Home On the Schur multiplier of finite ๐‘-groups of maximal class
Article
Licensed
Unlicensed Requires Authentication

On the Schur multiplier of finite ๐‘-groups of maximal class

  • Renu Joshi and Siddhartha Sarkar EMAIL logo
Published/Copyright: October 25, 2022

Abstract

In this article, we prove that the Schur multiplier of a finite ๐‘-group of maximal class of order p n ( 4 โ‰ค n โ‰ค p + 1 ) is elementary abelian. The case n = p + 1 settles a question raised by Primoลพ Moravec in an earlier article.

Award Identifier / Grant number: 0400422

Funding statement: The research of the author Renu Joshi is supported by PMRF, Ministry of Education, Government of India (PMRF ID โ€“ 0400422).

Acknowledgements

The authors would like to thank Professor Bettina Eick and Professor Michael Vaughan-Lee for many helpful comments and encouragement.

  1. Communicated by: Christopher W. Parker

References

[1] R. D. Blyth and R.โ€‰F. Morse, Computing the nonabelian tensor squares of polycyclic groups, J. Algebra 321 (2009), no. 8, 2139โ€“2148. 10.1016/j.jalgebra.2008.12.029Search in Google Scholar

[2] R. Brown and J.-L. Loday, Van Kampen theorems for diagrams of spaces, Topology 26 (1987), no. 3, 311โ€“335. 10.1016/0040-9383(87)90004-8Search in Google Scholar

[3] B. Eick, Schur multiplicators of finite ๐‘-groups with fixed coclass, Israel J. Math. 166 (2008), 157โ€“166. 10.1007/s11856-008-1025-ySearch in Google Scholar

[4] B. Eick, Computing ๐‘-groups with trivial Schur multiplicator, J. Algebra 322 (2009), no. 3, 741โ€“751. 10.1016/j.jalgebra.2009.03.031Search in Google Scholar

[5] G. Ellis, HAPโ€“a GAP package, Version 1.29, Release date 07.01.2021, 2021. Search in Google Scholar

[6] S. Hatui, V. Kakkar and M.โ€‰K. Yadav, The Schur multiplier of groups of order p 5 , J. Group Theory 22 (2019), no. 4, 647โ€“687. 10.1515/jgth-2018-0139Search in Google Scholar

[7] G. Karpilovsky, The Schur Multiplier, London Math. Soc. Monogr. (N.โ€‰S.) 2, The Clarendon, New York, 1987. Search in Google Scholar

[8] C.โ€‰R. Leedham-Green and S. McKay, The Structure of Groups of Prime Power Order, London Math. Soc. Monogr. (N.โ€‰S.) 27, Oxford University, Oxford, 2002. 10.1093/oso/9780198535485.001.0001Search in Google Scholar

[9] P. Moravec, On the Schur multipliers of finite ๐‘-groups of given coclass, Israel J. Math. 185 (2011), 189โ€“205. 10.1007/s11856-011-0106-5Search in Google Scholar

[10] N.โ€‰R. Rocco, On a construction related to the nonabelian tensor square of a group, Bol. Soc. Brasil. Mat. (N.โ€‰S.) 22 (1991), no. 1, 63โ€“79. 10.1007/BF01244898Search in Google Scholar

[11] J. Schur, รœber die Darstellung der endlichen Gruppen durch gebrochen lineare Substitutionen, J. Reine Angew. Math. 127 (1904), 20โ€“50. 10.1515/crll.1904.127.20Search in Google Scholar

[12] The GAP Group, GAP โ€“ Groups, algorithms, and programming, Version 4.11.1, 2021. Search in Google Scholar

Received: 2022-02-24
Revised: 2022-08-30
Published Online: 2022-10-25
Published in Print: 2023-05-01

ยฉ 2022 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 23.9.2025 from https://www.degruyterbrill.com/document/doi/10.1515/jgth-2022-0039/html?lang=en
Scroll to top button