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Fusion systems realizing certain Todd modules

Bob Oliver*

Communicated by Christopher W. Parker

Abstract. We study a certain family of simple fusion systems over finite 3-groups, ones
that involve Todd modules of the Mathieu groups 2M1,, M;1, and A¢ = 0% (M) over
3, and show that they are all isomorphic to the 3-fusion systems of almost simple groups.
As one consequence, we give new 3-local characterizations of Conway’s sporadic simple
groups.

Fix a prime p. A fusion system over a finite p-group S is a category whose ob-
jects are the subgroups of S, and whose morphisms are injective homomorphisms
between the subgroups satisfying certain axioms first formulated by Puig [44], and
modeled on the Sylow theorems for finite groups. The motivating example is the
fusion system of a finite group G with § € Syl,(G), whose morphisms are those
homomorphisms between subgroups of S induced by conjugation in G.

The general theme in this paper is to study fusion systems over finite p-groups
S that contain an abelian subgroup A < S such that A L ¥ and Cg(A4) = A.
In such situations, we let I = Autg(A) be its automizer, try to understand what
restrictions the existence of such a fusion system imposes on the pair (4, O?'(I")),
and also look for tools to describe all fusion systems that “realize” a given pair
(A, OP'(I")) for A an abelian p-group and I < Aut(A).

This paper is centered around one family of examples: those where p = 3,
where 03/(1“) ~2Mi5, Mqq, or Ag = 03/(M10), and where A is elementary
abelian of rank 6, 5, or 4, respectively. But we hope that the tools we use to handle
these cases will also be useful in many other situations. Our main results can be
summarized as follows.

Theorem A. Let ¥ be a saturated fusion system over a finite 3-group S with an

elementary abelian subgroup A < S such that Cs(A) = A and such that either
(i) tk(A) = 6 and 0% (Autg (A)) = 2M1»; or

(i) tk(A4) = 5 and 0 (Autg(A)) = My; or

(iii) tk(A) = 4 and 0% (Autg (A)) = As.
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EPSRC grant nr. EP/K032208/1.
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Assume also that A 4 F. Then A < S, S splits over A, and 03/(37) is simple
and isomorphic to the 3-fusion system of Coy in case (i), to that of Suz, Ly, or Co3
in case (ii), or to that of U4(3), Ug(2), McL, or Coy in case (iii).

Theorem A is proven below as Theorem 4.14 (case (i)) and Theorem 5.20
(cases (ii) and (iii)). As one consequence of these results, we give new 3-local
characterizations of the three Conway groups as well as of McL and Ug(2) (Theo-
rems 6.1, 6.2, and 6.3).

All three cases of Theorem A have already been shown in earlier papers using
very different methods. In [48, Theorem A], van Beek determined (among other
results) all fusion systems ¥ over a Sylow 3-subgroup of Co; with O3(F) = 1.
In [7], Baccanelli, Franchi, and Mainardis listed all saturated fusion systems %
with O3(F) = 1 over a Sylow 3-subgroup of the split extension Eg; x Ag, and
this includes the four systems that appear in case (iii) of the above theorem. In [41],
Parker and Semeraro develop computer algorithms that they use to list, among
other things, all saturated fusion systems F over 3-groups of order at most 3’
with 03(F) = 1 and O3(F) = F. However, our goals are different from those
in the earlier papers, in that we want to develop tools which can be used in other
situations within the framework of the general problem described above, and are
using these Todd modules as test cases.

The proof of Theorem A is straightforward, following a program that also seems
to work in many other cases. Set Z = Z(.S). We first show that

¥ =(Cg(Z),Ng(A)).
We then construct a special subgroup Q < S of exponent 3 with

Z2(Q)=10.0]=2

(of order 3or9) and Q/Z(Q) =~ Eg1, and show that Q is normal in C#(Z). This
is the hardest part of the proof, especially when O3 (Autg (A4)) 2 2M,. Finally,
we determine the different possibilities for 03 (Outg (Q)), and show that this
group together with 0% (Autg (A4)) determines O3 (F) up to isomorphism.

Theorem A involves just one special case of the following general problem.
Given a prime p, a finite group I" = OP'(I"), and a finite FpI'-module M (or
more generally, a finite Z/ p¥ I'-module for some k > 1), we say that a saturated
fusion system ¥ over a finite p-group S “realizes” (I', M) if there is an abelian
subgroup A < S such that C5(A) = 4, A L4 ¥, and

(0% (Autg(A)), A) = (I M).

We want to know whether a given module can be realized in this sense, and if so,
list all of the distinct saturated fusion systems that realize it.
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In the papers [17,32,35], we studied this question under the additional assump-
tion that |I"| be a multiple of p but not of p2, and the answer in that case was
already quite complicated. In this more general setting, all we can hope to do for
now is to look at a few more cases, and try to develop some tools that can be used in
greater generality. For example, in a second paper [34] still in preparation, we give
some criteria for the nonrealizability of certain IF,, I"-modules. As one application
of those results, when I" = My, M1,, or 2M15, we show that, up to extensions
by trivial modules, the only IF,, I"-modules that can be realized in the above sense
are the Todd modules of M1 and 2M;, and their duals (when p = 3), and the
simple 10-dimensional [y [2M7,]-modules.

As pointed out by the referee, Theorem A in this paper is closely related to the
list of amalgams by Papadopoulos in [38]. It seems quite possible that the results
in this paper can be used to strengthen or generalize the main theorem in [38], but
if so, that will have to wait for a separate (short) paper.

General definitions and properties involving saturated fusion systems are sur-
veyed in Section 1, while the more technical results needed to carry out the pro-
gram described above are listed in Section 2. In Section 3, we set up some nota-
tion for working with Todd modules for 2M1, and M, notation which we hope
might also be useful in other contexts. Case (i) of Theorem A is proven in Sec-
tion 4, and the remaining cases in Section 5. The 3-local characterizations of the
Conway groups and some others are given in Section 6. We finish with two ap-
pendices: one containing a few general group theoretic results, and another more
specifically focused on groups with strongly p-embedded subgroups.

Notation and terminology. Most of our notation for working with groups is fairly
standard. When P < G and x € Ng(P), we let cf € Aut(P) denote conjuga-
tion by x on the left: cf: (g) = *g = xgx~! (though the direction of conjugation
very rarely matters). Our commutators have the form [x, y] = xyx~1y~L If G
is a group and @ € Aut(G), then [] € Out(P) denotes its class modulo Inn(G).
If ¢ € Hom(G, H) is a homomorphism, Q is normal in both G and H, and
¢(Q) = Q, then ¢/Q € Hom(G/Q, H/ Q) denotes the induced map between
quotients. Also, Syl,(G) is the set of Sylow p-subgroups of a finite group G,
(@) is the set of all subgroups of G, and Z»(G) is the second term in its upper
central series (Z2(G)/ Z(G) = Z(G/Z(G))).
Other notation used here includes the following:

» E,m is always an elementary abelian p-group of rank m;

. p“+b denotes a special p-group P with

Z(P)=[P,Pl= Epa and P/Z(P) = Ep;
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1+2m

1+2m
+

(when p is odd) is an extraspecial p-group of order p and expo-

P
nent p;

e Ao B is a central product of groups A and B;

A » B and A.B are a semidirect product and an arbitrary extension of A by B;

UT,(q) is the group of upper triangular (n x n)-matrices over I, with 1’s on
the diagonal; and

I'L,(q) and PI'L,(q) denote the extensions of GL,(g) and PGL,(q) by their
field automorphisms.

Also, 2M 15, 2A,, and 2%, (n = 4, 5, 6) denote nonsplit central extensions of Cy
by the groups M1, A, and X}, respectively.

1 Background

We begin with a survey of the basic definitions and terminology involving fusion
systems that will be needed here, such as normalizer fusion systems, the Alperin—
Goldschmidt fusion theorem for fusion systems, and the model theorem. Most of
these definitions and results are originally due to Puig [44].

1.1 Basic definitions and terminology

A fusion system ¥ over a finite p-group S is a category whose objects are the
subgroups of .S, and whose morphism sets Homg (P, Q) are such that

e Homg (P, Q) € Homg(P, Q) C Inj(P, Q) forall P, Q < §; and
e every morphism in ¥ factors as an isomorphism in ¥ followed by an inclusion.

For this to be very useful, more conditions are needed.

Definition 1.1. Let ¥ be a fusion system over a finite p-group S.

(a) Two subgroups P, P’ < S are ¥ -conjugate if Isoz(P, P’) # &, and two el-
ements x,y € S are ¥ -conjugate if there is ¢ € Homg((x), (¥)) such that
@(x) = y. The F-conjugacy classes of P < S and x € S are denoted P¥
and x¥ respectively.

(b) A subgroup P < S is fully normalized in ¥ (fully centralized in ¥ ) if

[Ns(P)| =z [Ns(Q)] (ICs(P)] = |Cs(Q)D)

for each Q € P¥.
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(c) The fusion system F is saturated if it satisfies the following two conditions.

* (Sylow axiom) For each subgroup P < S fully normalized in ¥, P is fully
centralized and Autg (P) € Syl,(Autg(P)).

* (Extension axiom) For each isomorphism ¢ € Isogz(P, Q) in ¥ such that
QO is fully centralized in ¥, ¢ extends to a morphism ¢ € Homg(Ny, S),
where

Ny ={g € Ns(P) | pcgp™" € Autg(Q)}.

In the following lemma, we describe another important property of fully nor-
malized subgroups.

Lemma 1.2 ([6, Lemma 1.2.6 (¢)]). Let ¥ be a saturated fusion system over a finite
p-group S. Then, for each P < S and each Q € P¥ N fff'f, there is

Y € Hom#(Ng(P),S) suchthat (P)= Q.

We next recall a few more classes of subgroups in a fusion system. As usual, for
a fixed prime p, a proper subgroup H of a finite group G is strongly p-embedded
if p||H|,and p  |HN*H|foreachx € G~ H.

Definition 1.3. Let ¥ be a fusion system over a finite p-group S. For P < §,
e« Pis F-centricif Cs(Q) < Q foreach Q € P¥;

e P is F -essential if P is J -centric and fully normalized in ¥, and the group
Out#(P) = Autg(P)/Inn(P) contains a strongly p-embedded subgroup;

o P is weakly closed in ¥ if P¥ = {P)};
e P is strongly closed in ¥ if, for each x € P, x¥ € P;and

e Pisnormalin ¥ (P < F) if each morphism in ¥ extends to a morphism that
sends P toitself. Let O,(¥) < F be the largest subgroup of S normal in ¥ .

e Piscentral in ¥ if each morphism in ¥ extends to a morphism that sends P to
itself via the identity. Let Z(¥) I F be the largest subgroup of S central in % .

Clearly, if P is weakly closed in ¥, then it must be normal in S'.

It follows immediately from the definitions that if P; and P, are both normal
in 7, then so is P P>. So O,(¥F) is defined, and a similar argument applies to
show that Z(¥) is defined.

The following notation is useful when referring to some of these classes of
subgroups.



426 B. Oliver

Notation 1.4. For each fusion system ¥ over a finite p-group S, define
o« ¥/ ={P < S| P is fully normalized in % };
« FC={P <S|PisF-centrictand F/ = F°NF/;and

e Eg ={P < S| P is ¥ -essential}.

1.2 The Alperin—-Goldschmidt fusion theorem for fusion systems

The following is one version of the Alperin—-Goldschmidt fusion theorem for fu-
sion systems. This theorem is our main motivation for defining ¥ -essential sub-
groups here.

Theorem 1.5 ([6, Theorem 1.3.6]). Let ¥ be a saturated fusion system over a finite

p-group S. Then each morphism in ¥ is a composite of restrictions of automor-
phisms a € Autg(R) for R € E¢ U {S}.

Equivalently, Theorem 1.5 says that ¥ = (Autg(P) | P € E¢ U {S}). Here,
whenever ¥ is a fusion system over S, and 2 is a set of fusion subsystems and
morphisms in ¥, we let (Z") denote the smallest fusion system over S that con-
tains 2. Since an intersection of fusion subsystems over S is always a fusion
system over S (not necessarily saturated, of course), the subsystem (2") is well
defined.

In fact, up to ¥ -conjugacy, the essential subgroups form the smallest possible
set of subgroups that generate ¥ .

Proposition 1.6. Let ¥ be a saturated fusion system over a finite p-group S, and
let T be a set of subgroups of S such that ¥ = (Autg(P) | P € 7). Then each
F -essential subgroup R < S is ¥ -conjugate to a member of .7 .

Proof. Fix R € %/ suchthat R < S and R¥ N.7 = @, and set

Autog;(R) = (@ € Autz(R) | o = @|g, some @ € Homg(P, S),
where R < P < §).
We will prove that Aut%(R) = Autg(R). It will then follow that R is not ¥ -essen-

tial (see [6, Proposition 1.3.3 (b)]), thus proving the proposition.
Fix @ € Autg(R). By assumption, there are isomorphisms

S

1

R:ROT>R1

||zl§
Q
2

R R = R
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such that ¢ = o o -+ o a1, together with automorphisms
Bi € Autg(P;) forl <i <k

such that (R;—1,R;) < P; € 7 and o; = Bi|Rr,_,-
By Lemma 1.2 and since R € FJ foreach 0 <i <k, there is

xi € Homgz(Ns(R;), Ns(R)) suchthat x;(R;) = R,

where we take yo = yx = Idyg(r). Foreach 1 <i <k, set

A

Ri—1 = Np;(Ri-1),

G = (i) e Bilg,_ ) o (itily, (&) € Homg(Ri—1,S).
Then @;|r = (xilr;) © i o (x;}|R;_,) € Autg(R) for eachi.
For each i, P; > Rj_y since P; € .7, while Ri_; € R¥ and RF Nn.7 = 2.

Hence Rj_; > Rforeach1 <i <k. By construction, @ = (&g |g) o --- o (&1|R),
andso o € Aut(}q(R). Since @ € Autg(R) was arbitrary, this proves that

Aut%(R) = Autz(R),
as claimed. O

The next two lemmas give different conditions for a subgroup to be normal in
a fusion system. Both are consequences of Theorem 1.5.

Lemma 1.7. Let ¥ be a saturated fusion system over a finite p-group S. A sub-
group Q < S is normal in ¥ if and only if it is weakly closed and contained in all
F -essential subgroups.

Proof. This is essentially the equivalence (a) < (c) in [6, Proposition 1.4.5]. O

In general, strongly closed subgroups in a saturated fusion system need not be
normal. The next lemma describes one case where this does happen.

Lemma 1.8 ([6, Corollary 1.4.7 (a)]). Let ¥ be a saturated fusion system over
a finite p-group S. If A < S is an abelian subgroup that is strongly closed in ¥,
then A 1 F.
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1.3 Normalizer fusion subsystems and models

If ¥ is a fusion system over a finite p-group S, then a fusion subsystem & < ¥
over a subgroup 7" < S is a subcategory & whose objects are the subgroups of T’
such that & is itself a fusion system over 7". For example, the full subcategory of ¥
with objects the subgroups of 7 is a fusion subsystem of % . If we want our fusion
subsystems to be saturated, then, of course, the problem of constructing them is
more subtle.

One case where this is straightforward is the construction of normalizers and
centralizers of subgroups in a fusion system.

Definition 1.9. Let ¥ be a fusion system over a finite p-group S. Foreach Q < S,
we define fusion subsystems C#(Q) < N#(Q) < F over Cs(Q) < Ns(Q) by
setting

Homc, (0)(P, R) = {¢|p | ¢ € Homgz(PQ, RQ), ¢(P) < R, ¢|o = Idp},

It follows immediately from the definitions that a subgroup Q < § is normal or
central in ¥ if and only if N (Q) = F or C#(Q) = ¥, respectively.

Theorem 1.10 ([6, Theorem 1.5.5]). Let & be a saturated fusion system over a fi-
nite p-group S, and fix Q < S. Then C¢(Q) is saturated if Q is fully centralized
in¥, and N (Q) is saturated if Q is fully normalized in ¥ .

We next look at models for constrained fusion systems and, in particular, for
normalizer fusion subsystems of centric subgroups.
Definition 1.11. Let # be a saturated fusion system over a finite p-group S.

(a) The fusion system ¥ is constrained if there is a subgroup Q < § that is nor-
mal in ¥ and ¥ -centric, equivalently, if O,(¥) € F€.

(b) A model for a constrained fusion system ¥ over S is a finite group M with
S € Syl, (M) such that

S eSylp,(M). Fs(M)=F. and Cp(0p(M)) < Op(M).

By the model theorem (see [6, Theorem II1.5.10]), every constrained fusion sys-
tem has a model, unique up to isomorphism. We will need this only in the follow-
ing situation.
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Proposition 1.12. Let ¥ be a saturated fusion system over a finite p-group S.
Then, for each Q € ¥ </ the normalizer fusion subsystem N (Q) is constrained
and hence has a model: a finite group M with Ns(Q) € Syl,(M) such that

QIM, Cy(Q)=Q., and Fyg)(M) = Ng(Q).

Furthermore, M is unique in the following sense: if M™* is another model for
N#(Q), also with Q < M* and Ns(Q) € Syl,(M*), then M =~ M* via an iso-
morphism that restricts to the identity on Ng(Q).

Proof. The subsystem Ng (Q) is constrained since the subgroup Q is normal and
N (Q)-centric. So, by the model theorem [6, Theorem II1.5.10], it has a model,
and any two models for N#(Q) are isomorphic via an isomorphism that is the
identity on Ng(Q). ]

1.4 Subsystems of index prime to p

We next turn to fusion subsystems of index prime to p. By analogy with groups,
this really corresponds to subgroups of a finite group G that contain 07 (G) (but
are not necessarily normal).

Definition 1.13. Let # be a fusion system over a finite p-group S. A fusion sub-
system & < ¥ has index prime to p if & is also a fusion system over S, and
Autg (P) > OP'(Autg(P)) foreach P < S.

There is clearly always a smallest fusion subsystem of ¥ of index prime to p:
namely, the subsystem OF (¥) over S generated by the automorphism groups
or '(Aut #(P)). The corresponding result for saturated fusion subsystems is more
subtle.

Theorem 1.14. Let ¥ be a saturated fusion system over a finite p-group S. Then
there is a (unique) smallest saturated fusion subsystem OP/(?‘ ) < F of index
prime to p. This has the property that, for each P < S and each ¢ € Hom#(P, S),
there are morphisms @9 € Homgr'(z)(P, S), o € Autg(S) such that ¢ = o o @g.

Proof. See [6, Theorem 1.7.7] or [11, Theorem 5.4] for the existence and unique-
ness of 01’/(37 ). The last statement follows from [11, Lemma 3.4 (c)], or since the
map 0: Mor(F €) — I,/(F) sends Autz(S) surjectively. |

In fact, the theorems in [6, 11] cited above both describe the subsystem O?'(F)
in more precise detail.
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Proposition 1.15. For each saturated fusion system ¥ over a finite p-group S, we
have OP'(F)¢ = ¢, 0P (F)/ = ¥/, and Bor'(5) = Eg.

Proof. By Theorem 1.14,if P < Sand O € P¥ | then there is & € Autg(S) such
thate(Q) € P O”(F)  From this, it follows immediately that 01’/(37 ) and ¥ have
the same centric subgroups and the same fully normalized subgroups. To see that
they have the same essential subgroups, it remains to check that Outg»’(%)(P) has
a strongly p-embedded subgroup if and only if Outg (P) does, and this is shown
in Lemma B.1. |

We also need the following result, which gives a more precise description of
’ .. . o~
OP (), but under very restrictive conditions on ¥ .

Proposition 1.16. Let ¥ be a saturated fusion system over a finite p-group S such
that

(1) E¢ # @ and each member of Eg is weakly closed in ¥ ; and

(ii) no intersection of two distinct members of Eg is ¥ -centric.

Then,

(a) foreach R € E¢ andeach R < P < S,

Autor' (v, (r)(P) = {a € Autg(P) | a|g € OP'(Autz(R)));

(b) Autpr'(7)(S) = (Auto”' (N5 (R)(S) | R € Eg).

Proof. Foreach R € Eg, set Eg = OF (Ng(R)).

(a) Fix R € E#, and let H be a model for N (R) (see Proposition 1.12). Then
OP'(H) is amodel for € g, and an extension of R by 0P (H/R) = OP'(Outg(R)).
Hence

Autg, (R) = Autor' () (R) = OP(Autg (R)) = OP (Autz(R)).
Let P be such that R < P < S. Then « € Autg, (P) implies
@|R € Autg,(R) = OP (Autg(R)).

Conversely, if @ € Autg(P) is such that a|g € O?'(Aut#(R)) = Autg < (R), then
by the extension axiom and since | g normalizes Autp (R), there is B € Autg , (P)
such that 8| g = «|g. So, by [6, Lemma1.5.6] and since R € ¢, there is x € Z(R)
such that @ = B o ¢y, and hence o € Autg, (P).
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& Homg (P, S) Autg(P)

F o Aalp |« € Autg(R)} {alp | @ € Autg(R). a(P) = P}
Fo Aalp @€ 0P (Autg(R)}  {alp | @ € 0P (Autg(R)), a(P) = P}

Table 1. In each case, either R is the unique member of E# such that P < R, or
R = § if there is no such member.

(b) Set
Fo = (0P (Aut#(R)) | R € Eg),
0L(F) = (07 (Auig(P)) | P < )
as (not necessarily saturated) fusion systems over S. Thus Of /(37 ) is the minimal
fusion subsystem in ¥ of index prime to p. For P € ¥, since P is contained in
at most one member of Eg by (ii), the sets Homg#(P, S) and Homg, (P, S) and
groups Autg(P) and Autg, (P) are described in Table 1.

In particular, this shows that the subgroup Autg, (P) is normal of index prime
to p in Autg(P) for each P € ¢, and hepce by [6, Lemma 1.7.6 (a)] t/hat Fo
has index prime to p in . Thus %y = OF (F) (the inclusion Fy < OF (¥) is
immediate from the definitions). So

Autop’(ff‘:)(S) = (o € Autg(S) | alp € Homop’*(gr)(P, S), some P € ¥€)
= (o € Autg(S) | «|p € Homg, (P, S) some P € ¥°)
= (@ € Autg(S) | thereexist P € F¢, P < R € E¢ U {S},

B € O (Aut#(R)) such thata|p = B|p)
= (o € Aut#(S) | &|g € OP (Aut#(R)) some R € E¢ U {S})
= (Autg,(S) | R € Eg),

the first equality by [6, Theorem 1.7.7], the second since o = or /(37 ), the third
by Table 1, the fourth since «|p = B|p implies «|g = B o cx for some x € Z(P)
(see [6, Lemma 1.5.6]), and the last by (a) (applied with P = 5). O

One can also show that O? (%) = (O? (N#(R)) | R € E#) under the hy-
potheses of Proposition 1.16. However, that will not be needed here.

1.5 Quotient fusion systems

Quotient fusion systems of F over S are formed by dividing out by a subgroup
of S, not by a fusion subsystem of ¥ .
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Definition 1.17. Let ¥ be a fusion system, and assume Q < § is strongly closed
in . In particular, Q < §. Let ¥ /Q be the fusion system over S/Q, where for
each P, R < § containing Q, we set

Homg,o(P/Q,R/Q)

={¢/Q € Hom(P/Q,R/Q) | ¢ € Homg(P, Q),
(p/0)(gQ) = ¢(g)Q forall g € P}.

We refer to [16, Proposition I1.5.11] for the proof that ¥/ Q is saturated when-
ever ¥ is. In fact, the definition and saturation of ¥ / Q hold whenever Q is weakly
closed in ¥. This is not surprising since we are looking only at morphisms in ¥
between subgroups containing Q sothat ¥ /0 = N¢(Q)/ 0.

If Q is strongly closed in ¥, then every morphism ¢ € Homg (P, R) for arbi-
trary P, Q < § induces a (unique) morphism ¢ € Hom(PQ/Q, RQ/Q). (Just
note that (P N Q) < RN Q.) A much deeper theorem states that each such
morphism ¢ also lies in ¥ /Q. We refer to [6, Theorem 11.5.12] and [16, Theo-
rem I1.5.14] for proofs of this result first shown by Puig. In this paper, however,
we work with ¥ /Q only in the special case where Q <1 ¥, in which case this
property is automatic.

We will need the following lemma, comparing essential subgroups in ¥ and in
¥ /Z when Z is central in ¥ .

Lemma 1.18. Let ¥ be a saturated fusion system over a finite p-group S, and fix
Z < Z(¥). Then, for each R < S, we have R € E¢ if and only if R > Z and
R/Z €Eg;z.

Proof. If R € Eg,then R € ¥¢,andhence R > Z(S) > Z. So, from now on, we
always assume that R > Z. We will show that the following hold for each R < §
containing Z:

(a) Re ¥/ ifandonlyif R/Z € (F/2)7;

(b) the natural map W: Outg(R) — Outg,z(R/Z) is surjective and its kernel is
a p-group; and

(¢) R/Z € (¥/Z)¢ ifand only if R € € and W is an isomorphism.

It follows immediately from (a), (b), and (c) and Definition 1.3 that R € E¢ if
R/Z € Eg 7. Conversely, if R € Eg, then O,(Outz(R)) = 1 since Outg(R)
has a strongly p-embedded subgroup (see [6, Proposition A.7 (¢)]), so ¥ is an
isomorphism, and R/Z € Eg,z by (a), (b), and (c) again.
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Point (a) is clear since

(R/2)¥/Z =(P/Z | P € RT},
Ns;z(P/Z) = Ns(P)/Z whenever Z < P < §.

The natural map W: Autg(R) — Autg,z(R/Z) is surjective by definition of
FlZ. It [ ] € Ker(¥), where [«] is the class of « € Autg(R), then for some
x € R, acR induces the identity on R/Z and (since Z < Z(F)) the identity on Z,
and hence has p-power order by Lemma B.5. So Ker(W) is a p-group, proving (b).

By (a), it suffices to prove (c) when R € ¥/ and R/Z € (¥/Z)/. Assume
R/Z € (¥/Z)°. Then Cs(R)/Z < Cs;z(R/Z) < R/Z,so R € ¥°. For each
[a] € Ker(\I') the class of @ € Autg(R), We have [«] € Op(Outgz(R)) < Outg(R),
soa = ¢y R for some x € Ng(R) such that c € Aut(R) induces an inner automor-
phism on R/Z. Hence xZ € (R/Z)CS/Z(R/Z), so we have xZ € R/Z since
R/Z € (¥/Z)¢, and x € R. Thus « € Inn(R), and W is an isomorphism in this
case.

Conversely, assume R € £€ and W is an isomorphism, and let y € Ng(R)
be such that yZ € Cg/z(R/Z). Then [y, R] < Z, so [c)l,e] € Ker(¥) = 1. So we
have cJIf € Inn(R), and y € RCg(R) = R since R is ¥ -centric. This shows that
Cs/z(R/Z) < R/Z and hence R/Z € (¥ /Z)°, finishing the proof of (c). O

If ¥ is a saturated fusion system over S and P < Q < S, then P < ¥ and
0 JF implies Q/P < ¥ /P: this follows easily from the definitions. How-
ever, P <1 ¥ and Q/P < ¥ /P need not imply that O < ¥, as is seen by the
following example. Let p be any prime, set G = Cp ¢ X, (wreath product), fix
S e Syl,(G) (so § = CpCp), and set F = Fs(G). Set P = 0,(G) = Epr.
Then P < F and S/P < ¥ /P,but S is not normal in

In the following lemma, we give two conditions under which

PJ¥ and Q/PIF/P
does imply that 0 < F.

Lemma 1.19. Let ¥ be a saturated fusion system over a finite p-group S, and
let P < Q <S8 be such that P < ¥ and Q/P 1 F /P. If Q is abelian or if
P <Z(¥), then Q I F

Proof. Since Q / P is normal, it is strongly closed in ¥/ P, and hence Q is strong-
ly closed in ¥. So if Q is abelian, then it is normal by Lemma 1.8. If P < Z(¥),
then Q is contained in all ¥ -essential subgroups by Lemma 1.18 and since Q /P
is contained in all ¥ /P -essential subgroups (Lemma 1.7), and so Q < ¥ by
Lemma 1.7 again. |
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2 General lemmas

As noted in the introduction, in our general setting, we want to analyze a saturated
fusion system F over a finite p-group S with an abelian subgroup A < S and
I' = Autg(A), where the group A and the action of OP'(I") are given. In this
section, we give some of the tools that will be used in Sections 4 and 5 to do this.

In practice, we do not get very far without knowing that the subgroup A is
normal in S and weakly closed in ¥, and this should perhaps be included in our

general assumptions. But in many cases, it follows easily from the weaker assump-
tions on A and OP'(I").

Lemma 2.1. Let ¥ be a saturated fusion system over a finite p-group S, and let
A < S be such that no member of A¥ ~ {A} is contained in Ns(A). Then A is
weakly closed in .

Proof. Assume otherwise: then § > Ng(A), and hence Ng(Ns(A)) > Ns(A).
Choose x € Ng(Ns(A)) ~ Ns(A). Then *A # A, contradicting the assumption
that A not be S-conjugate to any other subgroup of Ng(A). |

The importance of A being weakly closed in our general situation is illustrated
by the following lemma.

Lemma 2.2. Let & be a saturated fusion system over a finite p-group S, and
assume A < S is an abelian subgroup that is weakly closed in ¥ .

(@) IfRe F7, and R € OF for some Q < A, then R < A.

(b) Foreach P, Q < A,

Homg(P, Q) = Homy (4)(P. Q).
Hence each ¢ € Homg( P, Q) extends to some ¢ € Autg(A).
(¢) No element of Cg(A) ~ A is ¥ -conjugate to any element of A.

Proof. (a) Assume Q < A and R < S are % -conjugate and R € ¥/ . By the ex-
tension axiom, each ¥ € Iso#(Q, R) extends to some ¥ € Hom#(Cs(Q), S).
Then Cg(Q) > A since A is abelian, 1 (4) = A since A is weakly closed in %,
andso R = ¥/ (Q) < A.

(b) Assume P, Q < A and ¢ € Homg(P, Q), and choose R € P¥ that is fully
centralized in ¥ . Then we have R < A by (a), and there is ¥ € Isog(¢(P), R).
By the extension axiom again, ¥ extends to lﬁ € Homg#(A4, S) and ¥ ¢ extends to
¢ € Homg(A, S), and 1/7(A) = A = ¢(A) since A is weakly closed. Then

V¢ € Autg(4), and (YT'9)|p = v (Ye) = ¢.
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(c) Assume that x € Cg(A) ~ A is ¥ -conjugate to y € A. By (a), we can ar-
range that (y) € ¥/, so by Lemma 1.2, there is ¢ € Homg(Ng ({x)), S) such that
@(x) = y.But A < Ng({x)), p(A) = A since A is weakly closed, and this is im-
possible since ¢(x) € A and x ¢ A. So no element in Cg(A4) ~ A4 is ¥ -conjugate
to any element of A. |

In many of the cases we want to consider, the assumptions we choose on A and
on I" imply that 01’/(3‘7 ) is simple (see, e.g., [6, Definition 1.6.1]). For example, if
F is a saturated fusion system over S, and A < S is such that Cs(A4) = A, and
we set I' = Autg(A4) and Iy = OP'(I'), and assume also that 21 (4) is a sim-
ple F, I'-module and 15/ Op (1) is a simple group (and Iy % Cp), then either
A < F or the fusion system 01’/(?7 ) is simple. However, this will not be needed,
and before proving it here, we would first have to define normal fusion subsystems.

2.1 Provingthat ¥ = (Ng(A),Cg(Z))

When analyzing fusion systems in our setting, we first check whether
F =(Ng(A),C#(Z)) forsome choice of Z < Z(S).

The following lemma will be our tool for doing this.

Proposition 2.3. Let ¥ be a saturated fusion system over a finite p-group S, let
A < S be an abelian subgroup that is weakly closed in ¥, and fix

1# Z < Z(S) N A.

Then either ¥ = (C%(Z), N (A)), or there are R € Eg and o € Autg(R) such
that o is not a morphism in (C¢(Z), Ng(A)), and such that

@(Z) £ A, «(Z) e Ng(A)', and R = Cs(a(Z)) = Ns(a(2)).

Proof. Set 9 = (C¢(Z), N3 (A)): the smallest fusion system over S (not nec-
essarily saturated) that contains both C (Z) and N¢ (A). We first claim that

Ng(Z) = (Cg(Z). Autg(S)) < Fo. (2.4)

The second inclusion is clear: Autz(S) = Auty,. (4)(S) since A4 is weakly closed
in ¥ by assumption. If ¢ € Homy,. (z)(P, Q), where P, Q > Z, then by the ex-
tension axiom, since S = Cg5(Z), ¢|z € Aut#(Z) extends to some o € Aut#(S),
and ¢ = a o (@), where @ lp € Homc (z)(P, S). This proves the first in-
clusion in (2.4).



436 B. Oliver

By Lemma 1.2 and as Z < Z(S) is fully normalized in ¥, for each X € z¥,
there is Yx € Homg(Ng(X), S) such that Yy (X) = Z. Set

Z=1{X € Z¥ | yx € Mor(F)}.

If ' € Homg(Ng(X), S) is another morphism such that y/(X) = Z, we have
Y’ o w);l € Mor(N#(Z)), and hence ¥' € Mor (%) if and only if ¥y € Mor(F)
by (2.4). So Z is independent of the choices of the ¥y .
If X € Z¥ and X < A, then A < Ng(X) and Yx (A) = A, soyx € Mor(Fyp).
Thus
Xez¥andX <A = XeZ (2.5)

If ¢ € Homg(P, S)issuchthat P > Z, X = ¢(Z) € Z, then ¢(P) < Cg(X)
since P < § = Cg(Z), so ¥x o ¢ is defined and in Ng(Z) < Fp, and hence
¢ = (WX|¢(P))_1 o (Yx o @) is also in Fg. Thus,

for each ¢ € Homg(P,S)with Z < P < S,
0(Z) e Z = ¢ € Mor(¥Fp). (2.6)

Assume ¥ > Fo. By Theorem 1.5 (the Alperin—Goldschmidt fusion theorem),
there are R € E¢ U {S} and o € Autg(R) such that @ ¢ Mor(¥p). Since we have
Autg(S) = Autg, (S) by (2.4), it follows that R € E¢. Choose such R and « with
| R| maximal. Since R is ¥ -centric, we have R > Z(S) > Z.Set X = «(Z); then
X ¢ Z by (2.6), and hence X £ A by (2.5). Also, R < Cg(X) < Ng(X) since
R<Cs(Z)=S.

For each Y € Z¥ < Z, we have ¥y ¢ Mor(Fp) by definition of Z. Hence ¥y
is a composite of restrictions of automorphisms of members of E¢ U {S} of order
at least |[Ng(Y)|, and at least one of these automorphisms is not in Fy. So, by the
maximality assumption on R, |R| > |[Ng(Y)|forall Y € Z¥ < Z and, in particu-
lar, forall Y € XN#(4) Since R < Ng(X), this shows that X is fully normalized
in Nz (A) and also that R = Cg(X) = Ns(X). |

Note in particular the following special case of Proposition 2.3.

Corollary 2.7. Let ¥ be a saturated fusion system over a finite p-group S, let
A < S be an abelian subgroup that is weakly closed in ¥, and fix

14 Z < Z(S)N A.

Assume that A QL Cg(Z) but A 4 F . Then there are R € E¢ and « € Autg(R)
suchthata(Z) £ A, a(Z) € Ngr(A)f, and R = Cs(x(Z)) = Ns(a(2)).

Proof. By assumption, C#(Z) < Ng(A) < ¥.So (C%(Z),Ng(A)) # ¥, and
the result follows from Proposition 2.3. o
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2.2 Normality of subgroups

The results in this subsection will be useful when showing that certain subgroups,
especially abelian subgroups, are strongly closed or normal in a fusion system.

Lemma 2.8. Let ¥ be a saturated fusion system over a finite p-group S, and
let Q < S be a normal subgroup that is not weakly closed in & . Then there are
P e 0¥ ~{0), RcEg U{S}, and o € Autg(R) such that R > Q, P = a(Q),
R = Ns(P), P € Ng(Q)/, and |R| = |Ns(U)| for all U € 0% ~{Q}.

Proof. Let # be the set of pairs (R, o) where
RecEs U{S}, R>0Q, acAutg(R), and o(Q) # Q.

As Q is not weakly closed in ¥, there is ¢ € Homg(Q, S) such that ¢(Q) # O,
and hence 7 # @ by the Alperin—-Goldschmidt fusion theorem (Theorem 1.5).

Then choose (R,«) € # such that |R| is maximal. By Lemma 1.2, for each
U e Q¥ <~ {0}, there is a morphism ¢ € Homg(Ns(U), S) such that o(U) = Q.
By Theorem 1.5 again, there is (R1,a1) € # such that |Ry| > |[Ns(U)|, and
|R| > |Ry| by the maximality of | R|. Thus it follows that |R| > |Ng (U )| for each
Ue Q¥ ~{0}.

Now set P = a(Q). Then P <1 Rsince Q < R,so R < Ng(P), with equality
since we just saw |R| > |Ns(P)|. Also, P € N3 (Q)/ since |R| > |Ns(U)| for
eachU € 0¥ ~{Q} 2 PN#(D), o

The following is a more technical result that will be needed when proving that
0/Z A C%(Z)/Z in case (i) of Theorem A.

Proposition 2.9. Let ¥ be a saturated fusion system over a finite p-group S, and
let A < S be an abelian subgroup that is weakly closed in ¥ but not normal. Let
1=Ap < A1 <--- < Ay = A be such that [S, Aj] < Aj—1 foreach 1 <i <m.
Set &y = ¥, and for each 1 <i <m, set A; = Ai/Ai—1and & = Cg, | (ffi)/ffi,
regarded as a fusion system over S /A;. (Note that A; < Z(S/A;—_1).) Then there
are0 <€ <m-—2, R<S, and a € Autg (R), such that

« R>Appy, [ Aj] < Ajy for 1 <i < £, and X ¥ a(Ay41) £ A;
* R= Ns(X), R/Ay = Cs/a,(X/Ay), and X /Ay € Ng,(A/Ap)7 ; and

° R/A( S Egz.
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Proof. The fusion systems &; are all saturated by Theorem 1.10 and [16, Proposi-
tion IL1.5.11], applied iteratively. Also, A/A;,—1 is weakly closed in &,,—; since A
is weakly closed in . All &,,—1-essential subgroups contain

Z(S/Am—l) > A/Am—l

since they are centric, so A/A,—1 < &p,—1 by Lemma 1.7. Since A €4 §g = F by
assumption, there is 0 < £ < m — 2 such that A/A; A Egand A/Ap11 < Epyy.

We now apply Corollary 2.7, with A/Ay, Ag+1/Ag, and &; in the role of A,
Z,and ¥ . Here, Agy1/Ay < Z(S/Ayg) since [Agyq, S] < Ay, while A/Ay L &
by assumption. Since 4/Ay is abelian, it is normal in Cg, (Ag41) by Lemma 1.19
and since A/Ay41 < &g = Cg,(Ag41)/Ag+1. So, by Corollary 2.7, there are
R < S containing Ay, and @ € Autg,(R/Ayg), such that

R/Ay = Cs/4,@(Ag41)) € Eg,.

and
def —

X/Ag = @(Agsr) £ A/ Ay,
R/Ag = Ngya,(X/Ayg), (2.10)

X/Ag € Ng,(A)Ap).
Also, R/Ay > Z(S/Ag) > Agyq since R/ Ay is Eg-centric, so R > Ay .

Set oy = @, and choose ; € Autcy, (4;41)(R/A;) < Autg, (R/A;) for decreas-
ing indices i =€ —1,£ —2,...,0 so that o; /A;+1 = a4+ for each i < £. Set
o = g € Autg(R); then [, A;] < A;j—; for each i by definition of the &;, and
X = a(Agyq) £ Asince X/Ay = a(Agq1) £ A/ Ay The other claims listed in
the proposition follow easily from (2.10). |

2.3 Equalities between fusion systems

We finish the section with two sets of conditions for showing that two fusion sys-
tems over the same p-group are equal. Proposition 2.11 will be applied to the
fusion systems encountered in Section 4, and Proposition 2.13 to those in Sec-
tion 5.

Proposition 2.11. Let 1 > & < ¥, be saturated fusion systems over a finite p-
group S. Assume that Q < S is centric and normal in all three, and that

Autg, (Q) = Autg, (Q).

Assume also that the homomorphism

H'(Outg, (Q): Z(Q)) — H'(Outg(Q): Z(Q))

induced by restriction is surjective. Then ¥1 = F,.
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Proof. Let M1 > H < M3 be models for 1 > & < ¥, (Definition 1.11), where
S < H is a Sylow p-subgroup of all three. Thus M and M, are both extensions
of Q by Outg, (Q) = Outg, (Q), and the difference of the two extensions (up to
isomorphism) is represented by an element y € H?(Outg, (Q); Z(Q)) (see [30,
Theorem IV.8.8]). Also, x vanishes after restriction to H?(Outg(Q); Z(Q)) since
M and M, both contain H, so y = 0 since Outg(Q) has index prime to p in
Outg, (Q). Thus there is an isomorphism : M1 — M> such that ¥|p = Idg.
Note that ¥ also induces the identity on H/Q and on S/ Q since they inject into
Aut(Q), but need not induce the identity on S
Set Yo = V|g € Aut(H). Consider the commutative diagram

HY(My/Q:Z(Q)) —=— Cauy)(0)/Autz(g)(M:)

| |

HY(H/Q:Z(Q)) —— Cawm)(Q)/Autzoy(H),

where 71, 15 are defined as in [37, Lemma 1.2]. Since p; is surjective by assump-
tion, py is also surjective. So there is o € Aut(M 1) such that a|g = Y¥oc,|g for
some z € Z(Q), and upon replacmg a by ac; ', we can arrange that a|g = ¥o.
Now set ¢ = Yo~ ': My = M,. Then ¢|g = Yoy ! = Idy, and in particu-
lar, ¢|s = Idg. Since My and M are models for #7 and %5, we conclude that
F1 = F>. O

The other criterion we give for two fusion systems to be equal applies only
to fusion systems satisfying some very restrictive hypotheses, which are stated
separately for easier reference.

Hypotheses 2.12. Let ¥ be a saturated fusion system over a finite p-group S.
Assume A, Q < S are such that

(i) Eg ={4, 0}
(i) Ais abelian, S = AQ,and Cs(A N Q) = A4; and

(i) p 4 |Naua)(OF (Autz(A)))/ 0P (Autg(A))|.

Note that ¥ = N¢ (R) if Egz = {R} has order 1, while ¥ = N (S)if Eg = @.
So the next proposition still holds if we assume Eg C {4, Q} instead of assum-
ing equality. However, since the extra cases that would be added are rather trivial
and will not be encountered in this paper, we decided to use the more restrictive
version.
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Proposition 2.13. Let 1 and 5, be two saturated fusion systems over the same
finite p-group S, and let A, Q < S be normal subgroups with respect to which
Hypotheses 2.12 hold for 1 and for $,. Assume also that

07 (Ng,(A)) = O (Ng,(A)) and 0P (Autz,(Q)) = OF (Auts,(Q)).
Then O (F1) = OP' ().

Proof. If Hypotheses 2.12 hold for % (i = 1,2), then they also hold for O?'(%;)
(note in particular that Eg»'(#;) = Eg, by Proposition 1.15). So it suffices to prove
the proposition when % = OP'(%;) fori = 1,2.

Since S = AQ, where A and Q are both properly contained in S, we have
Q0 # Aand A # Q. Note that Q is nonabelian since otherwise Cs(A N Q) = §,
contradicting Hypothesis 2.12 (ii). Also, A and Q are weakly closed in ¥; for
i = 1,2 since otherwise there would be

a € Autg, (S) witha(A4) # Aora(Q) # 0O,

which is impossible since a permutes the members of Eg; .
Set
© = (Autg, (S), Autg, (S)) < Aut(S).

Fix R € {A, Q}. Each element of ® normalizes R since R is weakly closed in ¥
and in %5. For each o € © such that «|g = Idg, « also induces the identity on
S/R since Cs(R) < R (since R € Eg; by Hypothesis 2.12 (i)), and hence « has
p-power order. Thus

{0 €O |alg =1dg} < 0,(®) (for R € {4, 0}): (2.14)

this subgroup is normal in ® since all elements in ® normalize R.

By points (i) and (ii) in Hypotheses 2.12 and since A and Q are weakly closed,
the conclusions of Lemma 1.16 hold for #; and ¥,. (Note that Q N A ¢ F¢
since it is strictly contained in the abelian group A.) By Lemma 1.16 (b) and since
01’/(?,-) = ¥; fori = 1,2 by assumption,

Autgri (S) = (Autop’(Nfi (A))(S)7AUtO/’/(N;-i(Q))(S)) (2.15)
fori =1,2.
Again, fix R € {4, Q}. Ifx € Autor' (ng, (R))(S), then
a|r € 0P (Autg, (R)) = OF (Autg, (R))

by Lemma 1.16 (a), so a|g = B|r for some B € Autg,(S) by the extension ax-
iom and since «|g is normalized by Autg(R). By Lemma 1.16 (a) again, we have
B e Autop’(N%(R))(S). Also, a8 € 0,(®) by (2.14) and since o|g = B|r.
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Upon repeating this argument with the roles of 7 and ¥, exchanged, we have
shown that

Autor' (g, (R)(8)0p(0®) = Autop’(N?Z(R))(S)Op(G)).
Together with (2.15), this implies that
Autg, (5)0,(0) = Autg, (S)0,(0). (2.16)
For R € {A, O}, set
r'® = 07 (Autg, (R)) = 07 (Autg, (R)),
where the last two groups are equal by assumption. Then, for i = 1,2,
Autg, (R) = I'® {a|g | a € Autg, (S)} (2.17)

by the Frattini argument and the extension axiom (and since R < §).

Set O = (Autg, (A), Autg, (A)). Then ' < 0™ gince it is normal in
each Autg, (A4). Since Naya)(I” (4)) /4 has order prime to p by Hypothe-
sis 2.12 (iii), we have

OP/(@(A)) — OP’(['(A)) — A

By (2.17), for each « € Autg, (A4), there are ag € ' and & e Autg, (S) such
that @ = ao(&[4). By (2.16), there is /3 € Autg, (S) such that oz_lﬂ € 0p(0). Set
B = ao(,B l4) € Autg, (A). Thena ™! = (&~ 1,3)|A has p-power order, hence lies
in 07" (W) = 4 _and we have shown that Autg, (A) < Autg, (A). A similar

argument proves the opposite inclusion, and thus
Autg, (A) = Autg, (A). (2.18)
Fori =1,2,
Autg () = I'D {a|g | « € Autg (S))
=T'9 . (alg |« € Autor vy, (0 (S)},
{alg | @ € Autor' (v (4))(S)})
< I'Q - (Autor/ (v, (0)(Q). el | @ € Autor/ (v, (4 (S)})
=T'9 oo | @ € Autor vy 4y (S)},
the first equality by (2.17), the second by (2.15), and the last since

Autor (v, () (Q) = 'Y
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by Lemma 1.16 (a). The opposite inclusion is clear, so

Autf’l(Q) = Autgrz(Q) (2.19)

since 01’/(N3:1 (A)) = 01”/(N3z~2 (A)) by assumption.
For R € {A, Q}, consider the homomorphism

v
0= <Aut\771 (S)’ Aut?"z (S)) —R> ]\]Aut_;f7l (R) (AUtS (R)) = NAU[372 (R) (AutS (R))’

where Autg, (R) = Autg, (R) by (2.18) or (2.19), and where Wg, is induced by
restriction to R and is surjective by the extension axiom. Hence Wg sends O, (®)
into the group
Op(Nauy, (r)(Auts(R))) = Autg(R).

So, for each B € 0,(0), there are g, h € S such that |4 = c;? and Blp = ch.
Then B(c g )~ ! is the identity on Q and conjugation by #g ™! after restriction to A,
so we have hg™! € Cs(Q N A) = A by Hypothesis 2.12 (ii), and ,B(Cg)_l |4 =Id.
Since S = AQ by Hypothesis 2.12 (ii), this shows that g = cgf and hence that
0,(0) = Inn(S). So Autg, (S) = Autg, (S) by (2.16). Since Eg, = {4, O} by
Hypothesis 2.12 (i), this together with (2.18) and (2.19) (and Theorem 1.5) shows
that

371 = (Aut?"] (S)7AUt$'1 (A)7AUt$1 (Q))
= (Autg, (S), Autg, (A), Autg, (Q)) = F>. o

3 Todd modules in characteristic 3

We describe here the notation we use in Sections 4 and 5 to make computations
involving Todd modules: first the Todd module for 2M7,, and afterwards those for
M;i; and Ag = 02(M10).

3.1 The ternary Golay code and the group 2M1,

We first set up notation for handling the ternary Golay code ¢ and its automor-
phism group 2M;,. Our notation is based on that used by Griess in [23, Chapter 7]
to describe the ternary Golay code. We begin by fixing some very general notation
for describing n-tuples of elements in a field.

Notation 3.1. For a finite set X = {1,2,...,n} and a field K, we regard K¥ as
the vector space of maps X — K and let {¢; | i € X} be its canonical basis,

1 ifi = j,

) fori,j € X.
0 ifi #j,

{ej |i e X} <KX, wheree,-(j)z{
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Wealsosetey =) ;cyej for J © X. Let
Permy (K) < Mony (K) < Aut(KX)

be the subgroups of permutation automorphisms and monomial automorphisms,
respectively: automorphisms that permute the basis {e; } or the subspaces {Ke;},
respectively. Thus, if | X' | = n, then Permy (K) =~ X, and Mony (K) =~ K*? X,.
Let

7w = nx k:Mony (K) — Permy (K)

be the canonical projection that sends a monomial automorphism to the corre-
sponding permutation automorphism; thus Ker(my k) is the group of automor-
phisms that send each Ke; to itself.

Now set I = {1,2, 3,4}, and regard IF3I as the space of 4-tuples of elements
of [F'3 as well as that of functions I — 3. Let .7 C IF31 be the tetracode subgroup,

T ={(a.b.b+a.b+2a)|a,beFs3)

={ el [£3) =E() +£(2), §@) = E(1) + £} (3.2)
Thus .7 is a 2-dimensional subspace of IF3I . By [23, Lemma 7.3],

Aut(7) ¥ (o e Mon; (F3) | (7) = T} = GLy(3) = 25,. (3.3)

More precisely, each linear automorphism of .7 extends to a unique monomial
automorphism of F/ , and each permutation of / lifts to a monomial automorphism
of IFZ{ , unique up to sign, that acts on 7.

Set A = F3 x I so that ]F3A is a 12-dimensional vector space over [F3. Define
C1.C3, C3,Cy € T2 by setting

Ci = €, teqa,i) + e, fori € I,
andset ¥ = {C; | i € I}. Thusep = ) ;¢ C;. Define

Gr:F! — F2 bysetting Gr(§) = Ze(S(i),i)
iel
(the “graph” of &). Thus, for each (c,i) € A, Gv(§)(c,i) = lif ¢ = £(i), and it
is zero otherwise. Finally, define ¢4 < ¢ < IF3A by setting

G=(FUGr(T)) and ¥ =(Ci+GrE)|iecl EcT). (3.4)
Finally, fori, j € I and § € .7, we define

Cij=C—Cje9 and gre= Gr(§) - G&r(0) € 9.
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The C; are clearly linearly independent in &. The relations

Gr(E) + Gr() + GrO) = Y G
i€l
E@)#n ()
forall £,7,0 € 7 suchthaté +n+6 =0 (3.5)
among the C; and &r(€) are easily checked. So, for any F3-basis {£1, &2} of 7,

g = (Cl, Cz, C3, C4, (S’I‘(O), @’1‘(51), (S’I‘(Sz)),

9 = (C12,C13, C14, g7, 8T, C1 + G1(0)).
These elements in each of these two sets are independent in ]F3A and hence form
bases for ¢ and ¢, respectively. So dim(¥) = 7 and dim(¥) = 6.

The subspace ¥ is the ternary Golay code. We refer to [23, Lemmas 7.8 and 7.9]
for more details and more properties. Note in particular that we have & = ¢+
under the standard inner product on IF3A (i.e., that for which the standard basis
e, | (c.i) € A} is orthonormal).

We next look at automorphisms of &.

Notation 3.6. The following notation is used throughout this section and the next.
(a) Set M1z = {§ € Mona(F3) | (%) = 4}

(b) For n € F!, assume that tr, € Perma (IF3) is the translation that sends e(. ;)
to e(c+4y(i),i)- Thus, for § € FA, we have try(§)(c, i) = E(c —n(i),i).

(c) Fixa € Mony(IF3), and let¢; € F3* (i € 1) and o € X7 be such that
ale) = Ei€q (i) for all 7.

Let () € Perma (IF3) be the automorphism that sends e(. ;) t0 € ¢,q(i))-
Thus, for £ € F2, we have (7 (a)(§))(c,i) = E(eg—1(31)C, o~ ().

(d) Define
No =trg xt(Aut(7)) = (try. 1(@) | n € T, a € Aut(T)) < Mys.
and set N = Ng x {£Id} < ]\7112.

By [23, Proposition 7.29], Mlz ~ 2Mi,.
Note the following relations for 1,6 € F! i eI,and @ € Mon; (F3):
try(Ci) = G, T(a)(Ci) = Cr(a)(i)
try(&r(0)) = &r(f + 1), T(2)(Gr(d)) = Gr(a(h)).
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To see the last equality, note that, for « € Mony (F3) with ¢; € F5 ando € Xy as
above and for 0 = ) ;; 0(i)e; in IFZ{, we have

T(@)(GT(0) = Y T@)(e@iy.n) = D e o)) = S0,
iel iel
where
0" = ei0(i)eqiy = a(0).
iel
In particular, these formulas show that the action of Ng on IF3A sends 4 and 4 to
themselves.

Lemma 3.7. We have N = Njj,, (tr7), and this is a maximal subgroup of Mi,.

Proof. By construction, we have N < Njj,,(tr7). Conversely, by [23, Theo-
rem 7.20], N is the subgroup of all elements of M 12 whose action on A permutes
the columns 3 x {i} and hence contains the normalizer of tr .

For the maximality of N < M 12 or of

N /{ld} =~ Eo x GLy(3) in My2/{£ld} = M1,

see [15, p.235] or [4, p. 8]. Note that if we regard M1, as a group of permutations
of 12 points, then N /{£Id} =~ Mg x X5 is the subgroup of those permutations
that normalize a set of three of the points. o

One easy consequence of Lemma 3.7 is that Ng = M 12 N Permp (IF3). In other
words, the elements of V¢ are the only ones in M 12 that permute the coordinates
in A without sign changes. But this will not be needed later.

To simplify later calculations, we next describe ¢ and the action of V¢ on it in
terms of (3 x 3) matrices over 3. In general, for a vector space V' over a field K,
we let S» (V') denote its symmetric power

S (M =VeeerV)/{(vew)—(w®v)|v,welV).

For v,w € V, let [v ® w] € S2(V) denote the class of v®@ w € V Qg V, and

write v®? = [v ® v] for short. When « € Autg (V), we let S () € Autg (S2(V))

be the automorphism Sz (@) ([v ® w]) = [x(v) ® a(w)].

Definition 3.8. Let .7 be the tetracode subgroup of (3.2).

(a) Choose a map of sets A: I — 7 such that, for each i € I, A(i) # 0 and
(A(Q))(i) = 0. Define a map of sets

Do:CUGT(T) — S2(T @ Fz)
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by setting
®o(Ci) = (A(i).0)®% and  Do(Gr(E)) = (£, 1)®2

foralli € [ andall ¢ € 7.
(b) Define O«: Ng — Aut(.7 & [F3) by setting

Ox(tryT(@)) (5, a) = (a(§) +an,a)

foreachn, £ € 7,a € Aut(7), and a € F3.

We now check that the maps ®¢ and ® extend to a natural isomorphism from
the F3 Ng-module 4 to the group S» (7 @ F3) with action of a certain subgroup
of Aut(J ® F3).

Lemma 3.9. The following statements hold.

(a) The map ®o of Definition 3.8 (a) is independent of the choice of A and extends
to a surjective homomorphism ®:9 — S,(7 @ F3). This in turn restricts to
an isomorphism ®4 from G onto S»(T @ F3).

(b) The map © of Definition 3.8 (b) is an isomorphism from Ng = 7 x Aut(7)
onto the group of all automorphisms of 7 @ 3 that are the identity modulo
T ®0.

(c) Foreach B € Ngandeachy € 9,

D (B(¥) = S2(0«(B))(Px(y)). (3.10)

Thus it follows that ®, and O« define an isomorphism from 4 as an F3Ng-
module to S»(7 @ F3) with its natural structure as a module over

B4 (Ng) < Aut(T @ IF3).

Proof. (a) Foreachi € I, the choice of A(7) is unique up to sign. So we have that
®(C;) = (A(i),0)®? is independent of the choice of A (7).

We first check that Y, ; ®o(C;) = 0. It suffices to show that Y_;c; A(i)®% =0
in S2(7). Independently of our choices, {A(i) | i € I} is a set of representatives
of the four subspaces of dimension 1 in ]F%. So the A(i) are permuted up to sign
by each « € Aut(.7), and the sum of the A(i)®? is fixed by each such «. Hence
the sum must be zero. (Alternatively, this can be shown directly by choosing coor-
dinates and then computing with matrices.)

We next check that (3.5) holds for the images of the elements in ¢ U &r(7)
under @ as defined above. So fix £, 1,6 € .7 suchthat £ + n + 6 = 0. If we have
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& =n =0, then (3.5) clearly holds. Otherwise, § — n # 0, so there is a unique
index j € I such that (§ —n)(j) = 0. Then § —n = +A(j), and so

E D+ (1. D%+ (0. D% = £,0% + (1.0)%% + (6,0
0% + (1.0)% + (£ —0,0%?
—(E—1,0% = —((j),0)®?

Y. A0,

iel~{j}

where the first equality holds since £ + n 4+ 6 = 0, and the last one since

Z ®o(Ci) = 0.

iel

Thus ®( extends to a homomorphism defined on a vector space over F3 with
basis ¢ U &r(7), modulo the subspace generated by relations (3.5). This quo-
tient space is generated by the images of the C;, as well as those of 0, &1, and &;
for any basis {1, &} of .7, hence has dimension 7 and is isomorphic to &. So ®g
extends to a homomorphism ® from G to S2(7 @ F3).

Now, ®((¢)) = ((1,0)®2) = S2(.F @ 0) since 7* = {A(i)*! | i € I}. Hence

®(No) = $2(7 ®0)((£. 1) | § € 7) = S2(T ® Fa).

Thus ® is onto, and a comparison of dimensions shows that Ker(®) = (ea). Since
ea ¢ 9, ® restricts to an isomorphism @, from & to Sym (F3).

(b) One easily checks that ®, as defined above restricts to homomorphisms
on {try, | n € 7} = 7 and on Aut(.7). So it remains only to check conjugacy
relations: for @ € Aut(7) and n € 7, we have

O« (@) (O« (try) (Ox(@) ' (£, 0))) = Ox(@)(@ " (§) + an.a) = (£.a-a(y).a)

= ®*(tra(n))(év a)
= Ox(@otryo a N (E, a).

Thus ®4 is well defined on Ng, and it clearly defines an isomorphism onto the

group of all B € Aut(.7 @ F3) that are the identity modulo .7 & 0.
(c)Foreach&é,ne 7,i € I, and o € Aut(.7), we have
B (try (G1(§))) = (£ + 1, DB = (Ox(try)(£,1)®?
= $2(Ox(tr)) (D(G1(§))).
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B((@)(Gr(£) = (@(§), N®? = (Ou(z(@) (& 1)) %
= $5(0x((@)))(B(G (),
B(tr,(Ci)) = B(Cr) = (A(0),0)®? = S2(Ox(tr))(B(C))).

Also, for all @ € Aut(.7) inducing the permutation o € X7, and alli € [,

B(r(@)(Ci) = B(Co(iy) = (A(a(i)),0)®?
= (204 (T(@)(A(0),0))®? = $2(Ou (T (@)))(B(C))),

where A(0(i)) = £t ()(A(i)) by definition (and uniqueness up to sign) of A(7).
Since

G =(¢UGr(7)) and Ng= (trp.t(@) |ne T, acAut(F)),
this proves (3.10). O

To simplify computations still farther, we now describe elements in N¢ and 4
as (3 x 3)-matrices over [F3. Fix an isomorphism .7 =~ IF32 (e.g., by restriction to
the first two coordinates) so that 7 @ F3 is identified with F3 and Aut(.7 & F3)
with GL3(IF3). We then identify S»>(.7 @ F3) with the group Sym;(F3) of sym-
metric (3 x 3) matrices over F3 by sending the class [v ® w] (for v, w € F3) to
2(v - w’ 4+ w - v"). More explicitly,

a d ad (ae +bd) (af +cd)/2
b|®]|e is sent to (ae + bd)/2 be (bf +ce)/2
c f (af +cd)/2 (bf +ce)/2 cf

Let _
®: 94 = Sym,(F3),
a,b,c.d,e, f €3,

O:Ng S 105
e (03{) ae—bd #0

} < GLs(Fs) (3.11)

be the composites of @, and O, with the isomorphisms induced by this identifi-
cation 7 =~ IF% Lemma 3.9 (c) now takes the following form.

Lemma 3.12. For each € Ng and each & € 9,

(B(§)) = OB P(E)O(B) € Sym;(F3).

As a first, very simple application, we describe the Jordan blocks for actions
on A.
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I' = Mz = {o € Mona(F3) | a(9) = 4} ~2M>»
No = try xt(Aut(9)) < Mlz
N = No x{xld} ={x € Mi2 | @ permutes the J; }
©:No = {(47Y) | A € GLx(3), v € F2} < GL3(3)
T = ©~1(UT3(F3)) € Syl3(Ng) < Syl3(I")

A = (%) = Symy(F3)
B(X) = OB)XO(B) for f € Ng, X € A

Table 2. Notation used for certain subgroups of I' = M, and their action on
A = P(9).

Lemma 3.13. There are exactly two conjugacy classes of elements of order 3 in
M 12: those in one class act on &G with three Jordan blocks of lengths 1,2, 3,
and those in the other with two Jordan blocks of length 3. In particular, for each
x € Myz of order 3, tk(Cy/(x)) < 3.

Proof. Each element of order 3 in M5 is the image of a unique element of or-
der 3 in 2M1,. So M 12 has two conjugacy classes of elements of order 3 since
M1, does (see, e.g., [23, Exercise 7.34 (ii)]). With the help of Lemma 3.12, it is
straightforward to check that
o7'((a19))
001

acts on ¢ with three Jordan blocks of lengths 1,2, 3 and that

o7((4i1)

acts with two Jordan blocks of length 3. Thus these elements are in different
classes, and each element of order 3 in M 12 is conjugate to one of them and acts
on ¢ in one of these two ways. The last statement holds since the rank of Cy(x)
is equal to the number of Jordan blocks. (See also [23, Exercise 7.37].) O

The notation developed in this subsection is summarized in Table 2.

3.2 Notation for the Todd modules of M1 and Ag

We next set up notation to work with the Todd modules of the groups M7 and
Ag = 0?%(Myy). In particular, we get explicit descriptions of the actions of certain
subgroups of Ag and M.
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Let¥ < IF3A be as in (3.4) and Notation 3.6. By [23, Lemma 7.12], ¢ contains
exactly 12 pairs {0} of elements of weight 12. Three of those pairs lie in (%):
the elements of the form ) ;.; & C; for &; € F and ) ;c; & = 0. (The other
nine have the form +(ep + &r(§)) for § € 7.) By a direct check, for each basis
{€,n} of 7, the six elements

{(£(E.0%2 + (1.00%%),
£ (0% = (1.00%?) £[(.0® (1.0)]} € S2(7 ®F3)  (3.14)

are the images of the six elements of weight 12 in (%) under the isomorphism
Dy Y S S2(T D Fs)

of Lemma 3.9 (a). We want to identify M1, as the subgroup of elements in M,
that are the identity on one of these subspaces, and similarly for M.
To simplify these descriptions, we identify .7 with Fg via some arbitrarily cho-
sen isomorphism. We adopt the following notation for elements of Fg:
F9 = IF3[i], where i2 =1,
¢ =1+ of order 8 in Fg',
¢ € Aut(Fy) : ¢(a + bi) = a — bi fora,b € F3.

We also write X = ¢(x) for x € Fog.

Notation 3.15. Assume Notation 3.6 and Table 2, and choose an [F3-linear isomor-
phism k:.7 = Fy. Define elements 0y, 65,603 € S2(7) < S2(7 @ F3) by set-
ting

b1 =S200)7 ([1® 1 +i ®i]),

b= S:00)([1®@1—-i®i +1®i]),

03 = S() ' (1®1—i®i—1®i]).

Set0F = d.1(6;) € 4. By (3.14), +07, +65, and £65 are elements of weight 12
in ¢, and the only ones in (¥') N 9.
Set K1 = (0]) and K> = (0, 05), both subspaces of ¢, and define

Myy = Njz,,(K1) and Myg = Njz,,(Ka).

Also, set 1\713 = 03/(1\711) and N® =N n 1\714 for{ = 10,11,andset T = tro.
Finally, define A: g (¢) — Aut(.7) by setting

Au) = K_l(x > ux)k foru € Fg and A(¢p) = /c_1¢/<.
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=10 =11
T try = ((x) | x €Fo) try = ((x) | x €Fo)
N© T (). [¢]. ~1d) T (¢]. [¢]. ~1d)
NO M T(-) T (-[¢).[#))
M? = Ag My,
Me/M? ~ Dg Cy

Table 3. In particular, N9 = NAD ~ (Ey % SDy¢) x Cs.

(Recall that we compose from right to left.) For x € Fg and u € F, set
(x) =try—1n €T, [u]=7(A@) eN, and [p]=1(A(¢)) € N.
Also, for £ € Ny, we write —§ = £ - (—=Id) € N.

For easy reference, we summarize in Table 3 some of the basic properties of
groups defined in Notation 3.15.

Lemma 3.16. Assume Notation 3.15. Then, for £ = 10,11,
M = Cit,(Ki2—¢) = Cjz, (K12—0).
and the groups M I3 M ? N (e), and T are as described in Table 3. In particular,

T € Syl3(My) = Syl3(M)).

Proof. By definition (see Notation 3.6 (d)), each element of N normalizes the sub-
space (¢) N ¥ and hence permutes the six elements =67, £6,, 05 (the only el-
ements of weight 12 in (¢’) N ¥). Some of these actions are described in Table 4.

geN [ [ [¢] -Hd

oy o0 or o -6y
0y -0y 67 67 6
503 0y 67 07 b3

Table 4
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Consider, for example, the case [519* Set £ = k(1) and n = «~1(i), where
K. T S g is as in Notation 3.15. Then

Gu(03) =0 =S0) ' (1@1-i®i+1®i])
=E®§—n®n+i®n.

Since { =14iandif{ =—1+1i, we get

0.(4103) = S0 ([ + D) @ (1 +i) = (—1 + 1) ® (=1 +1)
+(1+i)® (-1 +1i)])
=[E+meE+nN-(E+nNE+n)
+E+n) 5+l
=[4E®n —E®E+nxn] =—Du(63).
Hence we have [§]92* = —0]. The other computations are similar, but simpler in

most cases.
Recall (Notation 3.6 (d)) that

N = (trg x t(Aut(.7))) x {£I1d},

where Aut(.7) = GL,(3) = 2X4 by (3.3). Since the element [—1] = [i]? central-
izes K1 K» by Table 4, each element of tr 5 = [[—1], tr 7] also centralizes K K>.
Also, each noncentral element of O, (T (Aut(7))) = ([i], [{P]) = Qg fixes one of
the 6 and sends the other two to their negative, and hence each element of order 3
int (Aut(ﬂ )) acts by permuting the sets {£6} (i = 1,2, 3) cyclically. From this,

we conclude that N 19 = NAD jg 4 descrlbed in Table 3 and also that

Cna0(Ky) = T(—[i]) and Cnav(Ky) =T (-[C],[#]).

In particular, N 19 /Cyan (K2) = Dg and NIV /cypan (Ky) = C,.
It remains only to show that Mc = Cp,(Kj2—¢). For £ =10 or { = 11, con-
sider the action of Me Npt,,(Kia—g) on 9 /K 5. Since

10 = 03 (Ml()) = A6 and Mi)l ~ M,

by definition of M1 and M;; as permutation groups, and as dlm(g / Kir—¢) =4
or 5, respectively, this quotient is absolutely irreducible as an IF3M -module by
Lemma 5.2. Hence Cay /K, e)(M ) = {£Id}, and so

IN® /Cpr (Kia—0)| < IMe/Chit, (K12—-0)]
< |M¢/MP| < 2-|Out(MP)]. (3.17)
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We just saw that
INAD/Cyan (Ka)| = 8 =2 |Aut(4e),
INOD/Cyan (K1) =2 =2+ |Aut(Myy)],
and so the inequalities in (3.17) are all equalities. Hence
M? = Car, (K12-¢) = Chry,(K12-0),
and the descriptions of N ®Onm ? and M ¢/ ]\2? in Table 3 all hold. o

As seen in Lemma 5.2, there are three different representations that appear un-
der Hypotheses 5.1: one of A and two of M. We will refer to these throughout
the rest of the section as the “Ag-case” (when I'g = Ag), the “M71-case” (when
Iy = M and A is its Todd module), and the “Ml*1 -case” (when I'g =~ M and
A 1is the dual Todd module).

Lemma 3.18. Assume Notation 3.15. We summarize here the notation we use for
the F3M1¢- and F3 M 11-modules we are working with and describe explicitly the
action of the subgroup N0, NAD,

(a) (Ag-case) We identify the Todd module for M 10 with
A0 LR my Ty
in such a way that N a0 yets as follows:

((x))[[a,b,c]] = [a.b —ax.c + Tr(xb) —aN(x)] for x € Fyg,
g, b, c] = [a,ub, N(u)c] foru e Fg,
W[[a,b,c]] = [[a,l;, c] and _Id[[a,b,c]} = [—a,—b,—].

(b) (My1-case) We identify the Todd module for M 11 with
AdD def F3 x Fg x [Fg
in such a way that N aD gets as follows:

OCVa,b,c] = [a.b—ax,c+ bx +ax?] for x € Ty,
g, b, c] = [a,ub,u?c] foru € Fg,

W[[a,b,c]] = [[a,};, c] and _ld[[a,b,cﬂ = [—a,—b,—].
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(c) (M{-case) We identify the dual Todd module for M 11 with
A" Ry Fy x Fs
in such a way that N aD qets as follows:

() [a,b,c] = [a,b—ax,c+ Tr(bx + axz)]} for x € Fo,
[“][[a,b,c]] = [ua,u™'b,c] foru e g,
Wla,b,c] =[a.b.c] and ~[a,b,c] = [~a,—b,—].

Proof. (b) Define
K11:S2(7 @ F3) — AQD — I3 x [Fg x Fg
by setting

k11([E.r) ® (0. 9)]) = [rs.ric(n) + sk (§).x(§) - k()].

This is surjective since 4 an i generated by the elements

£11([(0. D) ®@ (.9)]) = [s.€(m).0] and k11 ([(1,0) ® (n.0)]) = [0.0.k(m)].

Also, K11(01) = 0, so Ker(k11 o ®) = (0]) = K since they both are 1-dimen-
sional. Thus the action of M 12 on ¢ induces an action of M 11 = Njz,, (K1) on
/Ky =~ AAD.

For 0 € 7, trg(§,r) = (§ +r0,r) and try(n,s) = (n + s6,s). So if we set
x =«(0)and [a, b, c] = k11([(§,7) ® (1, 5)]), then

©la,b.c] = k11 +r0.r) ® (1 +50.5)])
= [rs. (rc(n) + sk(§)) + 2rsc(0),
k(E)r () + kO k() + () + rsk(0)°]
= [a,b —ax,c + bx + ax?].
The other formulas follow by similar (but simpler) arguments.
(c) The description of the action of N an on 4ADT fo110ws from that in (b), to-

gether with the relation (8§, n) = (&, g_ln) for & € AAD* 4nq ne A where
the nonsingular pairing

A(ll)* X A(ll) = (]Fg X Fg XF3) X (F3 X Fg X [Fg) ﬂ) ]F3

is defined by ([a, b, z], [y, c,d]) = yz + Tr(ad + bc).
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(a) This proof is similar to that of (b), except that K11 is replaced by the map
£10:52(7 @ F3) > A1 = 5 x Fy x F3,
defined by setting
R10([(E, 1) ® (0,9)]) = [rs, ric(n) + sx(€), Tr(k (£) - k()]

This is easily seen to be surjective. Fori = 2,3, we have
k10(67) =0,0,Tr(1-1—i -7+ 1-70)] =0,

and so Ker(k19) = (05, 605) = K since they are both 2-dimensional. So the ac-
tion of M 12 on ¢ induces an action of

M1 = Nj1,,(K2) on%/Ky = A1V,

The formulas for ) [a,b,c], [] [a,b,c], and ] [a,b,c] follow from argu-
ments similar to those used in case (b). O

4 The Todd module for 2M;,

We are now ready to look at fusion systems that involve the Todd module for
2M7,. Throughout the section, we refer to the following assumptions.

Hypotheses 4.1. Set p = 3. Let ¥ be a saturated fusion system over a finite 3-
group §, and let A < § be an elementary abelian subgroup such that Cg(A) = A.
Set I' = Autg(A), Iy = 03 (I'), and assume that rk(4) = 6 and Iy = 2M 5.

The main result in this section is Theorem 4.14, where we show that if & sat-
isfies these hypotheses, then either A < &, or ¥ is isomorphic to the 3-fusion
system of the sporadic group Coj.

Standard results in the representation theory of 2M;, show that, in the above
situation, A must be the Todd module for I' = Iy or its dual. In fact, we can
assume in all cases that it is the Todd module.

Lemma 4.2. Assume Hypotheses 4.1. Then I' = 'y = 2M13, A is the Todd mod-
ule for I', and A is absolutely irreducible as an W3 I'-module.

Proof. By [24, § 4 and Table 5], the only 6-dimensional faithful IF3 I'g-modules are
the Todd module and its dual, and they are absolutely irreducible and not isomor-
phic. Also, Out(Ig) = Out(M;,) = C,, and composition with an outer automor-
phism of I'g sends the Todd module to its dual. So the action of I'g on A does not
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extend to any extension of I'g by an outer automorphism, and I' = I'g - Cp (I'g).
As subgroups of Aut(A), we have

Cr(Iy) = Autpyry(A) = {+ld} = Z(Ip),
where Autg, r,(A) = {£Id} since A4 is absolutely irreducible. Hence
r =T 0= 2M;;.

Now, Out(I") = Out(M13) = C,, and by [24, § 4] again, an outer automorphism
of I' acts by exchanging the Todd module with its dual. So (I', A*) =~ (I', A) as
pairs, and we can assume that A is the Todd module for I. |

We next check that, under Hypotheses 4.1, A is weakly closed in ¥ and S
splits over A. These are easy consequences of Lemma 3.13.

Lemma 4.3. Assume that A < S and F satisfy Hypotheses 4.1, and let M be
a model for Ng(A) (see Proposition 1.12). Then

(a) A is weakly closed in & and hence normal in S ; and

(b) S and M both split over A.

Proof. By Lemma 4.2, Autg(A) =~ Mlz, and A =~ ¢ as F3M12—m0dules.

(a) If A* < Ng(A) issuch that A* == E3c and A* # A, thenforx € A* ~ A4,
A N A* < Cq(x), where 1k(C4(x)) < 3 by Lemma 3.13 and since c;;‘ has or-
der 3 in Autg (A). Hence we have rk(Auty=(A)) > 3, which is impossible since
tk(Autg+(A)) = rk3(2M;2) = 2. So A is the only element of A¥ contained in
Ns(A). Hence A is weakly closed in ¥ by Lemma 2.1.

(b) Choose 6 € M such that cg is the central involution in Autg(A4) =~ 2M1,
(Lemma 4.2). Then |@| = 2 or 6, and after replacing 6 by 63 if necessary, we can
assume |0 = 2. Also, 6 fixes at least one element in each coset kA of A in M
since the cosets have odd order. Hence M = ACys(0) and S = ACg (0), while
A N Cypr(0) = 1 since 6 acts as —Id on A. This proves that Cps(6) and Cg ()
are splittings of M and § over A. o

We use throughout this section the notation set up in Section 3.1 for working
with the Todd module for 2M,, as summarized in Notation 4.4. In Subsection 4.1,
we set up notation for some of the subgroups of § and I" that we have to work
with. All of this is then applied in Subsection 4.2 to prove Theorem 4.14 describing
fusion systems satisfying Hypotheses 4.1.
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Notation 4.4. Assume Hypotheses 4.1 and Notation 3.6. Identify
IF'=Mj;=2M;; and A = &%) = Sym;(F3).

where 1@12 is as in Notation 3.6 (a). Let Ng < 1\7112 be as in Notation 3.6 (d), set
N = Ny x {£I1d}, and let

©: Ny = {(%g%) |a.b.c.d.e. f €Fs, ae # bd} = GLs(F3)

be the isomorphism defined by (3.11). Thus
B(X) = O(B)XO(B)
forall B € Ng and X € A by Lemma 3.12. Finally, define
T = 07! (UT3(F3)) € Syl3(No) < Syl3(I),
and set

M=AxT and S =AxT € Syl3(M).

4.1 Some subgroups of I and S

We begin by listing the additional notation that will be needed, in particular, nota-
tion to describe the subgroups of index 3 in T'.

Notation 4.5. Define
Z=Z7Z(8S)=C4q(T) and A, =][T,A].
Define elements 7g, 7+1, oo, ) € T as follows:

)) (for k € F3),

) i=e7((8§4))
{

Thus T = (no, Neo) and Z(T) = (7). For each k € F3 U {c0}, set

Ue=(N.me) =T,
We={a€A|la,U]=Z=2(8)} <A (soWy/Z =Cy;7(Uy)),
Ok = WiUp = S.

<>

For k € TF3, set

Q={0=S|10NA=W, QA =UrA}.
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((2£5)) [ (:4%)]
UL S uUvS
n M uvs Ty
110 t—u+v ut+v+k(r+s) r+s —u+v  v+k(r+s) s
Nk = (0 1 k) (u+v+k(r+s) v—ks+ak? s+ak) (v+k(r+s) —ks+ak2 ak)
001 r+s s+ak 0
(k € F3)
100 t u-+r r o r O
noo:(OII) (u+rv—s+as+a) (r—+ a)
001 r s+a a 0 a 0
~ 101 t—r+a u+s r+a —r+a s a
n= (0 1 0) < u+s v s ) ( s 0 0)
001 r+a K] a a 00

Table 5

In addition, we set
0 = AUy = 3314,

For1 <i,j <3 and x € F3, let a . € A = Sym;(IF3) be the symmetric (3 x 3)-
matrix with x in positions (7, j) and (7, i) (or 2x in position (i,i) if i = j)and 0

elsewhere, and set a;; = a}j.

The actions of the 1z on A are described explicitly in Table 5.

Lemma 4.6. Assume Notation 4.4 and 4.5.

(a) We have
2= {55 |rem) o = (325) s sy
and

AUtN_r,y(A*)(A) = AutNr(A*)(A), where N['(A*) =N
(b) Foreachk € F3 U {o0},

{(ﬁ_’fcr()))r,z,uem} if k € s,
Wk: :uOOO
W(E58) [rwvem) k=
Z if k € IF3,
Ca(Up) = sl
0, = 3Lt if k € F3,
k= Es3s lfk=OO
Ns(Q=1" pE=0
SR T AT <8 ifk #0.
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(¢) More generally, if k € F3 and Q € @, then

Ns(Q)=A ifk=0,
ANNg(Q) =4+ ifk#0.

Proof. The descriptions of Z and A, follow immediately from the formulas in
Notation 4.4. From this, we see that A, = [N, A], and hence it is normalized
by N. Since N is a maximal subgroup of I' by Lemma 3.7, it must be the full
normalizer of As.
The formulas in point (b) follow easily from those in Table 5. (Note, for each
k € F3 U {oo}, that T normalizes Qj since it normalizes U and W}.)
If Q € @ for some k € [F3, then an element @ € A normalizes Q if and only if
[a, Ur] < Wi, which holds foralla € A ifk = 0, butonly fora € Ay ifk = 1.
o

Note that, for each k € F3, the subgroup Wy (1, az3ni) lies in @ since

(az3ne)® € Cang) < Wi,

but is not extraspecial since [, a23n,] = [, a23] € Wi ~ Z. Thus members of the
@} need not be extraspecial. However, as shown in the next lemma, all subgroups
of S notin A and isomorphic to E35 or 3?4 are members of @ for some k.

Lemma 4.7. Assume Notations 4.4 and 4.5.

(a) There are exactly three abelian subgroups of S of order 3° not contained in A,
and all of them are conjugate to Qo = E35 by elements of A ~ Ax.

(b) If P < S is extraspecial of order 3°, then Z(P) = Z, and P € Qy, for some
k € 3. If, in addition, P is weakly closed in Ng-(Z), then P = Q.

(¢) For each saturated fusion system & over S and each k € 3, Qy is &-centric.

Proof. (a) Assume B < S is abelian and such that B £ A and |B| = 3°. For
eachn € § ~ A, we have rk(C4(n)) < 3byLemma3.13,sork(BA/A) = 2 and
k(B N A) = 3. Thus BA = Ui A for some k € F3 U {oo} such that

tk(Wi) = tk(C4 (Uy)) = 3,

and k = oo by Lemma 4.6 (a). By the same lemma, B N 4 = Wxo.
Thus B = Weo(b17],banco) for some by, by € A uniquely determined mod-
ulo Wee. Since [, o] = 1 and A < §, we have

1 = [b17, baneo) = b1 (127 ) (oby s )byt = [, b2][b1, ool
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and hence
[, b2] = [Noo. b1] € [, A] N [No0, A] = (a12).

So, by Table 5 again, by = ay; and by = a3 (mod W) for some x € [F3.

In particular, there are at most three subgroups of § isomorphic to E35 and
not in A. Since Ng(Qoo) = AT has index 3 in S, there are exactly three such
subgroups, and they are all conjugate to Qo by elements of A ~ A. More pre-
cisely, the three subgroups Weo {af57, a330c0) for x € [F3 all have the form PO
for some B € (azs).

(b) Assume that P < § is extraspecial of order 3°, and set Pp = P N A. Then
Py and P/ Py are both elementary abelian (since [P, P] = Z(P) < Py), and hence
Py =~ Ez7and P/ Py = Ey. So it follows that P A = U A for some k € [F3 U {o0},
and Z(P) < C4(Uy). Since Uy = (7], nx) and C4() = W, this means that
Z(P) < Cw, (1), and hence Z(P) = Z if k € F3 (while C4 (Uso) = Woo). SO
if k # oo, then [Py, Ur] = Z, and hence Py < Wy in this case, with equality since
rk(Wy) = 3 for each k (Lemma 4.6). Thus P € @y if k € F3.

Conjugation by the element (/ 9) € N lies in Autg(S) = Auty, (z)(S),
and its action on S exchanges the sets @; and @_;. So no member of either
of these is weakly closed in Ng-(Z). Each member of @ has the form

0 = Wo(g1no, g27n) forsome g1,g2 € A,
and —Id € N sends Q to Wo (g7 10, g5 7). Since
c—1d € Autg(S) = Auty, (z)(S),
O is weakly closed only if g; = g; I (mod Wy) fori = 1,2, which occurs only if
g1, 82 € Wypandhence Q = Q. Thus Qy is the only member of Qo U @; U Q_;

that could be weakly closed in Ng(Z).
If k = oo, then

Z(P) = C4(Uso) N [1), A] N [Noo, A] = (a12)
by Table 5, and so
Po=fa€d|[Ux.a] = Z(P)} =W
with equality since tk(Woo) = 3 = rk(Po). But [Uso, Woeo] = 1, 50 Weo < Z(P),

a contradiction.
(c) For each k € [F3 and each Q € @,

Cs(Q) <Cqy W) =4
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since Qp = U Wy is extraspecial (Lemma 4.6 (b)), and hence

Cs(Q) =Cy(Ux) = Z

by the same lemma. Since (Qx)¥ € Q¢ U @ U @, by (b), this proves that Qy
is &-centric for each saturated fusion system & over S. o

Point (c) in Lemma 4.7 is not true if one replaces Qy (for k € F3) by Qco.
If ¥ and § satisfy Hypotheses 4.1, then one can show that Q < Cg¢(Ws) and
that Outcﬁ(Woo)(QA) = 2A4. (Since ¥ is isomorphic to the fusion system of Co;
by Theorem 4.14, this follows from the structure of Cc,, (Woo) = O.244.) The
subgroup Q contains exactly four elementary abelian subgroups of rank 5 (the
three described in Lemma 4.7 and A4), and they are permuted transitively by
Outcj,(Woo)(QA). S0 Qoo € (A+)¥ , and hence it is not F -centric.

4.2 Fusion systems involving the Todd module for 2M 1,

We now begin to apply results from Section 2. Recall that our goal is to describe
all fusion systems that satisfy Hypotheses 4.1 with A 4 F.

Proposition 4.8. Assume Hypotheses 4.1 with I' = M 12 and A as in Notation 4.4,
and set Z = Z(S). Then F = (C¢(Z), Ng(A)).

Proof. Assume otherwise. By Proposition 2.3, there are subgroups X € Z¥ and
R € Eg such that

X£A, R=Cs(X)=Ng(X), Z =oa(X)forsomea € Autg(R).

Fix x e X ~A.Inall cases, RN A =Cy(X)=Cyg(x) since | X|=1|Z|=3
and hence X = (x). Also, |x| =3 as x € X € Z¥, where Z has order 3. Set
Ro=RNA.

Case I: Assume first that |[RA/A| = 3 so that

RA =A(x) and R =Cg(X)=Cq(x){x).

Then Auty4 (R) = C4/p,(x) = E3m, where m is the number of Jordan blocks of
length at least 2 for the action of x on A, and m = 2 by Lemma 3.13.

Thus |Out4 (R)| = 9. Since Outy4 (R) acts trivially on Ro and |R : Ro| = 3,
this contradicts Lemma B.7.

Case 2: Assume that |[RA/A| = 9 and hence that

Autr(A) = U, forsome k € F3 U {o0o}.
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If k € F3,then Z = C4(R) < C4(x) by Lemma 4.6 (b), and hence
Z <[R,Cq(x)] = [R,R].

Since X £ [R, R], no automorphism of R sends X to Z.

Now assume k = 00, so Rg = C4(x) = C4(R) = E»7 by Lemma 4.6 (b)
again. Also, Outgq (R) = C4/p,(Usxo) = Eg (see Table 5). So, by Lemma B.6 (b),
for each characteristic subgroup P < R, we have either |P| > 3% or |R/P| > 3%.
Since | R| = 3°, and since R is not extraspecial by Lemma 4.7 (b), this implies that
R =~ E3s.

Set B = Out4 (R) = Ey so that B < Outg (R). Moreover, let H < Outg(R)
be a strongly 3-embedded subgroup that contains Outg(R) (recall R € Eg), fix
g €Outg(R)~ H, and set L = (B,8B). Then L £ H and 3| |H N L|, so by
Lemma B.2 (b), the subgroup H N L is strongly p-embedded in L.

Since tk(Cr(B)) = 3 and rk(R) = 5, we have

tk(Cr(L)) = tk(Cr(B) N CRr(¥B)) > 1.

Also, we have rk(R/Cgr(L)) > 4 by Lemma B.6 (b) again, so rk(Cr(L)) = 1,
and R/Cg(L) is a faithful 4-dimensional representation of L. For each x € B¥,
rk([x, R]) = tk([x, Uso]) = 2, and so [x, R/CRr(L)] has rank 1 or 2, and x acts
on R/Cgr(L) with Jordan blocks of lengths 2+ 2 or 2 + 1 + 1. By Proposi-
tion B.10, L = SL,(9) with the natural action on R/Cg(L), and hence we get
tk([x, R/CRr(L)]) = 2 foreach x € B¥. Thus Cg(L) N [x, R] = 1 for each x € B*.
But this is impossible: from Table 5, we see that the subgroups [x, R] are precisely
the four subgroups of rank 2 in We, = E»7 that contain (a12), and hence each
element of W4 lies in at least one of them.
Case 3: Finally, assume that |[RA/A| > 9. Then RA/A =S /A =~ 3}F+2’ and
AX = A (7). From Table 5, we see that Ry = C4 (1) = Z(a12,a22) = E»7.
From the formulas in Table 5 again, we see that Z{a12) < [T, Ro] < [R, R]
and hence that Z < [R, [R, R]]. Since [R, [R, R]] < A, it does not contain X, so
no automorphism of R sends X to Z, contradicting our assumptions. |

We next show that Q¢ is normal in Cg(Z). The following lemma is a first
step towards doing this. From now on, we set @ = Qg since this subgroup plays
a central role in studying these fusion systems satisfying Hypotheses 4.1.

Lemma 4.9. Assume Hypotheses 4.1, and Notations 4.4 and 4.5, and set Q = Q.
Then

(a) Q isweakly closedin F;

(b) Q isnormalin Ny, 4)(Z);
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(©) Cr(Z) = E9gxGLy(3) and Nr(Up) = Nr(Z) = (E9 x GL2(3)) x Cy; and

(d) Z and Wy are the only proper nontrivial subspaces of A invariant under the
action of Cr (Z).

Proof. (¢) Since Z = C4(Uyp) (see Table 5), we have Ny (Up) < Np(Z). Also,
Nr(Up) = Ny (Up) = T x Eg, so the index of Np(Up) in I" divides 880. By
[23, Lemma 7.12 and Exercise 7.36], the orbits of I" acting on the projective space
P(A) have lengths 132, 220, and 12, so Z must be in an orbit of length 220, and
hence |[Np(Z)| = 3%2-96 = |N|.

Recall (Lemma 3.13) that there are two conjugacy classes of elements of or-
der 3 in I', differing by the number of Jordan blocks for their actions on A. Thus
all elements in UJ and U, are in one of the classes, while elements in Uy ~ (7))
for k € {1} are in the other. Since C4(Up) = Z while C4(Ux) = Woo by
Lemma 4.6 (b), Uy and U, are not I'-conjugate.

As noted earlier (see [24, §4]), while 4 is not isomorphic to its dual A™* as
F3 I'-modules, the pairs (I', A) and (I', A*) are isomorphic via an outer auto-
morphism « € Aut(I") ~ Inn(I"). Hence, by Table 5,

k(C4(Uo)) =1 and  1k(Cy(x(Up))) = 1k(C 4+ (Vo)) = rk(A4/[Up. A]) = 3,

so a(Up) is not I'-conjugate to Up. Since all elements of order 3 in «(Up) are
conjugate to each other, «(Up) must be I'-conjugate to Us,. Thus o exchanges the
classes of Uy and Uxo.

By the description of the action of N on A in Notation 4.4, N normalizes the
subgroup A4 of index 3 in A. So it also normalizes a subgroup of order 3 in the
dual space A*, and hence @(N) < N (X) for some X < A of order 3. The length
of the orbit of X under the action of I" divides |I" : N| = 220, so X is in the orbit
of Z by earlier remarks, and «(N) = Np(X) is I'-conjugate to Ny (Z). Thus
Nr(Z) = N = (E9 ©x GL,(3)) x C,. Since Ny acts via the identity on A /Ax,
a similar argument shows that Cr(Z) = Ny. Finally, since Uy, = O3(N) and
o(Uso) is I'-conjugate to Uy, we get that O3(Np(Z)) is I'-conjugate to Uy, so
INr (Uo)| = [Nr(@(Uso))| = [Nr(Z)|. Since Nr(Uo) < Nr(Z), they must be
equal.

(d) Since Cr(Z) has index 2 in Nr(Z) = Np(Up) by (¢), Z and Wy are
both invariant under its action on A (recall Wo/Z = C4,7(Up) by definition).
We must show that there are no other invariant subgroups.

As noted in the proof of (c), the action of Cr(Z) on A is (up to isomorphism)
dual to the action of Ng =~ E9 x GL(3) on A. Set

B=0""1{(49) |4 €GL3)}) < No.
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Then A splits as a direct sum of the three irreducible F3 B-submodules

Weo ={(§55) [a-brc e Bl {(883) [voremaf {(§38) | 2 emal.
of which only W, is Ng-invariant. Since Ng = Uy B, it now follows that the only
proper nontrivial F3/Vg-submodules are W, and A, and hence (after dualizing)
that A also has only two proper nontrivial F3Cr (Z)-submodules.

(b) Since M = A x I' is a model for Ng(A) (Lemma 4.3 (b)), it suffices to
show that Q < Ny (Z) = ANp(Z). As[Q, A] = [Up, A] = Wp < Q, where the
second equality holds by Table 5, we have A < Ny (Q). Also, Nr(Z) = N (Up)
by (c); this group normalizes Wy since Uy normalizes Wy = [Up, A], and hence
Nr(Z) also normalizes Q = UgWp.So Q < AN (Z).

(a) We first check that

0¥ na, ={0). (4.10)

Assume otherwise: assume P € Q¥ N Qg and P # Q. By Lemma 1.2, there is
¢ € Homg (Ng(P),S) suchthat o(P) = Q,and A < Ng(P) by Lemma 4.6 (c).
Then ¢(A) = A since A is weakly closed (Lemma 4.3 (a)), and ¢(Z) = Z since
Z = Z(Ng(P)) = Z(S). (Note that Ng(P) = UpA or §.) Thus it follows that
¢ € Mor(Nyg (4)(Z£)), so (Q) = Q by (b), contradicting our assumption that
P # Q.

If Q is not weakly closed, then there are R € E¢- U {S}, o € Autg(R), and
P < R by Lemma 2.8 such that R> Q, P =«a(Q) # Q, and R = Ng(P).
Then P ¢ @ by (4.10), so by Lemma 4.7 (b), there is k € {z1} such that P € Q.
By Lemma 4.6 (c) again, RN A = Ng(P) N A = A. Also, RA contains both
QA =UyAand PA =UrA,s0 RA = S and |S/R| = 3. In particular, R < §.

We next claim that

B € Autg(R), B(As) = Ax = B(Q) = 0. @.11)

Fix such a B. Since B(Ax) = Ax and A is weakly closed, |4, extends to some
B € Autg(A) = I' by Lemma 2.2 (b). Also, we have f(Z) = Z since Z = Z(R),
so B € Nr(Z) = Nr(Up) by (c), and B normalizes C4,z(Up) = Wo/Z. So it
follows that B(Wy) = Wp; hence B(Q) N Ax = B(Wp) = Wy, and B(Q) € @
by Lemma 4.7 (b) again. So S(Q) = Q by (4.10), proving (4.11).

In particular, we have a(Ax) # A« = RN A by (4.11) and since a(Q) # O,
so a(Ax) £ A, and by Lemma 4.7 (a), ®(A«) is one of the three subgroups A-
conjugate to Q. Since R < §, all three of these subgroups are in the Autg (R)-
orbit of Q. In particular, Qoo = UsocWoo < R, S0 R > UsocQ Ax = T Ay, with
equality since both have index 3 in S'.
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Suppose that Aut(},(R) < Autg (R) is the stabilizer of A.. We just saw that the
Autg (R)-orbit of A, consists of Ay together with the three subgroups conju-
gate to Qoo by elements of A. So Aut(;,- (R) has index 4 in Autg(R). By (4.11),
B(Q) = Q foreach B € Autoy (R), and hence the Autg (R)-orbit of Q has order
at most 4. Since R < S, all three members of the A -conjugacy class of P € @y
lie in this orbit. Also, the element @1 (( _(I) (1))) € Nn,(T) < M exchanges the
two classes @; and @_; and normalizes R = T Ay, so the Autg (R)-orbit of Q
has at least three members from each of these classes. Since this contradicts the
earlier observation that the orbit has at most four members, we conclude that Q is
weakly closed in . O

We are now ready to prove that @ < Cg(Z).

Lemma 4.12. Assume Hypotheses 4.1 and Notation 4.5, and again set Q = Q.
Then Q < Cg(2).

Proof. For 1 <i < j <3, let A;; < A be the subgroup of those elements rep-
resented by symmetric (3 x 3)-matrices with entries 0 except possibly in posi-
tions (7, j) and (j,7). We also set A = WyAzr = Wy Aq3 since this “triangular
shaped” subgroup appears frequently in the arguments below.

Define inductively

Z=Bo<Bl<Bz<B3<B4=B=Q
by setting B; /B;—1 = Cg/p,_,(S). Thus

Bg = A11, Bi1 = BoA12, By =Wy= B1A13,
B3 = Bx()), Bs = Q = B3z(no),

and B; < S for each i since Z and @ are normal.
Assume Q A Cg(Z). Then Q/Z A Cx(Z)/Z by Lemma 1.19 and since

Z < Z(Cg(2)). By Proposition 2.9, applied with C¢(Z)/Z and Q/Z in the
role of ¥ and A4, there are £ <2, R < §, and o € Autc,, (z)(R) such that

(1) R> Byyy,a(Bi) = Biforalli <€, and X £ a(Byyy) £ 0

(2) R = Ns(X)and R/B; = Cs/p,(X/B); and

(3) if£ =0,then R € Ec,(zyand R/Z € Ec, (z)/z-

Note, in ((3)), that R € Ec,, (z) by Lemma 1.18 together with Proposition 2.9.

We will show that this is impossible. Fix an element

feX~Q=a(Bu)~ Q.
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Thus X = By(t) (recall By < F¢). Set Rp = RN A so that Rg = N4 (X) and
Ro/By = C4,B,(X/Byg) by (2)). We claim that

(4) R # Aandhence Ry # A andt ¢ A;
(5) [t| = 3;and
(6) t ¢ NA implies R < A(t, 7).

To see these, note first thatif R > A, then a € Autg,(R) € Mor(Cyy (4)(Z))
since ¥y < C¢(Z) and A is weakly closed (Lemma 4.3 (a)). So it follows that
a(RN Q)= RN Qsince Q I Ny, (4)(Z) by Lemma 4.9 (b), contradicting the
assumption that ¢ € a(By41) ~ Q. Hence we have R # A. Also, By < A, while
X = By(t) £ Asince A # Rp = Ng(X),sot ¢ A, finishing the proof of (4)).

Since By < Q has exponent 3, so does X = «a(By41). Hence |t| = 3, prov-
ing (5).If t ¢ HA, then RA/A < Cg,4(t) = (tA,7)A), so R < A(t,7), prov-
ing (6)

Since t € § ~ A by ((4), and each element in § ~ A is S -conjugate to an el-
ement of nA for n = %! or r;,fl for k € [F3 U {oo}, we can arrange that 1 € nA4
for n € {7, Noo, No, N+1}. The proof now splits up naturally into different cases,
depending on the class A and on £. The following arguments, covering all possi-
ble pairs (t A, £), are summarized in Table 6.

t € §A: Since [7], A] = By = [no, A], [t,u] = 1 for some element u € oA, and
hence R > Ro(t, u).

e If{ =0, then Ry = A. So
o~ '(1) € By = [A,no] = [Ro.u] < [R.R],
and hence ¢ € [R, R]. This implies that R = A(t, u, v) for some v € A4, and
hence that Z(R) = Z and Z,(R) = Bi(t) = E»7.
By the above relations, we have

Z(R/By) = A(t)/By = Ex;, while Z(R/(Z(1)) = By(1)/Z(t) = C5.
Sono @ € Aut(R) sends Bj into Z(t).

e If¢ =1,then Ry = Ax = AAp3z =~ E35.Set E = a(Ax). Thent € a(By) < E,
so E =~ E35 is not contained in A, and E is A-conjugate to Qoo = Woo(n Noo)
by Lemma 47(a) Since Q Ax Qoo I S, this implies that R > Q Thus

R = O(u) = Ay (f. oo, u), and it has index 3 in S .

Let a € As3 be such that u € noa A«. The element 19 normalizes both A4 and
00 = Woo(7, n0o). Hence 1o normalizes each of the four subgroups of Q is0-
morphic to E35, while A33 normalizes A and permutes the other three transi-

tively. Since A, < R, we must have £ = «(A) < R, and this is possible only
ifa =1.Thus R = Q(no) = Ax«T.
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In particular, Q = B(#],1n0) < R, and «(Q) = Q since Q is weakly closed in
F by Lemma 4.9 (a). This contradicts the assumption that «(B3) = B (t) £ Q.

e If £ = 2,then Ryg = A, contradicting (4)).

t € noA: Since [1], A] = B2 = [no, A«], t commutes with some element u € )A.
Thus R = Rg{t,u) by (6)), where u € fAx, and [t,u] = u® = 1.

e If £ =0, then Ry = ByAs3 (recall Wy = B»). So it follows that Z(R) = Z,
and R/Z = 317% x Eg. Then

Za(R) = Ba(1) =372 x €3 and  Z(Za2(R)) = Z(Bat)) = Z A,

and so both of these are characteristic in R.

Since [423, R] < B> < Z5(R) and [A23, Z3(R)] = [A23.t] = A13 < Z(Z>2(R))
(and since [A423, Z(Z2(R))] = 1), we have R ¢ Ec, (z) by Lemma B.9, con-
tradicting ((3)).

e If £ =1, then Ry = By Az2A33 = E35. So a(t) € By < [R(), (t,u)] < [R, R],
while ¢ ¢ [R, R], a contradiction.

e If £ = 2,then Ryg = A, contradicting (4)).

t € nipA fork = oo, £1: Wehave Wy < Ry < Ainall cases. As |[t| = 3 by (5)),
we have t € g Ay, and ¢ € ni A if k = 1. This follows from Lemma A.5, to-
gether with the formulas in Table 5. So if k = +1, then [7,¢] € [, A] = Z, and
wesetu =7 € R.Ifk = oo, then [, t] € [7], Ax] = By, and [u, Ro(t)] < Z (and
hence u € R) for some u € 7A13.Inall cases, [t,u] € Z,and R = Ry (t,u) by (6).

o If £ = 0, then we have Ry = Wy, andso R € @, and R/Z =~ E,4 in all cases.
Since R/Z € Ecy (z);z by (3)), the group Autc,. (z)/z(R/Z) < GL4(3) has
a strongly embedded subgroup, and hence 03/(AutCT(Z) 1z(R/Z)) = SLy(9)
or PSL;(9) by Proposition B.10. So Auts,;z(R/Z) = Ng(R)/R = Eo: a Sy-
low 3-subgroup of (P)SL,(9).
In all cases, Ng(R) N A = Ay. If k = £1, then Ng(R) = A (t,1,no), and
so |[Ns(R)/R| =33.1f k = oo, thent € Z(R) since " (t) € By < Z(R), so
R =~ E3s and is S -conjugate to QO » by Lemma 4.7 (a). So

INs(R)/R| = [Ns (Qo0)/ Qool = 3°,
and we also get a contradiction in this case.

e If £ =1or2,then Rg = A and R = A(t,u), where u € NA13 and [t,u] € Z.
Setx = a~1(t) € Byy1 ~ By. Then it follows that Cg(x) = Cg(t), where either
Cr(t) = Ca(t)(t) = Ea7, or CA(t)(t,u) is nonabelian of order 3%. If £ = 1,
thenx € A,s0 Cr(x) > Rp = Ez1.If{ = 2,thenx € 1By C A (and x € R),
s0 Cr(x) > Wxo(x) = E3a. So this is impossible in either case. ]
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We can now determine Outg(Q). Let Sp;(3) < GL4(3) denote the group of
matrices that preserve a symplectic form up to sign. Thus Spj (3) contains Sp4(3)
with index 2.

Lemma 4.13. Assume Hypotheses 4.1 and Notation 4.5. Then

Outg (Q) = Out(Q) = Sp3(3).
Also,

Outy g (4)(Q) = Nu(Q)/Q = ANp (Up)/ WoUp
= (A/Wo) x (Ny(Up)/Up) = Ez7 x (GL2(3) x C2),

where the action of Cpr(Uo)/Up = GL2(3) on O3(Outy, (4)(Q)) = A/ Wy is
irreducible.

Proof. The model M for Ng(A) is a semidirect product of A by
I' = Autg(A) = 2Mj,

(Lemmas 4.2 and 4.3 (b)). Since Q is weakly closed in ¥ by Lemma 4.9 (a), we
have

Nm(Q) = Nu(AUp) = ANr(Uy),
where N (Up) = (E9 x GL(3)) x C, by Lemma 4.9 (¢). The description of
Outyg(4)(Q) = Nu(Q)/0Q

is now immediate, where the action of Cys(Up)/ Uy on A/ Wy is irreducible by
Lemma 4.9 (d).

Since Ng(A) < F by assumption and F = (Cg(Z), Ng(A)) by Proposi-
tion 4.8, we have Ng(Z) > Ny, (4)(Z). Since Q is F-centric by Lemma 4.7 (c)
and normal in Ng(Z) by Lemma 4.12, N¢(Z) is constrained and

Autg (Q) > Auty, (4)(Q).

Since Outy, (4)(Q) is maximal in Out(Q), we conclude that

Outg (Q) = Out(Q) = Spz(3). =

We are now ready to identify all fusion systems satisfying Hypotheses 4.1.
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Theorem 4.14. Let & be a saturated fusion system over a finite 3-group S with
a subgroup A < S such that

A=Ez s, Cs(A)=A, and 0% (Autg(A)) =~ 2M,.

Assume also that A L4 F. Then A < S, S splits over A, and F is simple and
isomorphic to the 3-fusion system of Coy.

Proof. By Lemma 4.2, Autg(A) = 2Mj5, and it acts on A as the Todd module.
By Lemma 4.3, A isnormal in S and weakly closedin &, and § = A x T, where
T € Syl3(I') is defined in Notation 4.4. So we are in the situation of Notations 4.4
and 4.5 and can use the terminology listed there. Set Q = Qg; then O < Cg(Z)
by Lemma 4.12, and this is the only subgroup of .S isomorphic to 3}i-+4 and weakly
closed in Ng(Z) by Lemma 4.7 (b).

Set G* = Coy, fix S* € Syl3(G), and let A* <1 S™* be the unique subgroup iso-
morphic to Eze. Set Z* = Cq+(S*) = Z(S*). By [18, Theorem 3.1] (see also the
discussion about the subgroup !333 on [18, p.424]), the fusion system Fg+(G*)
satisfies Hypotheses 4.1.

Let M be a model for Ng(A) (see Proposition 1.12), and set M* = Ng=(A4*).
By Lemmas 4.2 and 4.3 (b), M and M* are both semidirect products of E3c by
2M7i, acting as the Todd module, so there is an isomorphism ¢: M * = M such
that (S*) = §. Set F* = ¢(Fs+(G*)). Thus F* is a fusion system over S
isomorphic to Fg+(G*). We will show that ¥* = . By construction, we have
Ng(A) = Ng+«(A).

Set

F1=Cg(2), F2=Cg«(Z2), and & = Cpygz)(2).
Since Ng(A) = Ng+(A), & is contained in 5, as well as in 7. All three of
these are fusion systems over S, and @ is centric and normal in each of them
by Lemmas 4.7 (c) and 4.12. Also, Outg, (Q) = Outg, (Q) = Sp,(3) since they
have index 2 in Outg (Q) and Outg = (Q), respectively, where
Outg (@) = Outg«(Q) = Out(Q)
by Lemma 4.13.
By Lemma 4.13,

Outyg (4)(Q) = Auty (Q) X (Nr(Z)/Up) = Ez7 % (GL2(3) x (2),
where the action of Cr(Z)/ Uy = GL,(3) on Aut4 (Q) = A/ W is irreducible.
In particular, Outg (Q) has no normal subgroup of index 3, and hence

H' (Outg(Q): Z(Q)) = Hom(E27 % GL2(3). Z/3) = 0.
So ¥1 = ¥, by Proposition 2.11.
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Thus
Cg(Z)=Cg+(Z) and Ng(A) = Ng«(A).

Since ¥ = (C#(Z), Ng(A)) by Proposition 4.8 again, and similarly for *, we
have & = F*.

The 3-fusion system of Co; was shown to be simple by Aschbacher [5, 16.10]
(see also [36, Theorem Al). O

5 Todd modules for My and M,

We now look at Todd modules for the Mathieu groups M1; and M;¢. More gen-
erally, rather than looking only at M¢-representations, we work with representa-
tions of extensions of 03/(M 10) = Ag. We want to determine all saturated fusion
systems over finite 3-groups which involve these modules. Throughout the section,
we refer to the following hypotheses.

Hypotheses 5.1. Set p = 3. Let ¥ be a saturated fusion system over a finite 3-
group S, and let A < § be an elementary abelian subgroup such that Cg (A) = A.
Set I' = Autg(A), I'y = 03/(1"), and assume that one of the following holds:

(1) rk(A) = 4 and I'p = Ag; or
(ii)) rk(A) = 5and I'p = My;.

We will see in Lemma 5.4 that A is weakly closed in & under these assump-
tions.

The irreducible '3 Ag- and [F3 M11-modules are, of course, very well known. In
particular, there are only three modules that we need to consider.

Lemma 5.2. There are exactly one isomorphism class of faithful 4-dimensional
3 Ag-modules, and exactly two isomorphism classes of faithful 5-dimensional
3 M1 1-modules. All of these modules are absolutely irreducible.

Proof. We refer for simplicity to [27, p.[4]] for the table of characters of Ag in
characteristic 3: there are none of degree 2, two of degree 3 which are not realized
as [F3 Ag-modules (since GL3(3) has order prime to 5), and one of degree 4 which
is realized (as the natural module for Ag). This proves the claim for F3 A¢-modules.

By [26, § 7A], there are exactly two isomorphism classes of irreducible 5-
dimensional F3 M ;-modules, one the dual of the other. In both cases, these are the
smallest degrees of nontrivial Brauer characters. It is well known that they can be
realized as [F3 M11-modules; we give one explicit construction in Lemma 3.18 (b)
and (¢). O
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Note. Of the two distinct 5-dimensional [F3 M;1-modules, what we call the “Todd
module” is the one that has a set of eleven 1-dimensional subspaces permuted
by Mi;. That one of the modules has this form is clear by the construction in
Notation 3.15.

As noted in the proof of Lemma 5.2, the 4-dimensional F3 Ag-module is the nat-
ural module for Ag: a subquotient of the 6-dimensional permutation module. How-
ever, for our constructions here (e.g., when we want to extend it to an Fz Aut(Ag)-
module), it will be easier to work with it as a quotient module of the Todd module
for 2M, described in Section 4.

5.1 Preliminary results

The main goal in this subsection is to show that ¥ = (C¢(Z), Ng(A)) whenever
Hypotheses 5.1 hold (Proposition 5.7). But we first describe more explicitly how
the notation of Section 3.2 is used in the situation of Hypotheses 5.1. Recall that
T e Sy13(]\714) by Lemma 3.16.

Notation 5.3. Assume Hypotheses 5.1 and Notation 3.15 as well as the notation in
Lemma 3.18. Identify I'g with AAJ? = 03/(1‘24) for £ = 10 or 11 in such a way
that T = Autg(A), and identify A with A or (in the M, -case) with AD”.
Thus Z = Z(S) = C4(T). Finally, set A« =[S, 4] = [T, A].

For later reference, we collect in Table 7 some easy computations involving
some of the subgroups of A and I" defined above.
The next lemma gives a first easy consequence of the computations in Table 7.

Lemma 5.4. Assume that A < S and ¥ satisfy Hypotheses 5.1. Then A is weakly
closed in ¥ and in particular is normal in S.

Proof. By Lemma 5.2, A is one of the F3 I'g-modules described in Lemma 3.18.
From that lemma and Table 7, we see that, in all of these cases, Ng(4)/A = Eo,
|C4(x)] = 9foreachx € Ng(A)~ A,and |A : C4(Ns(A))| > 33.So A is the
unique abelian subgroup of index 9in Ng(A), and hence by Lemma 2.1 is weakly
closed in ¥. O

The following properties will also be needed.

Lemma 5.5. Assume Hypotheses 5.1 and Notation 5.3.

(a) Inthe Ag- and My1-cases, for x € S ~ A and a € A, we have (ax)® = x3 if

and only ifa € As. Inall cases, x € S ~ A and a € Ay implies (ax)® = x3.

(b) Inall cases, if A 4 F, then [S,S] = Ax.
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Ag-case
A IF:; X Fg X IF?,
[s, [a, b, c]] [0, —ax, Tr(bx)—aN(x)]
Ay = [T, A] 0 x Fg x [F3
[s. A] {[0.ax.c] | a.c € F3}

Cq(T)=2(S) 0x0xI;
Ca(s) = Z(A(s)) {[0.b.c] | Te(bX) = 0}
Jd. bl. 1th. of ¢, 3+1

M1-case M -case
A F3 x Fg x Fg Fg x Fg x IF3
[s, [a, b, c]] [0, —ax,bx + axz]} [0, —ax, Tr(bx + axz)]]
Ax = [T, A] 0 x Fg x [Fg 0xFg x IF3
[s, A] {[0,ax,c] |a € F3, c € Fg} 0xTFg xF3
Ca(T)=2(5) 0x0x g 0x0xIF;
Ca(s) =Z(A(s)) 0x0xTFg {[0,b,c] | Tr(bx) = 0}
Jd. bl. Ith. of ¢; 342 342

Table 7. In all cases, s € § ~ A, and x € Fy is such that ¢ = ((x)) € T. The last
line gives the Jordan block lengths for the action of s on A.

Proof. (a) By Lemma A.5, fora € A and x € S ~ A, x3 = (ax)? if and only if
[x,[x,a]] = 1,ie. if [x,a] € C4(x). By Table 7, this holds if and only if a € A4
in the Ag- and M;-cases, while [x, A«] = Z < C4(x) in the M| -case.

(b) Assume otherwise: assume [S, S| > A« =[S, A]. Then, since S /A =~ Eg
in all cases, [S, S] contains A, with index 3.

Assume we are in the M -case. Thus |4 /A«| = 9 by Table 7, and hence we
have A« < [S,S] < A. By Lemma 3.16, there is an element —[i] € Np (T),
and this extends to o € Autg(S) by the extension axiom. By the formulas in
Lemma 3.18 (¢), no subgroup of index 3 in A and containing A is normalized
by «. In particular, «([S, S]) # [S, S], which is impossible.

Now assume we are in the Ag- or Myj-case. Then |A/A«| = 3 by Table 7
again, so [S,S] = A, and S /A« is nonabelian of order 27. Let x € § ~ A and
y € § ~ A(x) be arbitrary. Then § = A (x, y) and [x, y] € A ~ A. So we have
x3 # (Px)3 = Y(x3) by (a). In particular, x3 # 1, and since x was arbitrary, no
element of S ~ A has order 3.
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Assume R € Eg. Then we have that A N R = £21(R) is characteristic in R.
Foreacha € Ng4(R) ~ R, we have [a, R] < RN A and [a, RN A] = 1, contra-
dicting Lemma B.9. Thus N4 (R) < R,s0 Ng4r(R) = R,and hence A < R.Thus
each ¥ -essential subgroup contains A, contradicting the assumption that A 4 F.

O
In Notation 5.3, we identified 0% (I') = 0% (M) (for £ = 10 or 11). In fact,
this extends to an inclusion I' < M.

Lemma 5.6. Assume Hypotheses 5.1 and Notation 5.3. Then for £ =10, 11, we

have N = Ny w, (T), and this is a maximal subgroup of M ¢. Also, as subgroups
of Aut(A), we have

© M1o = Naway(To) > T if Ty = MYy = As; and
© M11 = Naway(To) > T if Ty = MY, = M.
Proof. For{ = 10,11,
N® = Nn My = Nyz,,(T) N My = Njz,(T),

where the second equality holds by Lemma 3.7. The maximality of N ® in M )
is well known in both cases, but we note the following very simple argument. If
N® is not maximal in M. ¢, then smce it has index 10 or 55 when £ = 10 or 11,
respectively, there is N® <« H < Mg, where [H : N(e)] =nforn € {2,5 11}.
But then H has exactly n Sylow 3-subgroups where n = 2 (mod 3), contradicting
the Sylow theorems.

Now let £ € {10, 11} be such that 'y = M 9 Since A is absolutely irreducible
as an ]F3M -module by Lemma 5.2, we have C ‘Aut( A)(M ) = {£Id}, and hence

|M¢/ M| < |Naucay(MQ)/Mg| < 2 |0ut(MP)].
These inequalities are equalities by Table 3 and since
|Out(A4g)] =4 and |Out(M;1)| =1,
SO]\//Ie =NAu[(A)(1\7I?)zI‘. |

We can now begin to apply some of the lemmas in Section 2.

Proposition 5.7. Assume Hypotheses 5.1 and Notation 5.3. Then
F =(Cg(Z),Ng(A)).

Proof. Assume otherwise, and recall that A < § by Lemma 5.4. By Proposi-
tion 2.3, there are subgroups X € Z ¥ and R € Eg such that

X#£A, R=Cs(X)=Ns(X), Z =oa(X)forsomewa € Autg(R).
Set R = RN A.
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Fix x € X ~ A. Then |x| = 3 since x € X = Z and Z < A has exponent 3.
Also, Rg = C4(X) = C4(x): since either |X| = |Z| = 3 and hence X = (x),
or else we are in the Mj1-case and C4(x) = Z = C4(S). Since x acts on A4 in
all cases with two Jordan blocks (Table 7), we have |Ro| = |C 4 (x)| = 9.

Case I: Assume first that |[RA/A| = 3. Then R = Ry(x), and hence |R| = 27.
If we are in the Ag-case, then each member of the S -conjugacy class of R has
the form C4(y)(y) = Ro{y) for some y € xA, and y € xA, by Lemma 5.5 (a)
and since y3 = 1 = x3. Since C4(x) has index 3 in A, there are at most three
such subgroups, so |[Ns(R)/R| > %[S : R] = 9, contradicting Lemma B.6 (b).
In the M- and M7 -cases, [INrq4(R)/R| = |C4/R,(x)| = 9 since x acts on
A with Jordan blocks of length 3 and 2 (Table 7). Thus |Outy (R)| = 9. Since
Out4 (R) acts trivially on Ry, and |R/Ro| = 3, this contradicts Lemma B.7.

Case 2: Now assume that |[RA/A| =~ Eg. Thus RA = § and |R| = 81.
Assume first we are in the Ag- or M 1*1 -case. Then

|Z| =3 and Z = C4(R) < C4q(x).

So there are y € R~ A{x) and a € C4(x) ~ C4(R) such that 1 # [y,a] € Z,
and hence Z < [R,C4(x)] <[R, R]. Since X £ [R, R], no automorphism of R
sends X to Z.

Now assume we are in the Myj-case. Then Rg = Z and Ng(R) = RAx, so
INS(R)/R| = |Ax/Z| =9, and hence R = Eg; by Lemma B.6 (b). Each ele-
ment of order 3 in Autg(R) acts on R with Jordan blocks of length at most 2,
so by Proposition B.10, 0¥ (Autg (R)) = SL,(9) with the natural action on R.
Also, each element of order 8 in No3¥ (auts(R))(Autg (R)) restricts to an element
o € Autg(Z) of order 8 (note that Z = [Ng(R), R]), and this in turn extends
to some 8 € Autg(S) and hence to B|4 € Autg(A4) since A is weakly closed
in ¥ by Lemma 5.4. But M{)l < Autg(A) < Mi1 = My1 x Cy by Lemma 5.6,
so [Fg'(¢) or its product with {£Id} is a Sylow 2-subgroup of Autg(A4), and by
Lemma 3.18 (b), the subgroups of order 8 in these groups do not act faithfully
on Z. So this case is impossible. o

5.2 The subgroup Q < Cg(Z)

So far, we have shown that ¥ = (Ng(A), C#(Z)) in all cases where Hypothe-
ses 5.1 hold. Our next step in studying these fusion systems is to prove that Cg (Z)
is constrained by constructing a normal centric subgroup Q@ < C¢(Z), and prov-
ing (as one consequence) that .§ splits over 4.

Proposition 5.8. Assume Hypotheses 5.1 where A L4 F. Then there is a unique
special subgroup Q < S of exponent 3 such that Z(Q) = Z, Q N A = Ay, and
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Q/Z = Egy, and Ecy (z) = {Q}. In particular, Q 1 Cg(Z), and Q is weakly
closedin ¥ and ¥ -centric.

Proof. Assume Notation 5.3. Define
Q={0<S8|0NA=A,, Q/Z abelian of order 3%},
Qo = {0 € @ | Q of exponent 3}.

Recall that [S, S] = A« by Lemma 5.5 (b). Also, S /A« is elementary abelian by
Lemma A.1 (a), applied to the group S /Z with center A/ Z.
We will prove that

Ecp(z) € Qo and [Qof < 1. (5.9)

Since ¥ = (Cg(Z), Ng(A)) by Proposition 5.7, and since ¥ # Ng(A) (recall
A A F by assumption), Ec (z) # . So (5.9) implies that EC}.(Z) Qo has
order 1, and for Q € @Qp, Q < Cx(Z) and Q is weakly closed in . By con-
struction, Cs (Q) = Cs(T) = Z, so Q is also ¥ -centric.

It thus remains to prove (5.9). Set § = S§/Z and similarly for subgroups and
elements of S. In all cases, Z(S) = Ax = Eo.

Let p: Q/Ax — Z be the homomorphism of Lemma A.1(b) that sends gA«

to g3. (Note that p is defined on O = Q/Z in the lemma, but factors through
Q/Ax since Ay is elementary abelian.)
Ag- and Myy-cases: Here, |[A/A«| = 3, so |@o| < |@| = 1 by Lemma A.1 (c),
applied with S and A in the role of S and Z. Let Q € @ be the unique element.
Then Ecy.(z)/z € {Q} by [32, Lemma 2.3 (a)] and since Q is the unique abelian
subgroup of index 3 in S, and so Ec,(z) € {Q} by Lemma 1.18.

Since Q is the only member of @, it is normalized by Autg (S). By Table 3,
the element

Bo = —[i]e NAO n 1\2?0 < Autg(A) inthe Ag-case,
o~ —[¢(] e NAD Mfl < Autg(A) inthe Myi-case

normalizes Autg (A ) and hence extends to some 8 € Autg (S ). Also, by construc-
tion of N1 = yAD, B permutes the cosets gA« for g € Q@ ~ A, (in two orbits
of length 4 in the Ag-case, or one orbit of length 8 in the M;-case), and p is
constant on each of these orbits.

In the Ag-case, where |Z| = 3, this implies that p = 1 and hence Q € Q.
In the Mii-case, where |Z| = 9, it implies that either Q € @y, or all elements
of @ ~ A, have order 9 and hence A, is characteristic in Q. But in that case,
0 ¢ Ec,(z) by Lemma B.9 since, for a € A ~ A, we have [a, Q] < A« and
[a, Ax] = 1. We conclude that Ec,. (z) € @ in either case, finishing the proof
of (5.9).
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M, -case: Now, |A/Ax| = 9. Assume R € Ec (7). Then
R>Z7Z and I? € ch(z)/z

by Lemma 1.18, and hence R > Z(S) = A. If R is not abelian, then Z(R) = A,
so Ay is characteristic in R, contradicting Lemma B.9 since [x, R] < A4 and
[x, A4] = 1 for each x € S ~ R. Thus R is abelian, and is maximal abelian since
itis ¥ /Z-centric. So R € @ U{A} by Lemma A.1(d),and Ec,(z) € @ U{A}.

As NAD ~ (E9 x 8D16) x C5 is a maximal subgroup of ]\211 by Lemma 5.6
and normalizes Z by Lemma 3.18 (c), we see that Auty . (z)(A) = Caugy(a)(Z)
has index 2 in N D and hence contains T as a normal subgroup. So A ¢ Ec,, (7).
and Ecj,(z) caQ.

Assume R is not of exponent 3, and set Rg = £21(R). Then Ry has index 3 in R
by Lemma A.1(b), so Ro/Z(Ro) = Eg, where Z(Rg) < Ax. Since |A/Ax| =9
and 9 t |Aut(Ro/Z(Ry))|, thereis x € A ~ A, such that [x, Rg] < Z(Rp). Also,
[x,R] < Ax < Ry and [x, Z(Rp)] = 1, and by Lemma B.9, this contradicts the
assumption that R € Ec, (7). Thus Ec. (z) € Qo.

It remains to show that |Q¢| < 1. Assume otherwise: assume Q1 and Q, are
both in Q. Define ¥: S /A4 — A /A4 by setting, foreach g4 € S /A,

Y(gA) = (AN Q1) (AN Q2) € A/Ax.
(Note that g4 N Q; € S /A« fori = 1,2.) Since

(g1)’ =1=(g2)® forgi egAnQ;,

and g» € g1V (gA), we have [g,[g, ¥ (gA)]] = 1 by Lemma A.5. Using the for-
mulas in Lemma 3.18 (c), we identify S /A and A /A, with Fg, and through that
identify 1 with an additive homomorphism : Fg — Fg such that

0 = [(0). [(x). [¥(x), 0,0]]] = [0,0. Tr(x?y (x))]

for each x € Fo. Thus x2v/(x) € iF3, and

N iFs ifx = =+1,+i,
(x) e | \
Fsz ifx = ¢, +£°.
Hence ¥ is not onto, and either ¥ (1) = ¥ (i) = 0 or V() = ¥(¢3) = 0. This
proves that ¥ = 0 and hence Q1 = Q», and finishes the proof of (5.9). o

We list some of the properties of these subgroups @ < . in Table 8 for easy ref-
erence. They follow immediately from the descriptions in Lemma 3.18 and Propo-
sition 5.8.

One easy consequence of Proposition 5.8 isthat § =~ 4 x T.
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o= 1k(4) rk(Z) |S| Q= |[Outs(Q)]

Ag-case  Ag 4 1 3¢ 3t 3

Myj-case My, 5 2 37 324 3

M} -case My 5 1 37 3l 9
Table 8

Corollary 5.10. Assume Hypotheses 5.1 where A 4 ¥, and let M be a model for
Ng (A) (see Proposition 1.12). Then S and M split over A.

Proof. Let Q@ < § be the special subgroup of exponent 3 of Proposition 5.8. To
prove that S splits over A, it suffices to show that Q splits over Q N A = A,.
If |Z| = 9 (i.e., in the M11-case), then we are in the situation of Lemma A.1 (d),
so there is B < @ abelian of index 9 such that B N A, = Z, and any complement
in B to Z is a splitting of Q over As.

If |Z| = 3, then consider the space @ = Q/Z, with symplectic form b defined
by b(xZ,yZ) = o([x, y]) for some 0:Z 5 Fs. Following the standard proce-
dure for constructing a symplectic basis for Q, we fix a basis {a1, a2} for A4/Z,
choose b; € Q ~ af-, and choose b, € (al,bl)l ~ (a3). Then {ay, b1, az,bs} is
a basis for Q, and (b1, b,) < Q is totally isotropic and lifts to a splitting of Q
over As.

Since S splits over A, it follows from Gaschiitz’s theorem (see [3, (10.4)]) that
M also splits over A. O

Recall that, for £ = 10,11, we set T = O3 (N(e)) = Eo, a Sylow 3-subgroup
of Mg, and set M? = 0% (Mg) Also, I' was chosen so that I'g = M0 (see
Notation 5.3), and then I' < Mg by Lemma 5.6.

Notation 5.11. Assume Hypotheses 5.1 and Notations 3.15 and 5.3. Let M be
a model for Ng(A), and set Mo = O% (M). Then M splits over A by Corol-
lary 5.10, and we identify

M=AxT<AxMy and My=AxTg=AxM,

where £ = 10if I'g =~ Ag and{ = 11if 'y = M11. Thus S = A x T € Syl3(M)
and Q = A, xT < 8.

One easily sees that Q is special with Z(Q) = Z and Q/Z =~ Eg;. Also, O
has exponent 3 by Lemma 5.5 (a) and hence is the subgroup described in Proposi-
tion 5.8. In particular, @ < Cz(Z), and Ec, (z) = {Q}.
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Recall Notation 3.15 and Lemma 3.16: T = {((x)) | x € Fy}, and
NAD = NUD = (). [u]. [¢]. ~1d | x € Fo, u € Fy)
= (E9 X SDlG) X {:l:Id}

Lemma 5.12. Assume Hypotheses 5.1 and Notation 5.11, and also that A 4 F .
Then conditions (1)—(iii) in Hypotheses 2.12 hold for ¥, S, A, and Q.

Proof. Since M is a model for Ng(A), we have
S eSyls(M) and M/A =T = Autg(A).

Each pair of distinct Sylow 3-subgroups of I'g = 03/(1" ) = Ag or M intersects
trivially. Hence, for each subgroup R suchthat A < R < §, § is the unique Sylow
3-subgroup of M that contains R. So 1 # Outg (R) < Outyps(R) = Outg(R),
and hence Outg (R) = Outy, (4)(R) does not have a strongly 3-embedded sub-
group. Thus no such R can be Ng (A )-essential, proving that Ey . 4) € {4}.

By Proposition 5.7, ¥ = (Ng(A),Cs(Z)). Hence Eg C En, (4) UEc, (2)
by Proposition 1.6, while Ec,, (z) € {Q} by Proposition 5.8. So E¢g C {4, Q}.
Also, A € Eg by Lemma B.1 and since I'p = 0% (Autg(A)) = Ag or M1 and
hence has a strongly embedded subgroup, and Q € Eg since otherwise A would
be normal in . Thus E¢ = {A, @}, proving Hypothesis 2.12 (i).

Recall that Q = AxT.SoS = AQ.,and Cs(Q N A) = Cg(Ax) = A by the
relations in Lemma 3.18. This proves Hypothesis 2.12 (ii).

By Lemma 5.2, A is absolutely irreducible as an [F3 I'g-module, where

Iy = 0% (Autg(A))

as earlier. Thus the centralizer in Aut(A4) of Iy is {£Id}. Since Out(A4¢) and
Out(M;1) are 2-groups,

Nau(a) (07 (Autg (4)))/ 07 (Autg (4))
is also a 2-group, and so Hypothesis 2.12 (iii) holds. |

The following notation for elements in Q will be useful.

Notation 5.13. For a, b € g, and z € Fg (in the M;1-case) or z € [F3 (in the Ag-
or M, -case), set

{(a.b.z)) = [0.a.2](b) € AT = Q.

Thus each element of Q is represented by a unique triple {(a, b, z)) fora, b € Fy
and z € F3 or Fy. We sometimes write ((a, b, *)) € Q/Z to denote the class of
{a, b, z)) for arbitrary z.



480 B. Oliver

Ag-case

u(b, c) = Tr(be)
[0 g b, 2)) (a—br.b,z +rN(b))
M a, b, z)) ((ua,ub, N(u)z))
[#1a, b, z)) (@, b,z))
Mfa.b.z) ((—a,b,—z))

M;1-case M| -case

u(b,c) =bc (b, c) = =Tr(bc)
[000 (a, b, z)) {(a —br.b.z +rb?)) {(a + br.b,z + Tr(rb?)))
M, b, 2)) (ua,ub,u?z)) (uYa,ub, z))
[#1a. b, z)) (@.b,7) (@.b,z)
_Id«a7b72» ((—a,b,—z)) ((_CZ?bv_Z»

Table 9. Here, a,b,c,d € Fo and u € Fg in all cases, z, y € F3 in the A¢- and
M -cases, and z, y € Fg in the M;;-case. Also, r € I3 in the A¢- and M -cases,
and r € Fo in the M| -case. In all cases, (b, ¢) is such that ((a, b, z)) - ((c.d, y)) =
{a+c,b+d,z+y+ ub,c)).

We list in Table 9 some of the relations among such triples: all of these are
immediate consequences of the definition in Notation 5.13 and the relations in
Lemma 3.18.

The next two lemmas give more information about Out(Q) and Outg (Q). We
start with the case where I'g =~ Ag.

Lemma 5.14. Assume Hypotheses 5.1, and Notations 5.3 and 5.11, with I'y = As.
Thus My = A x Mi)o = Eg1 X Ae. Then each a € Npy(g)(Auts (Q)) extends
to some o € Aut(My).

Proof. Since NA® — Np1,,(T) by Lemma 5.6, we have
Nag(S) = A x (NI N MY = S(B), where g = —[i] e NIV (5.15)
by Lemma 3.16, and § acts on S via
P(la.b.c](x)) = [-a.—ib. —c](ix). (5.16)
For calculations in Out(Q), we use Notation 5.13, and the ordered basis

B = {({1,0.%). (i, 0. %)), {0, 1. %)), (0.7, %))}
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for Q/Z. With respect to B, the symplectic form b defined by commutators has
matrix i( _‘I) (I) ) and conjugation by [1, 0, 0] (a generator of Outg (Q)) has matrix
(5 1) by Table 9.

We identify Out(Q) with Aut(Q/Z, £b): the group of automorphisms of Q@ /Z
that preserve b up to sign. We have

Nauw(g/z)(Outs (Q)) = NGL4(3)((( D)
={(4 £,) | A€ GL(3). X € My(F3)},

and hence

Nouw(g)(Outs (Q))
(). (49 (4 9) | A.X € MalFa), X = X', Ad" = 1)
={(67) (69D [X=x"ae{(11)(6-))
~ FEr7 X (SD16 X Cz). 5.17)

Here, each element of the form (61 " A) in Noy (@) (Outg (Q)) is conjugation by

some element of N 19 and hence extends to an automorphism of My.

It remains to prove the lemma for automorphisms of the form (} %) when

X = X'. Define a1, a3, a3 € Aut(S) as follows. In each case, a;|4 = Id, and
w;j: T — A issuchthat o;(g) = w;(g)g forallg e T,

ar(fa.b.c](x)) =[a.b +x.c + Nx)[(x)).
w1((x) = [0.x, N(x)].
az([a, b, c](x)) = [a.b + %, ¢ = Tr(x*)](x).
w2((x) = [0.7, =Tr(x?)].
a3(fa.b.c](x) = [a.b +iX, ¢ + Te(ix*)](x),
03((x0) = [0.i%, Tr(ix?)].
Each of the ¢; is seen to be an automorphism of .S by checking the cocycle con-
dition
0 (x + y)) = 0; () + Qo ()

on w;. (Note the relation N(x + y) = (x + y)(X + y) = N(x) + N(y) + Tr(xy).)
The class of @;j|g as an automorphism of Q/Z has matrix (4 %) for X =1,
(3_9),0r (93), respectively, and thus the classes [«;|g] generate

O3(Now(g)(Outs (Q)))
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by (5.17). Since «y is conjugation by [1, 0, 0], it extends to My. Fori = 2, 3, the
automorphism o; extends to § () since [a;, cg] = 1in Aut(S): this follows upon
checking the relation Aw; ((x))) = w; ((Bx))) using (5.16).

Recall that I'y = 1\711)0 =~ Ae. Then Nr (T) = T (B) (see (5.15)), and the co-
homology elements [w1], [w2], [w3] € H'(T; A) are all stable under the action
of B. Since T € Syl3(lp) is abelian, fusion in I'g = A¢ among subgroups of T
is controlled by Nr,(T) = T (B), and hence the [w;] are stable under all fusion
in I'g. So they are restrictions of elements of H!(I'y; A) by the stable elements
theorem (see [14, Theorem XII.10.1] or [13, Theorem III.10.3]), and each «; ex-

tends to an automorphism a; of My = A x Iy that is the identity on A. O

The next lemma is needed to handle the cases where I'g =~ M.
Lemma 5.18. Assume Hypotheses 5.1 and Notation 5.11, where I'g =~ M. Let
0 < S be as in Proposition 5.8, set A = Outg (Q) and Ag = 0% (A).

(a) If we are in the M1y-case (i.e., if |Z(S)| = 9), then there is ¥ € Autg(S)
of order 2 that acts on Q/Z via (x — x~1). For each such y, if we set
y = [Vlo] € Outg (Q), then

A < Cow()(y) = I'L2(9).

If, furthermore, 1 # Uy < U € Syl3(Cou(@)(y)), and if § € Cou(g)(y) has
2-power order and acts on U by (x +— x~V), then for H = 2A4 or H = 2A4s,
there is a unique subgroup X < Coyu(@)(y) isomorphic to H, containing Uy,
and normalized by €.

(b) If we are in the M{|-case (i.e., if | Z(S)| = 3), then there is y € Autg(S) of
order 4 such that [y|g] € Outg(Q) centralizes Outs (Q). For each such y,

Ao = 0% (Coup)(Pl)) = SL2(9).
Proof. Recall that M = A x I is a model for Ng(A), and
My = 0% (M) = A x I.
(a) Assume we are in the Mj-case. By Lemma 3.16 and Table 9, the element
1]e N M <m

acts on Q/Z via (x — x71). Set y = C[-1] € Autg(S); thus y has order 2 and
inverts Q/Z.

Now let ¥ € Autg (S) be an arbitrary element of order 2 that acts on Q/Z via
(x = x71), and set y = [V]|g] € A = Outg (Q). As Q = UT5(9) by the relations
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in Lemma 3.18 (b), we can apply Lemma A.2 to the group Outg(Q) < Out(Q).
By Lemma A.2(a), (c), and since y € A has order 2 and inverts all elements of
Q/Z, we have Coy()(y) = I'L2(9). By the same lemma and since O3(A) = 1,
A is sent isomorphically into Aut(Q/Z); hence (since y is sentto Z(Aut(Q/Z)))
we have y € Z(A). So A < Cou(g)(¥)-

Now fix subgroups

1 # Up < U € Syl3(Cow(g)(¥)).

and an element § € Cpy(@)(y) of 2-power order that acts on U by (x x~1).In
particular, |U| = 9 and |Up| = 3. Since 03/(C0ut(Q)(y)) >~ SL,(9) = 2 A, there
is a surjective homomorphism W: 03/(C0ut(Q)()/)) — Ag with kernel of order 2
such that W (Up) is generated by a 3-cycle. (Recall that A¢ has an outer automor-
phism that exchanges the two classes of elements of order 3.) Also, ¢g induces
(via W) an automorphism &’ of Ag. Since £’ has 2-power order and inverts all ele-
ments in W(U), it must be inner, and conjugation by a product of two disjoint trans-
positions. So there is a unique subgroup X < Ag that contains W(Up), is normal-
ized by &', and is isomorphic to H/Z(H) (i.e., to A4 or As). Thus X = U~1(X)
is the unique subgroup satisfying the corresponding conditions in Out(Q).

(b) Assume we are in the M| -case. By Lemma 5.6 (and Notation 5.3),

M, =Ty <T < My,
where [1\7111 : ]\711)1] = 2 by Table 3. By Table 3 and Lemma 5.6,
Nt (T)/T = NAD/T =~ 5D x Cy,

and hence this group has two subgroups of order 8, generated by [¢] and —[], of
which only the subgroup (—[¢]) lies in I'g. By Table 9, these elements acton Q/Z
as follows:

Ea, b, x) = (¢ a.¢b*) and “Ela,b, %) = (3a.gb.%).  (5.19)

By comparing characteristic polynomials or traces for the actions of the ¢/ on Fo,
we see that Q/Z splits as a sum of two nonisomorphic irreducible F3 Cg-modules
under the action of ([{]), while the two summands under the action of (—[{]) are
isomorphic.

Set U = Outg (Q) = Out4(Q) € Sylz(A). Since U = Ey and all elements of
order 3 in U are in class 3C or 3D (see Table 9), we have

Ag =246 = SL2(9)
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by Lemma A.4. In particular, there is an element yg € Na,(U) of order 8 that
acts on Q/Z, as an F3Cg-module, with two irreducible summands not isomor-
phic to each other. By the extension axiom, Yo extends to yp € Autg(S), and
Yola € Nr(T) has order 8. By comparison with the formulas in (5.19), we see
that Y| 4 must be conjugate to [¢] and hence does not lie in I'g. Thus I > Iy,
and hence I' = Mll =~ Mi; x Ca. So c‘_q[l.] € Autg (S), it has order 4 and acts
on A by =[] [r,s,t] = [r,is,—t] (see Lemma 3.18 (c)) and hence centralizes

U =Outs(Q) = A/A,.

Now let y € Autg (S) be an arbitrary automorphism of order 4 that centralizes
U = Outg (Q). Since Aut(Ag) = Aut(24¢) = Aut(Ag), where Out(Ag) = Ej4,
and since each outer automorphism of XY¢ exchanges 3-cycles with products of
disjoint 3-cycles, we have Cpy(ao)(U) = Cx(V) = V for V' € Syl3(Xs). Since
Ylo € A acts on Ag and centralizes U (and since y has order prime to 3), we
conclude that c$ © =1da, and hence Ay < Cou(@)(¥)-

From the list in [20] of subgroups of PSp,(3), we see that Ag = SL,(9) = 246
has index 2 in a maximal subgroup of Sp,(3) and hence index 4 in a maximal
subgroup of Out(Q) = Sp;(3). So Ag = 03/(C0ut(Q)()7))- |

5.3 Fusion systems involving the Todd modules for M1g and M1y

We are now ready to state and prove our main theorem on fusion systems satisfying
Hypotheses 5.1.

Theorem 5.20. Let ¥ be a saturated fusion system over a finite 3-group S, with
a subgroup A < S. Set Ty = 0% (Autg(A)), and assume that either

(i) A = Ejaand I'g = As; or
(i) A = E35 and 'y = Mq;.

Assume also that A 4 F.Then A < S, S splits over A, F is almost simple, and
either

(a) I'p = A and 03/(37) is isomorphic to the 3-fusion system of one of the
groups Uq(3), Ug(2), McL, or Coy; or

(b) Ty = My1, |Z(S)| = 9, and O3 (F) is isomorphic to the 3-fusion system of
Suz or Ly, or

(¢) T'y = My, |Z(S)| = 3, and F is isomorphic to the 3-fusion system of Cos.

(Note that (a), (b), and (c) correspond to the Ag-, M-, and M 1*1 -cases, respec-
tively.)
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Fo A6 Mll

A() 2A4 2A5 (Qg X Qg) Dl C3 21_+4.A5 2A4 2A5 2A6

G* U4(3) McL U6 (2) Coy Suz Ly Cos
Table 10

Proof. By Lemma 5.4, A < §, and itis weakly closed in . By the same lemma,
A is the unique 4-dimensional IF3 Ag-module if I'g = Ag, and A is the Todd mod-
ule or its dual if I'g = My;. Also, S splits over A by Corollary 5.10 and since
A 4 F. So we are in the situation of Notations 5.3 and 5.11 and can use the
terminology listed there.

By Proposition 5.8, there is a unique special subgroup Q@ < S of exponent 3
such that

Z(Q)=Z=2(S), ONA=A,, and Q/Z = Eg.

Also, Ecg(z) = {Q},50 Q < Cx(Z). Set
I = Autg(A4), A = Outg(0).
To= 03I, Ay=0%()

for short.

If |Z| =3 (i.e., if we are in the Ag- or M|, -case), then Q = 3£r+4, and by
Table 8, Outg (Q) =~ §/Q has order 3 (if I'g = Ag) or 9 (if I'g = My;). Also,
all elements of order 3 in Iy act on Q/Z with two Jordan blocks of length 2
(see Table 9), and hence they have class 3C or 3D in 03/(Out(Q)) =~ Sp,s(3) by
Lemma A.3. So, by Lemma A.4, Ag is isomorphic to 244, 245, (Qg x Qg) % C3,
or 214 As if Iy = Ae, while Ag == 24¢ if Ty = My;.

If |Z] =9, then I'g = M;; and A is its Todd module. Also, Q =~ UT3(9)
by the relations in Lemma 3.18 (b). So Aut(Q)/O03(Aut(Q)) = I'L,(9) by Lem-
ma A.2(a), (b). Since O3(Ag) = 1 (recall that Q@ € Eg and hence Out(Q) has
a strongly 3-embedded subgroup), Ag is isomorphic to a subgroup of SL>(9). The
subgroups of SL,(9) are well known, and since Outg (Q) = S/ Q has order 3, we
have Ag = 244 or 2A4s.

Thus, in all cases, (I'g, Ag) is one of the pairs listed in the first two rows of
Table 10. Let G* be the finite simple group listed in the table corresponding to
the pair (Iy, Ap), and fix S* € Syl3(G*). If G* == U4(3), then it has maximal
parabolic subgroups of the form Eg; x Ag and 3i_+4.224, s0 Fs+(G*) satisfies
Hypotheses 5.1, and there are subgroups A*, 0* < §* such that

A = A, 0*=0, 0¥(Autg+(4*) = 46, 0% (Autg+(0*)) = 24,.
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In all of the other cases, we refer to the tables in [4, pp. 7-40], which show that
Fs+(G™) also satisfies Hypotheses 5.1 with subgroups A* =~ 4 and O* =~ Q
such that 0% (Autg+(A4*)) = Iy and 0% (Autg+(0*)) = Ao.

Let M be a model for Ng(A) (see Proposition 1.12), and set M* = Ng=(A4™).
By Corollary 5.10, applied to & and to F5=(G™*), we have

0% (M)~ A xTy=0%M*).
Choose an isomorphism
0: 0 (M*) S 0¥ (M)

such that p(4*) = A and ¢(S*) = S, and set F* = ¢(F5+(G*)). Then F*
is a fusion system over S isomorphic to Fg+(G*), and we will apply Proposi-
tion 2.13 to show that F* = 0% (¥).

The fusion system Fg=(G™) is simple in all cases by [36, Proposition 4.1 (b),
Proposition 4.5 (a), or Table 4.1]. (See also [5, (16.3) and (16.10)], which cover
almost all cases.) So F* = 0% (¥*). By construction,

0% (Ng(A)) = 0¥ (Ng+(A)).

By Lemma 5.12, the fusion systems & and £ * both satisfy Hypotheses 2.12 with
respect to A, Q < S. So, by Proposition 2.13, to show that 0% (¥) = F*, it
remains to show that 0% (Outg (Q)) = 0% (Outg+«(Q)), and this will be shown
by considering the three cases separately. Set

I'* = Autg+(A), A* =Outg+(Q),
ry =03, Ap=0%",
and note that Ag = Ay in all cases by the choice of G*.

The Ag-case: Since Ag = Ay are both subgroups of Out(Q) with the same Sylow
3-subgroup Outg(Q), Lemma A.4 applies to show that they are conjugate in
Out(Q), and hence

Ao ="°Ag  for some yg € Npy(g)(Auts(Q)).

By Lemma 5.14, y¢ extends to some y € Aut(Hyp), and y(§) = S since S = QA.
So, upon replacing % * by /Is) #* we can arrange that A* = A without chang-
ing I,

The Myi-case: Let y € Autg(S) = Autg=+(S) be as in Lemma 5.18 (a): y has
order 2, and y|g acts on Q/Z by inverting all elements. Then

Ao, Af < 0% (Couig)(v10)) = SLa(9) = 246

by that lemma.



Fusion systems realizing certain Todd modules 487

A Ty O T =Aug(d) A=0Oug(Q) G

Ae-case  Esa  Ag 34 As 25, Us(3)
s (s x Qg) @ X3 Us(2)

Mo 235 McL

(A6 X Cz).E4 21_+4.E5 C02

Mii-case Ezs My, 321* M (244 0 Dg).C» Suz

My x Cy (2450 Cg).C2 Ly

M} -case Ess My 31 2 x My (2460 Cs).Co  Cos

Table 11. In all cases, ¥ is a fusion system over S = A x T, and is realized
by the group G. Also, A < § is abelian with Cs(A) = A and Z = Z(S),
I' = Autg(A), and Ty = O3 (I'). The subsystem Cg(Z) is constrained with
0 = 03(Cg(2)) and Z = Z(Q).

Set Up = Outg (Q) = C3, and let U € Syl3(Cou(g)(¥|@)) be the (unique)
Sylow 3-subgroup that contains Up. Set

= [0 e NAY n MY, < M

(see Lemma 3.16), and set & = Ch € Autg(S) = Auty:* (S). Since Q is weakly
closed in & and ¥ * by Proposition 5.8, we have S = [§|Q] € AN A*. So it fol-
lows that Ag = Aj both contain Uy and are normalized by £, and they are both iso-
morphic to 244 or 2A5. Hence Ay = Ag by the last statement in Lemma 5.18 (a).

The M{|-case: By Lemma 5.18 (b), applied to either fusion system ¥ or ¥ *,
there is y € Autg(S) = Autg«(S) of order 4 such that y|g commutes with
Autg (Q). By the same lemma, for any such y, we have Ag = Coy(g)(y) = A

Also, in this case, since G* =~ Cos, we have Out(¥*) = Out(G*) = 1 by [33,
Proposition 3.2], and hence ¥ = 03/(.1'7 ). o

The automizers of the subgroups A and @ in each case of Theorem 5.20 are
described more explicitly in Table 11. We refer again to [4, pp. 7-40] in all cases
except that of U4 (3).

Note that, by [12, Theorem A (a), (d)], the 3-fusion system of Ug(2) is isomor-
phic to those of Ug(q) for each ¢ = 2,5 (mod 9), and to those of L¢(g) for each
q = 4,7 (mod 9). Thus Ug(2) could be replaced by any of these other groups in
the statement of Theorem 5.20.
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6 Some 3-local characterizations of the Conway groups

We finish with some new 3-local characterizations of the three Conway groups,
Us(2), and McLaughlin’s group. In each case, the new result is obtained by com-
bining an earlier characterization of the some group with the classifications of fu-
sion systems in Theorem 4.14 or 5.20. It seems likely that one could get stronger
results with a little more work, but we prove here only ones that follow easily from
Theorems 4.14 and 5.20 together with the earlier characterizations.

We first combine Theorem 4.14 with the 3-local characterization of Co; shown
by Salarian [45], to get the following slightly simpler characterization.

Theorem 6.1. Let G be a finite group. Assume A < S € Syl3(G) are such that
(1) A= E36, Cg(A) = A, and Ng(A)/A = 2M15;

(2) A is not strongly closed in S with respect to G; and

(3) 03(Cg(Z(3))) = 1and |03(Cc(Z(5)))| > 3.

Then G = Co;.

Proof. By Salarian’s theorem [45, Theorem 1.1], to show that G = Coy, it suffices

to find subgroups Hi, H, > S € Syls(G) that satisfy the following three condi-
tions:

(i) Hy = Ng(Z(03(H1))), 03(Hy) = 351*, H,/O3(H) = Sp4(3) x C2, and
Ch,(03(Hy)) = Z(03(H1));
(i1) 03(H2) = E36 and H2/03(H2) ~ 2Mi,; and
(iii) (Hy N Hz)/03(H>) is an extension of an elementary abelian group of order 9
by GL2(3) X Cz.
Set Z=Z7(S), HH = Ng(Z),and H, = Ng(A).Since Hy, Hy > S (recall 4 < §
by assumption), it suffices to prove (i)—(iii).
Set ¥ = F5(G). Then A L4 ¥ by (2), and hence ¥ is isomorphic to the fusion
system of Co; by (1) and Theorem 4.14. In particular, S is isomorphic to the 3-
group S of Notations 4.4 and 4.5, so we can identify S with § and use the notation

defined there for subgroups of S.
Condition (ii) holds by (1). Also,

(H1 N Hz)/03(H2) = Ng,(Z)/A = Nayy(a)(£),

where Ny, (4)(Z) = (E9 x GL2(3)) x C2 by Lemma 4.9 (¢), so (iii) holds.
Set P = 03(Cg(Z)). Then |P| > 3 by (3),s0 P > Z. Also, P < Cg(Z), so

P < 03(Cy(Z)) = Qo =31
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by Lemma 4.12. The action of Outc,. (z)(Qo) = Sp4(3) on Qo/Z = Eg; is irre-
ducible, and hence P = Qg. Thus Q¢ = 03(Cg(Z)) = O3(H;) since Cg(Z) is
normal of index at most 2 in Hy = Ng(Z).

Now, Qg is F -centric by Lemma 4.7, so Z = Z(Qy) € Syl3(Cg(Qyp)), and
hence Cg(Q¢) = K x Z(Qo) = K x Z for some K of order prime to 3. Also, we
have K < Cg(Z) since Q9 < Cg(Z), so it follows that K < O3 (Cg(Z)) =1
by (3). Thus Cx,(Qo) = Z = Z(Qo), and hence H1/Q¢ = Outz(Qp). Since
Outz(Qo) = Sp4(3) : 2 by Lemma 4.13, this finishes the proof of (i) and hence
the proof of the theorem. o

The following 3-local characterization of Cos simplifies slightly that shown by
Korchagina, Parker, and Rowley.

Theorem 6.2. Let G be a finite group. Assume A < S € Sylz(G) are such that
(1) A= E35, Cg(A) = A, |Z(S)| = 3, and 0¥ (Ng(A)/A) = My,

(2) A is not strongly closed in S with respect to G; and

(3) 03(C6(Z(S))) = Land |03(Cg(Z(5)))| > 3.

Then G = Cos.

Proof. By the theorem of Korchagina, Parker, and Rowley [28, Theorem 1.1], to
show that G = Cos, it suffices to find subgroups M1, My < G and A < § that
satisfy the following two conditions:

(i) My = Ng(Z(S)) is of the form 3,74.C5.C5.PSL,(9).C»; and
(il) My = Ng(A) is of the form E35 x (Cy x Myy).

Set Z = Z(S), My = Ng(Z) and M, = Ng(A); we claim that (i) and (ii) hold
for this choice of subgroups.

Set ¥ = F5(G). Then A 4 ¥ by (2). By Table 7 and since |Z| = 3 by (1),
A is the dual Todd module for O3 (Autg(A)) = M;;. Hence F is isomorphic to
the fusion system of Cos by Theorem 5.20 (c). In particular, S is isomorphic to
the 3-group § of Notation 5.3, so we can identify S with § and use the notation
defined there for subgroups of §.

Condition (ii) holds by (1), and since Ng(A)/A = Autgz(A) = M1, x C, by
Table 11.

Set P = 03(Cg(Z)). Then |P| >3 by (3),s0 P > Z. Also, P < Cx(Z),
so P <03(Cx(Z2))=Q =~ 3}|_+4 by Proposition 5.8. Since 5 | [SL2(9)|, the ac-
tion of Outc,, (z)(Q) = SL2(9) on Q/Z = Eg; isirreducible, and hence P = Q.
Thus Q = 03(Cg(Z)) = O3(M;) since Cg(Z) is normal of index at most 2 in
My = Ng(2).
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Now, Q is ¥ -centric by Proposition 5.8, so Z = Z(Q) € Syl3(Cg(Q)), and
hence Cg(Q) = K x Z(Q) = K x Z for some K of order prime to 3. Also,
K <Cg(Z)since Q < Cg(Z),s0 K < 03 (Cg(Z)) = 1 by (3). Thus we have
Cym,(Q) =Z = Z(Q), and hence M;/Q = Outz(Q). Since F is the fusion
system of Cos, and since Outz(Q) = 2(Ae x C3).C, by Table 11, this finishes
the proof of (i) and hence the proof of the theorem. o

Finally, we combine Theorem 5.20 with results of Parker, Rowley, and Stroth,
to get some new 3-local characterizations of McL and Ug(2) as well as of Co;.

Theorem 6.3. Let G be a finite group, fix S € Syls(G), and set Z = Z(S). As-
sume A < S is such that

(1) A= Ez, Cg(A) = A, and 0¥ (Ng(A)/A) = Ag;

(2) A is not strongly closed in S with respect to G; and

(3) 03(Cg(2)) = 1 and |03(Cg(2))| > 3.

Then O3(Ng(Z)) = 31" and C;(03(Cg(Z))) = Z. Also, the following hold,
where k denotes the index of 0% (Ng(A)/A) in Ng(A)/A:

@) If 5| 1Cg(2)|, then G is isomorphic to McL, Aut(McL), or Coy, depending
on whether k = 2, 4, or 8, respectively.

(b) If 54 |CG(Z)|, |02(C6(Z)/ 03(C6(Z)))| = 2% and k < 4, then G = Us(2)
or Ug(2) x Cy when k = 2 or 4, respectively.

’

Proof. Set ¥ = F5(G). Then A 4 F by (2). So, by (1) and Theorem 5.20 (a),
0% (¥) is isomorphic to the fusion system of Coo, Us(3), McL, or Ug(2).

Set O = 03(C#(Z)): an extraspecial group of order 3° with Z(Q) = Z by
Proposition 5.8. We claim that Q / Z is a simple F30ut#(Q)-module. Assume oth-
erwise, and consider the elements a = [1,0,0] € S and B = [c_[;}] € Out#(Q)
in the notation of Tables 3 and 9. Assume 0 # V < Q/Z is a proper nontriv-
ial submodule, and choose 0 # x € V. If x ¢ Cp,z(a), then the elements [a, x],
B([a, x]), x, B(x) all lie in V and generate Q/Z (see Table 9), contradicting the
assumption that V' < Q/Z. Thus V < Cg,z(a), with equality since

V= ({x,p(x)) = Cg/z(a).

But if Cp,z(a) were a submodule, then by Lemma B.9, QO would not be ¥ -
essential, contradicting Proposition 5.8.

Set P = 03(Cg(Z)). Then P > Z by (3), and P < Q since P I Cg(Z).
Also, P/Z is an F30utg(Q)-submodule of Q/Z,s0 P = Q = 3L+4 since Q/Z
is simple.
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Now, Q is ¥ -centric by Proposition 5.8, so Z = Z(Q) € Syl3(Cg(Q)), and
hence Cg(Q) = K x Z(Q) = K x Z for some K of order prime to 3. Also,
K <Cg(Z)since Q < Cg(Z),s0 K < 03 (Cg(Z)) = 1 by (3). Thus we have
Cg(Q) =27 =Z(Q),and hence Cg(Z)/Q = Outz(Q).

If 5]|Cg(Z)/Q| = |Outz(Q)|, then by Table 11 again, 0% (%) is the fu-
sion system of McL or Co. In the former case, 0% (Ng(Z)) =~ 3£r+4.2A5 and
Cg(03(Cg(2))) = Cg(Q) < Q, so conditions (i)—(iii) in [43, Theorem 1.1] all
hold, and G = McL or Aut(McL) by that theorem (with k = 2 or 4).

If 0% (F) is the fusion system of Co,, then by Table 11,

(i) O = 03(Cg(Z)) is extraspecial of order 3°, 0(Cg(Z)/ Q) is extraspecial
of order 2°, and C(Z)/03,2(CG(Z)) = As; and

(i) Z is not weakly closed in S with respect to G.

So G = Co; by a theorem of Parker and Rowley [40, Theorem 1.1]. Also, k = 8
in this case.

If54|Cg(Z)|,|02(C6(Z)/Q)| = 2°,and k < 4, then by Table 11, C5(Z)/Q
contains 244 with index k or (Qg x Qg) x C3 with index k /2, and the first would
imply

|02(C6(2)/ Q)| < 2°.

So 03/(.77 ) is the fusion system of Ug(2), and Cg(Z)/Q contains a normal sub-
group isomorphic to (Qg x Qg) x C3. Hence Cg(Z) is “similar to a 3-centralizer
in a group of type PSUg(2) or F4(2)” in the sense of Parker and Stroth [42, Defi-
nition 1.1], and F*(G) = Us(2) or F4(2) by [42, Theorem 1.3]. The group F4(2)
does contain subgroups isomorphic to Eg; (a maximal torus and the Thompson
subgroup of a Sylow 3-subgroup), but all such subgroups have automizer the Weyl
group of Fy, and so we conclude that G = Ug(2) or Ug(2) % Cs. |

A Some special p-groups

In this section, we give a few elementary results on special or extraspecial p-
groups and their automorphism groups. Most of them involve p-groups of the
form p2+# or p}r+4, but we start with the following, slightly more general lemma.

Lemma A.1. Fix a prime p, and let Q be a finite nonabelian p-group such that
Z(Q) = [0, Q] and it is elementary abelian. Set Z = Z(Q) and Q = Q/Z for
short. Then the following hold.

(a) The quotient group Q is elementary abelian, and hence Q is a special p-
group.
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(b) If p is odd, then there is a homomorphism p: Q — Z such that gP = p(gZ)
foreach g € Q.

(c) Assume Q = Ep3 and Z = Ep2. Then there is a unique abelian subgroup
A < O of order p* and index p.

(d) Assume |Q| = p* and |Z| < p?. Then, for each g € Q ~ Z, there is an
abelian subgroup A < Q of index p? such that g € A, and A is unique if
8.0 =Z = Ep2. If |Z| = p* and [g, Q] = Z for each g € Q ~ Z, then
there are exactly p*> + 1 abelian subgroups of index p? in Q, any two of which
intersect in Z.

Proof. Set P = PZ/Z andg = gZ € Q/Z foreach H < Q and g € Q. Since
[0, 0] < Z(Q), the commutator map Q x Q — Z is bilinear.

(a) For each g,h € Q, we have [g,h] € Z and [g,h]? = 1 by assumption.
Hence [g?,h] = 1 forallh € Q,s0g” € Z(Q) = Z,and O = Q/Z is elemen-
tary abelian.

(b) For each g, h € Q, since [h, g] € Z(Q), we have

(gh)" = g"h"[h, g]""~V/2 foreachn > 1.

(Recall that [/, g] = hgh~'g~! here.) Soif p is odd, then (gh)? = g?h? for each
g, heQ.

(c) Assume |Q| = p° and | Z| = p?. Since |[Q, Q]| > p, there is at most one
abelian subgroup of index p in Q (see [32, Lemma 1.9]).

Fix a,b,c € Q such that {a, b, ¢} is a basis for Q_ >~ Ep3, and consider the
three commutators [a, b], [a, c], and [b, ¢]. Since rk(Z) = 2, one of these is in
the subgroup generated by the other two, and without loss of generality, we can
assume there are i, j € Z such that [a,b] = [a,c]'[b,c])/ = [a,c!][b,c/] (recall
[0, 0] < Z(Q)). Then [ac/,bc™'] =1, and hence Z(ac’/,bc™") is abelian of
index pin Q.

(d) Assume Q = Ep+ and |Z| < p?, and fix g € Q ~ Z. Then commutator
with g defines a homomorphism y: Q/Z(g) — Z, and this is not injective since
tk(Q/Z(g)) > 1k(Z).Sothereish € Q ~ Z(g) suchthat [g,h] = 1 and Z(g, h)
is abelian. If [g, Q] = Z = E 2, then y is surjective, Ker(y) is generated by the
class of /2, and hence Z (g, h) is the only abelian subgroup of index p? in Q con-
taining g.

Now assume [g, Q] = Z = E,2 foreach g € O ~ Z, and let +4 be the set of
abelian subgroups of index p? in Q. Then each P < Q of order p is contained
in A for some unique A € s, and each such 4 has p? — 1 subgroups of order p.
So Al = (p* = 1D/(p*~1) = p> + 1. =
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In the rest of the section, we prove some more specialized results on certain spe-
cial p-groups. Recall that, for each prime power ¢ and each n > 2, we let UT,,(q)
denote the group of upper triangular (n x n) matrices with 1’s on the diagonal.
The groups UT3(g) are a special case of what Beisiegel calls “semi-extraspecial
p-groups” in [8].

Lemma A.2. Let p be an odd prime, and set ¢ = p™ for some m > 1. Further, set
Q = UTs(q) and Z = Z(Q), and let

W: Aut(Q) — Aut(Q/Z)

be the natural homomorphism. We regard Q/Z as a 2-dimensional F4-vector
space in the canonical way.

(a) The image V(Aut(Q)) is the group of all Fy-semilinear automorphisms of
Q/Z, hence isomorphic to I'Ly(q). For a € Aut(Q), we have |z = 1d if
and only if V(«) is linear of determinant 1.

(b) We have Ker(¥) = Op(Aut(Q)) =~ Hom(Q/Z, Z) = Epn, where n = 2m>.
(c) Lety € Aut(Q) be any automorphism such that ¥(y) = —Idg,z. Then

Cauw(0)(¥) = Cou(o)(¥) = Y(Aut(Q)).

More precisely, each a@ € V(Aut(Q)) is the image under V of a unique ele-
ment in Cpy(0)(v) and of a unique class in Coyg)(y), and hence

Aut(Q) = Op(Aut(Q)) 3 Cauo)(¥),
Out(Q) = 0p(0ut(Q)) x Cou(o)(¥)-

Proof. (a), (b) See [39, Proposition 5.3].
(c) For short, set
U = Ker(¥) = O, (Aut(Q)).

Fix y € Aut(Q) such that ¥(y) = —Id. Then y|z = Idz since Z = [Q, Q]. Each
B € U has the form B(g) = gx(g) for some y € Hom(Q, Z) with Z < Ker(y),
and

B =By (@) =v(r N @xg™")) =gx@ " =B (9.

Thus ¢, sends each element of U to its inverse, and since y € a_jU (where
a_; € Aut(Q) is defined as in the proof of (a)), we have y? = (a_;7)? = Id. Note
also that Cpy0)(y) NU = 1.
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Fix a € Aut(Q). Then [, y] € U since W(y) € Z(Aut(Q/Z)), so ¢, sends
the coset aU to itself. Since y? = 1 and |aU| = |U| is odd (a power of p), there
is some @’ € aU N Cpy)(y)- Since Cay(g)(y) N U = 1, there is at most one
such element o’ € aU centralized by y.

A similar argument shows that each [«] € Out(Q) is congruent modulo the sub-
group U/Inn(Q) to a unique class of automorphisms that centralizes the class of

y in Out(Q). |

144
35

When working with automorphisms of extraspecial groups , we will need

to know the conjugacy classes of elements of order 3 in Sp4(3).

Lemma A.3. Let V be a 4-dimensional F3-vector space with nondegenerate sym-
plectic form b. Thus Aut(V, b) = Sp,(3). There are four conjugacy classes of ele-
ments of order 3 in Aut(V, b).

(a) The elements g € Aut(V, b) in class 3A or 3B are those that act on V with one
Jordan block of length 2 and two of length 1. Also, g € 3A implies g~! € 3B.

(b) The elements g € Aut(V,b) in class 3C or 3D are those that act on V with
two Jordan blocks of length 2. If B = {v1,va,v3,V4} is a basis for V with
respect to which the form b has matrix :I:(_? (I)) and if g has matrix ((I) )I( )

with respect to B, then g € 3C ifdet(X) = 1 and g € 3D if det(X) = —1.

Proof. The conjugacy classes of elements of order 3 in Sp,(3) were first deter-
mined by Dickson in [19, p. 138].

Fix g € Aut(V, b) of order 3. Its Jordan blocks have length at most 3, so there
must be at least two of them. Thus dim(Cy(g)) > 2 and Cy(g) N [g, V] # 0,
so there are v, w € V such that {gv — v, w} are linearly independent and lie in
Cy(g). Also, (gv —v) L w since g preserves b, so W = (gv — v, w) < Cy(g)
is totally isotropic.

Fix a basis 8 = {v1, v2, v3, v4} such that W = (v, v3), and with respect to
which b has matrix :I:(_(I’ 6) Then g has matrix ( (I) )l‘;) with respect to B, and
B =1 and X = X! since g preserves b. Such a matrix ((I) JI( ) has Jordan blocks
of length 2 + 2 if det(X) # 0, or of length 2 + 1 + 1 if det(X) = 0, showing that
such elements lie in at least two different conjugacy classes of subgroups.

If g and /1 have matrices ( (I) )1( ) and ((1) ?), respectively, where X and Y are
invertible, then W = Cy (g) = Cy (h). So if they are conjugate in Aut(V, b), they
are conjugate by a matrix of the form (‘3 (A,O)_l ) and hence Y = AXA! and
det(Y) = det(X) det(A4)? = det(X). Thus there are at least three conjugacy classes
of subgroups of order 3, and since there are exactly three by [19], they are distin-

guished by det(X) when there is a generator of the form ( 6 ‘}( )
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There are 40 maximal isotropic subspaces, each of which is fixed by three sub-
groups of the form (( £ %)) for det(X) = 1, and six of that form with det(X) = —1.
Also, there are 40 3-dimensional subspaces, each of which is fixed by exactly one
subgroup of the form (((I) )I( )) with det(X') = 0. Hence there are 120, 240, and 40
subgroups conjugate to ((é )I( )) for det(X) = 1, —1, and 0, respectively. Since
they are named in order of occurrence in the group, they correspond to the classes
3C, 3D, and 3AB, respectively. O

Finally, we consider certain subgroups of extraspecial groups of order 3°.

Lemma A.4. Assume Q is extraspecial of order 3° and exponent 3. Let

1 # P =< Out(Q)

be such that O3(P) =1, 03 (P) = P, and each element of order 3 in P is of
type 3C or 3D. Then either

(a) P is isomorphic to 2Ay4, 2As5, or (Qg X Qg) X C3, in each of which cases
there is one Sp,(3)-conjugacy class containing elements of type 3C and one
containing elements of type 3D; or

(b) P = 2'%% A5 0r2As, in each of which cases there is just one conjugacy class.

Proof. Set Z =Z(Q) and V = Q/Z, and let b be the symplectic form on V
defined by taking commutators in Q. Thus V' is a 4-dimensional vector space
over F3, and 0% (Out(Q)) = Aut(V, b) = Sp,(3). Let R < 03 (Out(Q)) be a
maximal subgroup that contains P. By a theorem of Dickson [20, § 71] (see also
[31, Theorem 10]), R must lie in one of five conjugacy classes.

e If R is in one of the two classes of maximal parabolic subgroups, then
0% (R)/03(R) = SL,(3) =~ 2As4.

Since O3(P) = 1, it follows that P =~ 2A4.

¢ If R > Sp,(3) 2 Cy 22 2442 Cy, then P < O% (R) = 244 x 244, and V splits
as a direct sum of 2-dimensional [F3 P-submodules. Each g € P of order 3 is in
class 3C or 3D and hence acts on V' with two Jordan blocks of length 2, and thus
acts nontrivially on each of the two direct summands. In other words, each such
g acts diagonally on O,(R) =~ Qg X Qg, and so P < (Qg x Qg) x C3. Hence
either P = (Qg x Qg) x C3,or P = 24,4 diagonally embedded in 244 x 2A44.

 If O2(R) == Sp,(9) = 24, then from a list of subgroups of 24¢ == SL,(9) (see
[22, Theorem 6.5.1]), we see that P = 244, 2A5, or 2A4¢.
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« Assume R = 2114 A5, and let P be the image of P in R/O»(R) = As. Then
P =~ (3, A4, or As: these are up to conjugacy the only nontrivial subgroups of
As generated by elements of order 3. Also, P acts faithfully on

O02(R)/Z(R) = Ee.
Since O3(R) = 1, P must be isomorphic to one of the following groups:

ﬁ%C;:, = P = Qg xC(js,
P~Ay = P Ay 244, 0r2'73 44 = (05 x Qg) % C3,
P~ As = P = As, 245, or 27 As.

The groups A4 and A5 cannot occur as subgroups of Sp,(3) since an element
of order 3 would have to permute three distinct eigenspaces for the action of
03(A4) = E4 and hence have a Jordan block of length 3, which contradicts
Lemma A.3.

Thus P is isomorphic to 244, 245, (Qg x Qg) x C3, 2174 45, or 24¢. By
[20, § 11 and § 46], there are two conjugacy classes of subgroups isomorphic to
2 A4 and two of subgroups isomorphic to 24s. Since 2A4¢ = SL>(9) < Sp,4(3) has
elements of both types 3C and 3D (the elements ((1) }) and ((1) g) are in different
classes by the criterion in Lemma A.3), the two classes in each case are distin-
guished by having elements of type 3C or 3D. Likewise, by [20, § 49], there are
two classes of subgroups of the form (Qg x Qg) x C3 (and not isomorphic to
2A4 x Qg), and they are also distinguished by having elements of type 3C or 3D.
Finally, by [20, § 61 and § 68], there is just one conjugacy class of subgroups iso-
morphic to 24 and one of subgroups isomorphic to 2174 45. |

We finish the section with the following well-known and elementary lemma.

Lemma A.5. Fix a prime p. Let G be a finite p-group, let A < G be a normal
elementary abelian p-subgroup, and assume x € G ~ A is such that x? € A. Let
®, € End(A) be the homomorphism ®x(a) = [x,a] = *a -a~'. Then, for each
a € A, (ax)? = x? ifand only if (®)P"V(a) = 1.

Proof. Set U = A(x)/A = Cp, u = xA € U, and regard A as an F,U-module.
Then

(ax)p:a-xa---"p_la-xpZ((1+u+---+up_1)a)'xp
=w—-1?"ta-x? = 27 (a) - x?

(in additive notation). So (ax)? = x? if and only if ®2~'(a) = 0. i
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B Strongly p-embedded subgroups

We collect here some of the basic properties, especially for odd primes p, of finite
groups with strongly p-embedded subgroups. All of the results here are proven
independently of the classification of finite simple groups (but see remarks in the
proof of Proposition B.10).

Lemma B.1. Let G be a finite group, and let Gy I G be normal of index prime
to p. Then Gg has a strongly p-embedded subgroup if and only if G does.

Proof. Recall (see [25, Theorem X.4.11 (b)]) that G has a strongly p-embedded
subgroup if and only if there is a partition Syl,(G) = X1 LI X, with X1, X» # &,
such that, foreach S1 € X; and S, € X5, wehave S; N S, = 1 (G is “p-isolated”
in the terminology of [25]). Since Syl,(Go) = Syl,(G), the lemma follows imme-
diately. o

Lemma B.2. Let G be afinite group with a strongly p-embedded subgroup H < G.

(a) Each proper subgroup H < G that contains H is also strongly p-embedded
inG.

(b) For each normal subgroup K < G, either HK /K is strongly p-embedded in
G/K,or HK = G, or p ¥ |G/K|.

Proof. (a) Assume H < H < G.If g € G ~ H is such that p | |[H N 8H]|, then
there is x € H N &H of order p. Since H contains a Sylow p-subgroup of H,
there are a, b € H such that x € “H and x € £°H . Thus

p|1°H N&H| = |HN sty

so a~'gh € H since H is strongly p-embedded. Hence g € H since a.b € H.
So H is also strongly p-embedded in G.

(b) If K <G and HK < G, then HK is strongly p-embedded in G by (a).
Hence HK /K is strongly p-embedded in G/K if p | |HK /K|, equivalently, if
p1IG/K]. =

The next few lemmas provides different ways of showing that certain groups do
not have strongly p-embedded subgroups.

Lemma B.3. Fix a finite group G containing a strongly p-embedded subgroup. Let
{Ki}ier be a finite set of normal subgroups, set Ky, = ﬂielo K; foreach Iy C I,
and assume Ky = 1. Let J C I be the set of those i € I such that p } |K;|. Then
the following hold.

(@) Inall cases, J # @ and G/ K j has a strongly p-embedded subgroup.
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(b) If p? + |G| or (more generally) if there is a p-subgroup T < G such that
NG (T) is strongly p-embedded in G, then there is j € J such that G/K; has
a strongly p-embedded subgroup.

Proof. Fix § € Syl,(G), and let H < G be the minimal strongly p-embedded
subgroup that contains S.

(a) We show this by induction on |/ ~ J|. If I = J, there is nothing to prove,
soassume I 2 J, fixip € I ~ J, and set Iop = I ~ {io}. Then we have p | |Kj,|
and K;, N Ky, = 1, so Ip # & and [K;,, Kj,] = 1. For each g € Kj,,, we have
HNK;, <Cy(g) <HNS&H,and p | |H N Kj,| since S contains some Sylow
p-subgroup of Kj,. Thus g € H, and so Ky, < H. So p { |Ky,|, and H/K}, is
strongly p-embedded in G/ K, by Lemma B.2 (b). Since |Io ~ J| < [ ~ J|, we
now conclude by the induction hypothesis (applied to the group G/Kj, and the
subgroups {K; /Ky, }ie1,) that J # @ and that G/ Ky has a strongly p-embedded
subgroup.

(b) Assume T < S is such that H = Ng(T) is strongly p-embedded in G.
In particular, if |S| = p, this holds for T = §. We must show that G/K; has
a strongly p-embedded subgroup for some j € J, and it suffices to do this when
I =Jand|J| =2,e.g,whenl = J = {1,2}. Thus K1 N K> = l,and p } |K;|
fori =1,2.Set K = K1K>.

Assume neither G/ K nor G/ K5 contains a strongly p-embedded subgroup.
Then G = HK; = HK; by Lemma B.2 (b). Also,

[HNK,T]=[Ng(T), T]<TNK=1,
and H N K = Ng(T) = Ckg(T). So, fori = 1,2, we have
K=(HNK)K, =Cg(T)K;

since G = HK;j, and hence [K,T] = [K;,T] < K;.
Thus [K,T] < K; N K5 = 1. Butthen K and H both normalize T,s0 G = HK
normalizes T, contradicting the assumption that H = Ng(T) < G. |

The next lemma is an easy consequence of the well-known list of subgroups of
PSL3 (p) .

Lemma B.4. Fix a prime p andn > 2. Let G < GL,(p) be a subgroup such that
G # SLy(p), p? | |G|, and G acts irreducibly on F3. Thenn > 4.

Proof. Since p? 4 |GLy(p)|, we have n > 3. From the list of maximal subgroups
of PSL3(p) (see [22, Theorem 6.5.3]), we see that there is no proper subgroup
G < SL3(p) (hence none in GL3(p)) such that G is irreducible on IF;’ and p? | |H|.
Son > 4. O
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In the next few lemmas, ®(P) denotes the Frattini subgroup of a finite p-
group P.

Lemma B.5. Let P be a finite p-group, and let Pp < Py <--- < P, = P bea se-
quence of subgroups, all normal in P and such that Py < ®(P). Let o € Aut(P)
be such that [a, P;] < Pi—1 forall 1 <i < m. Then o has p-power order.

Proof. For each such «, o/ Py € Aut(P/Py) has p-power order by [21, Theo-
rem 5.3.2], and hence « has p-power order by [21, Theorem 5.1.4]. o

Lemma B.6. Let ¥ be a saturated fusion system over a finite p-group S, and
assume P € Eg. Let Py < Py <--- < Py, = P be a sequence of subgroups such
that Py < ®(P) and such that P; is normalized by Autg(P) for each 0 <i < m.
Assume also that [P, P;] < Pi_1 foreach 1 <i <m.

(a) If [Ns(P)/P| = p, then there is at least one index i = 1,...,m such that
rk(P; / Pi—1) > 2 and such that the image of Autg(P) in Aut(P;/P;—1) has
a strongly p-embedded subgroup.

(b) If [Ns(P)/P| > p?, then there is at least one index i = 1,...,m such that
tk(P;/Pi—1) = 4. If there is a unique such index i, then the image of Aut#(P)
in Aut(P; / P;—1) has a strongly p-embedded subgroup.

Proof. Fixi =1,...,m. Since [P, P;] < P;_1, the homomorphism
Autg(P) — Aut(P;/P;i—1)

induced by restriction to P; contains Inn(P) in its kernel and hence factors through
a homomorphism ¢;: Outg(P) — Aut(P;/P;i_1). Set K; = Ker(p;) < Outg(P).

Assume that @ € Autg(P) is such that its class [«] € Outg(P) liesin (', K.
Thus [«, P;] < P;_1 for each i, so « has p-power order by Lemma B.5 and since
Py < ®(P). So (L, K; is a normal p-subgroup of Outg(P). Since Outg(P)
has a strongly p-embedded subgroup (recall P € E¢), we have O, (Outg(P)) =1
(recall Op(—) is contained in all Sylow p-subgroups), and hence ﬂ?’zl K; =1.
We are thus in the situation of Lemma B.3.

Recall that Ng(P)/P = Outg(P) € Syl,(Outgz(P)). As in Lemma B.3, let J
bethesetofalli = 1,...,m suchthat | K;|is prime to p, and set Ky = ﬂjej K;.
By Lemma B.3(a), J # @ and Out#(P)/ K contains a strongly p-embedded
subgroup.

Without loss of generality, in both points (a) and (b), we can assume that the
filtration by the P; is maximal. Thus each quotient P; / P;_1 is elementary abelian,
and the action of Outg(P) on it is irreducible.
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(a) If |Outg (P)| = p, then by Lemma B.3 (b), there is j € J such that
Im(p;) = Outg(P)/K;

contains a strongly p-embedded subgroup.

(b) Now assume that |Outg(P)| > p?. Recall that the action of Outg(P) on
Pj/Pj_ is irreducible for each j € J. So rk(P;/Pj_1) > 4 for each j € J by
Lemma B.4. In particular, if there is a unique i such that rk(P; /P;—1) > 4, then
|/| =1, and Outgz(P)/K; has a strongly p-embedded subgroup for j € J. O

The next lemma provides another way to show that certain subgroups of a p-
group S cannot be essential in any fusion system over S.

Lemma B.7. Let & be a saturated fusion system over a finite p-group S. Assume
P < SandT < Autg(P) are such that

IT/(T N1nn(P))| = p*> and [P :Cp(T)] = p.
Then P ¢ Eg.
Proof. Assume otherwise: assume P is % -essential. Set G = Out#(P), and set
T =T -Inn(P)/Inn(P) < Outg(P).

Thus |T| > p? by assumption. Let H < G be a strongly p-embedded subgroup
that contains Outg (P) € Syl,(G). Fix g € G ~ H, and set

K = (T,8T) < Autg(P).

Since H is strongly p-embedded and g ¢ H, no p-subgroup of G can intersect
nontrivially with both 7" and & T, and in particular, either

Op(K)NT <Inn(P) or Op(K)NET <Inn(P). (B.3)

By assumption, we have that Cp(T') has index p in P, and so does Cp(8T). If
Cp(T) =Cp(8T), then K is an abelian p-group, contradicting (B.8). So it fol-
lows that Cp(K) = Cp(T) N Cp(8T) hasindex p?in P,and P/Cp(K) = E 2.
The group of elements of K that induce the identity on P/Cp(K) is a p-group
by Lemma B.5, and hence contained in O,(K). Since p? } |GLx(p)|, we have
[T : Op,(K)NT] < p, and since |T| > p?, this implies Op(K)NT £ Inn(P).
But O,(K) N&T £ Inn(P) by a similar argument; this again contradicts (B.8),
and so P cannot be F -essential. |

The next lemma gives yet another simple criterion for a subgroup not to be
essential. Again, ®(—) denotes the Frattini subgroup.
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Lemma B.9. Let ¥ be a saturated fusion system over a finite p-group S, and fix
P < S. Assume there are subgroups Py < Py < --- < P, = P, all normalized
by Autg(P), such that Py < ®(P). Assume also there is x € Ng(P) ~ P such
that [x, P;] < Pi_y foreach 1 <i <k.Then P ¢ Ez.

Proof. By Lemma B.5 and since Py < ®(P), the group I" of all « € Aut(P) such
that [, P;j] < Pj—1 for 1 <i <k is a p-subgroup of Aut(P), and I" N Autg(P)
is normal in Autg(P) since the P; are normalized by Autgz(P). So we have
cx € Op(Autg(P)), and either cx € Inn(P), in which case x € PCg(P)~ P
and hence P is not F -centric, or Op(Outg(P)) # 1, in which case Outz(P)
has no strongly p-embedded subgroup (since Op(—) is contained in all Sylow
p-subgroups). In either case, P ¢ Eg. |

We finish by listing the subgroups of SL4(p) that have strongly p-embedded
subgroups and order a multiple of p2. We indicate how to arrange the proof so as
to be independent of the classification of finite simple groups.

Proposition B.10. Fix an odd prime p, let V be a 4-dimensional vector space
over Fp, and let H < G < Aut(V) be such that p? | |G| and H is strongly p-
embedded in G. Set Gy = Op/(G). Then either Gy == SLy(p?) and V is its natural
module, in which case each element of order p in Gg acts on V with two Jordan
blocks of length 2, or Go = PSLy(p?) and V is the natural Q24 (p)-module, in
which case each element of order p in Go acts on V with Jordan blocks of lengths 1
and 3.

Proof. By Aschbacher’s theorem [2], applied to the finite simple classical group
PSL4(p), either G is contained in a member of one of the “geometric” classes %;
(1 <i < 8) defined in [2], or the image of G in Aut(V)/Z(Aut(V)) =~ PGL4(p)
is almost simple.

By Lemma B.1, Gg = OP'(G) also has a strongly p-embedded subgroup.

Case 1: Assume G is contained in a member of Aschbacher’s class % for some
1 < k < 8. Since IF,, has no proper subfields, the class €5 is empty.

If k = 1 ork = 2, then Gy acts reducibly on V', contradicting Lemma B.6 (b).

If k = 3, then Gy is contained in SLy(p?) (where V is the natural module).
Since SL,(p?) is generated by any two of its Sylow p-subgroups (and since they
have order p?), G cannot be a proper subgroup of SL,(p?).

If k = 4 or 7, the restriction of V' to Gy splits as a tensor product of 2-dimen-
sional representations, and Gg is isomorphic to a subgroup of SLy(p) o SLy(p).
By Lemma B.2 (b), the image of G¢ in PSLy(p) x PSLy(p) has a strongly p-
embedded subgroup. But this contradicts Lemma B.3 (a), applied with K; the ker-
nels of the two projections to PSL,(p).
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The class % consists of the normalizers of K =~ 25:4 @if p = 3 (mod 4)) or
that of K 2 C4 0 214 (if p = 1 (mod 4)). Thus Out(K) = X3 Cy, Xs, or Xg,
respectively. If k = 6, then since p? | |G|, we have p = 3 and K = 23r+4, so Gg
is a subgroup of SL,(3) o SL»(3), and G is contained in a member of %7.

Assume k = 8. The class %y consists of the normalizers of

Spa(p), 25 (p) = SLa(p) o SLy(p), and 25 (p) = PSLy(p?).

The symplectic group Sp,(p) is generated by the two parabolic subgroups that
contain S, each of which would be contained in a strongly p-embedded subgroup
if there were one. So G % Sp4(p), and the proper subgroups of this group are
eliminated by again applying Aschbacher’s theorem using similar arguments. The
subgroup SOI (p) is in class 7. This leaves the case Go < §2; (p) = PSLy( %)
(see [1, Théoreme 5.21] or [47, Corollary 12.43]), with equality since PSL,(p?)
is generated by any two of its Sylow p-subgroups.

Case 2: It remains to check the cases where the image in PGL4(p) of G is al-
most simple, and show that none of them (aside from those already listed) have
strongly p-embedded subgroups. By [10, Tables 8.9 and 8.13], the only almost
simple groups that could appear in this way as maximal subgroups of SL4(p) are
normalizers of L5 (7) or A7 (if p = 1,2,4 (mod 7)), or U4(2) (if p = 1 (mod 6))
in L4(p), or Ag, A7 (it p =T7), L2(p) (if p > 7) in Sp4(p). None of these sub-
groups can occur when p = 3, which is the only odd prime whose square can
divide the order of the subgroup, so they and their subgroups do not come under
consideration.

The tables in [10] were made using the classification of finite simple groups.
But lists of maximal subgroups of PSL4(q) and PSp,(q) for odd ¢, compiled in-
dependently of the classification, had already appeared in [31] for the symplectic
case, and in [9, Chapter VII] and the main theorems in [46,49] for the linear case.

Elements of order p: The description of the Jordan blocks for the natural action
of SL,(p?) is clear. So assume V is the natural module for

Go = 24 (p) = PSLy(p?).
The isomorphism extends to an isomorphism
GOy (p) = P Ly(p?)

between automorphism groups, so all elements of order p in G¢ have similar ac-
tions on V. Hence it suffices to describe the action of one element 7 of order p in
§23(p) < $2, (p). The action of £23(p) on IF; is induced by the conjugation action
of PSL,(p) on the additive group M20 (Fp) of (2 x 2)-matrices of trace 0 (see, e.g.,
[29, Proposition A.5]), and using this, one easily checks that ¢ acts with one Jordan
block of length 3. |
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