Ii , there are only finitely many differ-
ent numbers (sinceG is a group of bounded period), but there exists i 2 ¹1; : : : ; mº
such that, for some j1; j2 2 Ii , kj1

¤ kj2
.

Consider the group H D
Lm
iD1 Cp

si
i
.ni /, where

si D max¹kj j Zpkj
i

is a direct summand in decomposition (2.1)º;

i D 1; 2; : : : ; m:

Since G and H have the same period
Qm
iD1 si , it follows from Lemma 2.1 that

H 2 varG .
Consider the injection f WG ! H , which is defined on each direct summand

in (2.1) as follows: let i 2 ¹1; : : : ; mº, j 2 Ii , f WZpkj
i
,! Zpsi

i
, where Zpsi

i
is

the j th summand from the decomposition of Cpsi
i
.ni / into the direct sum. Every

direct summand from (2.1) is mapped into the corresponding direct summand of
the decomposition of H so that the restriction of f to Zpkj

i
is a natural injection:

if kj D si , then it is the identity map; otherwise it is a mapping to the subgroup of
Zpsi

i
of order pkj

i . From the uniqueness of the decomposition of an abelian group
of bounded period into a direct sum of primary cyclic groups [3, Theorem 17.4], it
follows that f .G/ is not a direct summand of H . Thus, G is not a strong retract.

Now, suppose that G has the decomposition from the statement of the propo-
sition. Let H 2 varG and let f WG ,! H be a monomorphism. Since any mono-
morphism preserves the order of an element, the pi th component of G is mapped
into the pi th component of H under f , so it suffices to prove the proposition
only for the case G D Cpk .n/, where p is prime, k 2 N, and n is some cardinal
number.
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Let us show that there exists a subgroup X 6 H such that H D f .G/˚X .
Let

M D ¹Y 6 H j Y \ f .G/ D ¹0ºº

be the set of all subgroups of H having trivial intersection with f .G/. Note that
¹0º 2M . An order on M is introduced as follows: for X; Y 2M , X � Y if X
is a subgroup of Y . It can be verified directly that this is an order on M . Any
chain ¹Y˛º �M of subgroups having trivial intersection with f .G/ is bounded
by an element Y 2M , where Y D

S
˛ Y˛. So, by Zorn’s lemma, M contains

a maximal element X : X 6 H , X \ f .G/ D ¹0º, and X is not a subgroup of any
bigger (with respect to the given ordering) subgroup satisfying this property.

From X \ f .G/ D ¹0º, it follows that f .G/CX D f .G/˚X . It remains
to prove that H D f .G/CX . Let h 2 H . Then there exists such k 2 N that
kh 2 f .G/CX . Indeed, otherwise hhi \ .f .G/CX/ D ¹0º, which means that
.hhi CX/ \ f .G/ D ¹0º, leading to a contradiction with the maximality of X .

Let s be the smallest such number. Replacing h by a suitable power, if necessary,
we may assume that s D 1 or s is a prime. Two cases are possible:

(1) s D p. Then ph D f .g/C x for some g 2 G, x 2 X . If g D pg1, g1 2 G
(g1 may be equal to zero), then ph � f .pg1/ D x. However, from the fact that
h � f .g1/ … X (as h … f .G/CX ), it can be obtained that

.X C hh � f .g1/i/ \ f .G/ D ¹0º;

which leads to a contradiction with the maximality of X . Consequently, g ¤ pg1
for any g1 2 G. As g ¤ 0, ord.g/ D pk . Though, ord.ph/ D pr < pk , so

pr.ph/ D 0 D pr.f .g//C prx:

As the sum f .G/CX is direct, prf .g/ D prx D 0, which means that prg D 0,
which is impossible.

(2) s ¤ p. For abelian groups of period p, the mapping g 7! sg is an automor-
phism, so, as sh D f .g/C x for some g 2 G, x 2 X , there exist such g1 2 G,
x1 2 X that g D sg1, x D sx1. Thus, s.h � f .g1/ � x1/ D 0. No nontrivial ele-
ment of H has order s, so h D f .g1/C x1.

As a result, H D f .G/˚X , and G is a strong retract.

Proposition 2.6. The center of a strong retract is its direct factor.

Proof. Let G be a strong retract. The center of any group is a normal subgroup, so
it suffices to prove that Z.G/ is a retract of G. Consider the central product of G
with its copy QG with joined center

K D G �
Z.G/DZ. QG/

QG D .G � QG/=¹.g; g�1/ j g 2 Z.G/º 2 varG:



Finite normal subgroups of strongly verbally closed groups 1045

The group QG is isomorphic to the group G, so it is a strong retract too. Let � be
a retraction fromK to its subgroup QG. From the fact that, in the group K, the sub-
group G commutes with the subgroup QG, we obtain �.G/ 6 Z.G/. By definition
of the retraction, �.g/ D g for any element g 2 Z.G/. Thus, the restriction of �
to the subgroup G of the group K is the desired retraction to Z.G/.

The following simple proposition shows that consideration of nilpotent groups
does not yield any new strong retracts.

Proposition 2.7. Let G be a nilpotent strong retract. Then G is abelian.

Proof. Any nontrivial normal subgroup of a nilpotent group intersects the center of
this group nontrivially (see [5, Theorem 16.2.3]). By combining this with Propo-
sition 2.6, we deduce that any nilpotent strong retract is equal to its center.

This completes the proof of Theorem 1.2. In the next paragraph, we show that
many nilpotent groups are not even strongly verbally closed.

3 Finite normal subgroups of strongly verbally closed groups

We say that a group presentation hX j Ri is finitely presented over a group pre-
sentation hY j Si if there exist finite sets A and B such that hX j Ri Š hX 0 j R0i,
where X 0 D Y [ A, R0 D S [ B .

The following lemma reveals that this definition is, in fact, a group property
(which means it does not depend on the choice of a group presentation), so it
makes sense to speak about the finite presentability of one group over the other
group.

Lemma 3.1. Suppose that a group presentation hX j Ri is finitely presented over
a group presentation hY j Si and hY j Si Š hY 0 j S 0i. Then hX j Ri is finitely
presented over hY 0 j S 0i.

Proof. We may assume that X D Y [ A and R D S [ B for some finite sets A
and B . It can be easily shown (for similar fact, refer to [11, Chapter II, Propo-
sition 2.1]) that groups defined by group presentations hY j Si and hY 0 j S 0i are
isomorphic if and only if the presentation hY 0 j S 0i can be obtained from hY j Si
by applying a finite number of Tietze transformations (and their inverses):

� adding to the set S an arbitrary set T � hhSii E F.Y /,

� adding to the set Y an arbitrary set QY while adding to the set S a set

¹ Qy D w Qy j Qy 2 QY ; w Qy 2 F.Y /º:
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It is sufficient to prove the lemma only for the case when hY 0 j S 0i is obtained
from hY j Si by applying one Tietze transformation. One can easily verify that, in
case of the first transformation,X 0 D X andR0 D R [ T , while in case of the sec-
ond transformation, X 0 D X [ QY and R0 D R [ ¹ Qy D w Qy j Qy 2 QY ; w Qy 2 F.Y /º
provide the desired group presentation.

By virtue of Lemma 3.1, the following definition may be introduced: a group
G is finitely presented over a group H if there exists a presentation of G that is
finitely presented over any presentation of H .

Lemma 3.2. Suppose thatG contains a subgroupH and a finite normal subgroup
N such that G=N is finitely presented over H=.H \N/. Then G is finitely pre-
sented over H .

Proof. This is similar to the proof of Hall’s theorem [4] on the preservation of
finite presentability of a group under extensions (see also [16, Theorem 2.2.4]).

Write H D hX j Ri 6 G, and N D hY j Si E G, where Y and S are finite.
We are assuming thatG=N is finitely presented overH=.H \N/Š hX jR[C i,
where hhC ii D H \N and the set C is finite. Consequently,

G=N Š hX [ A j R [ C [ Bi;

where sets A and B are finite.
Let us construct a presentation ofG. For the generators, takeX [ A [ Y , where

the sets X , A, Y are in one-to-one correspondence with the sets X , A, Y respec-
tively. The setsR, S , C , and B are in correspondence with the setsR, S , C , and B
respectively. For the defining relations, take the union of the following sets: R, S ,
C 1, B1, and T , where

C 1 D ¹cw
�1
c j c 2 C ; wc 2 F.Y /º; B1 D ¹bw

�1
b j b 2 B; wb 2 F.Y /º;

T D ¹a�1yaw�1a;y ; aya
�1v�1a;y j a 2 A; y 2 Y ; wa;y ; va;y 2 F.Y /º

(c 2 C and b 2 B are considered as words from F.X/ and from F.X [ A/ re-
spectively). Denote the group with the above mentioned generators and defining
relations as QG,

QG D hX [ A [ Y j R [ S [ C 1 [ B1 [ T i:

Consider a surjective homomorphism � W QG ! G, defined by the following bijec-
tions X ! X , A! A, Y ! Y on the generators (defining relations are mapped
into true identities under such a map on generators, so such a homomorphism
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exists). The restriction � jK WK ! N on the subgroupK D hY i 6 QG is an isomor-
phism as all the relations in the alphabet Y in QG are consequences of the defining
relations S . Moreover, K E QG.

The homomorphism Q� W QG=K ! G=N generated by � , is an isomorphism too.
Now, let g 2 ker � . Then gK 2 ker Q� , but Q� is an isomorphism, so g 2 K. Finally,
� jK is an isomorphism, so g D 1.

The following lemma provides a criterion for algebraic closedness of a sub-
group H of a group G that is finitely presented over H (for similar propositions,
refer to [14]).

Lemma 3.3. Suppose that H D hX j Ri is a subgroup of G, and G is finitely
presented over H . The subgroup H is algebraically closed in G if and only if H
is a retract of G.

Proof. Suppose H is algebraically closed in G and

A D ¹a1; : : : ; amº; B D ¹s1; : : : ; snº

are the sets from the definition of finite presentability of G over H . The relations
si .a1; : : : ; am; X/ D 1, i D 1; : : : ; n, correspond to a system of equations with
coefficients from H , 8̂<̂

:
s1.t1; : : : ; tm; X/ D 1

:::

sn.t1; : : : ; tm; X/ D 1;

which, by condition, has a solution t1 D a1; : : : ; tm D am. By virtue of the al-
gebraic closedness of H in G, this system has a solution t1 D h1; : : : ; tm D hm
in H . Mapping X t ¹a1; : : : ; amº ! H , X 3 x 7! x, ai 7! hi extends to a sur-
jective homomorphism 'WG ! H , as defining relations ofG are mapped into true
identities under such a mapping of generators (note that R is the set of words in
the alphabet X ).

This homomorphism is the desired retraction: let h 2 H , h D v.x1; : : : ; xr/,
xi 2 X . Applying to this word the homomorphism ', we get

'.h/ D v.'.x1/; : : : ; '.xr// D h:

Algebraic closedness of a subgroupH of a groupG follows from retractness of
H in G for any group G (see [14, Proposition 2.2 (1)]).

The following lemma was proven in [9]. We will need it to prove Theorem 3.6.
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Lemma 3.4. Let C be a finite elementary abelian p-group (where p is a prime
number). For any k 2 N, there exists t > k such that the direct product

P D
t

�
iD1

Ci

of copies Ci of C contains a subgroup R invariant with respect to the diagonal
action on P of the endomorphism algebra EndC with the following properties:

(1) R �
S

ker �j , where �j WP ! Cj , j D 1; : : : ; t , are the natural projections,

(2) R ��j…J Cj D P for any subset J � ¹1; : : : ; tº of cardinality jJ j D k,

(3) moreover, each such J is contained in a set J 0 � J such that

P D R �
�
�
j…J 0

Cj

�
;

and there exist integers nij 2 Z such that the projection � WP !�j…J 0 Cj
with the kernelR acts as Ci 3 ci 7!

Q
j…J 0 c

nij

j , where cj 2 Cj is the element
corresponding to ci under the isomorphism Ci Š C Š Cj .

Lemma 3.5. LetG be a group andN EG. If xC.N/D yC.N/ for some x;y 2G,
then x and y act on N (by conjugations) identically.

Proof. From xC.N/D yC.N/, it follows that, for some c 2C.N/, xD yc. Then,
for n 2 N , we have

x�1nx D c�1.y�1ny/c D y�1ny:

The last identity is true, as (due to normality) y�1ny 2 N and c 2 C.N/.

The following theorem provides a generalization of the result from [9] about
the center of a finite strongly verbally closed group (see [9, Centre theorem]). The
proof is also analogous to the proof of that theorem, with the exception of some
nuances.

Theorem 3.6. Let H be a strongly verbally closed group. For any finite normal
subgroup T of H , for any abelian subgroup A of T , normal in H , it is true that
Z.CT .A// is a direct factor of CT .A/, and some complement is normal in H .

Proof. LetH be such a group, and letL D CT .A/. It suffices, for each prime p, to
find a homomorphism  pWL! Z.L/ commuting with the conjugation action of
H on L (this action is well-defined as L E H ) and injective on the p-component



Finite normal subgroups of strongly verbally closed groups 1049

Zp.L/ of the center of L. Then the homomorphism

 WL! Z.L/; x 7!
Y
p

�p. p.x//;

where �pWZ.L/! Zp.L/ is the projection on the p-component, is injective on
Z.L/, so its kernel is the desired complement D (normality of D in H follows
from the fact that  commutes with the action of H on L).

Suppose that there are no such homomorphisms for some prime number p, i.e.
every homomorphism f WL! Z.L/ commuting with the action of H on L is not
injective on Zp.L/. Then it is not injective on the maximal elementary abelian
p-subgroup C 6 Zp.L/ (it is finite as L is finite). Indeed, if x 2 Zp.L/, x ¤ 1 is
an element such that f .x/ D 1, then, raising it to the appropriate power d , we get
f .xd / D 1 and xd 2 C , xd ¤ 1.

Use Lemma 3.4 (with respect to C ) to choose a positive integer t as in the
lemma (for some k to be specified later). Then consider the fibered product of t
copies of the group H ,

Q D ¹.h1; : : : ; ht / j h1L D � � � D htLº 6 H t :

First of all, let us show that the subgroupR 6 C t 6 Q from Lemma 3.4 is normal
in Q. Note that the subgroup R is invariant under the diagonal action of automor-
phisms AutC 6 EndC . It remains to show that Q acts diagonally on P D C t by
conjugation. This follows from Lemma 3.5.

Indeed, let
q D .q1; : : : ; qt / 2 Q;

p D .p1; : : : ; pt / 2 P:

As q1L D q2L D � � � D qtL, according to Lemma 3.5, q�1pq D Qq�1p Qq, where
Qq D .q1; : : : ; q1/. It means that the conjugation action of Q on P is diagonal. On
the other hand, the diagonal action by conjugation induces an endomorphism of
C t (due to normality of C E H ), and R is invariant with respect to the diagonal
action of such endomorphisms, leading to normality of R in Q.

Put G D Q=R. First, let us show that H embeds into G. The group H embeds
intoQ diagonally: h 7! .h; : : : ; h/, h 2 H . This homomorphism serves as an em-
bedding into G as well, as all projections of any nontrivial diagonal element of Q
are nontrivial (and R is contained in the union of the kernels of these projections).

Now, let us prove the verbal closedness of this diagonal subgroup (denote it as
H too) in G. Consider an equation

w.x1; : : : ; xn/ D .h; : : : ; h/
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having a solution in G and let Qx1; : : : ; Qxn be a preimage (in Q) of a solution
x1; : : : ; xn. Then (in Q)

w. Qx1; : : : ; Qxn/ D .hc1; : : : ; hct /;

where .c1; : : : ; ct / 2 R. By the first property in Lemma 3.4, ci D 1 for some i .
This means that, in H (the group itself), w. Qxi1; : : : ; Qx

i
n/ D h, where Qxij is the i th

coordinate of the vector Qxj , j D 1; : : : ; n.
Let us take yj D . Qxij ; : : : ; Qx

i
j /, j D 1; : : : ; n. Then, in H 6 G, the following is

true:
w.y1; : : : ; yn/ D .h; : : : ; h/;

which proves the verbal closedness of H in G.
Let U 6 L and define

Ui WD ¹.1; : : : ; 1; u; 1; : : : ; 1/ j u 2 U º 6 Q; i D 1; : : : ; t

(coordinate u stands on the i th place). It remains to prove that H is not alge-
braically closed in G.

Claim 3.7. The group Q is finitely presented over its subgroup H .

Proof. According to Lemma 3.2, it is sufficient to show that Q=.L1 � � � � � Lt /
is finitely presented over H= QL, where QL D ¹.l; : : : ; l/ j l 2 Lº. However,

Q D H � .L1 � � � � � Lt /;

so Q=.L1 � � � � � Lt / is isomorphic to H= QL, and the result follows.

From Lemma 3.3 and Claim 3.7, it follows that it suffices to show that H is
not a retract of G. Let �WG ! H be a hypothetical retraction, and let O�WQ! H

be its composition with the natural epimorphismQ! Q=R D G. Henceforth, all
centralizers and other subgroups we refer to relate to Q.

Let us verify that O�.Li / 6 CT .CT .L// 6 L for every i . First, we prove the left
inclusion. Let h 2 CT .L/. Then h commutes with every element from L; conse-
quently, h, as an element of Q, commutes with Li . Applying the retraction O� to
this identity, we get that O�.h/ (D h) commutes with the subgroup O�.Li /, which
(by definition of the centralizer) proves the inclusion. The second inclusion fol-
lows from the fact that L D CT .A/ D C.A/ \ T , which means that

CT .CT .L// 6 CT .A \ T / D CT .A/ D L:

The first inclusion here is true as C.L/ > A, and the claim follows since A 6 T .
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On the other hand, for i ¤ j , the mutual commutator subgroup ŒLi ; Lj � is triv-
ial (for i ¤ j , Li and Lj are contained in different components of the fibered
product). This means that the image of this mutual commutator subgroup is trivial
too: Œ O�.Li /; O�.Lj /� D ¹1º. Consequently,h

Li ;
Y
j¤i

Lj

i
D ¹1º and

h
O�.Li /;

Y
j¤i

O�.Lj /
i
D ¹1º:

If O�.Li / D O�.Ll/ for some i ¤ l , then (by the virtue of well-known commu-
tator identities) Œ O�.Li /;

Q
j O�.Lj /� D ¹1º, which means that O�.Li / 6 CT .L/ (as

L D O�.L/ 6
Q
j O�.Lj /).

Thereby, if, for some different i and j , O�.Li / D O�.Lj /, then O�.Li / 6 CT .L/.
From here and from the inclusion we proved earlier, we get

O�.Li / 6 L \ CT .L/ D Z.L/:

Let us take k in Lemma 3.4 to be the number of all subgroups of T , and let J be
the set of all exclusive numbers i , namely such that, for any l ¤ i , O�.Li / ¤ O�.Ll/.
Since, among O�.Li / 6 T , there are no more than k different subgroups, jJ j 6 k.
Thus, from property (3) of Lemma 3.4, we have a decomposition

t

�
iD1

Ci D R �
�
�
i2I

Ci

�
;

where I � ¹1; : : : ; tº n J is some set of non-exclusive elements. Again, according
to property (3) of Lemma 3.4, the projection � W�tiD1 Ci !�i2I Ci onto the sec-
ond factor of this decomposition is defined by an integer matrix .nij /, namely, for
ci 2 Ci , � W ci 7!

Q
j2I c

nij

j , where cj are elements corresponding to ci under the
isomorphism Ci Š C Š Cj .

This means that the restriction of � toC D ¹.c; : : : ; c/ j c 2 C 6 H º is defined
as follows:

O� W .c; : : : ; c/ 7!
Y
j2I

c
mj

j ; mj D
X
i

nij :

Here cj are elements corresponding to c under the isomorphism C Š Cj .
Then (as i 2 I are non-exclusive, we have O�.Li / 6 Z.L/) consider the com-

position

‰WC 6 Q! Z.L/; c
�
7!

Y
j2I

c
mj

j

O�
7!

Y
j2I

O�.c
mj

j /:

This extends to a homomorphism ˆWL! Z.L/ defined by the similar formula

ˆWg 7!
Y
j2I

O�.g
mj

j /;
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where g 2 L, and gj 2 Lj are elements corresponding to g. Obviously, it is an
extension of ‰ and a homomorphism since, for j 2 I , O�.Lj / 6 Z.L/ and the
groupZ.L/ is abelian. This homomorphism commutes with the conjugation action
of H on L. Indeed, let g 2 H and let g be the action of g on L by conjugation,
namely, for x 2 L, g.x/ D g�1xg. Let us show that ˆ ı g D g ıˆ. Let h 2 L.
Then

ˆ.g.h// D
Y
j2I

O�.g�1h
mj

j g/

D

Y
j2I

g�1 O�.h
mj

j /g D g.ˆ.h//:

The penultimate equality holds since O� is a retraction to H , so it acts identically
onH itself. By the assumption we made in the beginning, the kernel of this homo-
morphism has nontrivial intersection with C : kerˆ \ C ¤ ¹1º, so the restriction
‰ D ˆjC has a nontrivial kernel too.

On the other hand,‰ is the identity map since‰D O�jC ı�jC D O�jC ı O� D O�jC
(the final equality is true since O� is a projection “forgetting” the R-coordinate, and
O�.R/ D ¹1º is a composition of the natural homomorphism to the quotient group
and of the retraction to H ) and O�jC D id, as O� is the retraction from Q to H , so it
acts trivially on C . The contradiction thus obtained completes the proof.

We can now prove Theorem 1.1.

Corollary 3.8. Let G be a finitely generated nilpotent group with a nonabelian
torsion subgroup. Then G is not strongly verbally closed.

Proof. Let T be the torsion subgroup of G and set A D Z.T / ¤ ¹1º. Since T is
nilpotent and nonabelian, every nontrivial normal subgroup of T has a nontrivial
intersection with A (see [5, Theorem 16.2.3]), so A is not a direct factor of T .

As an immediate corollary, we recover the Centre theorem from [9].

Corollary 3.9. Let G be a finite group such that Z.G/ is not a direct factor of G.
Then G is not strongly verbally closed.

Theorem 3.6 does not cover the case of finitely generated nilpotent nonabelian
groups with abelian torsion subgroups, and it is still unknown whether there are
strongly verbally closed groups among such groups. As discussed in the next sec-
tion, at present, we can only provide a partial answer to this question.
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4 Nilpotent non-strongly-verbally-closed groups

Let us recall that the discrete Heisenberg group is the free nilpotent group of nilpo-
tency class two with two free generators. It can be easily verified that this group
admits a faithful representation in the group of upper triangular matrices of size
3 by 3.

Proposition 4.1. Let H be the discrete Heisenberg group with a and b being its
free generators, and let N be the following subgroup:

N D hha˛; Œa; b�nii;

where ˛, n are non-negative integers. Then the group G D H=N is strongly ver-
bally closed if and only if gcd.˛; n/ D 1.

Proof. Let T .G/ be the torsion subgroup ofG. The center of the groupH is equal
to its commutator subgroup, and it is isomorphic to the infinite cyclic group. Sup-
pose T .G/ D ¹1º, so .˛; n/ D .0; 0/ or .˛; n/ D .0; 1/, and, respectively, G D H
or G is abelian. The non-strong-verbal-closedness of H was proven in [9], while
the strong verbal closedness of abelian groups was proven in [12].

If gcd.˛; n/ D 1, then, once again, G is abelian since Œa; b�˛ D Œa˛; b� 2 N ;
consequently, it is strongly verbally closed.

Consider the case gcd.˛; n/ D d ¤ 1. Without loss of generality, we may as-
sume that ˛ and n are minimal such that a˛ 2 N , Œa; b�n 2 N . Consider the central
product of G with its copy QG with joined commutator subgroup,

K D G �
G0D QG0

QG D .G � QG/=¹.c; c�1/ j c 2 G0º:

The subgroup G is not algebraically closed in K since G is not a retract of K. In-
deed, let � be a hypothetical retraction. The subgroupG commutes with QG inK, so
�. QG/ 6 Z.G/ and �. QG0/ D ¹1º, which leads to a contradiction with the definition
of retraction.

However,G is verbally closed inK. Indeed, letw 2 F.t1; : : : ; ts/ be some word
and

w..h1N; h
0
1N/; : : : ; .hsN; h

0
sN// D .hN;N /

for some hN; hiN 2 G, h0iN 2 QG. Then, for some cN 2 G0, the following holds:´
w.h01; : : : ; h

0
s/N D cN;

w.h1; : : : ; hs/N D hc
�1N:
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By an automorphism of the free group, the word w can be reduced to a normal
form [9]: w.t1; : : : ; ts/ D tm1 w

0.t1; : : : ; ts/, wherem 2 N, w0 2 F 0s . From the first
equation, we get cN 2 G0 \ '.Gs/, where

'WGs ! G; .g1; : : : ; gs/ 7! w.g1; : : : ; gs/

is a verbal mapping. This means that, for some w1; w2 2 N , in H , it is true that´
w.h01; : : : ; h

0
s/ D cw1;

w.h1; : : : ; hs/ D hc
�1w2:

Let us show that, inG, the identity .aN /x D ŒaN; bN �z does not hold for x … ˛Z.
Suppose otherwise. Then, in H , we have

axŒa; b��z D b�ka�la˛t Œa; b�nsalbk

for some k; l; t; s 2 Z. After some reductions, we get ax�˛t D Œa; b�nsCzC˛tk ,
which means that xD ˛t 2 ˛Z, a contradiction. Thus, h01D Œa;b�


 for some 
 2Z,
and, consequently, cw1 2 H 0. By [9], proof of the Heisenberg-group theorem,
for any verbal mapping ' in the discrete Heisenberg group, for any g 2 '.H s/,
the coset g.'.H s/ \H 0/ is contained in '.H s/. Thus, for some g1; : : : ; gs 2 H ,
w.g1; : : : ; gs/ D w.h1; : : : ; hs/cw1. This means that

w.g1; : : : ; gs/ D hw3

for some w3 2 W , and in G,

w.g1; : : : ; gs/N D hN;

which proves verbal closedness of G in K.

Finally, let us prove that the higher-dimensional Heisenberg groups over any
field are not strongly verbally closed. First, recall that the Heisenberg group of
dimension 2nC 1 > 3 over a field K is the group of upper triangular matrices of
the kind

Hn.K/ D

8̂<̂
:T . Na; Nb; c/ D

0B@1 Na c

0 In Nb

0 0 1

1CA
ˇ̌̌̌
ˇ̌̌ Na; . Nb/| 2 Kn; c 2 K

9>=>;;
where In is the identity matrix of size n, and for x 2 Kn, the symbol x| stands
for the transpose vector of a vector x.
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Proposition 4.2. The group Hn.K/ is not strongly verbally closed.

Proof. Consider the central product of Hn.K/ with its copy QHn.K/ with joined
commutator subgroup,

G D Hn.K/ �
Hn.K/0D QHn.K/0

QHn.K/:

Denote with the symbols H and QH the first and the second factor of this central
product respectively. Let us show that H is not algebraically closed in G. The
group H is linear, and, consequently, it is equationally noetherian (see [1, The-
orem B1]), so it is algebraically closed in G if and only if it is a retract of every
finitely generated overH subgroup ofG (see [8]). In particular, of such a subgroup
of G,

NH D hH; .1; h1/; : : : ; .1; hn/; .1; g1/; : : : ; .1; gn/i;

where

hi D

0B@1 Nai 0

0 In 0

0 0 1

1CA; gi D

0B@1 0 0

0 In Nbi

0 0 1

1CA;
where Nai D .0; : : : ; 1; : : : ; 0/ D . Nbi /| (unit is on the i th place). Thus,

N D hh1; : : : ; hn; g1; : : : ; gni

is a subgroup of QHn.K/, isomorphic to the discrete Heisenberg group of dimension
2nC 1. Let � be a hypothetical retraction. Since in the group G, the subgroup H
commutes with N , we get that �.N 0/ D ¹1º, which leads to a contradiction with
the definition of retraction.

Nevertheless, the subgroup H is verbally closed in G. To see this, let w 2 Fs
be some word (without loss of generality, this word is in the normal form we
established earlier), and let 'WH s ! H be the verbal mapping associated with
this word. Suppose that, for some hi ; h 2 H , h0i 2 QH , c 2 H 0,´

w.h01; : : : ; h
0
s/ D c;

w.h1; : : : ; hs/ D hc
�1:

In general, on matrices gi D T . Nai ; Nbi ; ci /, i D 1; : : : ; s, the mapping ' acts as
follows:

'.g1; : : : ; gs/ D

0B@1 m Na1 mc1 C f . Na1; : : : ; NasI Nb1; : : : ; Nbs/

0 In m Nb1

0 0 1

1CA;
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where f W .Kn/s � .Kn/s ! K is some function linear in every argument. The
image of f is either trivial or is equal to K, which leads to

'.Hn.K/
s/ D

8̂<̂
:
¹1º if m D 0 and the image of f is trivial;
.Hn.K//

0 if m D 0 and the image of f is equal to K;
Hn.K/ if m ¤ 0:

Then '.Hn.K/s/ \ .Hn.K//0 6 Hn.K/ and, for every element h 2 '.Hn.K/s/,
it is true that

h.'.Hn.K/
s/ \ .Hn.K//

0/ � '.Hn.K/
s/;

whence verbal closedness follows.
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