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Abstract. Let G be a linear algebraic group defined over a finite field IF,. We present
several connections between the isogenies of G and the finite groups of rational points
(G(Fy4n))n>1. We show that an isogeny ¢: G’ — G over I, gives rise to a subgroup of
fixed index in G(IF,») for infinitely many n. Conversely, we show that if G is reductive,
the existence of a subgroup H, of fixed index k for infinitely many » implies the existence
of an isogeny of order k. In particular, we show that the infinite sequence H, is covered
by a finite number of isogenies. This result applies to classical groups GL,,, SL,,, SOy,
SUm, Sp,,, and can be extended to non-reductive groups if k is prime to the characteristic.
As a special case, we see that if G is simply connected, the minimal indices of proper
subgroups of G(F4n) diverge to infinity. Similar results are investigated regarding the
sequence (G (IF,)), by varying the characteristic p.

1 Introduction

Linear algebraic groups are groups of matrices defined by polynomial equations.
We adopt the classical notion of algebraic group as a group of rational points over
the algebraic closure, following the language of A. Borel, J. Tits and C. Chevalley
[2—4]. Throughout the article, we clarify where the modern scheme-theoretic ap-
proach [9, 10, 14] differs. We focus on linear algebraic groups over finite fields.
They are closely related to the classification of finite simple groups [6].

Before presenting the main results, we introduce some notation. Let IF; be a fi-
nite field with ¢ elements and characteristic p. We denote by E an algebraic
closure. For every n > 1, we consider the finite extension [y C E. A linear al-
gebraic group G defined over I, is a closed subgroup of GL,, (E) defined by
polynomial equations with coefficients in F,;. We always assume that G is con-
nected. The group of Fyn-rational points G(IFgn) is the subgroup of G whose
elements have entries in IF;#. The Frobenius automorphism x x4" of Fyn ex-
tends naturally to a group automorphism g + o047 (g) of G via the action on the
matrix entries. The group of rational points G(IF,») is exactly the fixed subgroup
of o4n. An isogeny between connected linear algebraic groups is a surjective ho-

@ Open Access. © 2022 the author(s), published by De Gruyter. This work is licensed
under the Creative Commons Attribution 4.0 International License.



1144 D. Sclosa

momorphism ¢: G’ — G with finite kernel. The order of ¢ is the cardinality of
the kernel |Ker ¢|.

In this paper, we present several connections between the sequence of finite
groups (G(F4n)),>1 and the isogenies ¢: G' — G. In Theorem 2.2, we show that
if ¢ has order k, then for infinitely many 7, the group G (IF;#) contains a subgroup
of index k. More surprisingly, in Theorem 3.6 and Theorem 4.1, we show that,
under suitable hypotheses, if for infinitely many n, the group G(F,») contains
a subgroup of index k, then there exist a group G’ and an isogeny ¢: G’ — G of
order k. In particular, we show that finitely many isogenies are responsible for the
infinite sequence of subgroups of index k.

These results constrain the asymptotic behavior of subgroups: the set of positive
integers n for which G(IF,») contains a subgroup of index k is either finite or
contains an arithmetic progression (Corollary 4.2).

As a corollary, we obtain the following: if G is semisimple, simply connected
and k > 1, then for every n large enough, the group G(IF4~) contains no subgroup
of index k (Corollary 3.7). Note that, while our result is purely asymptotic, the
maximal subgroups of simple groups of Lie type have actually been classified [7].

In the last section, instead of (G(F4#)),>1, we consider the sequence (G(Fp)),
by varying the characteristic. In analogy to Corollary 3.7, we show that if G is
semisimple, simply connected and k > 1, then for every prime p large enough,
the group G(IF,) contains no subgroup of index k (Theorem 5.1).

2 From isogenies to subgroups

In this section, we show how one rational isogeny gives rise to an infinite family
of subgroups of fixed index.

Let G’, G be connected linear algebraic groups defined over F,;. Let ¢: G' — G
be an isogeny defined over IF,. For every n, the isogeny ¢ restricts to a homomor-
phism of finite groups ¢: G'(Fgn) — G(IF4n). Note the abuse of notation.

The kernel of ¢: G'(Fyn) — G(F4n) coincides with the group of Fgn-rational
points of the kernel of ¢: G' — G. Thus the notation Ker ¢ (F4») is unambiguous.

The same cannot be said of the image since the group ¢ (G’ (F4#)) and the group
#(G')(Fyn) = G(Fyn) may be different. Indeed, although ¢ is surjective at the
level of algebraic closure, it may not be surjective at the level of rational points.

Lemma 2.1. The image ¢(G'(Fyn)) has index |Ker ¢ (Fyn)| in G(Fgn).

Proof. Since G’ and G are isogenous over Fy, in particular, they are isogenous
over [Fgn. Two groups isogenous over [Fy» have the same number of [y~ -rational
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points [1, Proposition 16.8]. Therefore, the cardinality of the kernel is equal to the
index of the image. o

The quotient between two groups of rational points may be different from the
group of rational points of the quotient. This is caused by the discreteness of the
kernel. Indeed, if N is a connected normal subgroup of G, then (G/N)(F4n) is
equal to G(IFyn)/N(IF4n); see [1, Corollary 16.5 (ii)].

From Lemma 2.1, we easily obtain the following theorem.

Theorem 2.2. Let G’ and G be two connected linear algebraic groups defined
over Fy. Let ¢: G’ — G be an isogeny of order k defined over Fy. Then, for in-
finitely many n, the group of rational points G(F4n) has a subgroup of index k.
The set of integers for which this happens contains an arithmetic progression.

Proof. Since Ker ¢ is finite, we have Ker ¢ = Ker ¢ (IF;m) for some m. It follows
that Ker¢ = Ker ¢ (IFy») for every multiple n of m. By Lemma 2.1, the group
G(F4n) has a subgroup of index k for every n multiple of m. |

3 From subgroups to isogenies: Reductive groups

In this section, we show how the existence of infinitely many subgroups of fixed
index k implies the existence of an isogeny of order k, in the case of reductive
groups.

Let ¢: G' — G be an isogeny defined over F,;. Since G’ is connected and Ker ¢
is discrete, the action of G on Ker ¢ by conjugation is trivial. Therefore, the kernel
Ker ¢ is a central subgroup of G’. Note, however, that not all isogenies are central
in the scheme-theoretic sense.

We already observed that, although

1 —>Ker¢pg -G —G—1
is exact, the sequence
1 - Ker¢p(Fygn) — G'(Fgn) — G(Fgn) — 1

may not be exact. The cokernel G(Fyn)/¢(G’(Fyn)) measures how far this se-
quence is from being exact. Our next goal is understanding the cokernel.
To this end, we recall a standard tool in the study of algebraic groups over finite
fields. Fix n. The Lang map A4 is defined by
Ag:G' = G,y yTlog(y).

Lang’s Theorem tells us that this map is surjective [1, Corollary 16.4].
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Note that, since ¢ commutes with o4, we have A4n (Ker¢) C Ker¢. Since
Ker ¢ is central, in particular commutative, it follows that A4» (Ker ¢) is a nor-
mal subgroup of Ker ¢. Therefore, the group quotient Ker ¢ /A4n (Ker ¢) is well
defined. It turns out that it is isomorphic to the cokernel.

Lemma 3.1. The following group isomorphism holds:

G(Fgn)  Kerg
d(G'(Fgn)) B Agn (Ker )

In particular, ¢ (G'(Fyn)) is a normal subgroup of G(Fyn).

Proof. Take x € G(Fg4n). Since ¢: G’ — G is surjective, there is y € G’ such that
¢(y) = x. Since ¢ commutes with 042 and o4 (x) = x, we have

y~logn(y) € Kerg.

Consider the map
Ker ¢
Agn(Ker )’

X > Agn(y)Agn (Ker¢).

First of all, we need to check that u,» is well defined. If a different y is chosen,
say z € G’ such that ¢(z) = x, then yz~! € Ker ¢, and so

(yz7 ) logn (yz71) € Agn (Ker ¢),

which is equivalent to (z7 Yo7 (2)) "1y "logn (y) € A7 (Ker ¢) since 147 (Ker ¢)
is central.

Now we prove that j14n is surjective. Let a € Ker¢. By Lang’s Theorem, there
is y € G’ such that y 1oy (y) = a. Let x = ¢ (). Since ¢p(y Loy (y)) = 1, we
have 047 (x) = x, and so x € G(F,#). By definition, x is mapped to y~1ogn (y)
by g7, which is equal to a.

Next, we prove that (ty» is a homomorphism. Take any x, w € G(IF n); let
¢(y) = x and ¢(z) = w. We need to show that (yz)_loqn (yz) is equal to

vy ogn(v)z ogn (2).
This is the same as

1 1

2y ogn(y) = y logn(v)z 71,

1

which holds since y ™" o7 (y) € Ker ¢ is central.
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Finally, we prove that the kernel of pgn is ¢(G'(IFgn)). Let x = ¢(y) be an
element of G(IF;7) such that y_laqn () belongs to A4 (Ker ¢). Then

1Uq” ) = a_laq” (a)

1

y
for some a € Ker ¢. Since Ker ¢ is central and y~logn(y) = a~ 1oy (a), it fol-
lows that

Og" (a_lJ’) = agn(y)ogn (a)_l = a_l)’,
andso a1y € G'(F,n). Therefore, x = ¢(y) = ¢p(a~1y) belongs to ¢ (G’ (Fyn)).
o

Let H be a subgroup of G(F,n). We say that an isogeny ¢: G’ — G reaches
H if it is defined over Fyn and ¢ (G’ (Fgn)) = H. In the following lemma, which
serves as a bootstrap, we show how to construct an isogeny reaching A from an
isogeny whose image is contained in A . The idea is simple: in light of Lemma 2.1,
in order to make the image larger, we need to make the quotient smaller.

Note that, since g is an isomorphism between the group G(Fgn)/¢ (G’ (Fgn))
and the group Ker ¢ /A, (Ker ¢), there is a bijection between the subgroups H
of G(Fgn) containing ¢(G’'(Fg4n)) as a sugroup, and the subgroups K of ker ¢
containing A4 (ker ¢) as a subgroup.

Lemma 3.2. Let G/, G and ¢: G’ — G be two connected linear algebraic groups
and an isogeny defined over Fyn. Let H be a subgroup of G(Fyn) containing
¢ (G'(Fgn)). Let K be the subgroup of Ker ¢ containing A4n (Ker ¢) and satisfying

pgn (H/$(G'(Fgn))) = K/Agn(Ker ¢).

Then G” = G'/K is a connected linear algebraic group defined over Fyn; the
induced isogeny ¢"": G — G reaches H.

Proof. The group K is defined over Fyn: since A4n (Ker¢) € K C Ker ¢, in par-
ticular, A4 (K) C K, and so K is ogn-invariant. Therefore, the quotient group
G” = G'/K is defined over Fyn. Its group of F,n-rational points is

G"(Fgn) = (G'/K)(Fgn)
={yK:y € G, 04n(yK) = yK}
={yK:yeG' Ayn(y) € K}.

Since K C Ker ¢ holds, the isogeny ¢: G’ — G induces a well defined isogeny
¢":G"” — G. We claim that the image

¢"(G"(Fgn) ={p(y) 1y € G, Agn(y) € K} (3.1

is equal to H, completing the proof.
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Let x € H. Then x = ¢(y) for some y € G’. Since x € G(Fyn), then

dgn (NAgn(Ker §) = g (x) € K /dgn (Ker ).

By hypothesis, K contains A4 (Ker ¢), and therefore, A4n(y) € K. This proves
that x is an element of (3.1).

Conversely, let x be an element of (3.1). Then x = ¢(y) for some y € G’ sat-
isfying A4 (y) € K. It follows that x Logn(x) = ¢(A47(y)) = 1, and therefore,
x € G(Fyn). By definition of ji4n, the coset x¢(G'(F4n)) is mapped to the coset
Agn(y)Agn (Ker ¢). Since p1gn induces an isomorphism between the quotients, the
coset x¢(G'(Fyn)) is an element of H/¢(G'(Fyn)). By hypothesis, H contains
#(G'(Fgn)), and therefore, x € H. O

Lemma 3.2 constructs one isogeny reaching one subgroup. One expects that an
infinite family of subgroups require infinitely many isogenies. However, we have
the following corollary.

Corollary 3.3. Let G, G and ¢: G' — G be two connected linear algebraic groups
and an isogeny defined over F,. For infinitely many n, let Hy, be a subgroup of
G(Fy4n) containing ¢(G'(Fyn)). Then there are finitely many isogenies reaching
all Hy.

Proof. Fix any n for which Hj, is defined. Since G, G” and ¢ are defined over F,,
in particular, they are defined over Fy», so Lemma 3.2 applies.

Now let n vary. Since K, C Ker¢ and Ker ¢ is finite, there are only finitely
many possibilities for ¢”: G” — G. |

Remark 3.4. In Lemma 3.2, the subgroup K = K, contains A4 (Ker ¢); this im-
plies that the isogeny ¢”: G” — G is defined over F;» . In general, the isogenies of
Corollary 3.3 are defined over any field Fym for which Z(G(IF4m)) = ZG since, in
this case, Agm (Ker ¢) = {1}. If, for every n, the subgroup K, contains A4 (Ker ¢),
then the isogenies are all defined over [F,.

Lemma 3.2 and Corollary 3.3 are key in the proof of the main theorems. We
also need the following elementary lemma, whose proof is left as an exercise.

Lemma 3.5. Let G be a finite group. Let N and H be two subgroups. Suppose
that N is normal. Then
G HN
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Following [8,11], we say that a semisimple algebraic group is simple if it has no
proper positive-dimensional normal subgroup. Note that other authors prefer the
name almost-simple [10].

The main result about simple groups over finite fields is due to J. Tits: let G be
a simple, simply connected linear algebraic group defined over IF,. Unless G(IF4»)
is one of

SL>(F), SL2(F3), SU3(F2), Sp4(F2), G2(F2), >Ba(F2), 2G2(F3), > Fa(F2),

the group G(Fyn)/Z(G(Fy4n)) is simple [8, Theorem 24.17]. We refer to this result
as Tits’ Theorem in the remainder of the paper. Note that the last three groups in the
list are not groups of rational points: they are not fixed subgroups of a Frobenius
automorphism, but of a Steinberg endomorphism [8, Definition 21.3]. Therefore,
the list of exceptions is actually shorter. The only thing we will need is that it is
finite.

Theorem 3.6. Let G be a reductive linear algebraic group defined over Fy. Fix
k > 1 and suppose that, for infinitely many n, the group of rational points G(IF4n)
contains a subgroup Hy, of index k. Then there are finitely many isogenies from lin-
ear algebraic groups onto G such that all but finitely many of the H,, are reached
by at least one of these.

Proof. Reductive groups can be obtained from simple groups and tori by taking
products and isogenies. The proof of the theorem, which consists of several steps,
shows that the class of algebraic groups satisfying the statement contains simple
groups and tori and is closed under the formation of reductive groups.

Step 1: If G is simple, simply connected, then k = 1. Let G be simple, simply
connected and suppose k > 1. Choose n such that H, is defined. Since H, has
index k, its normalizer has index at most k; therefore, Hy, has at most k conjugates.
Each of them has index k, so their intersection

NS < g € GE)

is a normal subgroup of index between k and kk . Since k > 1, forn large enough,
Tits’ Theorem implies
GEM i
|Z(G(Fgr))| —
This is a contradiction since |G(Fy»)| grows as n grows (see [8, Table 24.1]),
while the size of the center |Z(G(Fy4n))| is bounded by |ZG|, which is finite by
hypothesis. We conclude that k = 1. The statement is trivially satisfied by the
identity map G — G.
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Step 2: If G is semisimple, simply connected, then k = 1. Let G be semisim-
ple, simply connected. Then G is direct product of its minimal connected normal
subgroups which are simple, simply connected and defined over [F; (see [10, Para-
graphs 17.22, 17.24]). We proceed by induction on the number of simple compo-
nents. Let N be one simple component. By Step 1, applied to N, the intersection
H, N N(F4n) must be equal to N(IF4») for n large enough. By Lemma 3.5, the in-
dex k = [G(Fyn) : H,] must be equal to the index of H, /N (F4) in the quotient
G(Fy4n)/N(Fg4n). Since N is connected, we have (G/N)(Fyn) = G(Fgn)/N(Fyn)
by [1, Corollary 16.5 (ii)] and induction applies to G/ N .

Step 3: The statement is true if G is semisimple. Let G be semisimple. Then it
admits a universal covering ¢: G’ — G, where G’ is simply connected and ¢ is
an isogeny, both defined over IF; (see [10, Paragraph 16.21]). Note that, since
G is semisimple, the group G’ is semisimple, and so Step 2 applies to G’. The
preimages of ¢(G(IF,7)) N H, with respect to ¢ have index bounded by k, and
so, by Step 2, they coincide with G'(F4n) for n large enough. This means that
¢(G'(Fgn)) € Hy. Corollary 3.3 applies.

Step 4: The statement is true if G is a torus. Let G be a torus. Since G(Fyn)
is isomorphic to a subgroup of (]F;m)d for some m and d, the integers k and
g must be coprime. Consider the homomorphism G — G sending g +— gk; it is
defined over ;. Since k and g are coprime, this morphism is an isogeny. Since
G(F4n)/Hy has k elements, we have G(Fqn)k C H,. Corollary 3.3 applies.

Step 5: The statement is true if G is the direct product of a torus and a semisim-
ple group, both defined over ;. Let G =T x S, where T is a torus and S is
semisimple. The integers [T (Fyn) : Hy N T (Fyn)] and [S(Fyn) : Hy N SFyn)]
are divisors of [G(Fyn) : Hp] = k. Since the divisors of k are finite in number,
we reduce to finitely many cases, so by Step 3 and Step 4, we find finitely many
isogenies ¢ x y reaching (H, N T (Fyn)) x (Hp, N S(Fgn)), which is a subgroup
of Hy. Once more, Corollary 3.3 applies.

Step 6: The statement is true if G is reductive. Let G be reductive. Let T be
the identity component of ZG and S = [G, G] the derived subgroup. Since F,
is perfect, T and § are defined over [, (see [12, Section 12.1.7]). The group T’
is a torus, the group S is semisimple and the product map 7: 7 x S — G is an
isogeny [8, Proposition 6.20, Corollary 8.22].

By Lemma 3.5, the index of

Hy, NT(Fyn)SEyn)

in T (IF47)S(Fgn) divides k, so there are only finitely many possibilities and hence
finitely many possibilities for the index of 7~ !(Hy) in T(F4n) x S(Fyn). By
Step 5, for every 7~ (H,), we find an isogeny ¢: G’ — T x S defined over Fyn
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reaching ¢ (G'(Fgn)) = n~Y(H,), and finitely many isogenies are enough to reach
all 7~1(H,). For every ¢, the composition 77 o ¢: G’ — G is an isogeny defined
over Fyn, and the image 7 (¢ (G’ (IFgn)) is contained in H,. Lemma 3.2 applies to
each ¢, giving finitely many isogenies reaching all H,,. |

Some parts of the proof are interesting in their own right. From Step 2, we have
the following corollary.

Corollary 3.7. Let G be semisimple, simply connected and k > 1. Then, for n suf-
ficiently large, the group G(IF4n) contains no subgroups of index k. In particular,
the minimal indices of proper subgroups of G(IF4n) diverge to infinity.

Proof. Fix h > 1.Forevery k € {2,...,h}, there is ny such that, for every n > ny,
the group G(IF47) contains no subgroups of index k. For every n larger than
max{ny,...,np}, the minimal index of proper subgroups of the group G(IF )
is larger than 4. |

From Step 3, we have the following corollary.

Corollary 3.8. Let G be semisimple and let d be the order of its universal cover-
ing ¢:G" — G. Let H, € G(Fyn) be an infinite sequence of subgroups of fixed
index k. Then, for every n large enough, the group H, contains the image of the
universal covering ¢(G'(Fyn)). In particular, k < d.

4 From subgroups to isogenies: Non-reductive groups

Theorem 3.6 requires G to be reductive. The hypothesis is necessary, due to the
abundance of p-subgroups in unipotent groups.
For example, consider the additive group G, defined over I,,. We have

Ga (Fp”) = IFp” s

endowed with the field addition. The subgroups of index p of IF,» are the hyper-
planes of IF 2, as a vector space over [F,. There are (p” —1)/(p — 1) of them. In
particular, the subgroups of index p grow in number with n. They cannot all be
reached by finitely many isogenies.

However, if k is prime to the characteristic, reductiveness is not necessary.

Theorem 4.1. Let G be a linear algebraic group defined over Fy. Let k > 1 such
that k and q are coprime and, for infinitely many n, the group of rational points
G(Fy4n) contains a subgroup H, of index k. Then there are finitely many linear
algebraic groups G' and isogenies G' — G such that, except for finitely many n,
every H, is reached by one of them.
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Proof. Let U be the unipotent radical of G. As IF is perfect, U is defined over [F,
(see [12, Section 12.1.7]). Since U(IFy4») is a p-group, the index of U(Fyn) N Hy
in U(IF4n) divides both ¢ and k, so it must be 1, and hence U(Fy») € Hj. Theo-
rem 3.6 applied to the quotient G/ U gives finitely many isogenies ¢: G’ — G/U
reaching H,/U(F ) for n large.

Fix n and one isogeny ¢: G’ — G/U reaching H, /U(F4n). We want to lift
¢ to G. Consider the fiber product G’ xg iy G whose elements are the pairs
(¢, g) € G' x G satistying ¢(g’) = 7 (g), where 7: G — G/ U is the canonical
projection. We have the following commutative diagram:

G’ XG/UG — G

| I

¢ —* s GU,

where the unlabelled arrows are the canonical projections.
For now, suppose that G’ xg,¢ G is connected. The top arrow

¢/2 G’ XG/U G—>G

is an isogeny since its kernel is Ker(¢) x 1. Since ¢, 7 and U are defined over [,
and U is connected, we have

(G' xgju G)(Fgn) = G'(Fgn) XGEm) UEm) GEqn).
and by commutativity of the diagram, we have
(@' (G xg/u G)(Fgn))) = ¢(G'(Fgm)),
where the right-hand side equals H, /U(IF47). We conclude that
¢'((G' xg/u G)(Fgn)) = Hy.

Finally, if G’ xg/y G is not connected, replace it by its identity component: since
G and G’ are connected, the projections remain surjective, and the same argument
applies. |

From Theorem 2.2, Theorem 3.6 and Theorem 4.1, we obtain a remarkable fact.

Corollary 4.2. Let k > 1, and assume that either G is reductive or k is prime to q.
The set of n such that G(IFgn) contains a subgroup of fixed index k is either finite,
or it contains an arithmetic progression.
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Remark 4.3. Lemma 3.1 can be generalized to Steinberg endomorphisms; see [5,
Proposition 1.4.13] and [13, Proposition 4.5]. Indeed, if F: G — G, F': G’ — G’
are Steinberg endomorphisms satisfying ¢ o F/ = F o ¢, the groups G¥ /¢(G'F")
and Ker ¢/ L (Ker ¢) are isomorphic, where G¥ and G'F" denote the fixed point
subgroups and L(y) = y~! F’(y). This suggests a generalization of Theorem 3.6
and Theorem 4.1 to groups arising as fixed points of Steinberg endomorphisms.
However, it is not clear to the author how to generalize Steps 2 and 3 of the proof
of Theorem 3.6.

5 Varying the characteristic

In this section, G is a linear algebraic group defined over Q. Except for finitely
many primes, the group G is well defined modulo p and we can consider G(IF).
In analogy with the previous result, we ask whether subgroups of fixed index in
(G(Fp))p are related to isogenies ¢: G' — G defined over Q.

Corollary 3.7 about simply connected groups has a perfect analogue.

Theorem 5.1. Let G be a semisimple, simply connected linear algebraic group
defined over Q. Let k > 1. Then, for p sufficiently large, the group G(IF,) contains
no subgroup of index k.

Proof. Suppose that G is simple and simply connected; the general case follows
by induction on the number of simple factors.

Suppose that, for infinitely many p, the group G(IF,) contains a subgroup of
index k > 1. Then, as in the proof of Theorem 3.6, for p large enough, we obtain

GED _
ZGE) =

This is a contradiction since G(IF,) grows as p grows (see [8, Table 24.1]), while
the size of the center |Z(G(Fp))| is bounded by | ZG |, which is finite by hypothe-
sis. We conclude that k = 1. |

We now show, by an explicit example, that infinitely many subgroups of fixed
index may be unreachable by a rational isogeny. Consider the torus

(1

Note that G(IF) is split if and only if the field IF contains a primitive third root of
unity. Indeed, let £3 = 1and &€ # 1. We have a®> — ab + b% = (a + £b)(a + £2b)

a®? —ab + b? 750}.
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1 e\fa —b 1g_l_a+gb 0
1 &)\p a-bJ\1 )] \ 0o a+&)

As variety over C, the group G(C) is equal to the projective plane minus three
lines: the line at infinity, which is defined over QQ, and two conjugated lines a + &b
and a + £2b. This gives three 2-fold coverings of which only one can be defined
over Q. The rational covering actually corresponds to a rational isogeny, namely

a —-b 0 b
b a—b 0 H(a )

b a-—>
0 0 c

and

where ¢2 = a? — ab + b2. Matrices of the form on the left form a two-dimen-

sional torus.

On the other hand, for every prime p satisfying p = 1 mod 3, the field IF,, con-
tains a primitive third root of unity. Therefore, the group G(IF,) is isomorphic to
F,* x F,™*. In particular, it has three subgroups of index 2. We deduce that at least
two subgroups cannot be reached by rational isogenies. However, this suggests
that infinitely many subgroups of fixed index in (G(IFp)), correspond to isogenies
over a finite extension of Q. We leave this as a conjecture.
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