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Fusion systems realizing certain Todd modules

Bob Oliver*

Communicated by Christopher W. Parker

Abstract. We study a certain family of simple fusion systems over finite 3-groups, ones
that involve Todd modules of the Mathieu groups 2M12, M11, and A6 D O2.M10/ over
F3, and show that they are all isomorphic to the 3-fusion systems of almost simple groups.
As one consequence, we give new 3-local characterizations of Conway’s sporadic simple
groups.

Fix a prime p. A fusion system over a finite p-group S is a category whose ob-
jects are the subgroups of S , and whose morphisms are injective homomorphisms
between the subgroups satisfying certain axioms first formulated by Puig [44], and
modeled on the Sylow theorems for finite groups. The motivating example is the
fusion system of a finite group G with S 2 Sylp.G/, whose morphisms are those
homomorphisms between subgroups of S induced by conjugation in G.

The general theme in this paper is to study fusion systems over finite p-groups
S that contain an abelian subgroup A E S such that A µ F and CS .A/ D A.
In such situations, we let � D AutF.A/ be its automizer, try to understand what
restrictions the existence of such a fusion system imposes on the pair .A;Op

0

.� //,
and also look for tools to describe all fusion systems that “realize” a given pair
.A;Op

0

.� // for A an abelian p-group and � � Aut.A/.
This paper is centered around one family of examples: those where p D 3,

where O3
0

.� / Š 2M12, M11, or A6 D O3
0

.M10/, and where A is elementary
abelian of rank 6, 5, or 4, respectively. But we hope that the tools we use to handle
these cases will also be useful in many other situations. Our main results can be
summarized as follows.

Theorem A. Let F be a saturated fusion system over a finite 3-group S with an
elementary abelian subgroup A � S such that CS .A/ D A and such that either

(i) rk.A/ D 6 and O3
0

.AutF .A// Š 2M12; or

(ii) rk.A/ D 5 and O3
0

.AutF .A// ŠM11; or

(iii) rk.A/ D 4 and O3
0

.AutF .A// Š A6.
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Assume also that A µ F . Then A E S , S splits over A, and O3
0

.F / is simple
and isomorphic to the 3-fusion system of Co1 in case (i), to that of Suz, Ly, or Co3
in case (ii), or to that of U4.3/, U6.2/, McL, or Co2 in case (iii).

Theorem A is proven below as Theorem 4.14 (case (i)) and Theorem 5.20
(cases (ii) and (iii)). As one consequence of these results, we give new 3-local
characterizations of the three Conway groups as well as of McL and U6.2/ (Theo-
rems 6.1, 6.2, and 6.3).

All three cases of Theorem A have already been shown in earlier papers using
very different methods. In [48, Theorem A], van Beek determined (among other
results) all fusion systems F over a Sylow 3-subgroup of Co1 with O3.F / D 1.
In [7], Baccanelli, Franchi, and Mainardis listed all saturated fusion systems F

with O3.F / D 1 over a Sylow 3-subgroup of the split extension E81 Ì A6, and
this includes the four systems that appear in case (iii) of the above theorem. In [41],
Parker and Semeraro develop computer algorithms that they use to list, among
other things, all saturated fusion systems F over 3-groups of order at most 37

with O3.F / D 1 and O3.F / D F . However, our goals are different from those
in the earlier papers, in that we want to develop tools which can be used in other
situations within the framework of the general problem described above, and are
using these Todd modules as test cases.

The proof of Theorem A is straightforward, following a program that also seems
to work in many other cases. Set Z D Z.S/. We first show that

F D hCF .Z/;NF .A/i:

We then construct a special subgroup Q E S of exponent 3 with

Z.Q/ D ŒQ;Q� D Z

(of order 3 or 9) andQ=Z.Q/ Š E81, and show thatQ is normal in CF .Z/. This
is the hardest part of the proof, especially when O3

0

.AutF .A// Š 2M12. Finally,
we determine the different possibilities for O3

0

.OutF .Q//, and show that this
group together with O3

0

.AutF .A// determines O3
0

.F / up to isomorphism.
Theorem A involves just one special case of the following general problem.

Given a prime p, a finite group � D Op
0

.� /, and a finite Fp� -module M (or
more generally, a finite Z=pk� -module for some k > 1), we say that a saturated
fusion system F over a finite p-group S “realizes” .�;M/ if there is an abelian
subgroup A � S such that CS .A/ D A, A µ F , and

.Op
0

.AutF.A//; A/ Š .�;M/:

We want to know whether a given module can be realized in this sense, and if so,
list all of the distinct saturated fusion systems that realize it.
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In the papers [17,32,35], we studied this question under the additional assump-
tion that j� j be a multiple of p but not of p2, and the answer in that case was
already quite complicated. In this more general setting, all we can hope to do for
now is to look at a few more cases, and try to develop some tools that can be used in
greater generality. For example, in a second paper [34] still in preparation, we give
some criteria for the nonrealizability of certain Fp� -modules. As one application
of those results, when � ŠM11, M12, or 2M12, we show that, up to extensions
by trivial modules, the only Fp� -modules that can be realized in the above sense
are the Todd modules of M11 and 2M12 and their duals (when p D 3), and the
simple 10-dimensional F11Œ2M12�-modules.

As pointed out by the referee, Theorem A in this paper is closely related to the
list of amalgams by Papadopoulos in [38]. It seems quite possible that the results
in this paper can be used to strengthen or generalize the main theorem in [38], but
if so, that will have to wait for a separate (short) paper.

General definitions and properties involving saturated fusion systems are sur-
veyed in Section 1, while the more technical results needed to carry out the pro-
gram described above are listed in Section 2. In Section 3, we set up some nota-
tion for working with Todd modules for 2M12 and M11, notation which we hope
might also be useful in other contexts. Case (i) of Theorem A is proven in Sec-
tion 4, and the remaining cases in Section 5. The 3-local characterizations of the
Conway groups and some others are given in Section 6. We finish with two ap-
pendices: one containing a few general group theoretic results, and another more
specifically focused on groups with strongly p-embedded subgroups.

Notation and terminology. Most of our notation for working with groups is fairly
standard. When P � G and x 2 NG.P /, we let cPx 2 Aut.P / denote conjuga-
tion by x on the left: cPx .g/ D

xg D xgx�1 (though the direction of conjugation
very rarely matters). Our commutators have the form Œx; y� D xyx�1y�1. If G
is a group and ˛ 2 Aut.G/, then Œ˛� 2 Out.P / denotes its class modulo Inn.G/.
If ' 2 Hom.G;H/ is a homomorphism, Q is normal in both G and H , and
'.Q/ D Q, then '=Q 2 Hom.G=Q;H=Q/ denotes the induced map between
quotients. Also, Sylp.G/ is the set of Sylow p-subgroups of a finite group G,
S .G/ is the set of all subgroups of G, and Z2.G/ is the second term in its upper
central series (Z2.G/=Z.G/ D Z.G=Z.G//).

Other notation used here includes the following:

� Epm is always an elementary abelian p-group of rank m;

� paCb denotes a special p-group P with

Z.P / D ŒP; P � Š Epa and P=Z.P / Š Epb I
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� p1C2m
C

(when p is odd) is an extraspecial p-group of order p1C2m and expo-
nent p;

� A ı B is a central product of groups A and B;

� A Ì B and A:B are a semidirect product and an arbitrary extension of A by B;

� UTn.q/ is the group of upper triangular .n � n/-matrices over Fq with 1’s on
the diagonal; and

� �Ln.q/ and P�Ln.q/ denote the extensions of GLn.q/ and PGLn.q/ by their
field automorphisms.

Also, 2M12, 2An, and 2˙n (n D 4; 5; 6) denote nonsplit central extensions of C2
by the groups M12, An, and ˙n, respectively.

1 Background

We begin with a survey of the basic definitions and terminology involving fusion
systems that will be needed here, such as normalizer fusion systems, the Alperin–
Goldschmidt fusion theorem for fusion systems, and the model theorem. Most of
these definitions and results are originally due to Puig [44].

1.1 Basic definitions and terminology

A fusion system F over a finite p-group S is a category whose objects are the
subgroups of S , and whose morphism sets HomF.P;Q/ are such that

� HomS .P;Q/ � HomF.P;Q/ � Inj.P;Q/ for all P;Q � S ; and

� every morphism in F factors as an isomorphism in F followed by an inclusion.

For this to be very useful, more conditions are needed.

Definition 1.1. Let F be a fusion system over a finite p-group S .

(a) Two subgroups P;P 0 � S are F -conjugate if IsoF.P; P
0/ ¤ ¿, and two el-

ements x; y 2 S are F -conjugate if there is ' 2 HomF.hxi; hyi/ such that
'.x/ D y. The F -conjugacy classes of P � S and x 2 S are denoted PF

and xF , respectively.

(b) A subgroup P � S is fully normalized in F (fully centralized in F ) if

jNS .P /j � jNS .Q/j .jCS .P /j � jCS .Q/j/

for each Q 2 PF .
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(c) The fusion system F is saturated if it satisfies the following two conditions.

� (Sylow axiom) For each subgroup P � S fully normalized in F , P is fully
centralized and AutS .P / 2 Sylp.AutF.P //.

� (Extension axiom) For each isomorphism ' 2 IsoF.P;Q/ in F such that
Q is fully centralized in F , ' extends to a morphism x' 2 HomF.N' ; S/,
where

N' D ¹g 2 NS .P / j 'cg'
�1
2 AutS .Q/º:

In the following lemma, we describe another important property of fully nor-
malized subgroups.

Lemma 1.2 ([6, Lemma I.2.6 (c)]). Let F be a saturated fusion system over a finite
p-group S . Then, for each P � S and each Q 2 PF \ F f , there is

 2 HomF.NS .P /; S/ such that  .P / D Q:

We next recall a few more classes of subgroups in a fusion system. As usual, for
a fixed prime p, a proper subgroup H of a finite group G is strongly p-embedded
if p j jH j, and p − jH \ xH j for each x 2 G XH .

Definition 1.3. Let F be a fusion system over a finite p-group S . For P � S ,

� P is F -centric if CS .Q/ � Q for each Q 2 PF ;

� P is F -essential if P is F -centric and fully normalized in F , and the group
OutF.P / D AutF.P /=Inn.P / contains a strongly p-embedded subgroup;

� P is weakly closed in F if PF D ¹P º;

� P is strongly closed in F if, for each x 2 P , xF � P ; and

� P is normal in F (P E F ) if each morphism in F extends to a morphism that
sends P to itself. Let Op.F / E F be the largest subgroup of S normal in F .

� P is central in F if each morphism in F extends to a morphism that sends P to
itself via the identity. Let Z.F / E F be the largest subgroup of S central in F .

Clearly, if P is weakly closed in F , then it must be normal in S .
It follows immediately from the definitions that if P1 and P2 are both normal

in F , then so is P1P2. So Op.F / is defined, and a similar argument applies to
show that Z.F / is defined.

The following notation is useful when referring to some of these classes of
subgroups.
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Notation 1.4. For each fusion system F over a finite p-group S , define

� F f D ¹P � S j P is fully normalized in F º;

� F c D ¹P � S j P is F -centricº and F cf D F c \ F f ; and

� EF D ¹P � S j P is F -essentialº.

1.2 The Alperin–Goldschmidt fusion theorem for fusion systems

The following is one version of the Alperin–Goldschmidt fusion theorem for fu-
sion systems. This theorem is our main motivation for defining F -essential sub-
groups here.

Theorem 1.5 ([6, Theorem I.3.6]). Let F be a saturated fusion system over a finite
p-group S . Then each morphism in F is a composite of restrictions of automor-
phisms ˛ 2 AutF.R/ for R 2 EF [ ¹Sº.

Equivalently, Theorem 1.5 says that F D hAutF.P / j P 2 EF [ ¹Sºi. Here,
whenever F is a fusion system over S , and X is a set of fusion subsystems and
morphisms in F , we let hX i denote the smallest fusion system over S that con-
tains X . Since an intersection of fusion subsystems over S is always a fusion
system over S (not necessarily saturated, of course), the subsystem hX i is well
defined.

In fact, up to F -conjugacy, the essential subgroups form the smallest possible
set of subgroups that generate F .

Proposition 1.6. Let F be a saturated fusion system over a finite p-group S , and
let T be a set of subgroups of S such that F D hAutF.P / j P 2 T i. Then each
F -essential subgroup R < S is F -conjugate to a member of T .

Proof. Fix R 2 F f such that R < S and RF \T D ¿, and set

Aut0F.R/ D h˛ 2 AutF.R/ j ˛ D x̨jR; some x̨ 2 HomF.P; S/;

where R < P � Si:

We will prove that Aut0F.R/ D AutF.R/. It will then follow thatR is not F -essen-
tial (see [6, Proposition I.3.3 (b)]), thus proving the proposition.

Fix ˛ 2 AutF.R/. By assumption, there are isomorphisms

R D R0
˛1
�!
Š
R1

˛2
�!
Š
R2

˛3
�!
Š
� � �

˛k
��!
Š

Rk D R
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such that ˛ D ˛k ı � � � ı ˛1, together with automorphisms

ˇi 2 AutF.Pi / for 1 � i � k

such that hRi�1; Ri i � Pi 2 T and ˛i D ˇi jRi�1
.

By Lemma 1.2 and since R 2 F f , for each 0 � i � k, there is

�i 2 HomF.NS .Ri /; NS .R// such that �i .Ri / D R;

where we take �0 D �k D IdNS .R/. For each 1 � i � k, set

ORi�1 D NPi
.Ri�1/;

Ǫ i D .�i / ı .ˇi j ORi�1
/ ı .��1i�1j�i�1. ORi�1/

/ 2 HomF. ORi�1; S/:

Then Ǫ i jR D .�i jRi
/ ı ˛i ı .�

�1
i�1jRi�1

/ 2 AutF.R/ for each i .
For each i , Pi > Ri�1 since Pi 2 T , while Ri�1 2 RF and RF \T D ¿.

Hence ORi�1 > R for each 1 � i � k. By construction, ˛ D . ǪkjR/ ı � � � ı . Ǫ1jR/,
and so ˛ 2 Aut0F.R/. Since ˛ 2 AutF.R/ was arbitrary, this proves that

Aut0F.R/ D AutF.R/;

as claimed.

The next two lemmas give different conditions for a subgroup to be normal in
a fusion system. Both are consequences of Theorem 1.5.

Lemma 1.7. Let F be a saturated fusion system over a finite p-group S . A sub-
groupQ � S is normal in F if and only if it is weakly closed and contained in all
F -essential subgroups.

Proof. This is essentially the equivalence (a), (c) in [6, Proposition I.4.5].

In general, strongly closed subgroups in a saturated fusion system need not be
normal. The next lemma describes one case where this does happen.

Lemma 1.8 ([6, Corollary I.4.7 (a)]). Let F be a saturated fusion system over
a finite p-group S . If A E S is an abelian subgroup that is strongly closed in F ,
then A E F .
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1.3 Normalizer fusion subsystems and models

If F is a fusion system over a finite p-group S , then a fusion subsystem E � F

over a subgroup T � S is a subcategory E whose objects are the subgroups of T
such that E is itself a fusion system over T . For example, the full subcategory of F

with objects the subgroups of T is a fusion subsystem of F . If we want our fusion
subsystems to be saturated, then, of course, the problem of constructing them is
more subtle.

One case where this is straightforward is the construction of normalizers and
centralizers of subgroups in a fusion system.

Definition 1.9. Let F be a fusion system over a finite p-group S . For eachQ � S ,
we define fusion subsystems CF .Q/ � NF .Q/ � F over CS .Q/ � NS .Q/ by
setting

HomCF .Q/.P;R/ D ¹'jP j ' 2 HomF.PQ;RQ/; '.P / � R; 'jQ D IdQº;

HomNF .Q/.P;R/ D ¹'jP j ' 2 HomF.PQ;RQ/; '.P / � R; '.Q/ D Qº:

It follows immediately from the definitions that a subgroupQ � S is normal or
central in F if and only if NF .Q/ D F or CF .Q/ D F , respectively.

Theorem 1.10 ([6, Theorem I.5.5]). Let F be a saturated fusion system over a fi-
nite p-group S , and fix Q � S . Then CF .Q/ is saturated if Q is fully centralized
in F , and NF .Q/ is saturated if Q is fully normalized in F .

We next look at models for constrained fusion systems and, in particular, for
normalizer fusion subsystems of centric subgroups.

Definition 1.11. Let F be a saturated fusion system over a finite p-group S .

(a) The fusion system F is constrained if there is a subgroup Q � S that is nor-
mal in F and F -centric, equivalently, if Op.F / 2 F c .

(b) A model for a constrained fusion system F over S is a finite group M with
S 2 Sylp.M/ such that

S 2 Sylp.M/; FS .M/ D F ; and CM .Op.M// � Op.M/:

By the model theorem (see [6, Theorem III.5.10]), every constrained fusion sys-
tem has a model, unique up to isomorphism. We will need this only in the follow-
ing situation.
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Proposition 1.12. Let F be a saturated fusion system over a finite p-group S .
Then, for each Q 2 F cf , the normalizer fusion subsystem NF .Q/ is constrained
and hence has a model: a finite group M with NS .Q/ 2 Sylp.M/ such that

Q E M; CM .Q/ � Q; and FNS .Q/.M/ D NF .Q/:

Furthermore, M is unique in the following sense: if M � is another model for
NF .Q/, also withQ E M � andNS .Q/ 2 Sylp.M �/, thenM ŠM � via an iso-
morphism that restricts to the identity on NS .Q/.

Proof. The subsystem NF .Q/ is constrained since the subgroup Q is normal and
NF .Q/-centric. So, by the model theorem [6, Theorem III.5.10], it has a model,
and any two models for NF .Q/ are isomorphic via an isomorphism that is the
identity on NS .Q/.

1.4 Subsystems of index prime to p

We next turn to fusion subsystems of index prime to p. By analogy with groups,
this really corresponds to subgroups of a finite group G that contain Op

0

.G/ (but
are not necessarily normal).

Definition 1.13. Let F be a fusion system over a finite p-group S . A fusion sub-
system E � F has index prime to p if E is also a fusion system over S , and
AutE.P / � Op

0

.AutF.P // for each P � S .

There is clearly always a smallest fusion subsystem of F of index prime to p:
namely, the subsystem O

p0

� .F / over S generated by the automorphism groups
Op
0

.AutF.P //. The corresponding result for saturated fusion subsystems is more
subtle.

Theorem 1.14. Let F be a saturated fusion system over a finite p-group S . Then
there is a (unique) smallest saturated fusion subsystem Op

0

.F / � F of index
prime to p. This has the property that, for eachP � S and each ' 2 HomF.P; S/,
there are morphisms '0 2 HomOp0.F /.P; S/, ˛ 2 AutF.S/ such that ' D ˛ ı '0.

Proof. See [6, Theorem I.7.7] or [11, Theorem 5.4] for the existence and unique-
ness of Op

0

.F /. The last statement follows from [11, Lemma 3.4 (c)], or since the
map � WMor.F c/! �p0.F / sends AutF.S/ surjectively.

In fact, the theorems in [6,11] cited above both describe the subsystemOp
0

.F /

in more precise detail.
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Proposition 1.15. For each saturated fusion system F over a finite p-group S , we
have Op

0

.F /c D F c , Op
0

.F /f D F f , and EOp0.F / D EF .

Proof. By Theorem 1.14, if P � S andQ 2 PF , then there is ˛ 2 AutF.S/ such
that ˛.Q/ 2 PO

p0.F /. From this, it follows immediately thatOp
0

.F / and F have
the same centric subgroups and the same fully normalized subgroups. To see that
they have the same essential subgroups, it remains to check that OutOp0.F /.P / has
a strongly p-embedded subgroup if and only if OutF .P / does, and this is shown
in Lemma B.1.

We also need the following result, which gives a more precise description of
Op
0

.F /, but under very restrictive conditions on F .

Proposition 1.16. Let F be a saturated fusion system over a finite p-group S such
that

(i) EF ¤ ¿ and each member of EF is weakly closed in F ; and

(ii) no intersection of two distinct members of EF is F -centric.

Then,

(a) for each R 2 EF and each R � P � S ,

AutOp0.NF .R//.P / D ¹˛ 2 AutF.P / j ˛jR 2 Op
0

.AutF.R//ºI

(b) AutOp0.F /.S/ D hAutOp0.NF .R//.S/ j R 2 EF i.

Proof. For each R 2 EF , set ER D O
p0.NF .R//.

(a) Fix R 2 EF , and letH be a model for NF .R/ (see Proposition 1.12). Then
Op
0

.H/ is a model for ER, and an extension ofR byOp
0

.H=R/ŠOp
0

.OutF.R//.
Hence

AutER
.R/ D AutOp0.H/.R/ D O

p0.AutH .R// D Op
0

.AutF.R//:

Let P be such that R � P � S . Then ˛ 2 AutER
.P / implies

˛jR 2 AutER
.R/ D Op

0

.AutF.R//:

Conversely, if ˛ 2 AutF.P / is such that ˛jR 2 Op
0

.AutF.R// D AutER
.R/, then

by the extension axiom and since ˛jR normalizes AutP .R/, there is ˇ 2AutER
.P /

such that ˇjR D ˛jR. So, by [6, Lemma I.5.6] and sinceR 2F c , there is x 2Z.R/
such that ˛ D ˇ ı cx , and hence ˛ 2 AutER

.P /.
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E HomE.P; S/ AutE.P /

F ¹˛jP j ˛ 2 AutF.R/º ¹˛jP j ˛ 2 AutF.R/; ˛.P / D P º
F0 ¹˛jP j ˛ 2 O

p0.AutF.R//º ¹˛jP j ˛ 2 O
p0.AutF.R//; ˛.P / D P º

Table 1. In each case, either R is the unique member of EF such that P � R, or
R D S if there is no such member.

(b) Set
F0 D hO

p0.AutF.R// j R 2 EF i;

O
p0

� .F / D hO
p0.AutF.P // j P � Si

as (not necessarily saturated) fusion systems over S . Thus Op
0

� .F / is the minimal
fusion subsystem in F of index prime to p. For P 2 F c , since P is contained in
at most one member of EF by (ii), the sets HomF.P; S/ and HomF0

.P; S/ and
groups AutF.P / and AutF0

.P / are described in Table 1.
In particular, this shows that the subgroup AutF0

.P / is normal of index prime
to p in AutF.P / for each P 2 F c , and hence by [6, Lemma I.7.6 (a)] that F0
has index prime to p in F . Thus F0 D O

p0

� .F / (the inclusion F0 � O
p0

� .F / is
immediate from the definitions). So

AutOp0.F /.S/ D h˛ 2 AutF.S/ j ˛jP 2 HomOp0
�.F /.P; S/; some P 2 F c

i

D h˛ 2 AutF.S/ j ˛jP 2 HomF0
.P; S/ some P 2 F c

i

D h˛ 2 AutF.S/ j there exist P 2 F c ; P � R 2 EF [ ¹Sº;

ˇ 2 Op
0

.AutF.R// such that ˛jP D ˇjP i

D h˛ 2 AutF.S/ j ˛jR 2 Op
0

.AutF.R// some R 2 EF [ ¹Sºi

D hAutER
.S/ j R 2 EF i;

the first equality by [6, Theorem I.7.7], the second since F0 D O
p0

� .F /, the third
by Table 1, the fourth since ˛jP D ˇjP implies ˛jR D ˇ ı cx for some x 2 Z.P /
(see [6, Lemma I.5.6]), and the last by (a) (applied with P D S ).

One can also show that Op
0

.F / D hOp
0

.NF .R// j R 2 EF i under the hy-
potheses of Proposition 1.16. However, that will not be needed here.

1.5 Quotient fusion systems

Quotient fusion systems of F over S are formed by dividing out by a subgroup
of S , not by a fusion subsystem of F .
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Definition 1.17. Let F be a fusion system, and assume Q � S is strongly closed
in F . In particular, Q E S . Let F =Q be the fusion system over S=Q, where for
each P;R � S containing Q, we set

HomF =Q.P=Q;R=Q/

D ¹'=Q 2 Hom.P=Q;R=Q/ j ' 2 HomF.P;Q/;

.'=Q/.gQ/ D '.g/Q for all g 2 P º:

We refer to [16, Proposition II.5.11] for the proof that F =Q is saturated when-
ever F is. In fact, the definition and saturation of F =Q hold wheneverQ is weakly
closed in F . This is not surprising since we are looking only at morphisms in F

between subgroups containing Q so that F =Q D NF .Q/=Q.
If Q is strongly closed in F , then every morphism ' 2 HomF.P;R/ for arbi-

trary P;Q � S induces a (unique) morphism x' 2 Hom.PQ=Q;RQ=Q/. (Just
note that '.P \Q/ � R \Q.) A much deeper theorem states that each such
morphism x' also lies in F =Q. We refer to [6, Theorem II.5.12] and [16, Theo-
rem II.5.14] for proofs of this result first shown by Puig. In this paper, however,
we work with F =Q only in the special case where Q E F , in which case this
property is automatic.

We will need the following lemma, comparing essential subgroups in F and in
F =Z when Z is central in F .

Lemma 1.18. Let F be a saturated fusion system over a finite p-group S , and fix
Z � Z.F /. Then, for each R � S , we have R 2 EF if and only if R � Z and
R=Z 2 EF =Z .

Proof. IfR 2 EF , thenR 2 F c , and henceR � Z.S/ � Z. So, from now on, we
always assume that R � Z. We will show that the following hold for each R � S
containing Z:

(a) R 2 F f if and only if R=Z 2 .F =Z/f ;

(b) the natural map ‰WOutF.R/! OutF =Z.R=Z/ is surjective and its kernel is
a p-group; and

(c) R=Z 2 .F =Z/c if and only if R 2 F c and ‰ is an isomorphism.

It follows immediately from (a), (b), and (c) and Definition 1.3 that R 2 EF if
R=Z 2 EF =Z . Conversely, if R 2 EF , then Op.OutF.R// D 1 since OutF.R/
has a strongly p-embedded subgroup (see [6, Proposition A.7 (c)]), so ‰ is an
isomorphism, and R=Z 2 EF =Z by (a), (b), and (c) again.
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Point (a) is clear since

.R=Z/F =Z D ¹P=Z j P 2 RF
º;

NS=Z.P=Z/ D NS .P /=Z whenever Z � P � S:

The natural map ‰WAutF.R/! AutF =Z.R=Z/ is surjective by definition of
F =Z. If Œ˛� 2 Ker.‰/, where Œ˛� is the class of ˛ 2 AutF.R/, then for some
x 2 R, ˛cRx induces the identity onR=Z and (sinceZ � Z.F /) the identity onZ,
and hence has p-power order by Lemma B.5. So Ker.‰/ is a p-group, proving (b).

By (a), it suffices to prove (c) when R 2 F f and R=Z 2 .F =Z/f . Assume
R=Z 2 .F =Z/c . Then CS .R/=Z � CS=Z.R=Z/ � R=Z, so R 2 F c . For each
Œ˛� 2Ker.‰/, the class of ˛ 2AutF.R/, we have Œ˛� 2Op.OutF.R//�OutS .R/,
so ˛ D cRx for some x 2 NS .R/ such that cRx 2 Aut.R/ induces an inner automor-
phism on R=Z. Hence xZ 2 .R=Z/CS=Z.R=Z/, so we have xZ 2 R=Z since
R=Z 2 .F =Z/c , and x 2 R. Thus ˛ 2 Inn.R/, and ‰ is an isomorphism in this
case.

Conversely, assume R 2 F c and ‰ is an isomorphism, and let y 2 NS .R/
be such that yZ 2 CS=Z.R=Z/. Then Œy; R� � Z, so ŒcRy � 2 Ker.‰/ D 1. So we
have cRy 2 Inn.R/, and y 2 RCS .R/ D R since R is F -centric. This shows that
CS=Z.R=Z/ � R=Z and hence R=Z 2 .F =Z/c , finishing the proof of (c).

If F is a saturated fusion system over S and P � Q � S , then P E F and
Q E F implies Q=P E F =P : this follows easily from the definitions. How-
ever, P E F and Q=P E F =P need not imply that Q E F , as is seen by the
following example. Let p be any prime, set G D Cp o ṗ (wreath product), fix
S 2 Sylp.G/ (so S Š Cp o Cp), and set F D FS .G/. Set P D Op.G/ Š Epp .
Then P E F and S=P E F =P , but S is not normal in F .

In the following lemma, we give two conditions under which

P E F and Q=P E F =P

does imply that Q E F .

Lemma 1.19. Let F be a saturated fusion system over a finite p-group S , and
let P � Q � S be such that P E F and Q=P E F =P . If Q is abelian or if
P � Z.F /, then Q E F .

Proof. SinceQ=P is normal, it is strongly closed in F =P , and henceQ is strong-
ly closed in F . So if Q is abelian, then it is normal by Lemma 1.8. If P � Z.F /,
then Q is contained in all F -essential subgroups by Lemma 1.18 and since Q=P
is contained in all F =P -essential subgroups (Lemma 1.7), and so Q E F by
Lemma 1.7 again.
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2 General lemmas

As noted in the introduction, in our general setting, we want to analyze a saturated
fusion system F over a finite p-group S with an abelian subgroup A � S and
� D AutF.A/, where the group A and the action of Op

0

.� / are given. In this
section, we give some of the tools that will be used in Sections 4 and 5 to do this.

In practice, we do not get very far without knowing that the subgroup A is
normal in S and weakly closed in F , and this should perhaps be included in our
general assumptions. But in many cases, it follows easily from the weaker assump-
tions on A and Op

0

.� /.

Lemma 2.1. Let F be a saturated fusion system over a finite p-group S , and let
A � S be such that no member of AF X ¹Aº is contained in NS .A/. Then A is
weakly closed in F .

Proof. Assume otherwise: then S > NS .A/, and hence NS .NS .A// > NS .A/.
Choose x 2 NS .NS .A// XNS .A/. Then xA ¤ A, contradicting the assumption
that A not be S -conjugate to any other subgroup of NS .A/.

The importance of A being weakly closed in our general situation is illustrated
by the following lemma.

Lemma 2.2. Let F be a saturated fusion system over a finite p-group S , and
assume A E S is an abelian subgroup that is weakly closed in F .

(a) If R 2 F f , and R 2 QF for some Q � A, then R � A.

(b) For each P;Q � A,

HomF.P;Q/ D HomNF .A/.P;Q/:

Hence each ' 2 HomF.P;Q/ extends to some x' 2 AutF.A/.

(c) No element of CS .A/ X A is F -conjugate to any element of A.

Proof. (a) Assume Q � A and R � S are F -conjugate and R 2 F f . By the ex-
tension axiom, each  2 IsoF.Q;R/ extends to some x 2 HomF.CS .Q/; S/.
Then CS .Q/ � A since A is abelian, x .A/ D A since A is weakly closed in F ,
and so R D x .Q/ � A.

(b) Assume P;Q � A and ' 2 HomF.P;Q/, and chooseR 2 PF that is fully
centralized in F . Then we have R � A by (a), and there is  2 IsoF.'.P /;R/.
By the extension axiom again,  extends to O 2 HomF.A; S/ and  ' extends to
O' 2 HomF.A; S/, and O .A/ D A D O'.A/ since A is weakly closed. Then

O �1 O' 2 AutF.A/; and . O �1 O'/jP D  
�1. '/ D ':
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(c) Assume that x 2 CS .A/ X A is F -conjugate to y 2 A. By (a), we can ar-
range that hyi 2 F f , so by Lemma 1.2, there is ' 2 HomF.NS .hxi/; S/ such that
'.x/ D y. But A � NS .hxi/, '.A/ D A since A is weakly closed, and this is im-
possible since '.x/ 2 A and x … A. So no element in CS .A/ X A is F -conjugate
to any element of A.

In many of the cases we want to consider, the assumptions we choose on A and
on � imply that Op

0

.F / is simple (see, e.g., [6, Definition I.6.1]). For example, if
F is a saturated fusion system over S , and A E S is such that CS .A/ D A, and
we set � D AutF.A/ and �0 D Op

0

.� /, and assume also that ˝1.A/ is a sim-
ple Fp� -module and �0=Op0.�0/ is a simple group (and �0 © Cp), then either
A E F or the fusion system Op

0

.F / is simple. However, this will not be needed,
and before proving it here, we would first have to define normal fusion subsystems.

2.1 Proving that F D hNF .A/;CF .Z/i

When analyzing fusion systems in our setting, we first check whether

F D hNF .A/; CF .Z/i for some choice of Z � Z.S/:

The following lemma will be our tool for doing this.

Proposition 2.3. Let F be a saturated fusion system over a finite p-group S , let
A E S be an abelian subgroup that is weakly closed in F , and fix

1 ¤ Z � Z.S/ \ A:

Then either F D hCF .Z/;NF .A/i, or there are R 2 EF and ˛ 2 AutF.R/ such
that ˛ is not a morphism in hCF .Z/;NF .A/i, and such that

˛.Z/ — A; ˛.Z/ 2 NF .A/
f ; and R D CS .˛.Z// D NS .˛.Z//:

Proof. Set F0 D hCF .Z/;NF .A/i: the smallest fusion system over S (not nec-
essarily saturated) that contains both CF .Z/ and NF .A/. We first claim that

NF .Z/ � hCF .Z/;AutF.S/i � F0: (2.4)

The second inclusion is clear: AutF.S/ D AutNF .A/.S/ since A is weakly closed
in F by assumption. If ' 2 HomNF .Z/.P;Q/, where P;Q � Z, then by the ex-
tension axiom, since S D CS .Z/, 'jZ 2 AutF.Z/ extends to some ˛ 2 AutF.S/,
and ' D ˛ ı .˛�1'/, where ˛�1' 2 HomCF .Z/.P; S/. This proves the first in-
clusion in (2.4).
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By Lemma 1.2 and as Z � Z.S/ is fully normalized in F , for each X 2 ZF ,
there is  X 2 HomF.NS .X/; S/ such that  X .X/ D Z. Set

Z D ¹X 2 ZF
j  X 2 Mor.F0/º:

If  0 2 HomF.NS .X/; S/ is another morphism such that  0.X/ D Z, we have
 0 ı  �1X 2 Mor.NF .Z//, and hence 0 2 Mor.F0/ if and only if X 2 Mor.F0/
by (2.4). So Z is independent of the choices of the  X .

IfX 2 ZF andX � A, then A � NS .X/ and  X .A/ D A, so  X 2 Mor.F0/.
Thus

X 2 ZF and X � A H) X 2 Z: (2.5)

If ' 2 HomF.P; S/ is such that P � Z, X D '.Z/ 2 Z, then '.P / � CS .X/
since P � S D CS .Z/, so  X ı ' is defined and in NF .Z/ � F0, and hence
' D . X j'.P //

�1 ı . X ı '/ is also in F0. Thus,

for each ' 2 HomF.P; S/ with Z � P � S;

'.Z/ 2 Z H) ' 2 Mor.F0/: (2.6)

Assume F > F0. By Theorem 1.5 (the Alperin–Goldschmidt fusion theorem),
there areR 2 EF [ ¹Sº and ˛ 2 AutF.R/ such that ˛ … Mor.F0/. Since we have
AutF.S/ D AutF0

.S/ by (2.4), it follows thatR 2 EF . Choose suchR and ˛ with
jRjmaximal. SinceR is F -centric, we haveR � Z.S/ � Z. SetX D ˛.Z/; then
X … Z by (2.6), and hence X — A by (2.5). Also, R � CS .X/ � NS .X/ since
R � CS .Z/ D S .

For each Y 2 ZF XZ, we have  Y … Mor.F0/ by definition of Z. Hence  Y
is a composite of restrictions of automorphisms of members of EF [ ¹Sº of order
at least jNS .Y /j, and at least one of these automorphisms is not in F0. So, by the
maximality assumption onR, jRj � jNS .Y /j for all Y 2 ZF XZ and, in particu-
lar, for all Y 2 XNF .A/. Since R � NS .X/, this shows that X is fully normalized
in NF .A/ and also that R D CS .X/ D NS .X/.

Note in particular the following special case of Proposition 2.3.

Corollary 2.7. Let F be a saturated fusion system over a finite p-group S , let
A E S be an abelian subgroup that is weakly closed in F , and fix

1 ¤ Z � Z.S/ \ A:

Assume that A E CF .Z/ but A µ F . Then there are R 2 EF and ˛ 2 AutF.R/
such that ˛.Z/ — A, ˛.Z/ 2 NF .A/

f , and R D CS .˛.Z// D NS .˛.Z//.

Proof. By assumption, CF .Z/ � NF .A/ < F . So hCF .Z/;NF .A/i ¤ F , and
the result follows from Proposition 2.3.
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2.2 Normality of subgroups

The results in this subsection will be useful when showing that certain subgroups,
especially abelian subgroups, are strongly closed or normal in a fusion system.

Lemma 2.8. Let F be a saturated fusion system over a finite p-group S , and
let Q E S be a normal subgroup that is not weakly closed in F . Then there are
P 2QF X ¹Qº, R 2 EF [ ¹Sº, and ˛ 2 AutF.R/ such that R �Q, P D ˛.Q/,
R D NS .P /, P 2 NF .Q/

f , and jRj � jNS .U /j for all U 2 QF X ¹Qº.

Proof. Let W be the set of pairs .R; ˛/ where

R 2 EF [ ¹Sº; R � Q; ˛ 2 AutF.R/; and ˛.Q/ ¤ Q:

As Q is not weakly closed in F , there is ' 2 HomF.Q; S/ such that '.Q/ ¤ Q,
and hence W ¤ ¿ by the Alperin–Goldschmidt fusion theorem (Theorem 1.5).

Then choose .R; ˛/ 2 W such that jRj is maximal. By Lemma 1.2, for each
U 2QF X ¹Qº, there is a morphism ' 2HomF.NS .U /;S/ such that '.U /DQ.
By Theorem 1.5 again, there is .R1; ˛1/ 2 W such that jR1j � jNS .U /j, and
jRj � jR1j by the maximality of jRj. Thus it follows that jRj � jNS .U /j for each
U 2 QF X ¹Qº.

Now set P D ˛.Q/. Then P E R sinceQ E R, soR � NS .P /, with equality
since we just saw jRj � jNS .P /j. Also, P 2 NF .Q/

f since jRj � jNS .U /j for
each U 2 QF X ¹Qº � PNF .Q/.

The following is a more technical result that will be needed when proving that
Q=Z E CF .Z/=Z in case (i) of Theorem A.

Proposition 2.9. Let F be a saturated fusion system over a finite p-group S , and
let A E S be an abelian subgroup that is weakly closed in F but not normal. Let
1 D A0 < A1 < � � � < Am D A be such that ŒS; Ai � � Ai�1 for each 1 � i � m.
Set E0 D F , and for each 1� i �m, set xAi D Ai=Ai�1 and Ei D CEi�1

. xAi /= xAi ,
regarded as a fusion system over S=Ai . (Note that xAi � Z.S=Ai�1/.) Then there
are 0 � ` � m � 2, R � S , and ˛ 2 AutF .R/, such that

� R � A`C1, Œ˛; Ai � � Ai�1 for 1 � i � `, and X def
D ˛.A`C1/ — A;

� R D NS .X/, R=A` D CS=A`
.X=A`/, and X=A` 2 NE`

.A=A`/
f ; and

� R=A` 2 EE`
.
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Proof. The fusion systems Ei are all saturated by Theorem 1.10 and [16, Proposi-
tion II.5.11], applied iteratively. Also, A=Am�1 is weakly closed in Em�1 since A
is weakly closed in F . All Em�1-essential subgroups contain

Z.S=Am�1/ � A=Am�1

since they are centric, soA=Am�1 E Em�1 by Lemma 1.7. SinceA µ E0 D F by
assumption, there is 0 � ` � m � 2 such that A=A` µ E` and A=A`C1 E E`C1.

We now apply Corollary 2.7, with A=A`, A`C1=A`, and E` in the role of A,
Z, and F . Here, A`C1=A` � Z.S=A`/ since ŒA`C1; S� � A`, while A=A` µ E`
by assumption. Since A=A` is abelian, it is normal in CE`

. xA`C1/ by Lemma 1.19
and since A=A`C1 E E`C1 D CE`

. xA`C1/= xA`C1. So, by Corollary 2.7, there are
R � S containing A`, and x̨ 2 AutE`

.R=A`/, such that

R=A` D CS=A`
.x̨. xA`C1// 2 EE`

;

and
X=A`

def
D x̨. xA`C1/ — A=A`;

R=A` D NS=A`
.X=A`/;

X=A` 2 NE`
.A=A`/

f :

(2.10)

Also, R=A` � Z.S=A`/ � xA`C1 since R=A` is E`-centric, so R � A`C1.
Set ˛` D x̨, and choose ˛i 2 AutCEi

. xAiC1/.R=Ai /� AutEi
.R=Ai / for decreas-

ing indices i D ` � 1; ` � 2; : : : ; 0 so that ˛i= xAiC1 D ˛iC1 for each i < `. Set
˛ D ˛0 2 AutF.R/; then Œ˛; Ai � � Ai�1 for each i by definition of the Ei , and
X D ˛.A`C1/ — A since X=A` D x̨. xA`C1/ — A=A`. The other claims listed in
the proposition follow easily from (2.10).

2.3 Equalities between fusion systems

We finish the section with two sets of conditions for showing that two fusion sys-
tems over the same p-group are equal. Proposition 2.11 will be applied to the
fusion systems encountered in Section 4, and Proposition 2.13 to those in Sec-
tion 5.

Proposition 2.11. Let F1 � E � F2 be saturated fusion systems over a finite p-
group S . Assume that Q E S is centric and normal in all three, and that

AutF1
.Q/ D AutF2

.Q/:

Assume also that the homomorphism

H 1.OutF1
.Q/IZ.Q//! H 1.OutE.Q/IZ.Q//

induced by restriction is surjective. Then F1 D F2.
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Proof. Let M1 � H �M2 be models for F1 � E � F2 (Definition 1.11), where
S � H is a Sylow p-subgroup of all three. Thus M1 and M2 are both extensions
of Q by OutF1

.Q/ D OutF2
.Q/, and the difference of the two extensions (up to

isomorphism) is represented by an element � 2 H 2.OutF1
.Q/IZ.Q// (see [30,

Theorem IV.8.8]). Also, � vanishes after restriction toH 2.OutE.Q/IZ.Q// since
M1 and M2 both contain H , so � D 0 since OutE.Q/ has index prime to p in
OutF1

.Q/. Thus there is an isomorphism  WM1 !M2 such that  jQ D IdQ.
Note that  also induces the identity on H=Q and on S=Q since they inject into
Aut.Q/, but need not induce the identity on S .

Set  0 D  jH 2 Aut.H/. Consider the commutative diagram

H 1.M1=QIZ.Q// CAut.M1/.Q/=AutZ.Q/.M1/

H 1.H=QIZ.Q// CAut.H/.Q/=AutZ.Q/.H/;

 

!
�1

Š

 !�1  !�2

 

!
�2

Š

where �1; �2 are defined as in [37, Lemma 1.2]. Since �1 is surjective by assump-
tion, �2 is also surjective. So there is ˛ 2 Aut.M1/ such that ˛jH D  0czjH for
some z 2 Z.Q/, and upon replacing ˛ by ˛c�1z , we can arrange that ˛jH D  0.

Now set ' D  ˛�1WM1
Š
�!M2. Then 'jH D  0 �10 D IdH , and in particu-

lar, 'jS D IdS . Since M1 and M2 are models for F1 and F2, we conclude that
F1 D F2.

The other criterion we give for two fusion systems to be equal applies only
to fusion systems satisfying some very restrictive hypotheses, which are stated
separately for easier reference.

Hypotheses 2.12. Let F be a saturated fusion system over a finite p-group S .
Assume A;Q E S are such that

(i) EF D ¹A;Qº;

(ii) A is abelian, S D AQ, and CS .A \Q/ D A; and

(iii) p − jNAut.A/.O
p0.AutF.A///=Op

0

.AutF.A//j.

Note that F DNF .R/ if EF D¹Rº has order 1, while F DNF .S/ if EF D¿.
So the next proposition still holds if we assume EF � ¹A;Qº instead of assum-
ing equality. However, since the extra cases that would be added are rather trivial
and will not be encountered in this paper, we decided to use the more restrictive
version.
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Proposition 2.13. Let F1 and F2 be two saturated fusion systems over the same
finite p-group S , and let A;Q E S be normal subgroups with respect to which
Hypotheses 2.12 hold for F1 and for F2. Assume also that

Op
0

.NF1
.A// D Op

0

.NF2
.A// and Op

0

.AutF1
.Q// D Op

0

.AutF2
.Q//:

Then Op
0

.F1/ D O
p0.F2/.

Proof. If Hypotheses 2.12 hold for Fi (i D 1; 2), then they also hold for Op
0

.Fi /

(note in particular that EOp0.Fi / D EFi
by Proposition 1.15). So it suffices to prove

the proposition when Fi D O
p0.Fi / for i D 1; 2.

Since S D AQ, where A and Q are both properly contained in S , we have
Q � A and A � Q. Note that Q is nonabelian since otherwise CS .A \Q/ D S ,
contradicting Hypothesis 2.12 (ii). Also, A and Q are weakly closed in Fi for
i D 1; 2 since otherwise there would be

˛ 2 AutFi
.S/ with ˛.A/ ¤ A or ˛.Q/ ¤ Q;

which is impossible since ˛ permutes the members of EFi
.

Set
‚ D hAutF1

.S/;AutF2
.S/i � Aut.S/:

Fix R 2 ¹A;Qº. Each element of ‚ normalizes R since R is weakly closed in F1
and in F2. For each ˛ 2 ‚ such that ˛jR D IdR, ˛ also induces the identity on
S=R since CS .R/ � R (since R 2 EFi

by Hypothesis 2.12 (i)), and hence ˛ has
p-power order. Thus

¹˛ 2 ‚ j ˛jR D IdRº � Op.‚/ .for R 2 ¹A;Qº/I (2.14)

this subgroup is normal in ‚ since all elements in ‚ normalize R.
By points (i) and (ii) in Hypotheses 2.12 and since A and Q are weakly closed,

the conclusions of Lemma 1.16 hold for F1 and F2. (Note that Q \ A … F c

since it is strictly contained in the abelian group A.) By Lemma 1.16 (b) and since
Op
0

.Fi / D Fi for i D 1; 2 by assumption,

AutFi
.S/ D hAutOp0.NFi

.A//.S/;AutOp0.NFi
.Q//.S/i (2.15)

for i D 1; 2.
Again, fix R 2 ¹A;Qº. If ˛ 2 AutOp0.NF1

.R//.S/, then

˛jR 2 O
p0.AutF1

.R// D Op
0

.AutF2
.R//

by Lemma 1.16 (a), so ˛jR D ˇjR for some ˇ 2 AutF2
.S/ by the extension ax-

iom and since ˛jR is normalized by AutS .R/. By Lemma 1.16 (a) again, we have
ˇ 2 AutOp0.NF2

.R//.S/. Also, ˛�1ˇ 2 Op.‚/ by (2.14) and since ˛jR D ˇjR.
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Upon repeating this argument with the roles of F1 and F2 exchanged, we have
shown that

AutOp0.NF1
.R//.S/Op.‚/ D AutOp0.NF2

.R//.S/Op.‚/:

Together with (2.15), this implies that

AutF1
.S/Op.‚/ D AutF2

.S/Op.‚/: (2.16)

For R 2 ¹A;Qº, set

� .R/ D Op
0

.AutF1
.R// D Op

0

.AutF2
.R//;

where the last two groups are equal by assumption. Then, for i D 1; 2,

AutFi
.R/ D � .R/ � ¹˛jR j ˛ 2 AutFi

.S/º (2.17)

by the Frattini argument and the extension axiom (and since R E S ).
Set ‚.A/ D hAutF1

.A/;AutF2
.A/i. Then � .A/ E ‚.A/ since it is normal in

each AutFi
.A/. Since NAut.A/.�

.A//=� .A/ has order prime to p by Hypothe-
sis 2.12 (iii), we have

Op
0

.‚.A// D Op
0

.� .A// D � .A/:

By (2.17), for each ˛ 2 AutF1
.A/, there are ˛0 2 � .A/ and Ǫ 2 AutF1

.S/ such
that ˛ D ˛0. Ǫ jA/. By (2.16), there is Ǒ 2 AutF2

.S/ such that Ǫ�1 Ǒ 2 Op.‚/. Set
ˇ D ˛0. ǑjA/ 2 AutF2

.A/. Then ˛�1ˇ D . Ǫ�1 Ǒ/jA has p-power order, hence lies
in Op

0

.‚.A// D � .A/, and we have shown that AutF1
.A/ � AutF2

.A/. A similar
argument proves the opposite inclusion, and thus

AutF1
.A/ D AutF2

.A/: (2.18)

For i D 1; 2,

AutFi
.Q/ D � .Q/ � ¹˛jQ j ˛ 2 AutFi

.S/º

D � .Q/ � h¹˛jQ j ˛ 2 AutOp0.NFi
.Q//.S/º;

¹˛jQ j ˛ 2 AutOp0.NFi
.A//.S/ºi

� � .Q/ � hAutOp0.NFi
.Q//.Q/; ¹˛jQ j ˛ 2 AutOp0.NFi

.A//.S/ºi

D � .Q/ � ¹˛jQ j ˛ 2 AutOp0.NFi
.A//.S/º;

the first equality by (2.17), the second by (2.15), and the last since

AutOp0.NFi
.Q//.Q/ D �

.Q/
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by Lemma 1.16 (a). The opposite inclusion is clear, so

AutF1
.Q/ D AutF2

.Q/ (2.19)

since Op
0

.NF1
.A// D Op

0

.NF2
.A// by assumption.

For R 2 ¹A;Qº, consider the homomorphism

‚ D hAutF1
.S/;AutF2

.S/i
‰R
��! NAutF1

.R/.AutS .R// D NAutF2
.R/.AutS .R//;

where AutF1
.R/ D AutF2

.R/ by (2.18) or (2.19), and where ‰R is induced by
restriction to R and is surjective by the extension axiom. Hence ‰R sends Op.‚/
into the group

Op.NAutFi
.R/.AutS .R/// D AutS .R/:

So, for each ˇ 2 Op.‚/, there are g; h 2 S such that ˇjA D cAh and ˇjQ D c
Q
g .

Then ˇ.cSg /
�1 is the identity onQ and conjugation by hg�1 after restriction to A,

so we have hg�1 2 CS .Q\A/DA by Hypothesis 2.12 (ii), and ˇ.cSg /
�1jA D Id.

Since S D AQ by Hypothesis 2.12 (ii), this shows that ˇ D cSg and hence that
Op.‚/ D Inn.S/. So AutF1

.S/ D AutF2
.S/ by (2.16). Since EFi

D ¹A;Qº by
Hypothesis 2.12 (i), this together with (2.18) and (2.19) (and Theorem 1.5) shows
that

F1 D hAutF1
.S/;AutF1

.A/;AutF1
.Q/i

D hAutF2
.S/;AutF2

.A/;AutF2
.Q/i D F2:

3 Todd modules in characteristic 3

We describe here the notation we use in Sections 4 and 5 to make computations
involving Todd modules: first the Todd module for 2M12, and afterwards those for
M11 and A6 Š O2.M10/.

3.1 The ternary Golay code and the group 2M12

We first set up notation for handling the ternary Golay code G and its automor-
phism group 2M12. Our notation is based on that used by Griess in [23, Chapter 7]
to describe the ternary Golay code. We begin by fixing some very general notation
for describing n-tuples of elements in a field.

Notation 3.1. For a finite set X D ¹1; 2; : : : ; nº and a field K, we regard KX as
the vector space of maps X ! K and let ¹ei j i 2 Xº be its canonical basis,

¹ei j i 2 Xº � K
X ; where ei .j / D

´
1 if i D j;
0 if i ¤ j;

for i; j 2 X:
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We also set eJ D
P
j2J ej for J � X . Let

PermX .K/ � MonX .K/ � Aut.KX /

be the subgroups of permutation automorphisms and monomial automorphisms,
respectively: automorphisms that permute the basis ¹eiº or the subspaces ¹Keiº,
respectively. Thus, if jX j D n, then PermX .K/ Š ˙n and MonX .K/ Š K� o˙n.
Let

� D �X;K WMonX .K/! PermX .K/

be the canonical projection that sends a monomial automorphism to the corre-
sponding permutation automorphism; thus Ker.�X;K/ is the group of automor-
phisms that send each Kei to itself.

Now set I D ¹1; 2; 3; 4º, and regard FI3 as the space of 4-tuples of elements
of F3 as well as that of functions I ! F3. Let T � FI3 be the tetracode subgroup,

T D ¹.a; b; b C a; b C 2a/ j a; b 2 F3º

D ¹� 2 FI3 j �.3/ D �.1/C �.2/; �.4/ D �.1/C �.3/º: (3.2)

Thus T is a 2-dimensional subspace of FI3 . By [23, Lemma 7.3],

Aut.T /
def
D ¹˛ 2 MonI .F3/ j ˛.T / D T º Š GL2.3/ Š 2˙4: (3.3)

More precisely, each linear automorphism of T extends to a unique monomial
automorphism of FI3 , and each permutation of I lifts to a monomial automorphism
of FI3 , unique up to sign, that acts on T .

Set � D F3 � I so that F�3 is a 12-dimensional vector space over F3. Define
C1; C2; C3; C4 2 F�3 by setting

Ci D e.0;i/ C e.1;i/ C e.2;i/ for i 2 I;

and set C D ¹Ci j i 2 I º. Thus e� D
P
i2I Ci . Define

GrWFI3 ! F�3 by setting Gr.�/ D
X
i2I

e.�.i/;i/

(the “graph” of �). Thus, for each .c; i/ 2 �, Gr.�/.c; i/ D 1 if c D �.i/, and it
is zero otherwise. Finally, define G < xG < F�3 by setting

xG D hC [Gr.T /i and G D hCi CGr.�/ j i 2 I; � 2 T i: (3.4)

Finally, for i; j 2 I and � 2 T , we define

Cij D Ci � Cj 2 G and gr� D Gr.�/ �Gr.0/ 2 G :
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The Ci are clearly linearly independent in xG . The relations

Gr.�/CGr.�/CGr.�/ D
X
i2I

�.i/¤�.i/

Ci

for all �; �; � 2 T such that � C �C � D 0 (3.5)

among the Ci and Gr.�/ are easily checked. So, for any F3-basis ¹�1; �2º of T ,

xG D hC1; C2; C3; C4;Gr.0/;Gr.�1/;Gr.�2/i;

G D hC12; C13; C14;gr�1
;gr�2

; C1 CGr.0/i:

These elements in each of these two sets are independent in F�3 and hence form
bases for xG and G , respectively. So dim. xG / D 7 and dim.G / D 6.

The subspace G is the ternary Golay code. We refer to [23, Lemmas 7.8 and 7.9]
for more details and more properties. Note in particular that we have G D G?

under the standard inner product on F�3 (i.e., that for which the standard basis
¹e.c;i/ j .c; i/ 2 �º is orthonormal).

We next look at automorphisms of G .

Notation 3.6. The following notation is used throughout this section and the next.

(a) Set yM12 D ¹� 2 Mon�.F3/ j �.G / D G º.

(b) For � 2 FI3 , assume that tr� 2 Perm�.F3/ is the translation that sends e.c;i/
to e.cC�.i/;i/. Thus, for � 2 F�3 , we have tr�.�/.c; i/ D �.c � �.i/; i/.

(c) Fix ˛ 2 MonI .F3/, and let "i 2 F�3 (i 2 I ) and � 2 ˙I be such that

˛.ei / D "ie�.i/ for all i:

Let �.˛/ 2 Perm�.F3/ be the automorphism that sends e.c;i/ to e."ic;�.i//.
Thus, for � 2 F�3 , we have .�.˛/.�//.c; i/ D �."��1.i/c; �

�1.i//.

(d) Define

N0 D trT Ì �.Aut.T // D htr�;�.˛/ j � 2 T ; ˛ 2 Aut.T /i � yM12;

and set N D N0 � ¹˙Idº � yM12.

By [23, Proposition 7.29], yM12 Š 2M12.
Note the following relations for �; � 2 FI3 , i 2 I , and ˛ 2 MonI .F3/:

tr�.Ci / D Ci ; �.˛/.Ci / D C�.˛/.i/;

tr�.Gr.�// D Gr.� C �/; �.˛/.Gr.�// D Gr.˛.�//:
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To see the last equality, note that, for ˛ 2 MonI .F3/ with "i 2 F�3 and � 2 ˙I as
above and for � D

P
i2I �.i/ei in FI3 , we have

�.˛/.Gr.�// D
X
i2I

�.˛/.e.�.i/;i// D
X
i2I

e."i�.i/;�.i// D Gr.� 0/;

where
� 0 D

X
i2I

"i�.i/e�.i/ D ˛.�/:

In particular, these formulas show that the action of N0 on F�3 sends xG and G to
themselves.

Lemma 3.7. We have N D N yM12
.trT /, and this is a maximal subgroup of yM12.

Proof. By construction, we have N � N yM12
.trT /. Conversely, by [23, Theo-

rem 7.20],N is the subgroup of all elements of yM12 whose action on� permutes
the columns F3 � ¹iº and hence contains the normalizer of trT .

For the maximality of N � yM12 or of

N=¹˙Idº Š E9 Ì GL2.3/ in yM12=¹˙Idº ŠM12;

see [15, p. 235] or [4, p. 8]. Note that if we regard M12 as a group of permutations
of 12 points, then N=¹˙Idº ŠM9 Ì˙3 is the subgroup of those permutations
that normalize a set of three of the points.

One easy consequence of Lemma 3.7 is thatN0 D yM12 \ Perm�.F3/. In other
words, the elements of N0 are the only ones in yM12 that permute the coordinates
in � without sign changes. But this will not be needed later.

To simplify later calculations, we next describe G and the action of N0 on it in
terms of .3 � 3/ matrices over F3. In general, for a vector space V over a field K,
we let S2.V / denote its symmetric power

S2.V / D .V ˝K V /=h.v ˝ w/ � .w ˝ v/ j v;w 2 V i:

For v;w 2 V , let Œv ˝ w� 2 S2.V / denote the class of v ˝ w 2 V ˝K V , and
write v˝2 D Œv ˝ v� for short. When ˛ 2 AutK.V /, we let S2.˛/ 2 AutK.S2.V //
be the automorphism S2.˛/.Œv ˝ w�/ D Œ˛.v/˝ ˛.w/�.

Definition 3.8. Let T be the tetracode subgroup of (3.2).

(a) Choose a map of sets �W I ! T such that, for each i 2 I , �.i/ ¤ 0 and
.�.i//.i/ D 0. Define a map of sets

ˆ0WC [Gr.T /! S2.T ˚ F3/
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by setting

ˆ0.Ci / D .�.i/; 0/
˝2 and ˆ0.Gr.�// D .�; 1/˝2

for all i 2 I and all � 2 T .

(b) Define ‚�WN0 ! Aut.T ˚ F3/ by setting

‚�.tr��.˛//.�; a/ D .˛.�/C a�; a/

for each �; � 2 T , ˛ 2 Aut.T /, and a 2 F3.

We now check that the maps ˆ0 and ‚� extend to a natural isomorphism from
the F3N0-module G to the group S2.T ˚ F3/ with action of a certain subgroup
of Aut.T ˝ F3/.

Lemma 3.9. The following statements hold.

(a) The mapˆ0 of Definition 3.8 (a) is independent of the choice of � and extends
to a surjective homomorphism x̂ W xG ! S2.T ˚ F3/. This in turn restricts to
an isomorphism ˆ� from G onto S2.T ˚ F3/.

(b) The map‚� of Definition 3.8 (b) is an isomorphism fromN0 Š T Ì Aut.T /

onto the group of all automorphisms of T ˚ F3 that are the identity modulo
T ˚ 0.

(c) For each ˇ 2 N0 and each 
 2 G ,

ˆ�.ˇ.
// D S2.‚�.ˇ//.ˆ�.
//: (3.10)

Thus it follows that ‚� and ˆ� define an isomorphism from G as an F3N0-
module to S2.T ˚ F3/ with its natural structure as a module over

‚�.N0/ < Aut.T ˚ F3/:

Proof. (a) For each i 2 I , the choice of �.i/ is unique up to sign. So we have that
x̂ .Ci / D .�.i/; 0/

˝2 is independent of the choice of �.i/.
We first check that

P
i2I ˆ0.Ci /D 0. It suffices to show that

P
i2I �.i/

˝2D 0

in S2.T /. Independently of our choices, ¹�.i/ j i 2 I º is a set of representatives
of the four subspaces of dimension 1 in F23 . So the �.i/ are permuted up to sign
by each ˛ 2 Aut.T /, and the sum of the �.i/˝2 is fixed by each such ˛. Hence
the sum must be zero. (Alternatively, this can be shown directly by choosing coor-
dinates and then computing with matrices.)

We next check that (3.5) holds for the images of the elements in C [Gr.T /

underˆ0 as defined above. So fix �; �; � 2 T such that � C �C � D 0. If we have
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� D � D � , then (3.5) clearly holds. Otherwise, � � � ¤ 0, so there is a unique
index j 2 I such that .� � �/.j / D 0. Then � � � D ˙�.j /, and so

.�; 1/˝2 C .�; 1/˝2 C .�; 1/˝2 D .�; 0/˝2 C .�; 0/˝2 C .�; 0/˝2

D .�; 0/˝2 C .�; 0/˝2 C .�� � �; 0/˝2

D �.� � �; 0/˝2 D �.�.j /; 0/˝2

D

X
i2IX¹j º

.�.i/; 0/˝2;

where the first equality holds since � C �C � D 0, and the last one sinceX
i2I

ˆ0.Ci / D 0:

Thus ˆ0 extends to a homomorphism defined on a vector space over F3 with
basis C [Gr.T /, modulo the subspace generated by relations (3.5). This quo-
tient space is generated by the images of the Ci , as well as those of 0, �1, and �2
for any basis ¹�1; �2º of T , hence has dimension 7 and is isomorphic to xG . So ˆ0
extends to a homomorphism x̂ from xG to S2.T ˚ F3/.

Now, x̂ .hC i/D h.�; 0/˝2i D S2.T ˚ 0/ since T # D ¹�.i/˙1 j i 2 I º. Hence

x̂ .N0/ D S2.T ˚ 0/h.�; 1/
�2
j � 2 T i D S2.T ˚ F3/:

Thus x̂ is onto, and a comparison of dimensions shows that Ker. x̂ / D he�i. Since
e� … G , x̂ restricts to an isomorphism ˆ� from G to Sym3.F3/.

(b) One easily checks that ‚� as defined above restricts to homomorphisms
on ¹tr� j � 2 T º Š T and on Aut.T /. So it remains only to check conjugacy
relations: for ˛ 2 Aut.T / and � 2 T , we have

‚�.˛/
�
‚�.tr�/.‚�.˛/

�1.�; a//
�
D ‚�.˛/.˛

�1.�/C a�; a/ D .�; a � ˛.�/; a/

D ‚�.tr˛.�//.�; a/

D ‚�.˛ ı tr� ı ˛
�1/.�; a/:

Thus ‚� is well defined on N0, and it clearly defines an isomorphism onto the
group of all ˇ 2 Aut.T ˚ F3/ that are the identity modulo T ˚ 0.

(c) For each �; � 2 T , i 2 I , and ˛ 2 Aut.T /, we have

x̂
�
tr�.Gr.�//

�
D .� C �; 1/˝2 D .‚�.tr�/.�; 1//

˝2

D S2.‚�.tr�//
�
x̂ .Gr.�//

�
;
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x̂
�
�.˛/.Gr.�//

�
D .˛.�/; 1/˝2 D

�
‚�.�.˛//.�; 1/

�˝2
D S2

�
‚�.�.˛//

��
x̂ .Gr.�//

�
;

x̂ .tr�.Ci // D x̂ .Ci / D .�.i/; 0/
˝2
D S2.‚�.tr�//. x̂ .Ci //:

Also, for all ˛ 2 Aut.T / inducing the permutation � 2 ˙I , and all i 2 I ,

x̂ .�.˛/.Ci // D x̂ .C�.i// D
�
�.�.i//; 0

�˝2
D
�
˙‚�.�.˛//.�.i/; 0/

�˝2
D S2

�
‚�.�.˛//

�
. x̂ .Ci //;

where �.�.i// D ˙�.˛/.�.i// by definition (and uniqueness up to sign) of �.i/.
Since

xG D hC [Gr.T /i and N0 D htr�;�.˛/ j � 2 T ; ˛ 2 Aut.T /i;

this proves (3.10).

To simplify computations still farther, we now describe elements in N0 and A
as .3 � 3/-matrices over F3. Fix an isomorphism T Š F23 (e.g., by restriction to
the first two coordinates) so that T ˚ F3 is identified with F33 and Aut.T ˚ F3/
with GL3.F3/. We then identify S2.T ˚ F3/ with the group Sym3.F3/ of sym-
metric .3 � 3/ matrices over F3 by sending the class Œv ˝ w� (for v;w 2 F33 ) to
1
2
.v � wt C w � vt /. More explicitly,264
0B@ab
c

1CA˝
0B@de
f

1CA
375 is sent to

0B@ ad .ae C bd/ .af C cd/=2

.ae C bd/=2 be .bf C ce/=2

.af C cd/=2 .bf C ce/=2 cf

1CA:
Let

ˆWG
Š
�! Sym3.F3/;

‚WN0
Š
�!

²�
a b c
d e f
0 0 1

� ˇ̌̌̌ a; b; c; d; e; f 2 F3;

ae � bd ¤ 0

³
� GL3.F3/ (3.11)

be the composites of ˆ� and ‚� with the isomorphisms induced by this identifi-
cation T Š F23 . Lemma 3.9 (c) now takes the following form.

Lemma 3.12. For each ˇ 2 N0 and each � 2 G ,

ˆ.ˇ.�// D ‚.ˇ/ˆ.�/‚.ˇ/t 2 Sym3.F3/:

As a first, very simple application, we describe the Jordan blocks for actions
on A.
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� D yM12 D ¹˛ 2 Mon�.F3/ j ˛.G / D G º Š 2M12

N0 D trT Ì �.Aut.T // � yM12

N D N0 � ¹˙Idº D ¹˛ 2 yM12 j ˛ permutes the Kiº

‚WN0
Š
�!

®�
A v
0 1

� ˇ̌
A 2 GL2.3/; v 2 F23

¯
� GL3.3/

T D ‚�1.UT3.F3// 2 Syl3.N0/ � Syl3.� /

A D ˆ.G / D Sym3.F3/
ˇ.X/ D ‚.ˇ/X‚.ˇ/t for ˇ 2 N0; X 2 A

Table 2. Notation used for certain subgroups of � D yM12 and their action on
A D ˆ.G /.

Lemma 3.13. There are exactly two conjugacy classes of elements of order 3 in
yM12: those in one class act on G with three Jordan blocks of lengths 1; 2; 3,

and those in the other with two Jordan blocks of length 3. In particular, for each
x 2 yM12 of order 3, rk.CG .x// � 3.

Proof. Each element of order 3 in M12 is the image of a unique element of or-
der 3 in 2M12. So yM12 has two conjugacy classes of elements of order 3 since
M12 does (see, e.g., [23, Exercise 7.34 (ii)]). With the help of Lemma 3.12, it is
straightforward to check that

‚�1
��

1 0 1
0 1 0
0 0 1

��
acts on G with three Jordan blocks of lengths 1; 2; 3 and that

‚�1
��

1 1 0
0 1 1
0 0 1

��
acts with two Jordan blocks of length 3. Thus these elements are in different
classes, and each element of order 3 in yM12 is conjugate to one of them and acts
on G in one of these two ways. The last statement holds since the rank of CG .x/

is equal to the number of Jordan blocks. (See also [23, Exercise 7.37].)

The notation developed in this subsection is summarized in Table 2.

3.2 Notation for the Todd modules ofM11 and A6

We next set up notation to work with the Todd modules of the groups M11 and
A6 Š O

2.M10/. In particular, we get explicit descriptions of the actions of certain
subgroups of A6 and M11.
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Let G � F�3 be as in (3.4) and Notation 3.6. By [23, Lemma 7.12], G contains
exactly 12 pairs ¹˙�º of elements of weight 12. Three of those pairs lie in hC i:
the elements of the form

P
i2I "iCi for "i 2 F�3 and

P
i2I "i D 0. (The other

nine have the form ˙.e� CGr.�// for � 2 T .) By a direct check, for each basis
¹�; �º of T , the six elements

¹˙..�; 0/˝2 C .�; 0/˝2/;

˙ ..�; 0/˝2 � .�; 0/˝2/˙ Œ.�; 0/˝ .�; 0/�º � S2.T ˚ F3/ (3.14)

are the images of the six elements of weight 12 in hC i under the isomorphism

ˆ�WG
Š
�! S2.T ˚ F3/

of Lemma 3.9 (a). We want to identify M11 as the subgroup of elements in yM12

that are the identity on one of these subspaces, and similarly for M10.
To simplify these descriptions, we identify T with F9 via some arbitrarily cho-

sen isomorphism. We adopt the following notation for elements of F9:

F9 D F3Œi �; where i2 D �1;

� D 1C i of order 8 in F�9 ;

� 2 Aut.F9/ W �.aC bi/ D a � bi for a; b 2 F3:

We also write xx D �.x/ for x 2 F9.

Notation 3.15. Assume Notation 3.6 and Table 2, and choose an F3-linear isomor-
phism �WT

Š
�! F9. Define elements �1; �2; �3 2 S2.T / � S2.T ˚ F3/ by set-

ting
�1 D S2.�/

�1.Œ1˝ 1C i ˝ i �/;

�2 D S2.�/
�1.Œ1˝ 1 � i ˝ i C 1˝ i �/;

�3 D S2.�/
�1.Œ1˝ 1 � i ˝ i � 1˝ i �/:

Set ��i Dˆ
�1
� .�i / 2 G . By (3.14),˙��1 ,˙��2 , and˙��3 are elements of weight 12

in G , and the only ones in hC i \ G .
Set K1 D h��1 i and K2 D h��2 ; �

�
3 i, both subspaces of G , and define

yM11 D N yM12
.K1/ and yM10 D N yM12

.K2/:

Also, set yM0
`
DO3

0

. yM`/ andN .`/ DN \ yM` for ` D 10; 11, and set T D trT .
Finally, define �WF�9 h�i ! Aut.T / by setting

�.u/ D ��1.x 7! ux/� for u 2 F�9 and �.�/ D ��1��:
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` D 10 ` D 11

T trT D h..x// j x 2 F9i trT D h..x// j x 2 F9i

N .`/ T hŒ��; Œ��;�Idi T hŒ��; Œ��;�Idi
N .`/ \ yM0

`
T h�Œi �i T h�Œ��; Œ��i

yM0
`
Š A6 M11

yM`= yM
0
`
Š D8 C2

Table 3. In particular, N .10/
D N .11/

Š .E9 Ì SD16/ � C2.

(Recall that we compose from right to left.) For x 2 F9 and u 2 F�9 , set

..x// D tr��1.x/ 2 T ; Œu� D �.�.u// 2 N ; and Œ�� D �.�.�// 2 N :

Also, for � 2 N0, we write �� D � � .�Id/ 2 N .

For easy reference, we summarize in Table 3 some of the basic properties of
groups defined in Notation 3.15.

Lemma 3.16. Assume Notation 3.15. Then, for ` D 10; 11,

yM0
` D C yM12

.K12�`/ D C yM`
.K12�`/;

and the groups yM`, yM0
`

, N .`/, and T are as described in Table 3. In particular,
T 2 Syl3. yM`/ D Syl3. yM0

`
/.

Proof. By definition (see Notation 3.6 (d)), each element ofN normalizes the sub-
space hC i \ G and hence permutes the six elements ˙�1;˙�2;˙�3 (the only el-
ements of weight 12 in hC i \ G ). Some of these actions are described in Table 4.

g 2 N Œ�� Œi � Œ�� �Id

g��1 ���1 ��1 ��1 ���1
g��2 ���3 ���2 ��3 ���2
g��3 ��2 ���3 ��2 ���3

Table 4
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Consider, for example, the case Œ����2 . Set � D ��1.1/ and � D ��1.i/, where
�WT

Š
�! F9 is as in Notation 3.15. Then

ˆ�.�
�
2 / D �2 D S2.�/

�1.Œ1˝ 1 � i ˝ i C 1˝ i �/

D Œ� ˝ � � �˝ �C � ˝ ��:

Since � D 1C i and i� D �1C i , we get

ˆ�.
Œ����2 / D S2.�/

�1
�
Œ.1C i/˝ .1C i/ � .�1C i/˝ .�1C i/

C .1C i/˝ .�1C i/�
�

D Œ.� C �/˝ .� C �/ � .�� C �/˝ .�� C �/

C .� C �/˝ .�� C �/�

D Œ4.� ˝ �/ � � ˝ � C � � �� D �ˆ�.�
�
3 /:

Hence we have Œ����2 D ��
�
3 . The other computations are similar, but simpler in

most cases.
Recall (Notation 3.6 (d)) that

N D .trT Ì �.Aut.T /// � ¹˙Idº;

where Aut.T / Š GL2.3/ Š 2˙4 by (3.3). Since the element Œ�1� D Œi �2 central-
izes K1K2 by Table 4, each element of trT D ŒŒ�1�; trT � also centralizes K1K2.
Also, each noncentral element ofO2.�.Aut.T /// D hŒi �; Œ���i Š Q8 fixes one of
the ��i and sends the other two to their negative, and hence each element of order 3
in �.Aut.T // acts by permuting the sets ¹˙��i º (i D 1; 2; 3) cyclically. From this,
we conclude that N .10/ D N .11/ is as described in Table 3 and also that

CN .10/.K2/ D T h�Œi �i and CN .11/.K1/ D T h�Œ��; Œ��i:

In particular, N .10/=CN .10/.K2/ Š D8 and N .11/=CN .11/.K1/ Š C2.
It remains only to show that yM0

`
D C yM`

.K12�`/. For ` D 10 or ` D 11, con-
sider the action of yM` D N yM12

.K12�`/ on G =K12�`. Since

yM0
10 Š O

30.M10/ Š A6 and yM0
11 ŠM11

by definition of M10 and M11 as permutation groups, and as dim.G =K12�`/ D 4
or 5, respectively, this quotient is absolutely irreducible as an F3 yM0

`
-module by

Lemma 5.2. Hence CAut.G =K12�`/.
yM0
`
/ D ¹˙Idº, and so

jN .`/=C
N .`/

.K12�`/j � j yM`=C yM`
.K12�`/j

� j yM`= yM
0
` j � 2 � jOut. yM0

` /j: (3.17)
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We just saw that

jN .10/=C
N .10/

.K2/j D 8 D 2 � jAut.A6/j;

jN .11/=C
N .11/

.K1/j D 2 D 2 � jAut.M11/j;

and so the inequalities in (3.17) are all equalities. Hence

yM0
` D C yM`

.K12�`/ D C yM12
.K12�`/;

and the descriptions of N .`/ \ yM0
`

and yM`= yM
0
`

in Table 3 all hold.

As seen in Lemma 5.2, there are three different representations that appear un-
der Hypotheses 5.1: one of A6 and two of M11. We will refer to these throughout
the rest of the section as the “A6-case” (when �0 Š A6), the “M11-case” (when
�0 ŠM11 andA is its Todd module), and the “M �11-case” (when �0 ŠM11 and
A is the dual Todd module).

Lemma 3.18. Assume Notation 3.15. We summarize here the notation we use for
the F3 yM10- and F3 yM11-modules we are working with and describe explicitly the
action of the subgroup N .10/ or N .11/.

(a) (A6-case) We identify the Todd module for yM10 with

A.10/
def
D F3 � F9 � F3

in such a way that N .10/ acts as follows:

..x//Ja; b; cK D Ja; b � ax; c C Tr.xxb/ � aN.x/K for x 2 F9;

Œu�Ja; b; cK D Ja; ub;N.u/cK for u 2 F�9 ;

Œ��Ja; b; cK D Ja; xb; cK and �IdJa; b; cK D J�a;�b;�cK:

(b) (M11-case) We identify the Todd module for yM11 with

A.11/
def
D F3 � F9 � F9

in such a way that N .11/ acts as follows:

..x//Ja; b; cK D Ja; b � ax; c C bx C ax2K for x 2 F9;

Œu�Ja; b; cK D Ja; ub; u2cK for u 2 F�9 ;

Œ��Ja; b; cK D Ja; xb; xcK and �IdJa; b; cK D J�a;�b;�cK:
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(c) (M �11-case) We identify the dual Todd module for yM11 with

A.11/
� def
D F9 � F9 � F3

in such a way that N .11/ acts as follows:

..x//Ja; b; cK D Ja; b � ax; c C Tr.bx C ax2/K for x 2 F9;

Œu�Ja; b; cK D Ju�2a; u�1b; cK for u 2 F�9 ;

Œ��Ja; b; cK D Jxa; xb; cK and �IdJa; b; cK D J�a;�b;�cK:

Proof. (b) Define

O�11WS2.T ˚ F3/! A.11/ D F3 � F9 � F9

by setting

O�11.Œ.�; r/˝ .�; s/�/ D Jrs; r�.�/C s�.�/; �.�/ � �.�/K:

This is surjective since A.11/ is generated by the elements

O�11.Œ.0; 1/˝ .�; s/�/ D Js; �.�/; 0K and O�11.Œ.1; 0/˝ .�; 0/�/ D J0; 0; �.�/K:

Also, O�11.�1/ D 0, so Ker. O�11 ıˆ/ D h��1 i D K1 since they both are 1-dimen-
sional. Thus the action of yM12 on G induces an action of yM11 D N yM12

.K1/ on
G =K1 Š A

.11/.
For � 2 T , tr� .�; r/ D .� C r�; r/ and tr� .�; s/ D .�C s�; s/. So if we set

x D �.�/ and Ja; b; cK D O�11.Œ.�; r/˝ .�; s/�/, then

..x//Ja; b; cK D O�11.Œ.� C r�; r/˝ .�C s�; s/�/

D Jrs; .r�.�/C s�.�//C 2rs�.�/;

�.�/�.�/C �.�/.r�.�/C s�.�//C rs�.�/2K

D Ja; b � ax; c C bx C ax2K:

The other formulas follow by similar (but simpler) arguments.
(c) The description of the action ofN .11/ onA.11/

�
follows from that in (b), to-

gether with the relation hg�; �i D h�; g
�1

�i for � 2 A.11/
�

and � 2 A.11/, where
the nonsingular pairing

A.11/
�
�A.11/ D .F9 � F9 � F3/ � .F3 � F9 � F9/

h�;�i
����! F3

is defined by hJa; b; zK; Jy; c; dKi D yz C Tr.ad C bc/.



Fusion systems realizing certain Todd modules 455

(a) This proof is similar to that of (b), except that O�11 is replaced by the map

O�10WS2.T ˚ F3/! A.10/ D F3 � F9 � F3;

defined by setting

O�10.Œ.�; r/˝ .�; s/�/ D Jrs; r�.�/C s�.�/;Tr.�.�/ � x�.�//K:

This is easily seen to be surjective. For i D 2; 3, we have

O�10.�
�
i / D J0; 0;Tr.1 � 1 � i � x{ ˙ 1 � x{/K D 0;

and so Ker. O�10/ D h��2 ; �
�
3 i D K2 since they are both 2-dimensional. So the ac-

tion of yM12 on G induces an action of

yM10 D N yM12
.K2/ on G =K2 Š A

.11/:

The formulas for ..x//Ja; b; cK, Œu�Ja; b; cK, and Œ��Ja; b; cK follow from argu-
ments similar to those used in case (b).

4 The Todd module for 2M12

We are now ready to look at fusion systems that involve the Todd module for
2M12. Throughout the section, we refer to the following assumptions.

Hypotheses 4.1. Set p D 3. Let F be a saturated fusion system over a finite 3-
group S , and letA � S be an elementary abelian subgroup such that CS .A/DA.
Set � D AutF .A/, �0 D O3

0

.� /, and assume that rk.A/ D 6 and �0 Š 2M12.

The main result in this section is Theorem 4.14, where we show that if F sat-
isfies these hypotheses, then either A E F , or F is isomorphic to the 3-fusion
system of the sporadic group Co1.

Standard results in the representation theory of 2M12 show that, in the above
situation, A must be the Todd module for � D �0 or its dual. In fact, we can
assume in all cases that it is the Todd module.

Lemma 4.2. Assume Hypotheses 4.1. Then � D �0 Š 2M12,A is the Todd mod-
ule for � , and A is absolutely irreducible as an F3� -module.

Proof. By [24, § 4 and Table 5], the only 6-dimensional faithful F3�0-modules are
the Todd module and its dual, and they are absolutely irreducible and not isomor-
phic. Also, Out.�0/ Š Out.M12/ Š C2, and composition with an outer automor-
phism of �0 sends the Todd module to its dual. So the action of �0 onA does not
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extend to any extension of �0 by an outer automorphism, and � D �0 � C� .�0/.
As subgroups of Aut.A/, we have

C� .�0/ � AutF3�0.A/ D ¹˙Idº D Z.�0/;

where AutF3�0.A/ D ¹˙Idº since A is absolutely irreducible. Hence

� D �0 Š 2M12:

Now, Out.� /ŠOut.M12/ŠC2, and by [24, § 4] again, an outer automorphism
of � acts by exchanging the Todd module with its dual. So .� ;A�/ Š .� ;A/ as
pairs, and we can assume that A is the Todd module for � .

We next check that, under Hypotheses 4.1, A is weakly closed in F and S
splits over A. These are easy consequences of Lemma 3.13.

Lemma 4.3. Assume that A � S and F satisfy Hypotheses 4.1, and let M be
a model for NF .A/ (see Proposition 1.12). Then

(a) A is weakly closed in F and hence normal in S ; and

(b) S and M both split over A.

Proof. By Lemma 4.2, AutF .A/ Š yM12, and A Š G as F3 yM12-modules.
(a) If A� < NS .A/ is such that A� Š E36 and A� ¤ A, then for x 2 A� XA,

A \ A� � CA.x/, where rk.CA.x// � 3 by Lemma 3.13 and since cAx has or-
der 3 in AutF .A/. Hence we have rk.AutA�.A// � 3, which is impossible since
rk.AutS�.A// D rk3.2M12/ D 2. So A is the only element of AF contained in
NS .A/. Hence A is weakly closed in F by Lemma 2.1.

(b) Choose � 2M such that c� is the central involution in AutF .A/ Š 2M12

(Lemma 4.2). Then j� j D 2 or 6, and after replacing � by �3 if necessary, we can
assume j� j D 2. Also, � fixes at least one element in each coset hA of A in M
since the cosets have odd order. Hence M D ACM .�/ and S D ACS .�/, while
A \ CM .�/ D 1 since � acts as �Id on A. This proves that CM .�/ and CS .�/
are splittings of M and S over A.

We use throughout this section the notation set up in Section 3.1 for working
with the Todd module for 2M12, as summarized in Notation 4.4. In Subsection 4.1,
we set up notation for some of the subgroups of S and � that we have to work
with. All of this is then applied in Subsection 4.2 to prove Theorem 4.14 describing
fusion systems satisfying Hypotheses 4.1.
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Notation 4.4. Assume Hypotheses 4.1 and Notation 3.6. Identify

� D yM12 Š 2M12 and A D ˆ.G / D Sym3.F3/;

where yM12 is as in Notation 3.6 (a). Let N0 � yM12 be as in Notation 3.6 (d), set
N D N0 � ¹˙Idº, and let

‚WN0
Š
�!

°�
a b c
d e f
0 0 1

� ˇ̌̌
a; b; c; d; e; f 2 F3; ae ¤ bd

±
� GL3.F3/

be the isomorphism defined by (3.11). Thus

ˇ.X/ D ‚.ˇ/X‚.ˇ/t

for all ˇ 2 N0 and X 2 A by Lemma 3.12. Finally, define

T D ‚�1.UT3.F3// 2 Syl3.N0/ � Syl3.� /;

and set
M D A Ì � and S D A Ì T 2 Syl3.M/:

4.1 Some subgroups of � and S

We begin by listing the additional notation that will be needed, in particular, nota-
tion to describe the subgroups of index 3 in T .

Notation 4.5. Define

Z D Z.S / D CA.T / and A� D ŒT ;A�:

Define elements �0; �˙1; �1; O� 2 T as follows:

�k D ‚
�1
��

1 1 0
0 1 k
0 0 1

��
.for k 2 F3/;

�1 D ‚
�1
��

1 0 0
0 1 1
0 0 1

��
; O� D ‚�1

��
1 0 1
0 1 0
0 0 1

��
:

Thus T D h�0; �1i and Z.T / D hO�i. For each k 2 F3 [ ¹1º, set

Uk D hO�; �ki � T ;

Wk D ¹a 2 A j Œa; Uk� � Z D Z.S /º � A .so Wk=Z D CA=Z.Uk//;

Qk D WkUk � S :

For k 2 F3, set

Qk D ¹Q � S j Q \A D Wk; QA D UkAº:
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� �
��

t u r
u v s
r s a

�� h
�;
�
t u r
u v s
r s a

�i
�k D

�
1 1 0
0 1 k
0 0 1

� � t�uCv uCvCk.rCs/ rCs

uCvCk.rCs/ v�ksCak2 sCak
rCs sCak a

� � �uCv vCk.rCs/ s

vCk.rCs/ �ksCak2 ak
s ak 0

�
.k 2 F3/

�1 D
�
1 0 0
0 1 1
0 0 1

� �
t uCr r

uCr v�sCa sCa
r sCa a

� �
0 r 0
r �sCa a
0 a 0

�
O� D

�
1 0 1
0 1 0
0 0 1

� �
t�rCa uCs rCa
uCs v s
rCa s a

� �
�rCa s a
s 0 0
a 0 0

�
Table 5

In addition, we set
OQ D A�U1 Š 3

3C4:

For 1 � i; j � 3 and x 2 F3, let axij 2 A D Sym3.F3/ be the symmetric .3 � 3/-
matrix with x in positions .i; j / and .j; i/ (or 2x in position .i; i/ if i D j ) and 0
elsewhere, and set aij D a1ij .

The actions of the �k on A are described explicitly in Table 5.

Lemma 4.6. Assume Notation 4.4 and 4.5.

(a) We have

Z D
°�

t 0 0
0 0 0
0 0 0

� ˇ̌̌
t 2 F3

±
and A� D

°�
t u r
u v s
r s 0

� ˇ̌̌
t; u; v; r; s 2 F3

±
;

and
AutNF .A�/.A/ D AutN� .A�/.A/; where N� .A�/ D N :

(b) For each k 2 F3 [ ¹1º,

Wk D

8̂<̂
:
°�

t u r
u �kr 0
r 0 0

� ˇ̌̌
r; t; u 2 F3

±
if k 2 F3;°�

t u 0
u v 0
0 0 0

� ˇ̌̌
t; u; v 2 F3

±
if k D1;

CA.Uk/ D

´
Z if k 2 F3;

W1 if k D1;

Qk Š

´
31C4
C

if k 2 F3;

E35 if k D1:

NS .Qk/ D

´
S if k D 0;
A�T < S if k ¤ 0:
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(c) More generally, if k 2 F3 and Q 2 Qk , then

NS .Q/ � A if k D 0;

A \NS .Q/ D A� if k ¤ 0:

Proof. The descriptions of Z and A� follow immediately from the formulas in
Notation 4.4. From this, we see that A� D ŒN0;A�, and hence it is normalized
by N . Since N is a maximal subgroup of � by Lemma 3.7, it must be the full
normalizer of A�.

The formulas in point (b) follow easily from those in Table 5. (Note, for each
k 2 F3 [ ¹1º, that T normalizes Qk since it normalizes Uk and Wk .)

IfQ 2 Qk for some k 2 F3, then an element a 2 A normalizesQ if and only if
Œa; Uk� � Wk , which holds for all a 2 A if k D 0, but only for a 2 A� if k D ˙1.

Note that, for each k 2 F3, the subgroup Wkh O�; a23�ki lies in Qk since

.a23�k/
3
2 CA.�k/ � Wk;

but is not extraspecial since Œ O�; a23�k� D Œ O�; a23� 2 Wk XZ. Thus members of the
Qk need not be extraspecial. However, as shown in the next lemma, all subgroups
of S not in A and isomorphic to E35 or 31C4

C
are members of Qk for some k.

Lemma 4.7. Assume Notations 4.4 and 4.5.

(a) There are exactly three abelian subgroups of S of order 35 not contained inA,
and all of them are conjugate to Q1 Š E35 by elements of A X A�.

(b) If P � S is extraspecial of order 35, then Z.P / D Z, and P 2 Qk for some
k 2 F3. If, in addition, P is weakly closed in NF .Z/, then P D Q0.

(c) For each saturated fusion system E over S and each k 2 F3,Qk is E-centric.

Proof. (a) Assume B � S is abelian and such that B — A and jBj D 35. For
each � 2 S XA, we have rk.CA.�// � 3 by Lemma 3.13, so rk.BA=A/ D 2 and
rk.B \A/ D 3. Thus BA D UkA for some k 2 F3 [ ¹1º such that

rk.Wk/ � rk.CA.Uk// � 3;

and k D1 by Lemma 4.6 (a). By the same lemma, B \A D W1.
Thus B D W1hb1 O�; b2�1i for some b1; b2 2 A uniquely determined mod-

ulo W1. Since Œ O�; �1� D 1 and A E S , we have

1 D Œb1 O�; b2�1� D b1. O�b2 O�
�1/.�1b

�1
1 ��11 /b

�1
2 D Œ O�; b2�Œb1; �1�;
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and hence
Œ O�; b2� D Œ�1; b1� 2 Œ O�;A� \ Œ�1;A� D ha12i:

So, by Table 5 again, b1 � ax13 and b2 � ax23 .mod W1/ for some x 2 F3.
In particular, there are at most three subgroups of S isomorphic to E35 and

not in A. Since NS .Q1/ D A�T has index 3 in S , there are exactly three such
subgroups, and they are all conjugate to Q1 by elements of A X A�. More pre-
cisely, the three subgroups W1hax13 O�; a

x
23�1i for x 2 F3 all have the form ˇQ1

for some ˇ 2 ha33i.
(b) Assume that P � S is extraspecial of order 35, and set P0 D P \A. Then

P0 and P=P0 are both elementary abelian (since ŒP;P �DZ.P /� P0), and hence
P0ŠE27 andP=P0ŠE9. So it follows thatPADUkA for some k 2 F3 [ ¹1º,
and Z.P / � CA.Uk/. Since Uk D hO�; �ki and CA. O�/ D W1, this means that
Z.P / � CW1.�k/, and hence Z.P / D Z if k 2 F3 (while CA.U1/ D W1). So
if k ¤1, then ŒP0; Uk� D Z, and henceP0 � Wk in this case, with equality since
rk.Wk/ D 3 for each k (Lemma 4.6). Thus P 2 Qk if k 2 F3.

Conjugation by the element
�
�I 0
0 1

�
2 N lies in AutF .S / D AutNF .Z/.S /,

and its action on S exchanges the sets Q1 and Q�1. So no member of either
of these is weakly closed in NF .Z/. Each member of Q0 has the form

Q D W0hg1�0; g2 O�i for some g1; g2 2 A;

and �Id 2 N sends Q to W0hg�11 �0; g
�1
2 O�i. Since

c�Id 2 AutF .S / D AutNF .Z/.S /;

Q is weakly closed only if gi � g�1i .mod W0/ for i D 1; 2, which occurs only if
g1; g2 2 W0 and henceQ D Q0. ThusQ0 is the only member of Q0 [Q1 [Q�1
that could be weakly closed in NF .Z/.

If k D1, then

Z.P / � CA.U1/ \ Œ O�;A� \ Œ�1;A� D ha12i

by Table 5, and so

P0 � ¹a 2 A j ŒU1; a� � Z.P /º D W1

with equality since rk.W1/ D 3 D rk.P0/. But ŒU1; W1� D 1, so W1 � Z.P /,
a contradiction.

(c) For each k 2 F3 and each Q 2 Qk ,

CS .Q/ � CAUk
.Wk/ D A
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since Qk D UkWk is extraspecial (Lemma 4.6 (b)), and hence

CS .Q/ D CA.Uk/ D Z

by the same lemma. Since .Qk/F � Q0 [Q1 [Q2 by (b), this proves that Qk
is E-centric for each saturated fusion system E over S .

Point (c) in Lemma 4.7 is not true if one replaces Qk (for k 2 F3) by Q1.
If F and S satisfy Hypotheses 4.1, then one can show that OQ E CF .W1/ and
that OutCF .W1/.

OQ/ Š 2A4. (Since F is isomorphic to the fusion system of Co1
by Theorem 4.14, this follows from the structure of CCo1

.W1/ Š OQ:2A4.) The
subgroup OQ contains exactly four elementary abelian subgroups of rank 5 (the
three described in Lemma 4.7 and A�), and they are permuted transitively by
OutCF .W1/.

OQ/. So Q1 2 .A�/F , and hence it is not F -centric.

4.2 Fusion systems involving the Todd module for 2M12

We now begin to apply results from Section 2. Recall that our goal is to describe
all fusion systems that satisfy Hypotheses 4.1 with A µ F .

Proposition 4.8. Assume Hypotheses 4.1 with � D yM12 andA as in Notation 4.4,
and set Z D Z.S /. Then F D hCF .Z/;NF .A/i.

Proof. Assume otherwise. By Proposition 2.3, there are subgroups X 2 ZF and
R 2 EF such that

X — A; R D CS .X/ D NS .X/; Z D ˛.X/ for some ˛ 2 AutF .R/:

Fix x 2 X XA. In all cases, R \A D CA.X/ D CA.x/ since jX j D jZj D 3
and hence X D hxi. Also, jxj D 3 as x 2 X 2 ZF , where Z has order 3. Set
R0 D R \A.

Case 1: Assume first that jRA=Aj D 3 so that

RA D Ahxi and R D CS .X/ D CA.x/hxi:

Then AutA.R/ Š CA=R0
.x/ Š E3m , where m is the number of Jordan blocks of

length at least 2 for the action of x on A, and m D 2 by Lemma 3.13.
Thus jOutA.R/j D 9. Since OutA.R/ acts trivially on R0 and jR W R0j D 3,

this contradicts Lemma B.7.

Case 2: Assume that jRA=Aj D 9 and hence that

AutR.A/ D Uk for some k 2 F3 [ ¹1º:
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If k 2 F3, then Z D CA.R/ < CA.x/ by Lemma 4.6 (b), and hence

Z � ŒR; CA.x/� � ŒR;R�:

Since X — ŒR;R�, no automorphism of R sends X to Z.
Now assume k D 1, so R0 D CA.x/ D CA.R/ Š E27 by Lemma 4.6 (b)

again. Also, OutA.R/ Š CA=R0
.U1/ Š E9 (see Table 5). So, by Lemma B.6 (b),

for each characteristic subgroup P � R, we have either jP j � 34 or jR=P j � 34.
Since jRj D 35, and sinceR is not extraspecial by Lemma 4.7 (b), this implies that
R Š E35 .

Set B D OutA.R/ Š E9 so that B � OutS .R/. Moreover, let H < OutF.R/
be a strongly 3-embedded subgroup that contains OutS .R/ (recall R 2 EF ), fix
g 2 OutF.R/ XH , and set L D hB; gBi. Then L — H and 3 j jH \ Lj, so by
Lemma B.2 (b), the subgroup H \ L is strongly p-embedded in L.

Since rk.CR.B// D 3 and rk.R/ D 5, we have

rk.CR.L// D rk
�
CR.B/ \ CR.

gB/
�
� 1:

Also, we have rk.R=CR.L// � 4 by Lemma B.6 (b) again, so rk.CR.L// D 1,
and R=CR.L/ is a faithful 4-dimensional representation of L. For each x 2 B#,
rk.Œx; R�/ D rk.Œx; U1�/ D 2, and so Œx; R=CR.L/� has rank 1 or 2, and x acts
on R=CR.L/ with Jordan blocks of lengths 2C 2 or 2C 1C 1. By Proposi-
tion B.10, L Š SL2.9/ with the natural action on R=CR.L/, and hence we get
rk.Œx;R=CR.L/�/D 2 for each x 2B#. ThusCR.L/\ Œx;R�D 1 for each x 2B#.
But this is impossible: from Table 5, we see that the subgroups Œx; R� are precisely
the four subgroups of rank 2 in W1 Š E27 that contain ha12i, and hence each
element of W1 lies in at least one of them.
Case 3: Finally, assume that jRA=Aj > 9. Then RA=A D S=A Š 31C2

C
, and

AX D Ah O�i. From Table 5, we see that R0 D CA. O�/ D Zha12; a22i Š E27.
From the formulas in Table 5 again, we see that Zha12i � ŒT ; R0� � ŒR;R�

and hence that Z � ŒR; ŒR;R��. Since ŒR; ŒR;R�� � A, it does not contain X , so
no automorphism of R sends X to Z, contradicting our assumptions.

We next show that Q0 is normal in CF .Z/. The following lemma is a first
step towards doing this. From now on, we set Q D Q0 since this subgroup plays
a central role in studying these fusion systems satisfying Hypotheses 4.1.

Lemma 4.9. Assume Hypotheses 4.1, and Notations 4.4 and 4.5, and setQ D Q0.
Then

(a) Q is weakly closed in F ;

(b) Q is normal in NNF .A/.Z/;



Fusion systems realizing certain Todd modules 463

(c) C� .Z/Š E9 Ì GL2.3/ andN� .U0/D N� .Z/Š .E9 Ì GL2.3//�C2; and

(d) Z and W0 are the only proper nontrivial subspaces of A invariant under the
action of C� .Z/.

Proof. (c) Since Z D CA.U0/ (see Table 5), we have N� .U0/ � N� .Z/. Also,
N� .U0/ � NN .U0/ Š T ÌE8, so the index of N� .U0/ in � divides 880. By
[23, Lemma 7.12 and Exercise 7.36], the orbits of � acting on the projective space
P.A/ have lengths 132, 220, and 12, so Z must be in an orbit of length 220, and
hence jN� .Z/j D 32 � 96 D jN j.

Recall (Lemma 3.13) that there are two conjugacy classes of elements of or-
der 3 in � , differing by the number of Jordan blocks for their actions on A. Thus
all elements in U #

0 and U #
1 are in one of the classes, while elements in Uk X h O�i

for k 2 ¹˙1º are in the other. Since CA.U0/ D Z while CA.U1/ D W1 by
Lemma 4.6 (b), U0 and U1 are not � -conjugate.

As noted earlier (see [24, § 4]), while A is not isomorphic to its dual A� as
F3� -modules, the pairs .� ;A/ and .� ;A�/ are isomorphic via an outer auto-
morphism ˛ 2 Aut.� / X Inn.� /. Hence, by Table 5,

rk.CA.U0// D 1 and rk.CA.˛.U0/// D rk.CA�.U0// D rk.A=ŒU0;A�/ D 3;

so ˛.U0/ is not � -conjugate to U0. Since all elements of order 3 in ˛.U0/ are
conjugate to each other, ˛.U0/must be � -conjugate to U1. Thus ˛ exchanges the
classes of U0 and U1.

By the description of the action of N on A in Notation 4.4, N normalizes the
subgroup A� of index 3 in A. So it also normalizes a subgroup of order 3 in the
dual spaceA�, and hence ˛.N / � N� .X/ for someX � A of order 3. The length
of the orbit of X under the action of � divides j� W N j D 220, so X is in the orbit
of Z by earlier remarks, and ˛.N / D N� .X/ is � -conjugate to N� .Z/. Thus
N� .Z/ Š N Š .E9 Ì GL2.3// � C2. Since N0 acts via the identity on A=A�,
a similar argument shows that C� .Z/ Š N0. Finally, since U1 D O3.N / and
˛.U1/ is � -conjugate to U0, we get that O3.N� .Z// is � -conjugate to U0, so
jN� .U0/j D jN� .˛.U1//j � jN� .Z/j. Since N� .U0/ � N� .Z/, they must be
equal.

(d) Since C� .Z/ has index 2 in N� .Z/ D N� .U0/ by (c), Z and W0 are
both invariant under its action on A (recall W0=Z D CA=Z.U0/ by definition).
We must show that there are no other invariant subgroups.

As noted in the proof of (c), the action of C� .Z/ on A is (up to isomorphism)
dual to the action of N0 Š E9 Ì GL2.3/ on A. Set

B D ‚�1
�®�

A 0
0 1

� ˇ̌
A 2 GL2.3/

¯�
< N0:
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Then A splits as a direct sum of the three irreducible F3B-submodules

W1 D
°�

a b 0
b c 0
0 0 0

� ˇ̌̌
a; b; c 2 F3

±
;
°� 0 0 x

0 0 y
x y 0

� ˇ̌̌
x; y 2 F3

±
;
°�

0 0 0
0 0 0
0 0 z

� ˇ̌̌
z 2 F3

±
;

of which onlyW1 isN0-invariant. SinceN0 D U1B , it now follows that the only
proper nontrivial F3N0-submodules are W1 and A�, and hence (after dualizing)
that A also has only two proper nontrivial F3C� .Z/-submodules.

(b) Since M D A Ì � is a model for NF .A/ (Lemma 4.3 (b)), it suffices to
show thatQENM .Z/DAN� .Z/. As ŒQ;A�D ŒU0;A�DW0 �Q, where the
second equality holds by Table 5, we haveA �NM .Q/. Also,N� .Z/DN� .U0/
by (c); this group normalizes W0 since U0 normalizes W0 D ŒU0;A�, and hence
N� .Z/ also normalizesQ D U0W0. SoQ E AN� .Z/.

(a) We first check that
QF
\Q0 D ¹Qº: (4.10)

Assume otherwise: assume P 2 QF
\Q0 and P ¤ Q. By Lemma 1.2, there is

' 2 HomF .NS .P /;S / such that '.P /DQ, andA � NS .P / by Lemma 4.6 (c).
Then '.A/ D A since A is weakly closed (Lemma 4.3 (a)), and '.Z/ D Z since
Z D Z.NS .P // D Z.S /. (Note that NS .P / D U0A or S .) Thus it follows that
' 2 Mor.NNF .A/.Z//, so '.Q/ D Q by (b), contradicting our assumption that
P ¤ Q.

If Q is not weakly closed, then there are R 2 EF [ ¹S º, ˛ 2 AutF .R/, and
P � R by Lemma 2.8 such that R � Q, P D ˛.Q/ ¤ Q, and R D NS .P /.
Then P …Q0 by (4.10), so by Lemma 4.7 (b), there is k 2 ¹˙1º such that P 2Qk .
By Lemma 4.6 (c) again, R \A D NS .P / \A D A�. Also, RA contains both
QA D U0A and PA D UkA, so RA D S and jS=Rj D 3. In particular, R E S .

We next claim that

ˇ 2 AutF .R/; ˇ.A�/ D A� H) ˇ.Q/ D Q: (4.11)

Fix such a ˇ. Since ˇ.A�/ D A� and A is weakly closed, ˇjA� extends to some
Ǒ 2 AutF .A/ D � by Lemma 2.2 (b). Also, we have ˇ.Z/DZ sinceZDZ.R/,

so Ǒ 2 N� .Z/ D N� .U0/ by (c), and Ǒ normalizes CA=Z.U0/ D W0=Z. So it
follows that ˇ.W0/ D W0; hence ˇ.Q/ \ A� D ˇ.W0/ D W0, and ˇ.Q/ 2 Q0

by Lemma 4.7 (b) again. So ˇ.Q/ D Q by (4.10), proving (4.11).
In particular, we have ˛.A�/ ¤ A� D R \A by (4.11) and since ˛.Q/ ¤ Q,

so ˛.A�/ — A, and by Lemma 4.7 (a), ˛.A�/ is one of the three subgroups A-
conjugate to Q1. Since R E S , all three of these subgroups are in the AutF .R/-
orbit of Q. In particular, Q1 D U1W1 � R, so R � U1QA� D TA�, with
equality since both have index 3 in S .
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Suppose that Aut0F .R/ � AutF .R/ is the stabilizer of A�. We just saw that the
AutF .R/-orbit of A� consists of A� together with the three subgroups conju-
gate to Q1 by elements of A. So Aut0F .R/ has index 4 in AutF .R/. By (4.11),
ˇ.Q/ D Q for each ˇ 2 Aut0F .R/, and hence the AutF .R/-orbit of Q has order
at most 4. Since R E S , all three members of the A-conjugacy class of P 2 Qk

lie in this orbit. Also, the element ‚�1
��
�I 0
0 1

��
2 NN0.T / �M exchanges the

two classes Q1 and Q�1 and normalizes R D TA�, so the AutF .R/-orbit of Q
has at least three members from each of these classes. Since this contradicts the
earlier observation that the orbit has at most four members, we conclude thatQ is
weakly closed in F .

We are now ready to prove thatQ E CF .Z/.

Lemma 4.12. Assume Hypotheses 4.1 and Notation 4.5, and again set Q D Q0.
ThenQ E CF .Z/.

Proof. For 1 � i � j � 3, let Aij � A be the subgroup of those elements rep-
resented by symmetric .3 � 3/-matrices with entries 0 except possibly in posi-
tions .i; j / and .j; i/. We also set � D W0A22 D W1A13 since this “triangular
shaped” subgroup appears frequently in the arguments below.

Define inductively

Z D B0 < B1 < B2 < B3 < B4 D B D Q

by setting Bi=Bi�1 D CQ=Bi�1
.S /. Thus

B0 D A11; B1 D B0A12; B2 D W0 D B1A13;

B3 D B2h O�i; B4 D Q D B3h�0i;

and Bi E S for each i since Z andQ are normal.
Assume Q µ CF .Z/. Then Q=Z µ CF .Z/=Z by Lemma 1.19 and since

Z � Z.CF .Z//. By Proposition 2.9, applied with CF .Z/=Z and Q=Z in the
role of F and A, there are ` � 2, R � S , and ˛ 2 AutCF .Z/.R/ such that

((1)) R � B`C1, ˛.Bi / D Bi for all i � `, and X def
D ˛.B`C1/ — Q;

((2)) R D NS .X/ and R=B` D CS=B`
.X=B`/; and

((3)) if ` D 0, then R 2 ECF .Z/ and R=Z 2 ECF .Z/=Z .

Note, in ((3)), that R 2 ECF .Z/ by Lemma 1.18 together with Proposition 2.9.
We will show that this is impossible. Fix an element

t 2 X XQ D ˛.B`C1/ XQ:
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Thus X D B`hti (recall B` E F`). Set R0 D R \A so that R0 D NA.X/ and
R0=B` D CA=B`

.X=B`/ by ((2)). We claim that

((4)) R � A and hence R0 ¤ A and t … A;

((5)) jt j D 3; and

((6)) t … O�A implies R � Aht; O�i.

To see these, note first that if R � A, then ˛ 2 AutF`
.R/ � Mor.CNF .A/.Z//

since F` � CF .Z/ and A is weakly closed (Lemma 4.3 (a)). So it follows that
˛.R \Q/ D R \Q sinceQ E NNF .A/.Z/ by Lemma 4.9 (b), contradicting the
assumption that t 2 ˛.B`C1/ XQ. Hence we have R � A. Also, B` � A, while
X D B`hti — A since A ¤ R0 D NA.X/, so t … A, finishing the proof of ((4)).

Since B`C1 � Q has exponent 3, so does X D ˛.B`C1/. Hence jt j D 3, prov-
ing ((5)). If t … O�A, then RA=A � CS=A.t/ D htA; O�Ai, so R � Aht; O�i, prov-
ing ((6)).

Since t 2 S XA by ((4)), and each element in S XA is S -conjugate to an el-
ement of �A for � D O�˙1 or �˙1

k
for k 2 F3 [ ¹1º, we can arrange that t 2 �A

for � 2 ¹ O�; �1; �0; �˙1º. The proof now splits up naturally into different cases,
depending on the class tA and on `. The following arguments, covering all possi-
ble pairs .tA; `/, are summarized in Table 6.
t 2 O�A: Since Œ O�;A� D B2 D Œ�0;A�, Œt; u� D 1 for some element u 2 �0A, and
hence R � R0ht; ui.
� If ` D 0, then R0 D �. So

˛�1.t/ 2 B1 D Œ�; �0� D ŒR0; u� � ŒR;R�;

and hence t 2 ŒR;R�. This implies that R D �ht; u; vi for some v 2 �1A, and
hence that Z.R/ D Z and Z2.R/ D B1hti Š E27.
By the above relations, we have

Z.R=B1/ D �hti=B1 Š E27; while Z.R=.Zhti// D B1hti=Zhti Š C3:

So no ˛ 2 Aut.R/ sends B1 into Zhti.
� If `D 1, then R0 D A� D�A23 Š E35 . Set E D ˛.A�/. Then t 2 ˛.B2/ � E,

so E Š E35 is not contained inA, and E isA-conjugate toQ1 D W1h O�; �1i
by Lemma 4.7 (a). Since OQ D A�Q1 E S , this implies that R � OQ. Thus
R D OQhui D A�h O�; �1; ui, and it has index 3 in S .
Let a 2 A33 be such that u 2 �0aA�. The element �0 normalizes both A� and
Q1 D W1h O�; �1i. Hence �0 normalizes each of the four subgroups of OQ iso-
morphic to E35 , while A33 normalizes A� and permutes the other three transi-
tively. Since A� E R, we must have E D ˛.A�/ E R, and this is possible only
if a D 1. Thus R D OQh�0i D A�T .
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In particular, Q D B2h O�; �0i � R, and ˛.Q/ D Q since Q is weakly closed in
F by Lemma 4.9 (a). This contradicts the assumption that ˛.B2/ D B1hti — Q.

� If ` D 2, then R0 D A, contradicting ((4)).

t 2 �0A: Since Œ O�;A�D B2 D Œ�0;A��, t commutes with some element u 2 O�A�.
Thus R D R0ht; ui by ((6)), where u 2 O�A�, and Œt; u� D u3 D 1.

� If ` D 0, then R0 D B2A33 (recall W0 D B2). So it follows that Z.R/ D Z,
and R=Z Š 31C2

C
�E9. Then

Z2.R/ D B2hti Š 3
1C2
C
� C3 and Z.Z2.R// D Z.B2hti/ D ZA13;

and so both of these are characteristic in R.
Since ŒA23;R��B2 �Z2.R/ and ŒA23;Z2.R/�D ŒA23; t �DA13 �Z.Z2.R//
(and since ŒA23; Z.Z2.R//� D 1), we have R … ECF .Z/ by Lemma B.9, con-
tradicting ((3)).

� If ` D 1, then R0 D B2A22A33 Š E35 . So ˛.t/ 2 B2 � ŒR0; ht; ui� � ŒR;R�,
while t … ŒR;R�, a contradiction.

� If ` D 2, then R0 D A, contradicting ((4)).

t 2 �kA for k D1;˙1: We haveWk � R0 � � in all cases. As jt j D 3 by ((5)),
we have t 2 �kA�, and t 2 �k� if k D ˙1. This follows from Lemma A.5, to-
gether with the formulas in Table 5. So if k D ˙1, then Œ O�; t � 2 Œ O�;�� D Z, and
we set u D O� 2 R. If k D1, then Œ O�; t � 2 Œ O�;A�� D B1, and Œu; R0hti� � Z (and
hence u 2R) for some u 2 O�A13. In all cases, Œt; u� 2Z, andRDR0ht; ui by ((6)).

� If ` D 0, then we have R0 D Wk , and so R 2 Qk , and R=Z Š E34 in all cases.
Since R=Z 2 ECF .Z/=Z by ((3)), the group AutCF .Z/=Z.R=Z/ � GL4.3/ has
a strongly embedded subgroup, and hence O3

0

.AutCF .Z/=Z.R=Z// Š SL2.9/
or PSL2.9/ by Proposition B.10. So AutS=Z.R=Z/ Š NS .R/=R Š E9: a Sy-
low 3-subgroup of .P/SL2.9/.
In all cases, NS .R/ \A D A�. If k D ˙1, then NS .R/ D A�ht; O�; �0i, and
so jNS .R/=Rj D 33. If k D1, then t 2 Z.R/ since ˛�1.t/ 2 B1 � Z.R/, so
R Š E35 and is S -conjugate to Q1 by Lemma 4.7 (a). So

jNS .R/=Rj D jNS .Q1/=Q1j D 3
3;

and we also get a contradiction in this case.
� If ` D 1 or 2, then R0 D � and R D �ht; ui, where u 2 O�A13 and Œt; u� 2 Z.

Set x D ˛�1.t/ 2B`C1 XB`. Then it follows that CR.x/Š CR.t/, where either
CR.t/ D C�.t/hti Š E27, or C�.t/ht; ui is nonabelian of order 34. If ` D 1,
then x 2 A, soCR.x/ � R0 Š E34 . If ` D 2, then x 2 O�B2 � O�� (and x 2 R),
so CR.x/ � W1hxi Š E34 . So this is impossible in either case.
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We can now determine OutF .Q/. Let Sp�4.3/ � GL4.3/ denote the group of
matrices that preserve a symplectic form up to sign. Thus Sp�4.3/ contains Sp4.3/
with index 2.

Lemma 4.13. Assume Hypotheses 4.1 and Notation 4.5. Then

OutF .Q/ D Out.Q/ Š Sp�4.3/:

Also,

OutNF .A/.Q/ Š NM .Q/=Q D ANM .U0/=W0U0

Š .A=W0/ Ì .NM .U0/=U0/ Š E27 Ì .GL2.3/ � C2/;

where the action of CM .U0/=U0 Š GL2.3/ on O3.OutNF .A/.Q// Š A=W0 is
irreducible.

Proof. The model M for NF .A/ is a semidirect product of A by

� D AutF .A/ Š 2M12

(Lemmas 4.2 and 4.3 (b)). Since Q is weakly closed in F by Lemma 4.9 (a), we
have

NM .Q/ D NM .AU0/ D AN� .U0/;

where N� .U0/ Š .E9 Ì GL2.3// � C2 by Lemma 4.9 (c). The description of

OutNF .A/.Q/ Š NM .Q/=Q

is now immediate, where the action of CM .U0/=U0 on A=W0 is irreducible by
Lemma 4.9 (d).

Since NF .A/ < F by assumption and F D hCF .Z/;NF .A/i by Proposi-
tion 4.8, we haveNF .Z/ > NNF .A/.Z/. SinceQ is F -centric by Lemma 4.7 (c)
and normal in NF .Z/ by Lemma 4.12, NF .Z/ is constrained and

AutF .Q/ > AutNF .A/.Q/:

Since OutNF .A/.Q/ is maximal in Out.Q/, we conclude that

OutF .Q/ D Out.Q/ Š Sp�4.3/:

We are now ready to identify all fusion systems satisfying Hypotheses 4.1.



470 B. Oliver

Theorem 4.14. Let F be a saturated fusion system over a finite 3-group S with
a subgroup A � S such that

A Š E36 ; CS .A/ D A; and O3
0

.AutF .A// Š 2M12:

Assume also that A µ F . Then A E S , S splits over A, and F is simple and
isomorphic to the 3-fusion system of Co1.

Proof. By Lemma 4.2, AutF .A/ Š 2M12, and it acts on A as the Todd module.
By Lemma 4.3,A is normal in S and weakly closed in F , and S Š A Ì T , where
T 2 Syl3.� / is defined in Notation 4.4. So we are in the situation of Notations 4.4
and 4.5 and can use the terminology listed there. SetQ D Q0; thenQ E CF .Z/

by Lemma 4.12, and this is the only subgroup of S isomorphic to 31C4
C

and weakly
closed in NF .Z/ by Lemma 4.7 (b).

SetG� D Co1, fix S� 2 Syl3.G/, and letA� E S� be the unique subgroup iso-
morphic toE36 . SetZ� D CA�.S�/ D Z.S�/. By [18, Theorem 3.1] (see also the
discussion about the subgroup Š333 on [18, p. 424]), the fusion system FS�.G

�/

satisfies Hypotheses 4.1.
LetM be a model forNF .A/ (see Proposition 1.12), and setM � D NG�.A�/.

By Lemmas 4.2 and 4.3 (b), M and M � are both semidirect products of E36 by
2M12 acting as the Todd module, so there is an isomorphism 'WM �

Š
�!M such

that '.S�/ D S . Set F � D '.FS�.G
�//. Thus F � is a fusion system over S

isomorphic to FS�.G
�/. We will show that F � D F . By construction, we have

NF .A/ D NF �.A/.
Set

F1 D CF .Z/; F2 D CF �.Z/; and E D CNF .A/.Z/:

Since NF .A/ D NF �.A/, E is contained in F2 as well as in F1. All three of
these are fusion systems over S , and Q is centric and normal in each of them
by Lemmas 4.7 (c) and 4.12. Also, OutF1

.Q/ D OutF2
.Q/ Š Sp4.3/ since they

have index 2 in OutF .Q/ and OutF �.Q/, respectively, where

OutF .Q/ D OutF �.Q/ D Out.Q/

by Lemma 4.13.
By Lemma 4.13,

OutNF .A/.Q/ D AutA.Q/ Ì .N� .Z/=U0/ Š E27 Ì .GL2.3/ � C2/;

where the action of C� .Z/=U0 Š GL2.3/ on AutA.Q/ Š A=W0 is irreducible.
In particular, OutE.Q/ has no normal subgroup of index 3, and hence

H 1.OutE.Q/IZ.Q// Š Hom.E27 Ì GL2.3/;Z=3/ D 0:

So F1 D F2 by Proposition 2.11.
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Thus
CF .Z/ D CF �.Z/ and NF .A/ D NF �.A/:

Since F D hCF .Z/;NF .A/i by Proposition 4.8 again, and similarly for F �, we
have F D F �.

The 3-fusion system of Co1 was shown to be simple by Aschbacher [5, 16.10]
(see also [36, Theorem A]).

5 Todd modules forM10 andM11

We now look at Todd modules for the Mathieu groups M11 and M10. More gen-
erally, rather than looking only at M10-representations, we work with representa-
tions of extensions of O3

0

.M10/ Š A6. We want to determine all saturated fusion
systems over finite 3-groups which involve these modules. Throughout the section,
we refer to the following hypotheses.

Hypotheses 5.1. Set p D 3. Let F be a saturated fusion system over a finite 3-
group S , and letA � S be an elementary abelian subgroup such that CS .A/DA.
Set � D AutF .A/, �0 D O3

0

.� /, and assume that one of the following holds:

(i) rk.A/ D 4 and �0 Š A6; or

(ii) rk.A/ D 5 and �0 ŠM11.

We will see in Lemma 5.4 that A is weakly closed in F under these assump-
tions.

The irreducible F3A6- and F3M11-modules are, of course, very well known. In
particular, there are only three modules that we need to consider.

Lemma 5.2. There are exactly one isomorphism class of faithful 4-dimensional
F3A6-modules, and exactly two isomorphism classes of faithful 5-dimensional
F3M11-modules. All of these modules are absolutely irreducible.

Proof. We refer for simplicity to [27, p. [4]] for the table of characters of A6 in
characteristic 3: there are none of degree 2, two of degree 3 which are not realized
as F3A6-modules (since GL3.3/ has order prime to 5), and one of degree 4 which
is realized (as the natural module forA6). This proves the claim for F3A6-modules.

By [26, § 7A], there are exactly two isomorphism classes of irreducible 5-
dimensional xF3M11-modules, one the dual of the other. In both cases, these are the
smallest degrees of nontrivial Brauer characters. It is well known that they can be
realized as F3M11-modules; we give one explicit construction in Lemma 3.18 (b)
and (c).
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Note. Of the two distinct 5-dimensional F3M11-modules, what we call the “Todd
module” is the one that has a set of eleven 1-dimensional subspaces permuted
by M11. That one of the modules has this form is clear by the construction in
Notation 3.15.

As noted in the proof of Lemma 5.2, the 4-dimensional F3A6-module is the nat-
ural module forA6: a subquotient of the 6-dimensional permutation module. How-
ever, for our constructions here (e.g., when we want to extend it to an F3Aut.A6/-
module), it will be easier to work with it as a quotient module of the Todd module
for 2M12 described in Section 4.

5.1 Preliminary results

The main goal in this subsection is to show that F D hCF .Z/;NF .A/iwhenever
Hypotheses 5.1 hold (Proposition 5.7). But we first describe more explicitly how
the notation of Section 3.2 is used in the situation of Hypotheses 5.1. Recall that
T 2 Syl3. yM`/ by Lemma 3.16.

Notation 5.3. Assume Hypotheses 5.1 and Notation 3.15 as well as the notation in
Lemma 3.18. Identify �0 with yM0

`
D O3

0

. yM`/ for ` D 10 or 11 in such a way
that T D AutS .A/, and identify A with A.`/ or (in the M �11-case) with A.11/

�
.

Thus Z D Z.S / D CA.T /. Finally, set A� D ŒS ;A� D ŒT ;A�.

For later reference, we collect in Table 7 some easy computations involving
some of the subgroups of A and � defined above.

The next lemma gives a first easy consequence of the computations in Table 7.

Lemma 5.4. Assume thatA � S and F satisfy Hypotheses 5.1. ThenA is weakly
closed in F and in particular is normal in S .

Proof. By Lemma 5.2, A is one of the F3�0-modules described in Lemma 3.18.
From that lemma and Table 7, we see that, in all of these cases, NS .A/=A Š E9,
jCA.x/j D 9 for each x 2 NS .A/ XA, and jA W CA.NS .A//j � 33. SoA is the
unique abelian subgroup of index 9 inNS .A/, and hence by Lemma 2.1 is weakly
closed in F .

The following properties will also be needed.

Lemma 5.5. Assume Hypotheses 5.1 and Notation 5.3.

(a) In the A6- and M11-cases, for x 2 S XA and a 2 A, we have .ax/3 D x3 if
and only if a 2 A�. In all cases, x 2 S XA and a 2 A� implies .ax/3 D x3.

(b) In all cases, if A µ F , then ŒS ;S � D A�.
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A6-case

A F3 � F9 � F3

Œs; Ja; b; cK� J0;�ax;Tr.xbx/�aN.x/K
A� D ŒT ;A� 0 � F9 � F3

Œs;A� ¹J0; ax; cK j a; c 2 F3º

CA.T / D Z.S / 0 � 0 � F3

CA.s/ D Z.Ahsi/ ¹J0; b; cK j Tr.bxx/ D 0º
Jd. bl. lth. of cs 3C 1

M11-case M �11-case

A F3 � F9 � F9 F9 � F9 � F3

Œs; Ja; b; cK� J0;�ax; bx C ax2K J0;�ax;Tr.bx C ax2/K
A� D ŒT ;A� 0 � F9 � F9 0 � F9 � F3

Œs;A� ¹J0; ax; cK j a 2 F3; c 2 F9º 0 � F9 � F3

CA.T / D Z.S / 0 � 0 � F9 0 � 0 � F3

CA.s/ D Z.Ahsi/ 0 � 0 � F9 ¹J0; b; cK j Tr.bx/ D 0º
Jd. bl. lth. of cs 3C 2 3C 2

Table 7. In all cases, s 2 S XA, and x 2 F9 is such that cs D ..x// 2 T . The last
line gives the Jordan block lengths for the action of s on A.

Proof. (a) By Lemma A.5, for a 2 A and x 2 S XA, x3 D .ax/3 if and only if
Œx; Œx; a�� D 1, i.e., if Œx; a� 2 CA.x/. By Table 7, this holds if and only if a 2 A�
in the A6- and M11-cases, while Œx; A�� D Z � CA.x/ in the M �11-case.

(b) Assume otherwise: assume ŒS ;S � > A� D ŒS ;A�. Then, since S=A Š E9
in all cases, ŒS ;S � contains A� with index 3.

Assume we are in the M �11-case. Thus jA=A�j D 9 by Table 7, and hence we
have A� < ŒS ;S � < A. By Lemma 3.16, there is an element �Œi � 2 N�0.T /,
and this extends to ˛ 2 AutF .S / by the extension axiom. By the formulas in
Lemma 3.18 (c), no subgroup of index 3 in A and containing A� is normalized
by ˛. In particular, ˛.ŒS ;S �/ ¤ ŒS ;S �, which is impossible.

Now assume we are in the A6- or M11-case. Then jA=A�j D 3 by Table 7
again, so ŒS ;S � D A, and S=A� is nonabelian of order 27. Let x 2 S XA and
y 2 S XAhxi be arbitrary. Then S D Ahx; yi and Œx; y� 2 A X A�. So we have
x3 ¤ .yx/3 D y.x3/ by (a). In particular, x3 ¤ 1, and since x was arbitrary, no
element of S XA has order 3.
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Assume R 2 EF . Then we have that A \R D ˝1.R/ is characteristic in R.
For each a 2 NA.R/ XR, we have Œa; R� � R \A and Œa; R \A� D 1, contra-
dicting Lemma B.9. ThusNA.R/ � R, soNAR.R/ D R, and henceA � R. Thus
each F -essential subgroup containsA, contradicting the assumption thatA µ F .

In Notation 5.3, we identified O3
0

.� / D O3
0

. yM`/ (for ` D 10 or 11). In fact,
this extends to an inclusion � � yM`.

Lemma 5.6. Assume Hypotheses 5.1 and Notation 5.3. Then, for ` D 10; 11, we
haveN .`/ D N yM`

.T /, and this is a maximal subgroup of yM`. Also, as subgroups
of Aut.A/, we have
� yM10 D NAut.A/.�0/ � � if �0 D yM0

10
Š A6; and

� yM11 D NAut.A/.�0/ � � if �0 D yM0
11
ŠM11.

Proof. For ` D 10; 11,

N .`/ D N \ yM` D N yM12
.T / \ yM` D N yM`

.T /;

where the second equality holds by Lemma 3.7. The maximality of N .`/ in yM`

is well known in both cases, but we note the following very simple argument. If
N .`/ is not maximal in yM`, then since it has index 10 or 55 when ` D 10 or 11,
respectively, there is N .`/ < H < yM`, where ŒH W N .`/� D n for n 2 ¹2; 5; 11º.
But thenH has exactly n Sylow 3-subgroups where n � 2 .mod 3/, contradicting
the Sylow theorems.

Now let ` 2 ¹10; 11º be such that �0 D yM0
`

. Since A is absolutely irreducible
as an F3 yM0

`
-module by Lemma 5.2, we have CAut.A/. yM

0
`
/ D ¹˙Idº, and hence

j yM`= yM
0
` j � jNAut.A/. yM

0
` /=
yM0
` j � 2 � jOut. yM0

` /j:

These inequalities are equalities by Table 3 and since

jOut.A6/j D 4 and jOut.M11/j D 1;

so yM` D NAut.A/. yM
0
`
/ � � .

We can now begin to apply some of the lemmas in Section 2.

Proposition 5.7. Assume Hypotheses 5.1 and Notation 5.3. Then

F D hCF .Z/;NF .A/i:

Proof. Assume otherwise, and recall that A E S by Lemma 5.4. By Proposi-
tion 2.3, there are subgroups X 2 ZF and R 2 EF such that

X — A; R D CS .X/ D NS .X/; Z D ˛.X/ for some ˛ 2 AutF .R/:

Set R0 D R \A.
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Fix x 2 X XA. Then jxj D 3 since x 2 X Š Z and Z � A has exponent 3.
Also, R0 D CA.X/ D CA.x/: since either jX j D jZj D 3 and hence X D hxi,
or else we are in the M11-case and CA.x/ D Z D CA.S /. Since x acts on A in
all cases with two Jordan blocks (Table 7), we have jR0j D jCA.x/j D 9.
Case 1: Assume first that jRA=Aj D 3. Then R D R0hxi, and hence jRj D 27.

If we are in the A6-case, then each member of the S -conjugacy class of R has
the form CA.y/hyi D R0hyi for some y 2 xA, and y 2 xA� by Lemma 5.5 (a)
and since y3 D 1 D x3. Since CA.x/ has index 3 in A�, there are at most three
such subgroups, so jNS .R/=Rj � 1

3
ŒS W R� D 9, contradicting Lemma B.6 (b).

In the M11- and M �11-cases, jNRA.R/=Rj D jCA=R0
.x/j D 9 since x acts on

A with Jordan blocks of length 3 and 2 (Table 7). Thus jOutA.R/j D 9. Since
OutA.R/ acts trivially on R0, and jR=R0j D 3, this contradicts Lemma B.7.
Case 2: Now assume that jRA=Aj Š E9. Thus RA D S and jRj D 81.

Assume first we are in the A6- or M �11-case. Then

jZj D 3 and Z D CA.R/ < CA.x/:

So there are y 2 R XAhxi and a 2 CA.x/ X CA.R/ such that 1 ¤ Œy; a� 2 Z,
and hence Z � ŒR; CA.x/� � ŒR;R�. Since X — ŒR;R�, no automorphism of R
sends X to Z.

Now assume we are in the M11-case. Then R0 D Z and NS .R/ D RA�, so
jNS .R/=Rj D jA�=Zj D 9, and hence R Š E81 by Lemma B.6 (b). Each ele-
ment of order 3 in AutS .R/ acts on R with Jordan blocks of length at most 2,
so by Proposition B.10, O3

0

.AutF .R// Š SL2.9/ with the natural action on R.
Also, each element of order 8 in NO30 .AutF .R//.AutS .R// restricts to an element
˛ 2 AutF .Z/ of order 8 (note that Z D ŒNS .R/;R�), and this in turn extends
to some ˇ 2 AutF .S / and hence to ˇjA 2 AutF .A/ since A is weakly closed
in F by Lemma 5.4. But yM0

11
� AutF .A/ � yM11 ŠM11 � C2 by Lemma 5.6,

so F�9 h�i or its product with ¹˙Idº is a Sylow 2-subgroup of AutF .A/, and by
Lemma 3.18 (b), the subgroups of order 8 in these groups do not act faithfully
on Z. So this case is impossible.

5.2 The subgroupQ E CF .Z/

So far, we have shown that F D hNF .A/; CF .Z/i in all cases where Hypothe-
ses 5.1 hold. Our next step in studying these fusion systems is to prove that CF .Z/

is constrained by constructing a normal centric subgroupQ E CF .Z/, and prov-
ing (as one consequence) that S splits over A.

Proposition 5.8. Assume Hypotheses 5.1 where A µ F . Then there is a unique
special subgroup Q E S of exponent 3 such that Z.Q/ D Z, Q \A D A�, and
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Q=Z Š E81, and ECF .Z/ D ¹Qº. In particular, Q E CF .Z/, and Q is weakly
closed in F and F -centric.

Proof. Assume Notation 5.3. Define

Q D ¹Q � S j Q \A D A�; Q=Z abelian of order 34º;

Q0 D ¹Q 2 Q j Q of exponent 3º:

Recall that ŒS ;S � D A� by Lemma 5.5 (b). Also, S=A� is elementary abelian by
Lemma A.1 (a), applied to the group S=Z with center A�=Z.

We will prove that

ECF .Z/ � Q0 and jQ0j � 1: (5.9)

Since F D hCF .Z/;NF .A/i by Proposition 5.7, and since F ¤ NF .A/ (recall
A µ F by assumption), ECF .Z/ ¤ ¿. So (5.9) implies that ECF .Z/ D Q0 has
order 1, and for Q 2 Q0, Q E CF .Z/ and Q is weakly closed in F . By con-
struction, CS .Q/ D CS .T / D Z, so Q is also F -centric.

It thus remains to prove (5.9). Set xS D S=Z and similarly for subgroups and
elements of S . In all cases, Z.xS / D xA� Š E9.

Let �WQ=A� ! Z be the homomorphism of Lemma A.1 (b) that sends gA�
to g3. (Note that � is defined on xQ D Q=Z in the lemma, but factors through
Q=A� since A� is elementary abelian.)
A6- and M11-cases: Here, jA=A�j D 3, so jQ0j � jQj D 1 by Lemma A.1 (c),
applied with xS and xA� in the role of S and Z. Let Q 2 Q be the unique element.
Then ECF .Z/=Z � ¹

xQº by [32, Lemma 2.3 (a)] and since xQ is the unique abelian
subgroup of index 3 in xS , and so ECF .Z/ � ¹Qº by Lemma 1.18.

Since Q is the only member of Q, it is normalized by AutF .S /. By Table 3,
the element

ˇ0 D

´
�Œi � 2 N .10/ \ yM0

10
� AutF .A/ in the A6-case;

�Œ�� 2 N .11/ \ yM0
11
� AutF .A/ in the M11-case

normalizes AutS .A/ and hence extends to some ˇ 2 AutF .S /. Also, by construc-
tion ofN .10/ D N .11/, ˇ permutes the cosets gA� for g 2 Q X A� (in two orbits
of length 4 in the A6-case, or one orbit of length 8 in the M11-case), and � is
constant on each of these orbits.

In the A6-case, where jZj D 3, this implies that � D 1 and hence Q 2 Q0.
In the M11-case, where jZj D 9, it implies that either Q 2 Q0, or all elements
of Q X A� have order 9 and hence A� is characteristic in Q. But in that case,
Q … ECF .Z/ by Lemma B.9 since, for a 2 A X A�, we have Œa;Q� � A� and
Œa; A�� D 1. We conclude that ECF .Z/ � Q0 in either case, finishing the proof
of (5.9).
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M �11-case: Now, jA=A�j D 9. Assume R 2 ECF .Z/. Then

R � Z and xR 2 ECF .Z/=Z

by Lemma 1.18, and hence xR �Z.xS /D xA�. If xR is not abelian, thenZ. xR/D xA�,
so xA� is characteristic in xR, contradicting Lemma B.9 since Œx; xR� � xA� and
Œx; xA�� D 1 for each x 2 xS X xR. Thus xR is abelian, and is maximal abelian since
it is F =Z-centric. So R 2 Q [ ¹Aº by Lemma A.1 (d), and ECF .Z/ � Q [ ¹Aº.

As N .11/ Š .E9 Ì SD16/ � C2 is a maximal subgroup of yM11 by Lemma 5.6
and normalizes Z by Lemma 3.18 (c), we see that AutNF .Z/.A/ D CAutF .A/.Z/

has index 2 inN .11/ and hence contains T as a normal subgroup. SoA … ECF .Z/,
and ECF .Z/ � Q.

AssumeR is not of exponent 3, and setR0 D ˝1.R/. ThenR0 has index 3 inR
by Lemma A.1 (b), so R0=Z.R0/ Š E9, where Z.R0/ � A�. Since jA=A�j D 9
and 9 − jAut.R0=Z.R0//j, there is x 2 A X A� such that Œx; R0� � Z.R0/. Also,
Œx; R� � A� � R0 and Œx; Z.R0/� D 1, and by Lemma B.9, this contradicts the
assumption that R 2 ECF .Z/. Thus ECF .Z/ � Q0.

It remains to show that jQ0j � 1. Assume otherwise: assume Q1 and Q2 are
both in Q0. Define  WS=A ! A=A� by setting, for each gA 2 S=A,

 .gA/ D .gA \Q1/
�1.gA \Q2/ 2 A=A�:

(Note that gA \Qi 2 S=A� for i D 1; 2.) Since

.g1/
3
D 1 D .g2/

3 for gi 2 gA \Qi ;

and g2 2 g1 .gA/, we have Œg; Œg;  .gA/�� D 1 by Lemma A.5. Using the for-
mulas in Lemma 3.18 (c), we identify S=A and A=A� with F9, and through that
identify  with an additive homomorphism O WF9 ! F9 such that

0 D
�
..x//; Œ..x//; J O .x/; 0; 0K�

�
D J0; 0;Tr.x2 O .x//K

for each x 2 F9. Thus x2 O .x/ 2 iF3, and

O .x/ 2

´
iF3 if x D ˙1;˙i;
F3 if x D ˙�;˙�3:

Hence O is not onto, and either O .1/ D O .i/ D 0 or O .�/ D O .�3/ D 0. This
proves that O D 0 and hence Q1 D Q2, and finishes the proof of (5.9).

We list some of the properties of these subgroupsQ E S in Table 8 for easy ref-
erence. They follow immediately from the descriptions in Lemma 3.18 and Propo-
sition 5.8.

One easy consequence of Proposition 5.8 is that S Š A Ì T .
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�0 Š rk.A/ rk.Z/ jS j Q Š jOutS .Q/j

A6-case A6 4 1 36 31C4
C

3

M11-case M11 5 2 37 32C4 3

M �11-case M11 5 1 37 31C4
C

9

Table 8

Corollary 5.10. Assume Hypotheses 5.1 whereA µ F , and letM be a model for
NF .A/ (see Proposition 1.12). Then S and M split over A.

Proof. Let Q E S be the special subgroup of exponent 3 of Proposition 5.8. To
prove that S splits over A, it suffices to show that Q splits over Q \A D A�.
If jZj D 9 (i.e., in the M11-case), then we are in the situation of Lemma A.1 (d),
so there is B � Q abelian of index 9 such that B \ A� D Z, and any complement
in B to Z is a splitting ofQ over A�.

If jZj D 3, then consider the space xQ D Q=Z, with symplectic form b defined
by b.xZ; yZ/ D �.Œx; y�/ for some � WZ Š�! F3. Following the standard proce-
dure for constructing a symplectic basis for xQ, we fix a basis ¹a1; a2º for A�=Z,
choose b1 2 xQ X a?1 , and choose b2 2 ha1; b1i? X ha2i. Then ¹a1; b1; a2; b2º is
a basis for xQ, and hb1; b2i � xQ is totally isotropic and lifts to a splitting of Q
over A�.

Since S splits over A, it follows from Gaschütz’s theorem (see [3, (10.4)]) that
M also splits over A.

Recall that, for ` D 10; 11, we set T D O3.N .`// Š E9, a Sylow 3-subgroup
of yM`, and set yM0

`
D O3

0

. yM`/. Also, � was chosen so that �0 D yM0
`

(see
Notation 5.3), and then � � yM` by Lemma 5.6.

Notation 5.11. Assume Hypotheses 5.1 and Notations 3.15 and 5.3. Let M be
a model for NF .A/, and set M0 D O

30.M/. Then M splits over A by Corol-
lary 5.10, and we identify

M D A Ì � � A Ì yM` and M0 D A Ì �0 D A Ì yM0
` ;

where `D 10 if �0 Š A6 and `D 11 if �0 ŠM11. Thus S DA Ì T 2 Syl3.M/

andQ D A� Ì T � S .

One easily sees that Q is special with Z.Q/ D Z and Q=Z Š E81. Also, Q
has exponent 3 by Lemma 5.5 (a) and hence is the subgroup described in Proposi-
tion 5.8. In particular,Q E CF .Z/, and ECF .Z/ D ¹Qº.
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Recall Notation 3.15 and Lemma 3.16: T D ¹..x// j x 2 F9º, and

N .10/ D N .11/ D h..x//; Œu�; Œ��;�Id j x 2 F9; u 2 F�9 i

Š .E9 Ì SD16/ � ¹˙Idº:

Lemma 5.12. Assume Hypotheses 5.1 and Notation 5.11, and also that A µ F .
Then conditions (i)–(iii) in Hypotheses 2.12 hold for F , S , A, andQ.

Proof. Since M is a model for NF .A/, we have

S 2 Syl3.M/ and M=A Š � D AutF .A/:

Each pair of distinct Sylow 3-subgroups of �0 D O3
0

.� / Š A6 orM11 intersects
trivially. Hence, for each subgroupR such thatA < R < S ,S is the unique Sylow
3-subgroup of M that contains R. So 1 ¤ OutS .R/ E OutM .R/ D OutF .R/,
and hence OutF .R/ D OutNF .A/.R/ does not have a strongly 3-embedded sub-
group. Thus no such R can be NF .A/-essential, proving that ENF .A/ � ¹Aº.

By Proposition 5.7, F D hNF .A/; CF .Z/i. Hence EF � ENF .A/ [ ECF .Z/

by Proposition 1.6, while ECF .Z/ � ¹Qº by Proposition 5.8. So EF � ¹A;Qº.
Also, A 2 EF by Lemma B.1 and since �0 D O3

0

.AutF .A// Š A6 or M11 and
hence has a strongly embedded subgroup, and Q 2 EF since otherwise A would
be normal in F . Thus EF D ¹A;Qº, proving Hypothesis 2.12 (i).

Recall thatQ D A�T . So S D AQ, and CS .Q \A/ D CS .A�/ D A by the
relations in Lemma 3.18. This proves Hypothesis 2.12 (ii).

By Lemma 5.2, A is absolutely irreducible as an F3�0-module, where

�0 D O
30.AutF .A//

as earlier. Thus the centralizer in Aut.A/ of �0 is ¹˙Idº. Since Out.A6/ and
Out.M11/ are 2-groups,

NAut.A/.O
p0.AutF .A///=Op

0

.AutF .A//

is also a 2-group, and so Hypothesis 2.12 (iii) holds.

The following notation for elements inQ will be useful.

Notation 5.13. For a; b 2 F9, and z 2 F9 (in the M11-case) or z 2 F3 (in the A6-
or M �11-case), set

hha; b; zii D J0; a; zK..b// 2 A�T D Q:

Thus each element ofQ is represented by a unique triple hha; b; zii for a; b 2 F9
and z 2 F3 or F9. We sometimes write hha; b;�ii 2 Q=Z to denote the class of
hha; b; zii for arbitrary z.
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A6-case
�.b; c/ D Tr.xbc/

Jr;0;0Khha; b; zii hha � br; b; z C rN.b/ii
Œu�hha; b; zii hhua; ub;N.u/zii
Œ��hha; b; zii hhxa; xb; zii
�Idhha; b; zii hh�a; b;�zii

M11-case M �11-case
�.b; c/ D bc �.b; c/ D �Tr.bc/

Jr;0;0Khha; b; zii hha � br; b; z C rb2ii hhaC br; b; z C Tr.rb2/ii
Œu�hha; b; zii hhua; ub; u2zii hhu�1a; ub; zii
Œ��hha; b; zii hhxa; xb; xzii hhxa; xb; zii
�Idhha; b; zii hh�a; b;�zii hh�a; b;�zii

Table 9. Here, a; b; c; d 2 F9 and u 2 F�9 in all cases, z; y 2 F3 in the A6- and
M �11-cases, and z; y 2 F9 in the M11-case. Also, r 2 F3 in the A6- and M11-cases,
and r 2 F9 in theM �11-case. In all cases, �.b; c/ is such that hha; b; zii � hhc; d; yii D
hhaC c; b C d; z C y C �.b; c/ii.

We list in Table 9 some of the relations among such triples: all of these are
immediate consequences of the definition in Notation 5.13 and the relations in
Lemma 3.18.

The next two lemmas give more information about Out.Q/ and OutF .Q/. We
start with the case where �0 Š A6.

Lemma 5.14. Assume Hypotheses 5.1, and Notations 5.3 and 5.11, with �0 Š A6.
Thus M0 D A Ì yM0

10
Š E81 Ì A6. Then each ˛ 2 NAut.Q/.AutS .Q// extends

to some x̨ 2 Aut.M0/.

Proof. Since N .10/ D N yM10
.T / by Lemma 5.6, we have

NM0
.S / D A Ì .N .10/ \ yM0

10/ D S hˇi; where ˇ D �Œi � 2 N .10/; (5.15)

by Lemma 3.16, and ˇ acts on S via

ˇ.Ja; b; cK..x/// D J�a;�ib;�cK..ix//: (5.16)

For calculations in Out.Q/, we use Notation 5.13, and the ordered basis

B D ¹hh1; 0;�ii; hhi; 0;�ii; hh0; 1;�ii; hh0; i;�iiº
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for Q=Z. With respect to B, the symplectic form b defined by commutators has
matrix˙

�
0 I
�I 0

�
, and conjugation by J1; 0; 0K (a generator of OutS .Q/) has matrix�

I �I
0 I

�
by Table 9.

We identify Out.Q/with Aut.Q=Z;˙b/: the group of automorphisms ofQ=Z
that preserve b up to sign. We have

NAut.Q=Z/.OutS .Q// D NGL4.3/

�˝�
I I
0 I

�˛�
D
®�
A X
0 ˙A

� ˇ̌
A 2 GL2.3/; X 2M2.F3/

¯
;

and hence

NOut.Q/.OutS .Q//

D
˝�
I X
0 I

�
;
�
A 0
0 A

�
;
�
I 0
0 �I

� ˇ̌
A;X 2M2.F3/; X D X

t ; AAt D ˙I
˛

D
˝�
I X
0 I

�
;
�
A 0
0 A

�
;
�
I 0
0 �I

� ˇ̌
X D X t ; A 2

®�
1 1
�1 1

�
;
�
1 0
0 �1

�¯˛
Š E27 Ì .SD16 � C2/: (5.17)

Here, each element of the form
�
A 0
0 ˙A

�
in NOut.Q/.OutS .Q// is conjugation by

some element of N .10/ and hence extends to an automorphism of M0.
It remains to prove the lemma for automorphisms of the form

�
I X
0 I

�
when

X D X t . Define ˛1; ˛2; ˛3 2 Aut.S / as follows. In each case, ˛i jA D Id, and
!i WT ! A is such that ˛i .g/ D !i .g/g for all g 2 T ,

˛1.Ja; b; cK..x/// D Ja; b C x; c CN.x/K..x//;

!1...x/// D J0; x;N.x/K;

˛2.Ja; b; cK..x/// D Ja; b C xx; c � Tr.x2/K..x//;

!2...x/// D J0; xx;�Tr.x2/K;

˛3.Ja; b; cK..x/// D Ja; b C i xx; c C Tr.ix2/K..x//;

!3...x/// D J0; i xx;Tr.ix2/K:

Each of the ˛i is seen to be an automorphism of S by checking the cocycle con-
dition

!i ...x C y/// D !i ...x///C
..x//!i ...y///

on !i . (Note the relationN.xC y/D .xC y/.xxC xy/DN.x/CN.y/CTr.xxy/.)
The class of ˛i jQ as an automorphism of Q=Z has matrix

�
I X
0 I

�
for X D I ,�

1 0
0 �1

�
, or

�
0 1
1 0

�
, respectively, and thus the classes Œ˛i jQ� generate

O3.NOut.Q/.OutS .Q///
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by (5.17). Since ˛1 is conjugation by J1; 0; 0K, it extends to M0. For i D 2; 3, the
automorphism ˛i extends to S hˇi since Œ˛i ; cˇ � D 1 in Aut.S /: this follows upon
checking the relation ˇ!i ...x/// D !i ...ˇx/// using (5.16).

Recall that �0 D yM0
10
Š A6. Then N�0.T / D T hˇi (see (5.15)), and the co-

homology elements Œ!1�; Œ!2�; Œ!3� 2 H 1.T IA/ are all stable under the action
of ˇ. Since T 2 Syl3.�0/ is abelian, fusion in �0 Š A6 among subgroups of T
is controlled by N�0.T / D T hˇi, and hence the Œ!i � are stable under all fusion
in �0. So they are restrictions of elements of H 1.�0IA/ by the stable elements
theorem (see [14, Theorem XII.10.1] or [13, Theorem III.10.3]), and each ˛i ex-
tends to an automorphism x̨i of M0 D A Ì �0 that is the identity on A.

The next lemma is needed to handle the cases where �0 ŠM11.

Lemma 5.18. Assume Hypotheses 5.1 and Notation 5.11, where �0 ŠM11. Let
Q E S be as in Proposition 5.8, set � D OutF .Q/ and �0 D O3

0

.�/.

(a) If we are in the M11-case (i.e., if jZ.S /j D 9), then there is x
 2 AutF .S /
of order 2 that acts on Q=Z via .x 7! x�1/. For each such x
 , if we set

 D Œx
 jQ� 2 OutF .Q/, then

� � COut.Q/.
/ Š �L2.9/:

If, furthermore, 1 ¤ U0 < U 2 Syl3.COut.Q/.
//, and if � 2 COut.Q/.
/ has
2-power order and acts on U by .x 7! x�1/, then forH Š 2A4 orH Š 2A5,
there is a unique subgroup X � COut.Q/.
/ isomorphic to H , containing U0,
and normalized by �.

(b) If we are in the M �11-case (i.e., if jZ.S /j D 3), then there is x
 2 AutF .S / of
order 4 such that Œx
 jQ� 2 OutF.Q/ centralizes OutS .Q/. For each such x
 ,

�0 D O
30.COut.Q/.x
 jQ// Š SL2.9/:

Proof. Recall that M D A Ì � is a model for NF .A/, and

M0 D O
30.M/ D A Ì �0:

(a) Assume we are in the M11-case. By Lemma 3.16 and Table 9, the element

Œ�1� 2 N .11/ \ yM0
11 �M

acts on Q=Z via .x 7! x�1/. Set x
 D cŒ�1� 2 AutF .S /; thus x
 has order 2 and
invertsQ=Z.

Now let x
 2 AutF .S / be an arbitrary element of order 2 that acts on Q=Z via
.x 7! x�1/, and set 
 D Œx
 jQ� 2�D OutF .Q/. AsQŠ UT3.9/ by the relations
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in Lemma 3.18 (b), we can apply Lemma A.2 to the group OutF .Q/ � Out.Q/.
By Lemma A.2 (a), (c), and since 
 2 � has order 2 and inverts all elements of
Q=Z, we have COut.Q/.
/ Š �L2.9/. By the same lemma and since O3.�/ D 1,
� is sent isomorphically into Aut.Q=Z/; hence (since 
 is sent toZ.Aut.Q=Z//)
we have 
 2 Z.�/. So � � COut.Q/.
/.

Now fix subgroups

1 ¤ U0 < U 2 Syl3.COut.Q/.
//;

and an element � 2 COut.Q/.
/ of 2-power order that acts on U by .x 7! x�1/. In
particular, jU j D 9 and jU0j D 3. Since O3

0

.COut.Q/.
// Š SL2.9/ Š 2A6, there
is a surjective homomorphism ‰WO3

0

.COut.Q/.
//! A6 with kernel of order 2
such that ‰.U0/ is generated by a 3-cycle. (Recall that A6 has an outer automor-
phism that exchanges the two classes of elements of order 3.) Also, c� induces
(via ‰) an automorphism � 0 of A6. Since � 0 has 2-power order and inverts all ele-
ments in‰.U /, it must be inner, and conjugation by a product of two disjoint trans-
positions. So there is a unique subgroup xX � A6 that contains ‰.U0/, is normal-
ized by � 0, and is isomorphic to H=Z.H/ (i.e., to A4 or A5). Thus X D ‰�1. xX/
is the unique subgroup satisfying the corresponding conditions in Out.Q/.

(b) Assume we are in the M �11-case. By Lemma 5.6 (and Notation 5.3),

yM0
11 D �0 � � �

yM11;

where Œ yM11 W
yM0
11
� D 2 by Table 3. By Table 3 and Lemma 5.6,

N yM11
.T /=T D N .11/=T Š SD16 � C2;

and hence this group has two subgroups of order 8, generated by Œ�� and �Œ��, of
which only the subgroup h�Œ��i lies in �0. By Table 9, these elements act onQ=Z
as follows:

Œ��
hha; b;�ii D hh��1a; �b;�ii and �Œ��

hha; b;�ii D hh�3a; �b;�ii: (5.19)

By comparing characteristic polynomials or traces for the actions of the �i on F9,
we see thatQ=Z splits as a sum of two nonisomorphic irreducible F3C8-modules
under the action of hŒ��i, while the two summands under the action of h�Œ��i are
isomorphic.

Set U D OutS .Q/ D OutA.Q/ 2 Syl3.�/. Since U Š E9 and all elements of
order 3 in U are in class 3C or 3D (see Table 9), we have

�0 Š 2A6 Š SL2.9/
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by Lemma A.4. In particular, there is an element 
0 2 N�0
.U / of order 8 that

acts on Q=Z, as an F3C8-module, with two irreducible summands not isomor-
phic to each other. By the extension axiom, 
0 extends to x
0 2 AutF .S /, and
x
0jA 2 N� .T / has order 8. By comparison with the formulas in (5.19), we see
that x
0jA must be conjugate to Œ�� and hence does not lie in �0. Thus � > �0,
and hence � D yM11 ŠM11 � C2. So cS

�Œi�
2 AutF .S /, it has order 4 and acts

on A by �Œi�Jr; s; tK D Jr; is;�tK (see Lemma 3.18 (c)) and hence centralizes

U D OutS .Q/ Š A=A�:

Now let x
 2 AutF .S / be an arbitrary automorphism of order 4 that centralizes
U D OutS .Q/. Since Aut.�0/ Š Aut.2A6/ Š Aut.A6/, where Out.A6/ Š E4,
and since each outer automorphism of ˙6 exchanges 3-cycles with products of
disjoint 3-cycles, we have CAut.�0/.U / Š C˙6

.V / D V for V 2 Syl3.˙6/. Since
x
 jQ 2 � acts on �0 and centralizes U (and since x
 has order prime to 3), we
conclude that c�0

x
 D Id�0
and hence �0 � COut.Q/.x
/.

From the list in [20] of subgroups of PSp4.3/, we see that�0 Š SL2.9/ Š 2A6
has index 2 in a maximal subgroup of Sp4.3/ and hence index 4 in a maximal
subgroup of Out.Q/ Š Sp�4.3/. So �0 D O3

0

.COut.Q/.x
//.

5.3 Fusion systems involving the Todd modules forM10 andM11

We are now ready to state and prove our main theorem on fusion systems satisfying
Hypotheses 5.1.

Theorem 5.20. Let F be a saturated fusion system over a finite 3-group S , with
a subgroup A � S . Set �0 D O3

0

.AutF .A//, and assume that either

(i) A Š E34 and �0 Š A6; or

(ii) A Š E35 and �0 ŠM11.

Assume also thatA µ F . ThenA E S , S splits overA, F is almost simple, and
either

(a) �0 Š A6 and O3
0

.F / is isomorphic to the 3-fusion system of one of the
groups U4.3/, U6.2/, McL, or Co2; or

(b) �0 ŠM11, jZ.S /j D 9, and O3
0

.F / is isomorphic to the 3-fusion system of
Suz or Ly; or

(c) �0 ŠM11, jZ.S /j D 3, and F is isomorphic to the 3-fusion system of Co3.

(Note that (a), (b), and (c) correspond to the A6-,M11-, andM �11-cases, respec-
tively.)
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�0 A6 M11

�0 2A4 2A5 .Q8 �Q8/ Ì C3 21C4� :A5 2A4 2A5 2A6

G� U4.3/ McL U6.2/ Co2 Suz Ly Co3

Table 10

Proof. By Lemma 5.4,A E S , and it is weakly closed in F . By the same lemma,
A is the unique 4-dimensional F3A6-module if �0 Š A6, andA is the Todd mod-
ule or its dual if �0 ŠM11. Also, S splits over A by Corollary 5.10 and since
A µ F . So we are in the situation of Notations 5.3 and 5.11 and can use the
terminology listed there.

By Proposition 5.8, there is a unique special subgroup Q E S of exponent 3
such that

Z.Q/ D Z D Z.S /; Q \A D A�; and Q=Z Š E81:

Also, ECF .Z/ D ¹Qº, soQ E CF .Z/. Set

� D AutF .A/; � D OutF .Q/;

�0 D O
30.� /; �0 D O

30.�/

for short.
If jZj D 3 (i.e., if we are in the A6- or M �11-case), then Q Š 31C4

C
, and by

Table 8, OutS .Q/ Š S=Q has order 3 (if �0 Š A6) or 9 (if �0 ŠM11). Also,
all elements of order 3 in �0 act on Q=Z with two Jordan blocks of length 2
(see Table 9), and hence they have class 3C or 3D in O3

0

.Out.Q// Š Sp4.3/ by
Lemma A.3. So, by Lemma A.4,�0 is isomorphic to 2A4, 2A5, .Q8 �Q8/ Ì C3,
or 21C4� :A5 if �0 Š A6, while �0 Š 2A6 if �0 ŠM11.

If jZj D 9, then �0 ŠM11 and A is its Todd module. Also, Q Š UT3.9/
by the relations in Lemma 3.18 (b). So Aut.Q/=O3.Aut.Q// Š �L2.9/ by Lem-
ma A.2 (a), (b). Since O3.�0/ D 1 (recall that Q 2 EF and hence Out.Q/ has
a strongly 3-embedded subgroup), �0 is isomorphic to a subgroup of SL2.9/. The
subgroups of SL2.9/ are well known, and since OutS .Q/ Š S=Q has order 3, we
have �0 Š 2A4 or 2A5.

Thus, in all cases, .�0; �0/ is one of the pairs listed in the first two rows of
Table 10. Let G� be the finite simple group listed in the table corresponding to
the pair .�0; �0/, and fix S� 2 Syl3.G�/. If G� Š U4.3/, then it has maximal
parabolic subgroups of the form E81 Ì A6 and 31C4

C
:2˙4, so FS�.G

�/ satisfies
Hypotheses 5.1, and there are subgroups A�;Q� E S� such that

A� Š A; Q� Š Q; O3
0

.AutG�.A�// Š A6; O3
0

.AutG�.Q�// Š 2A4:
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In all of the other cases, we refer to the tables in [4, pp. 7–40], which show that
FS�.G

�/ also satisfies Hypotheses 5.1 with subgroups A� Š A and Q� Š Q
such that O3

0

.AutG�.A�// Š �0 and O3
0

.AutG�.Q�// Š �0.
LetM be a model forNF .A/ (see Proposition 1.12), and setM � D NG�.A�/.

By Corollary 5.10, applied to F and to FS�.G
�/, we have

O3
0

.M/ Š A Ì �0 Š O3
0

.M �/:

Choose an isomorphism

'WO3
0

.M �/
Š
�! O3

0

.M/

such that '.A�/ D A and '.S�/ D S , and set F � D '.FS�.G
�//. Then F �

is a fusion system over S isomorphic to FS�.G
�/, and we will apply Proposi-

tion 2.13 to show that F � D O3
0

.F /.
The fusion system FS�.G

�/ is simple in all cases by [36, Proposition 4.1 (b),
Proposition 4.5 (a), or Table 4.1]. (See also [5, (16.3) and (16.10)], which cover
almost all cases.) So F � D O3

0

.F �/. By construction,

O3
0

.NF .A// D O
30.NF �.A//:

By Lemma 5.12, the fusion systems F and F � both satisfy Hypotheses 2.12 with
respect to A;Q E S . So, by Proposition 2.13, to show that O3

0

.F / D F �, it
remains to show that O3

0

.OutF .Q// D O3
0

.OutF �.Q//, and this will be shown
by considering the three cases separately. Set

� � D AutF �.A/; �� D OutF �.Q/;

� �0 D O
30.� �/; ��0 D O

30.��/;

and note that �0 Š ��0 in all cases by the choice of G�.
TheA6-case: Since�0 Š ��0 are both subgroups of Out.Q/with the same Sylow
3-subgroup OutS .Q/, Lemma A.4 applies to show that they are conjugate in
Out.Q/, and hence

�0 D

0��0 for some 
0 2 NAut.Q/.AutS .Q//:

By Lemma 5.14, 
0 extends to some 
 2Aut.H0/, and 
.S /D S since S DQA.
So, upon replacing F � by .
 jS /F �, we can arrange that��0 D �0 without chang-
ing � �0 .
The M11-case: Let 
 2 AutF .S / D AutF �.S / be as in Lemma 5.18 (a): 
 has
order 2, and 
 jQ acts onQ=Z by inverting all elements. Then

�0; �
�
0 � O

30.COut.Q/.
 jQ// Š SL2.9/ Š 2A6

by that lemma.
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A �0 Q � D AutF .A/ � D OutF .Q/ G

A6-case E34 A6 31C4
C

A6 2˙4 U4.3/

˙6 .Q8 �Q8/ Ì˙3 U6.2/

M10 2˙5 McL
.A6 � C2/:E4 21C4� :˙5 Co2

M11-case E35 M11 32C4 M11 .2A4 ıD8/:C2 Suz
M11 � C2 .2A5 ı C8/:C2 Ly

M �11-case E35 M11 31C4
C

2 �M11 .2A6 ı C4/:C2 Co3

Table 11. In all cases, F is a fusion system over S D A Ì T , and is realized
by the group G. Also, A E S is abelian with CS .A/ D A and Z D Z.S /,
� D AutF .A/, and �0 D O3

0

.� /. The subsystem CG.Z/ is constrained with
Q D O3.CG.Z// and Z D Z.Q/.

Set U0 D OutS .Q/ Š C3, and let U 2 Syl3.COut.Q/.
 jQ// be the (unique)
Sylow 3-subgroup that contains U0. Set

h D �Œ�� 2 N .11/ \ yM0
11 < M0

(see Lemma 3.16), and set x� D cS
h
2 AutF .S / D AutF �.S /. Since Q is weakly

closed in F and F � by Proposition 5.8, we have � def
D Œx�jQ� 2 � \�

�. So it fol-
lows that�0 Š ��0 both containU0 and are normalized by �, and they are both iso-
morphic to 2A4 or 2A5. Hence�0 D ��0 by the last statement in Lemma 5.18 (a).

The M �11-case: By Lemma 5.18 (b), applied to either fusion system F or F �,
there is x
 2 AutF .S / D AutF �.S / of order 4 such that x
 jQ commutes with
AutS .Q/. By the same lemma, for any such 
 , we have �0 D COut.Q/.
/ D �

�
0 .

Also, in this case, since G� Š Co3, we have Out.F �/ Š Out.G�/ D 1 by [33,
Proposition 3.2], and hence F D O3

0

.F /.

The automizers of the subgroups A and Q in each case of Theorem 5.20 are
described more explicitly in Table 11. We refer again to [4, pp. 7–40] in all cases
except that of U4.3/.

Note that, by [12, Theorem A (a), (d)], the 3-fusion system of U6.2/ is isomor-
phic to those of U6.q/ for each q � 2; 5 .mod 9/, and to those of L6.q/ for each
q � 4; 7 .mod 9/. Thus U6.2/ could be replaced by any of these other groups in
the statement of Theorem 5.20.
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6 Some 3-local characterizations of the Conway groups

We finish with some new 3-local characterizations of the three Conway groups,
U6.2/, and McLaughlin’s group. In each case, the new result is obtained by com-
bining an earlier characterization of the some group with the classifications of fu-
sion systems in Theorem 4.14 or 5.20. It seems likely that one could get stronger
results with a little more work, but we prove here only ones that follow easily from
Theorems 4.14 and 5.20 together with the earlier characterizations.

We first combine Theorem 4.14 with the 3-local characterization of Co1 shown
by Salarian [45], to get the following slightly simpler characterization.

Theorem 6.1. Let G be a finite group. Assume A � S 2 Syl3.G/ are such that

(1) A Š E36 , CG.A/ D A, and NG.A/=A Š 2M12;

(2) A is not strongly closed in S with respect to G; and

(3) O30.CG.Z.S/// D 1 and jO3.CG.Z.S///j > 3.

Then G Š Co1.

Proof. By Salarian’s theorem [45, Theorem 1.1], to show thatG Š Co1, it suffices
to find subgroups H1;H2 � S 2 Syl3.G/ that satisfy the following three condi-
tions:

(i) H1 D NG.Z.O3.H1///,O3.H1/Š 31C4˙ ,H1=O3.H1/Š Sp4.3/ ÌC2, and
CH1

.O3.H1// D Z.O3.H1//;

(ii) O3.H2/ Š E36 and H2=O3.H2/ Š 2M12; and

(iii) .H1\H2/=O3.H2/ is an extension of an elementary abelian group of order 9
by GL2.3/ � C2.

SetZDZ.S/,H1DNG.Z/, andH2DNG.A/. SinceH1;H2�S (recallA E S

by assumption), it suffices to prove (i)–(iii).
Set F D FS .G/. Then A µ F by (2), and hence F is isomorphic to the fusion

system of Co1 by (1) and Theorem 4.14. In particular, S is isomorphic to the 3-
group S of Notations 4.4 and 4.5, so we can identify S with S and use the notation
defined there for subgroups of S .

Condition (ii) holds by (1). Also,

.H1 \H2/=O3.H2/ D NH2
.Z/=A Š NAutF .A/.Z/;

where NAutF .A/.Z/ Š .E9 Ì GL2.3// � C2 by Lemma 4.9 (c), so (iii) holds.
Set P D O3.CG.Z//. Then jP j > 3 by (3), so P > Z. Also, P E CF .Z/, so

P � O3.CF .Z// D Q0 Š 3
1C4
C
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by Lemma 4.12. The action of OutCF .Z/.Q0/ Š Sp4.3/ on Q0=Z Š E81 is irre-
ducible, and hence P D Q0. ThusQ0 D O3.CG.Z// D O3.H1/ since CG.Z/ is
normal of index at most 2 in H1 D NG.Z/.

Now, Q0 is F -centric by Lemma 4.7, so Z D Z.Q0/ 2 Syl3.CG.Q0//, and
henceCG.Q0/ D K �Z.Q0/ D K �Z for someK of order prime to 3. Also, we
have K E CG.Z/ since Q0 E CG.Z/, so it follows that K � O30.CG.Z// D 1
by (3). Thus CH1

.Q0/ D Z D Z.Q0/, and hence H1=Q0 Š OutF.Q0/. Since
OutF.Q0/ Š Sp4.3/ W 2 by Lemma 4.13, this finishes the proof of (i) and hence
the proof of the theorem.

The following 3-local characterization of Co3 simplifies slightly that shown by
Korchagina, Parker, and Rowley.

Theorem 6.2. Let G be a finite group. Assume A � S 2 Syl3.G/ are such that

(1) A Š E35 , CG.A/ D A, jZ.S/j D 3, and O3
0

.NG.A/=A/ ŠM11;

(2) A is not strongly closed in S with respect to G; and

(3) O30.CG.Z.S/// D 1 and jO3.CG.Z.S///j > 3.

Then G Š Co3.

Proof. By the theorem of Korchagina, Parker, and Rowley [28, Theorem 1.1], to
show that G Š Co3, it suffices to find subgroups M1;M2 � G and A � S that
satisfy the following two conditions:

(i) M1 D NG.Z.S// is of the form 31C4
C

:C2:C2:PSL2.9/:C2; and

(ii) M2 D NG.A/ is of the form E35 Ì .C2 �M11/.

Set Z D Z.S/, M1 D NG.Z/ and M2 D NG.A/; we claim that (i) and (ii) hold
for this choice of subgroups.

Set F D FS .G/. Then A µ F by (2). By Table 7 and since jZj D 3 by (1),
A is the dual Todd module for O3

0

.AutF.A// ŠM11. Hence F is isomorphic to
the fusion system of Co3 by Theorem 5.20 (c). In particular, S is isomorphic to
the 3-group S of Notation 5.3, so we can identify S with S and use the notation
defined there for subgroups of S .

Condition (ii) holds by (1), and since NG.A/=A Š AutF.A/ ŠM11 � C2 by
Table 11.

Set P D O3.CG.Z//. Then jP j > 3 by (3), so P > Z. Also, P E CF .Z/,
so P � O3.CF .Z// D Q Š 3

1C4
C

by Proposition 5.8. Since 5 j jSL2.9/j, the ac-
tion of OutCF .Z/.Q/ Š SL2.9/ onQ=Z Š E81 is irreducible, and henceP D Q.
Thus Q D O3.CG.Z// D O3.M1/ since CG.Z/ is normal of index at most 2 in
M1 D NG.Z/.
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Now, Q is F -centric by Proposition 5.8, so Z D Z.Q/ 2 Syl3.CG.Q//, and
hence CG.Q/ D K �Z.Q/ D K �Z for some K of order prime to 3. Also,
K E CG.Z/ since Q E CG.Z/, so K � O30.CG.Z// D 1 by (3). Thus we have
CM1

.Q/ D Z D Z.Q/, and hence M1=Q Š OutF.Q/. Since F is the fusion
system of Co3, and since OutF.Q/ Š 2.A6 � C2/:C2 by Table 11, this finishes
the proof of (i) and hence the proof of the theorem.

Finally, we combine Theorem 5.20 with results of Parker, Rowley, and Stroth,
to get some new 3-local characterizations of McL and U6.2/ as well as of Co2.

Theorem 6.3. Let G be a finite group, fix S 2 Syl3.G/, and set Z D Z.S/. As-
sume A � S is such that

(1) A Š E34 , CG.A/ D A, and O3
0

.NG.A/=A/ Š A6;

(2) A is not strongly closed in S with respect to G; and

(3) O30.CG.Z// D 1 and jO3.CG.Z//j > 3.

Then O3.NG.Z// Š 31C4C and CG.O3.CG.Z/// D Z. Also, the following hold,
where k denotes the index of O3

0

.NG.A/=A/ in NG.A/=A:

(a) If 5 j jCG.Z/j, then G is isomorphic to McL, Aut.McL/, or Co2, depending
on whether k D 2, 4, or 8, respectively.

(b) If 5 − jCG.Z/j, jO2.CG.Z/=O3.CG.Z///j � 26, and k � 4, thenG Š U6.2/
or U6.2/ Ì C2 when k D 2 or 4, respectively.

Proof. Set F D FS .G/. Then A µ F by (2). So, by (1) and Theorem 5.20 (a),
O3
0

.F / is isomorphic to the fusion system of Co2, U4.3/, McL, or U6.2/.
Set Q D O3.CF .Z//: an extraspecial group of order 35 with Z.Q/ D Z by

Proposition 5.8. We claim thatQ=Z is a simple F3OutF.Q/-module. Assume oth-
erwise, and consider the elements a D J1; 0; 0K 2 S and ˇ D Œc�Œi�� 2 OutF.Q/
in the notation of Tables 3 and 9. Assume 0 ¤ V < Q=Z is a proper nontriv-
ial submodule, and choose 0 ¤ x 2 V . If x … CQ=Z.a/, then the elements Œa; x�,
ˇ.Œa; x�/, x, ˇ.x/ all lie in V and generate Q=Z (see Table 9), contradicting the
assumption that V < Q=Z. Thus V � CQ=Z.a/, with equality since

V � hx; ˇ.x/i D CQ=Z.a/:

But if CQ=Z.a/ were a submodule, then by Lemma B.9, Q would not be F -
essential, contradicting Proposition 5.8.

Set P D O3.CG.Z//. Then P > Z by (3), and P � Q since P E CF .Z/.
Also, P=Z is an F3OutF.Q/-submodule ofQ=Z, so P D Q Š 31C4

C
sinceQ=Z

is simple.
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Now, Q is F -centric by Proposition 5.8, so Z D Z.Q/ 2 Syl3.CG.Q//, and
hence CG.Q/ D K �Z.Q/ D K �Z for some K of order prime to 3. Also,
K E CG.Z/ since Q E CG.Z/, so K � O30.CG.Z// D 1 by (3). Thus we have
CG.Q/ D Z D Z.Q/, and hence CG.Z/=Q Š OutF.Q/.

If 5 j jCG.Z/=Qj D jOutF.Q/j, then by Table 11 again, O3
0

.F / is the fu-
sion system of McL or Co2. In the former case, O3

0

.NG.Z// Š 3
1C4
C

:2A5 and
CG.O3.CG.Z/// D CG.Q/ � Q, so conditions (i)–(iii) in [43, Theorem 1.1] all
hold, and G Š McL or Aut.McL/ by that theorem (with k D 2 or 4).

If O3
0

.F / is the fusion system of Co2, then by Table 11,

(i) Q D O3.CG.Z// is extraspecial of order 35, O2.CG.Z/=Q/ is extraspecial
of order 25, and CG.Z/=O3;2.CG.Z// Š A5; and

(ii) Z is not weakly closed in S with respect to G.

So G Š Co2 by a theorem of Parker and Rowley [40, Theorem 1.1]. Also, k D 8
in this case.

If 5 − jCG.Z/j, jO2.CG.Z/=Q/j � 26, and k � 4, then by Table 11, CG.Z/=Q
contains 2A4 with index k or .Q8 �Q8/ Ì C3 with index k=2, and the first would
imply

jO2.CG.Z/=Q/j � 2
5:

So O3
0

.F / is the fusion system of U6.2/, and CG.Z/=Q contains a normal sub-
group isomorphic to .Q8 �Q8/ Ì C3. Hence CG.Z/ is “similar to a 3-centralizer
in a group of type PSU6.2/ or F4.2/” in the sense of Parker and Stroth [42, Defi-
nition 1.1], and F �.G/ Š U6.2/ or F4.2/ by [42, Theorem 1.3]. The group F4.2/
does contain subgroups isomorphic to E81 (a maximal torus and the Thompson
subgroup of a Sylow 3-subgroup), but all such subgroups have automizer the Weyl
group of F4, and so we conclude that G Š U6.2/ or U6.2/ Ì C2.

A Some special p-groups

In this section, we give a few elementary results on special or extraspecial p-
groups and their automorphism groups. Most of them involve p-groups of the
form p2C4 or p1C4

C
, but we start with the following, slightly more general lemma.

Lemma A.1. Fix a prime p, and let Q be a finite nonabelian p-group such that
Z.Q/ D ŒQ;Q� and it is elementary abelian. Set Z D Z.Q/ and xQ D Q=Z for
short. Then the following hold.

(a) The quotient group xQ is elementary abelian, and hence Q is a special p-
group.
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(b) If p is odd, then there is a homomorphism �W xQ! Z such that gp D �.gZ/
for each g 2 Q.

(c) Assume xQ Š Ep3 and Z Š Ep2 . Then there is a unique abelian subgroup
A � Q of order p4 and index p.

(d) Assume j xQj D p4, and jZj � p2. Then, for each g 2 Q XZ, there is an
abelian subgroup A � Q of index p2 such that g 2 A, and A is unique if
Œg;Q� D Z Š Ep2 . If jZj D p2 and Œg;Q� D Z for each g 2 Q XZ, then
there are exactly p2 C 1 abelian subgroups of index p2 inQ, any two of which
intersect in Z.

Proof. Set xP D PZ=Z and xg D gZ 2 Q=Z for each H � Q and g 2 Q. Since
ŒQ;Q� � Z.Q/, the commutator map xQ � xQ! Z is bilinear.

(a) For each g; h 2 Q, we have Œg; h� 2 Z and Œg; h�p D 1 by assumption.
Hence Œgp; h� D 1 for all h 2 Q, so gp 2 Z.Q/ D Z, and xQ D Q=Z is elemen-
tary abelian.

(b) For each g; h 2 Q, since Œh; g� 2 Z.Q/, we have

.gh/n D gnhnŒh; g�n.n�1/=2 for each n � 1:

(Recall that Œh; g� D hgh�1g�1 here.) So if p is odd, then .gh/p D gphp for each
g; h 2 Q.

(c) Assume jQj D p5 and jZj D p2. Since jŒQ;Q�j > p, there is at most one
abelian subgroup of index p in Q (see [32, Lemma 1.9]).

Fix a; b; c 2 Q such that ¹xa; xb; xcº is a basis for xQ Š Ep3 , and consider the
three commutators Œa; b�, Œa; c�, and Œb; c�. Since rk.Z/ D 2, one of these is in
the subgroup generated by the other two, and without loss of generality, we can
assume there are i; j 2 Z such that Œa; b� D Œa; c�i Œb; c�j D Œa; ci �Œb; cj � (recall
ŒQ;Q� � Z.Q/). Then Œacj ; bc�i � D 1, and hence Zhacj ; bc�i i is abelian of
index p in Q.

(d) Assume xQ Š Ep4 and jZj � p2, and fix g 2 Q XZ. Then commutator
with g defines a homomorphism �WQ=Zhgi ! Z, and this is not injective since
rk.Q=Zhgi/ > rk.Z/. So there is h 2 Q XZhgi such that Œg; h� D 1 andZhg; hi
is abelian. If Œg;Q� D Z Š Ep2 , then � is surjective, Ker.�/ is generated by the
class of h, and hence Zhg; hi is the only abelian subgroup of index p2 in Q con-
taining g.

Now assume Œg;Q� D Z Š Ep2 for each g 2 Q XZ, and let A be the set of
abelian subgroups of index p2 in Q. Then each xP � xQ of order p is contained
in xA for some unique A 2 A, and each such xA has p2 � 1 subgroups of order p.
So jAj D .p4 � 1/=.p2 � 1/ D p2 C 1.
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In the rest of the section, we prove some more specialized results on certain spe-
cial p-groups. Recall that, for each prime power q and each n � 2, we let UTn.q/
denote the group of upper triangular .n � n/ matrices with 1’s on the diagonal.
The groups UT3.q/ are a special case of what Beisiegel calls “semi-extraspecial
p-groups” in [8].

Lemma A.2. Let p be an odd prime, and set q D pm for somem � 1. Further, set
Q D UT3.q/ and Z D Z.Q/, and let

‰WAut.Q/! Aut.Q=Z/

be the natural homomorphism. We regard Q=Z as a 2-dimensional Fq-vector
space in the canonical way.

(a) The image ‰.Aut.Q// is the group of all Fq-semilinear automorphisms of
Q=Z, hence isomorphic to �L2.q/. For ˛ 2 Aut.Q/, we have ˛jZ D Id if
and only if ‰.˛/ is linear of determinant 1.

(b) We have Ker.‰/ D Op.Aut.Q// Š Hom.Q=Z;Z/ Š Epn , where n D 2m2.

(c) Let 
 2 Aut.Q/ be any automorphism such that ‰.
/ D �IdQ=Z . Then

CAut.Q/.
/ Š COut.Q/.
/ Š ‰.Aut.Q//:

More precisely, each x̨ 2 ‰.Aut.Q// is the image under ‰ of a unique ele-
ment in CAut.Q/.
/ and of a unique class in COut.Q/.
/, and hence

Aut.Q/ D Op.Aut.Q// Ì CAut.Q/.
/;

Out.Q/ D Op.Out.Q// Ì COut.Q/.
/:

Proof. (a), (b) See [39, Proposition 5.3].
(c) For short, set

U D Ker.‰/ D Op.Aut.Q//:

Fix 
 2 Aut.Q/ such that‰.
/ D �Id. Then 
 jZ D IdZ sinceZ D ŒQ;Q�. Each
ˇ 2 U has the form ˇ.g/ D g�.g/ for some � 2 Hom.Q;Z/ with Z � Ker.�/,
and

.
ˇ/.g/ D 
ˇ.
�1.g// D 
.
�1.g/�.g�1// D g�.g/�1 D ˇ�1.g/:

Thus c
 sends each element of U to its inverse, and since 
 2 ˛�IU (where
˛�I 2 Aut.Q/ is defined as in the proof of (a)), we have 
2 D .˛�I /2 D Id. Note
also that CAut.Q/.
/ \ U D 1.
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Fix ˛ 2 Aut.Q/. Then Œ˛; 
� 2 U since ‰.
/ 2 Z.Aut.Q=Z//, so c
 sends
the coset ˛U to itself. Since 
2 D 1 and j˛U j D jU j is odd (a power of p), there
is some ˛0 2 ˛U \ CAut.Q/.
/. Since CAut.Q/.
/ \ U D 1, there is at most one
such element ˛0 2 ˛U centralized by 
 .

A similar argument shows that each Œ˛� 2 Out.Q/ is congruent modulo the sub-
group U=Inn.Q/ to a unique class of automorphisms that centralizes the class of

 in Out.Q/.

When working with automorphisms of extraspecial groups 31C4
C

, we will need
to know the conjugacy classes of elements of order 3 in Sp4.3/.

Lemma A.3. Let V be a 4-dimensional F3-vector space with nondegenerate sym-
plectic form b. Thus Aut.V;b/ Š Sp4.3/. There are four conjugacy classes of ele-
ments of order 3 in Aut.V;b/.

(a) The elements g 2 Aut.V;b/ in class 3A or 3B are those that act on V with one
Jordan block of length 2 and two of length 1. Also, g 2 3A implies g�1 2 3B.

(b) The elements g 2 Aut.V;b/ in class 3C or 3D are those that act on V with
two Jordan blocks of length 2. If B D ¹v1; v2; v3; v4º is a basis for V with
respect to which the form b has matrix ˙

�
0 I
�I 0

�
, and if g has matrix

�
I X
0 I

�
with respect to B, then g 2 3C if det.X/ D 1 and g 2 3D if det.X/ D �1.

Proof. The conjugacy classes of elements of order 3 in Sp4.3/ were first deter-
mined by Dickson in [19, p. 138].

Fix g 2 Aut.V;b/ of order 3. Its Jordan blocks have length at most 3, so there
must be at least two of them. Thus dim.CV .g// � 2 and CV .g/ \ Œg; V � ¤ 0,
so there are v;w 2 V such that ¹gv � v;wº are linearly independent and lie in
CV .g/. Also, .gv � v/ ? w since g preserves b, so W D hgv � v;wi � CV .g/
is totally isotropic.

Fix a basis B D ¹v1; v2; v3; v4º such that W D hv1; v2i, and with respect to
which b has matrix ˙

�
0 I
�I 0

�
. Then g has matrix

�
I X
0 B

�
with respect to B, and

B D I and X D X t since g preserves b. Such a matrix
�
I X
0 I

�
has Jordan blocks

of length 2C 2 if det.X/ ¤ 0, or of length 2C 1C 1 if det.X/ D 0, showing that
such elements lie in at least two different conjugacy classes of subgroups.

If g and h have matrices
�
I X
0 I

�
and

�
I Y
0 I

�
, respectively, where X and Y are

invertible, thenW D CV .g/ D CV .h/. So if they are conjugate in Aut.V;b/, they
are conjugate by a matrix of the form

�A 0
0 .At /�1

�
, and hence Y D AXAt and

det.Y /D det.X/det.A/2D det.X/. Thus there are at least three conjugacy classes
of subgroups of order 3, and since there are exactly three by [19], they are distin-
guished by det.X/ when there is a generator of the form

�
I X
0 I

�
.
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There are 40 maximal isotropic subspaces, each of which is fixed by three sub-
groups of the form

˝�
I X
0 I

�˛
for det.X/D 1, and six of that form with det.X/D�1.

Also, there are 40 3-dimensional subspaces, each of which is fixed by exactly one
subgroup of the form

˝�
I X
0 I

�˛
with det.X/ D 0. Hence there are 120, 240, and 40

subgroups conjugate to h
�
I X
0 I

�
i for det.X/ D 1, �1, and 0, respectively. Since

they are named in order of occurrence in the group, they correspond to the classes
3C, 3D, and 3AB, respectively.

Finally, we consider certain subgroups of extraspecial groups of order 35.

Lemma A.4. Assume Q is extraspecial of order 35 and exponent 3. Let

1 ¤ P � Out.Q/

be such that O3.P / D 1, O3
0

.P / D P , and each element of order 3 in P is of
type 3C or 3D. Then either

(a) P is isomorphic to 2A4, 2A5, or .Q8 �Q8/ Ì C3, in each of which cases
there is one Sp4.3/-conjugacy class containing elements of type 3C and one
containing elements of type 3D; or

(b) P Š 21C4� :A5 or 2A6, in each of which cases there is just one conjugacy class.

Proof. Set Z D Z.Q/ and V D Q=Z, and let b be the symplectic form on V
defined by taking commutators in Q. Thus V is a 4-dimensional vector space
over F3, and O3

0

.Out.Q// Š Aut.V;b/ Š Sp4.3/. Let R � O3
0

.Out.Q// be a
maximal subgroup that contains P . By a theorem of Dickson [20, § 71] (see also
[31, Theorem 10]), R must lie in one of five conjugacy classes.

� If R is in one of the two classes of maximal parabolic subgroups, then

O3
0

.R/=O3.R/ Š SL2.3/ Š 2A4:

Since O3.P / D 1, it follows that P Š 2A4.

� If R Š Sp2.3/ o C2 Š 2A4 o C2, then P � O3
0

.R/ Š 2A4 � 2A4, and V splits
as a direct sum of 2-dimensional F3P -submodules. Each g 2 P of order 3 is in
class 3C or 3D and hence acts on V with two Jordan blocks of length 2, and thus
acts nontrivially on each of the two direct summands. In other words, each such
g acts diagonally on O2.R/ Š Q8 �Q8, and so P � .Q8 �Q8/ Ì C3. Hence
either P D .Q8 �Q8/ Ì C3, or P Š 2A4 diagonally embedded in 2A4 � 2A4.

� IfO2.R/ Š Sp2.9/ Š 2A6, then from a list of subgroups of 2A6 Š SL2.9/ (see
[22, Theorem 6.5.1]), we see that P Š 2A4, 2A5, or 2A6.
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� Assume R Š 21C4� :A5, and let OP be the image of P in R=O2.R/ Š A5. Then
OP Š C3, A4, or A5: these are up to conjugacy the only nontrivial subgroups of
A5 generated by elements of order 3. Also, P acts faithfully on

O2.R/=Z.R/ Š E16:

Since O3.R/ D 1, P must be isomorphic to one of the following groups:

OP Š C3 H) P Š Q8 Ì C3;
OP Š A4 H) P Š A4; 2A4; or 21C3:A4 Š .Q8 �Q8/ Ì C3;
OP Š A5 H) P Š A5; 2A5; or 21C4� :A5:

The groups A4 and A5 cannot occur as subgroups of Sp4.3/ since an element
of order 3 would have to permute three distinct eigenspaces for the action of
O2.A4/ Š E4 and hence have a Jordan block of length 3, which contradicts
Lemma A.3.

Thus P is isomorphic to 2A4, 2A5, .Q8 �Q8/ Ì C3, 21C4� :A5, or 2A6. By
[20, § 11 and § 46], there are two conjugacy classes of subgroups isomorphic to
2A4 and two of subgroups isomorphic to 2A5. Since 2A6 Š SL2.9/ < Sp4.3/ has
elements of both types 3C and 3D (the elements

�
1 1
0 1

�
and

�
1 �
0 1

�
are in different

classes by the criterion in Lemma A.3), the two classes in each case are distin-
guished by having elements of type 3C or 3D. Likewise, by [20, § 49], there are
two classes of subgroups of the form .Q8 �Q8/ Ì C3 (and not isomorphic to
2A4 �Q8), and they are also distinguished by having elements of type 3C or 3D.
Finally, by [20, § 61 and § 68], there is just one conjugacy class of subgroups iso-
morphic to 2A6 and one of subgroups isomorphic to 21C4� :A5.

We finish the section with the following well-known and elementary lemma.

Lemma A.5. Fix a prime p. Let G be a finite p-group, let A E G be a normal
elementary abelian p-subgroup, and assume x 2 G X A is such that xp 2 A. Let
ˆx 2 End.A/ be the homomorphism ˆx.a/ D Œx; a� D

xa � a�1. Then, for each
a 2 A, .ax/p D xp if and only if .ˆx/p�1.a/ D 1.

Proof. Set U D Ahxi=A Š Cp, u D xA 2 U , and regard A as an FpU -module.
Then

.ax/p D a � xa � � � x
p�1

a � xp D
�
.1C uC � � � C up�1/a

�
� xp

D .u � 1/p�1a � xp D ˆp�1x .a/ � xp

(in additive notation). So .ax/p D xp if and only if ˆp�1x .a/ D 0.



Fusion systems realizing certain Todd modules 497

B Strongly p-embedded subgroups

We collect here some of the basic properties, especially for odd primes p, of finite
groups with strongly p-embedded subgroups. All of the results here are proven
independently of the classification of finite simple groups (but see remarks in the
proof of Proposition B.10).

Lemma B.1. Let G be a finite group, and let G0 E G be normal of index prime
to p. Then G0 has a strongly p-embedded subgroup if and only if G does.

Proof. Recall (see [25, Theorem X.4.11 (b)]) that G has a strongly p-embedded
subgroup if and only if there is a partition Sylp.G/DX1qX2, withX1;X2 ¤¿,
such that, for each S1 2 X1 and S2 2 X2, we have S1 \ S2 D 1 (G is “p-isolated”
in the terminology of [25]). Since Sylp.G0/ D Sylp.G/, the lemma follows imme-
diately.

Lemma B.2. LetG be a finite group with a strongly p-embedded subgroupH <G.

(a) Each proper subgroup OH < G that contains H is also strongly p-embedded
in G.

(b) For each normal subgroup K E G, either HK=K is strongly p-embedded in
G=K, or HK D G, or p − jG=Kj.

Proof. (a) Assume H � OH < G. If g 2 G X OH is such that p j j OH \ g OH j, then
there is x 2 OH \ g OH of order p. Since H contains a Sylow p-subgroup of OH ,
there are a; b 2 OH such that x 2 aH and x 2 gbH . Thus

p j jaH \ gbH j D jH \ a
�1gbH j;

so a�1gb 2 H since H is strongly p-embedded. Hence g 2 OH since a; b 2 OH .
So OH is also strongly p-embedded in G.

(b) If K E G and HK < G, then HK is strongly p-embedded in G by (a).
Hence HK=K is strongly p-embedded in G=K if p j jHK=Kj, equivalently, if
p j jG=Kj.

The next few lemmas provides different ways of showing that certain groups do
not have strongly p-embedded subgroups.

Lemma B.3. Fix a finite groupG containing a strongly p-embedded subgroup. Let
¹Kiºi2I be a finite set of normal subgroups, setKI0

D
T
i2I0

Ki for each I0 � I ,
and assume KI D 1. Let J � I be the set of those i 2 I such that p − jKi j. Then
the following hold.

(a) In all cases, J ¤ ¿ and G=KJ has a strongly p-embedded subgroup.
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(b) If p2 − jGj or (more generally) if there is a p-subgroup T � G such that
NG.T / is strongly p-embedded in G, then there is j 2 J such that G=Kj has
a strongly p-embedded subgroup.

Proof. Fix S 2 Sylp.G/, and let H < G be the minimal strongly p-embedded
subgroup that contains S .

(a) We show this by induction on jI X J j. If I D J , there is nothing to prove,
so assume I ¥ J , fix i0 2 I X J , and set I0 D I X ¹i0º. Then we have p j jKi0 j
and Ki0 \KI0

D 1, so I0 ¤ ¿ and ŒKi0 ; KI0
� D 1. For each g 2 KI0

, we have
H \Ki0 � CH .g/ � H \

gH , and p j jH \Ki0 j since S contains some Sylow
p-subgroup of Ki0 . Thus g 2 H , and so KI0

� H . So p − jKI0
j, and H=KI0

is
strongly p-embedded in G=KI0

by Lemma B.2 (b). Since jI0 X J j < jI X J j, we
now conclude by the induction hypothesis (applied to the group G=KI0

and the
subgroups ¹Ki=KI0

ºi2I0
) that J ¤ ¿ and that G=KJ has a strongly p-embedded

subgroup.
(b) Assume T � S is such that H D NG.T / is strongly p-embedded in G.

In particular, if jS j D p, this holds for T D S . We must show that G=Kj has
a strongly p-embedded subgroup for some j 2 J , and it suffices to do this when
I D J and jJ j D 2, e.g., when I D J D ¹1; 2º. ThusK1 \K2 D 1, and p − jKi j
for i D 1; 2. Set K D K1K2.

Assume neither G=K1 nor G=K2 contains a strongly p-embedded subgroup.
Then G D HK1 D HK2 by Lemma B.2 (b). Also,

ŒH \K;T � D ŒNK.T /; T � � T \K D 1;

and H \K D NK.T / D CK.T /. So, for i D 1; 2, we have

K D .H \K/Ki D CK.T /Ki

since G D HKi , and hence ŒK; T � D ŒKi ; T � � Ki .
Thus ŒK;T ��K1 \K2D 1. But thenK andH both normalize T , soG DHK

normalizes T , contradicting the assumption that H D NG.T / < G.

The next lemma is an easy consequence of the well-known list of subgroups of
PSL3.p/.

Lemma B.4. Fix a prime p and n � 2. Let G � GLn.p/ be a subgroup such that
G � SLn.p/, p2 j jGj, and G acts irreducibly on Fnp . Then n � 4.

Proof. Since p2 − jGL2.p/j, we have n � 3. From the list of maximal subgroups
of PSL3.p/ (see [22, Theorem 6.5.3]), we see that there is no proper subgroup
G < SL3.p/ (hence none in GL3.p/) such thatG is irreducible on F3p and p2 j jH j.
So n � 4.
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In the next few lemmas, ˆ.P / denotes the Frattini subgroup of a finite p-
group P .

Lemma B.5. LetP be a finite p-group, and letP0 � P1 � � � � � Pm D P be a se-
quence of subgroups, all normal in P and such that P0 � ˆ.P /. Let ˛ 2 Aut.P /
be such that Œ˛; Pi � � Pi�1 for all 1 � i � m. Then ˛ has p-power order.

Proof. For each such ˛, ˛=P0 2 Aut.P=P0/ has p-power order by [21, Theo-
rem 5.3.2], and hence ˛ has p-power order by [21, Theorem 5.1.4].

Lemma B.6. Let F be a saturated fusion system over a finite p-group S , and
assume P 2 EF . Let P0 � P1 � � � � � Pm D P be a sequence of subgroups such
that P0 � ˆ.P / and such that Pi is normalized by AutF.P / for each 0 � i � m.
Assume also that ŒP; Pi � � Pi�1 for each 1 � i � m.

(a) If jNS .P /=P j D p, then there is at least one index i D 1; : : : ; m such that
rk.Pi=Pi�1/ � 2 and such that the image of AutF.P / in Aut.Pi=Pi�1/ has
a strongly p-embedded subgroup.

(b) If jNS .P /=P j � p2, then there is at least one index i D 1; : : : ; m such that
rk.Pi=Pi�1/ � 4. If there is a unique such index i , then the image of AutF.P /
in Aut.Pi=Pi�1/ has a strongly p-embedded subgroup.

Proof. Fix i D 1; : : : ; m. Since ŒP; Pi � � Pi�1, the homomorphism

AutF.P /! Aut.Pi=Pi�1/

induced by restriction toPi contains Inn.P / in its kernel and hence factors through
a homomorphism 'i WOutF.P /! Aut.Pi=Pi�1/. SetKi D Ker.'i /E OutF.P /.

Assume that ˛ 2 AutF.P / is such that its class Œ˛� 2 OutF.P / lies in
Tm
iD1Ki .

Thus Œ˛; Pi � � Pi�1 for each i , so ˛ has p-power order by Lemma B.5 and since
P0 � ˆ.P /. So

Tm
iD1Ki is a normal p-subgroup of OutF.P /. Since OutF.P /

has a strongly p-embedded subgroup (recallP 2EF ), we haveOp.OutF.P //D 1
(recall Op.�/ is contained in all Sylow p-subgroups), and hence

Tm
iD1Ki D 1.

We are thus in the situation of Lemma B.3.
Recall that NS .P /=P Š OutS .P / 2 Sylp.OutF.P //. As in Lemma B.3, let J

be the set of all i D 1; : : : ; m such that jKi j is prime to p, and setKJ D
T
j2J Kj .

By Lemma B.3 (a), J ¤ ¿ and OutF.P /=KJ contains a strongly p-embedded
subgroup.

Without loss of generality, in both points (a) and (b), we can assume that the
filtration by the Pi is maximal. Thus each quotient Pi=Pi�1 is elementary abelian,
and the action of OutF.P / on it is irreducible.
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(a) If jOutS .P /j D p, then by Lemma B.3 (b), there is j 2 J such that

Im.'j / Š OutF.P /=Kj

contains a strongly p-embedded subgroup.
(b) Now assume that jOutS .P /j � p2. Recall that the action of OutF.P / on

Pj =Pj�1 is irreducible for each j 2 J . So rk.Pj =Pj�1/ � 4 for each j 2 J by
Lemma B.4. In particular, if there is a unique i such that rk.Pi=Pi�1/ � 4, then
jJ j D 1, and OutF.P /=Kj has a strongly p-embedded subgroup for j 2 J .

The next lemma provides another way to show that certain subgroups of a p-
group S cannot be essential in any fusion system over S .

Lemma B.7. Let F be a saturated fusion system over a finite p-group S . Assume
P < S and T � AutS .P / are such that

jT=.T \ Inn.P //j � p2 and ŒP W CP .T /� D p:

Then P … EF .

Proof. Assume otherwise: assume P is F -essential. Set G D OutF.P /, and set

xT D T � Inn.P /=Inn.P / � OutS .P /:

Thus j xT j � p2 by assumption. Let H < G be a strongly p-embedded subgroup
that contains OutS .P / 2 Sylp.G/. Fix g 2 G XH , and set

K D hT; gT i � AutF.P /:

Since H is strongly p-embedded and g … H , no p-subgroup of G can intersect
nontrivially with both xT and g xT , and in particular, either

Op.K/ \ T � Inn.P / or Op.K/ \
gT � Inn.P /: (B.8)

By assumption, we have that CP .T / has index p in P , and so does CP .gT /. If
CP .T / D CP .

gT /, then K is an abelian p-group, contradicting (B.8). So it fol-
lows thatCP .K/ D CP .T / \ CP .gT / has index p2 inP , andP=CP .K/ Š Ep2 .
The group of elements of K that induce the identity on P=CP .K/ is a p-group
by Lemma B.5, and hence contained in Op.K/. Since p2 − jGL2.p/j, we have
ŒT W Op.K/ \ T � � p, and since j xT j � p2, this implies Op.K/ \ T — Inn.P /.
But Op.K/ \ gT — Inn.P / by a similar argument; this again contradicts (B.8),
and so P cannot be F -essential.

The next lemma gives yet another simple criterion for a subgroup not to be
essential. Again, ˆ.�/ denotes the Frattini subgroup.



Fusion systems realizing certain Todd modules 501

Lemma B.9. Let F be a saturated fusion system over a finite p-group S , and fix
P � S . Assume there are subgroups P0 E P1 E � � � E Pk D P , all normalized
by AutF.P /, such that P0 � ˆ.P /. Assume also there is x 2 NS .P / X P such
that Œx; Pi � � Pi�1 for each 1 � i � k. Then P … EF .

Proof. By Lemma B.5 and since P0 � ˆ.P /, the group � of all ˛ 2 Aut.P / such
that Œ˛; Pi � � Pi�1 for 1 � i � k is a p-subgroup of Aut.P /, and � \ AutF.P /
is normal in AutF.P / since the Pi are normalized by AutF.P /. So we have
cx 2 Op.AutF.P //, and either cx 2 Inn.P /, in which case x 2 PCS .P / X P
and hence P is not F -centric, or Op.OutF.P // ¤ 1, in which case OutF.P /
has no strongly p-embedded subgroup (since Op.�/ is contained in all Sylow
p-subgroups). In either case, P … EF .

We finish by listing the subgroups of SL4.p/ that have strongly p-embedded
subgroups and order a multiple of p2. We indicate how to arrange the proof so as
to be independent of the classification of finite simple groups.

Proposition B.10. Fix an odd prime p, let V be a 4-dimensional vector space
over Fp, and let H < G � Aut.V / be such that p2 j jGj and H is strongly p-
embedded inG. SetG0 D Op

0

.G/. Then eitherG0 Š SL2.p2/ and V is its natural
module, in which case each element of order p in G0 acts on V with two Jordan
blocks of length 2, or G0 Š PSL2.p2/ and V is the natural ˝�4 .p/-module, in
which case each element of order p inG0 acts on V with Jordan blocks of lengths 1
and 3.

Proof. By Aschbacher’s theorem [2], applied to the finite simple classical group
PSL4.p/, either G is contained in a member of one of the “geometric” classes Ci
(1 � i � 8) defined in [2], or the image of G in Aut.V /=Z.Aut.V // Š PGL4.p/
is almost simple.

By Lemma B.1, G0 D Op
0

.G/ also has a strongly p-embedded subgroup.
Case 1: Assume G is contained in a member of Aschbacher’s class Ck for some
1 � k � 8. Since Fp has no proper subfields, the class C5 is empty.

If k D 1 or k D 2, then G0 acts reducibly on V , contradicting Lemma B.6 (b).
If k D 3, then G0 is contained in SL2.p2/ (where V is the natural module).

Since SL2.p2/ is generated by any two of its Sylow p-subgroups (and since they
have order p2), G0 cannot be a proper subgroup of SL2.p2/.

If k D 4 or 7, the restriction of V to G0 splits as a tensor product of 2-dimen-
sional representations, and G0 is isomorphic to a subgroup of SL2.p/ ı SL2.p/.
By Lemma B.2 (b), the image of G0 in PSL2.p/ � PSL2.p/ has a strongly p-
embedded subgroup. But this contradicts Lemma B.3 (a), applied with Ki the ker-
nels of the two projections to PSL2.p/.
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The class C6 consists of the normalizers of K Š 21C4
˙

(if p � 3 .mod 4/) or
that of K Š C4 ı 21C4 (if p � 1 .mod 4/). Thus Out.K/ Š ˙3 o C2, ˙5, or ˙6,
respectively. If k D 6, then since p2 j jGj, we have p D 3 and K Š 21C4

C
, so G0

is a subgroup of SL2.3/ ı SL2.3/, and G is contained in a member of C7.
Assume k D 8. The class C8 consists of the normalizers of

Sp4.p/; ˝C4 .p/ Š SL2.p/ ı SL2.p/; and ˝�4 .p/ Š PSL2.p2/:

The symplectic group Sp4.p/ is generated by the two parabolic subgroups that
contain S , each of which would be contained in a strongly p-embedded subgroup
if there were one. So G © Sp4.p/, and the proper subgroups of this group are
eliminated by again applying Aschbacher’s theorem using similar arguments. The
subgroup SOC4 .p/ is in class C7. This leaves the case G0 � ˝�4 .p/ Š PSL2.p2/
(see [1, Théorème 5.21] or [47, Corollary 12.43]), with equality since PSL2.p2/
is generated by any two of its Sylow p-subgroups.
Case 2: It remains to check the cases where the image in PGL4.p/ of G is al-
most simple, and show that none of them (aside from those already listed) have
strongly p-embedded subgroups. By [10, Tables 8.9 and 8.13], the only almost
simple groups that could appear in this way as maximal subgroups of SL4.p/ are
normalizers of L2.7/ or A7 (if p � 1; 2; 4 .mod 7/), or U4.2/ (if p � 1 .mod 6/)
in L4.p/, or A6, A7 (if p D 7), L2.p/ (if p > 7) in Sp4.p/. None of these sub-
groups can occur when p D 3, which is the only odd prime whose square can
divide the order of the subgroup, so they and their subgroups do not come under
consideration.

The tables in [10] were made using the classification of finite simple groups.
But lists of maximal subgroups of PSL4.q/ and PSp4.q/ for odd q, compiled in-
dependently of the classification, had already appeared in [31] for the symplectic
case, and in [9, Chapter VII] and the main theorems in [46, 49] for the linear case.
Elements of order p: The description of the Jordan blocks for the natural action
of SL2.p2/ is clear. So assume V is the natural module for

G0 D ˝
�
4 .p/ Š PSL2.p2/:

The isomorphism extends to an isomorphism

GO�4 .p/ Š P�L2.p2/

between automorphism groups, so all elements of order p in G0 have similar ac-
tions on V . Hence it suffices to describe the action of one element t of order p in
˝3.p/ � ˝

�
4 .p/. The action of˝3.p/ on F3p is induced by the conjugation action

of PSL2.p/ on the additive groupM 0
2 .Fp/ of .2 � 2/-matrices of trace 0 (see, e.g.,

[29, Proposition A.5]), and using this, one easily checks that t acts with one Jordan
block of length 3.
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