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Lower bound on growth of non-elementary
subgroups in relatively hyperbolic groups

Yu-Miao Cui, Yue-Ping Jiang and Wen-Yuan Yang*

Communicated by Alexander Olshanskii

Abstract. This paper proves that, in a non-elementary relatively hyperbolic group, the
logarithm growth rate of any non-elementary subgroup has a linear lower bound by the
logarithm of the size of the corresponding generating set. As a consequence, any non-
elementary subgroup has uniform exponential growth.

1 Introduction

1.1 Results and background

Let S be a finite symmetric generating set of a groupH and dS the corresponding
word metric. Write

S�n WD ¹h 2 H W dS .1; h/ � nº for all n 2 N [ ¹0º:

The (logarithm) growth rate of H with respect to S is defined to be the following
limit:

!.H; S/ WD lim
n!1

log ].S�n/
n

;

which exists since ].S�nCm/ � ].S�n/ � ].S�m/. In what follows, we always
consider finitely generated groups.

The spectrum of growth rates of a group H has attracted lots of research inter-
ests,

�.H/ WD ¹!.H; S/ W ]S <1; hSi D H º:

For a group with exponential growth, the question of Gromov [14] whether �.H/
admits the infimum 0 was open for twenty years and answered negatively by
Wilson [25] (see [2] also). He constructed the first examples of groups with non-
uniform exponential growth such that a sequence of two-element generating sets
has growth rates tending to 0.
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A group H has uniform exponential growth if inf�.H/ > 0. If a group has
uniform exponential growth, it is quite interesting to ask whether �.H/ obtains
the minimum. Sambusetti [24] showed that the answer was again negative for the
free products of any two non-Hopfian groups which are a special class of rela-
tively hyperbolic groups. However, the recent work by Fujiwara–Sela [11] obtains
a positive answer for hyperbolic groups by showing the set �.H/ is well-ordered,
so �.H/ admits a minimum. This settles a question of de la Harpe. The starting
point of their argument relies on the fact due to Arzhantseva–Lysenok [1] that the
growth rate !.H; S/ is lower bounded by a linear function of the size of S .

Noting the simple fact !.H; S/ � log ]S , the work of [1,11] seem to suggest it
is worth understanding the following set:

‚.H/ WD

²
!.H; S/

log ]S
W ]S <1; hSi D H

³
:

Of course, ‚.H/ � Œ0; 1�. A number of inquiries could be made about the nature
of‚.H/. For instance, could the set‚.H/ always be infinite? If it is infinite, what
are the accumulation points of the set ‚.H/? The purpose of this paper is not to
give complete answers to these questions. Instead, we collect here a few simple
observations to motivate further investigations.

A group H has purely exponential growth if 1
C

exp.n!/ � ]Sn � C exp.n!/
for some C D C.S/ > 0 independent of n � 1. This class of groups includes (rel-
atively) hyperbolic groups and many other groups (see [5, 28] for relevant discus-
sions). By taking Tn WD Sn, one sees1 that

!.H; Tn/

log ]Tn
! 1 as n!1:

Thus, the upper bound 1 is an accumulation point for any group with purely expo-
nential growth. On the other hand, the growth tightness [13] of free groups implies
that 1 2 ‚.H/ if and only ifH is a free group. Thus, it is interesting to ask whether
there exist examples with ‚.H/ � Œ0; 1 � �� for some � > 0.

The examples of Wilson also imply 0 2 �.H/ for certain non-uniform ex-
ponential growth groups H . Analogous to the question of uniform exponential
growth, we can ask for which groups ‚.H/ admits a positive infimum. In fact,
inf‚.H/ > 0 has been obtained for hyperbolic groups in [1].

The main result of this paper is a generalization of the previous results of
Arzhantseva–Lysenok [1] to the class of relatively hyperbolic groups. Since the
official introduction in the Gromov 1987 monograph [15], this class of groups has

1 The authors learned this fact from Alex Furman.
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been well-studied in the last thirty years; see [3, 8, 9, 12, 21]. The important ex-
amples include Gromov-hyperbolic groups, geometrically finite Kleinian groups
(with variable negative curvature), infinitely ended groups, small cancellation quo-
tients of free products, limit groups, to name just a few.

Our main theorem establishes the positive lower bound on ‚.H/ for any non-
elementary subgroup in a relatively hyperbolic group. By definition, a subgroupH
is said to be non-elementary if its limit set contains at least three points. So an
elementary subgroup is either virtually cyclic or can be conjugated into a maximal
parabolic subgroup. See § 2.2 for details.

Theorem 1.1. Assume that G is a non-elementary relatively hyperbolic group.
Then there exists a constant � D �.G/ 2 .0; 1� such that, for any non-elementary
subgroup H with a finite symmetric generating set S , we have

!.H; S/ � � � log ]S:

Remark. Wilson’s example exhibits a sequence of 2-generator sets with growth
rate tending 0. This shows that the non-elementary assumption of H is necessary:
indeed, any group H can be realized as the maximal parabolic subgroup in a free
product of H with any nontrivial group.

A group G has locally uniform exponential growth if every finitely generated
subgroup of exponential growth has uniform exponential growth. Xie [26] has
proved that relatively hyperbolic groups have uniform exponential growth. As a di-
rect corollary of Theorem 1.1, we obtain a strengthening of Xie’s theorem.

Theorem 1.2. Any non-elementary finitely generated subgroup H of a non-ele-
mentary relatively hyperbolic group G has uniform exponential growth.

Moreover, .G;P / has locally uniform exponential growth if and only if every
maximal parabolic subgroup P 2 P has locally uniform exponential growth.

Recall that non-elementary relatively hyperbolic groups G are growth tight, so
non-Hopfian ones cannot realize its infimum of �.G/ (see [24, 27]). It is thus
interesting to know whether Fujiwara–Sela’s result [11] can generalize to torsion-
free toral relatively hyperbolic groups [16, 17].2

2 This question has been answered for equationally Noetherian relatively hyperbolic groups by
Fujiwara’s preprint [10] (posted on 2 March 2021, one day earlier than ours on arXiv). One
ingredient is Theorem 1.2 which was also obtained independently and simultaneously by him.
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1.2 Connection with other works

There has been recent interest in studying the product set growth in various classes
of groups, starting in free groups [23], hyperbolic groups and acylindrical hyper-
bolic groups [7], free product of groups [4], and so on. We refer the reader to [4]
for further references and connection with approximate groups.

To be precise, let S be any set in a group G subject to the condition that S does
not generate a “small” subgroup. The Helfgott type growth (in the terminology
of [4]) wishes to have the following:

].S3/ � c � .]S/1C�

for some universal c; � > 0 depending only on G. By induction, it is easy to see
that if a group G has the Helfgott type growth, then Theorem 1.1 holds for this
group G. In this sense, Theorem 1.1 could be understood as an asymptotic version
of product set growth. Indeed, our proof boils down to a similar product growth
with high powers

].S i�/ � .]S/i for all i 2 N;

for a universal � > 0; see formula (5.7). Even though, our Theorem 1.1 cannot
be deduced directly from the result [7, Theorem 1.9]. Their result does provide
certain product set growth only assuming the acylindrical action on hyperbolic
spaces. However, the large displacement assumption imposed on S there is hard
to verify in practice.

Very recently, Kropholler–Lyman–Ng obtained Theorem 1.2 independently as
[20, Proposition 4.12] during the writing of this paper. Similar to us, they made
a variant of Xie’s result as Lemma 3.1, and then ran the remaining argument in [26]
to get Theorem 1.2.

To conclude the introduction, let us mention briefly the proof of the main theo-
rems. We follow closely the strategy of [1] which appears to us quite robust. On
the other hand, we have to deal with several difficulties from the relative case.
They are resolved largely by adapting the work of Xie [26] (see Lemma 3.1)
and by a strengthening of Koubi’s result [19] (see Lemma 3.2). We believe that
Lemma 3.2 has independent interest and admits further applications.

Structure of the paper. This paper is organized as follows. Section 2 recalls
standard materials in Gromov’s hyperbolic geometry, Bowditch–Gromov’s defi-
nition of relatively hyperbolic groups. As mentioned above, the work of Xie and
Koubi are properly adapted and strengthened in Section 3. A notion of loxodromic
elements with large injectivity is introduced in Section 4 to streamline the strategy
of Arzhantseva–Lysenok. The proof of Theorem 1.1 is then completed in Sec-
tion 5.
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2 Preliminary

Consider an isometric action of G on a metric space .X; d/. Let S � G be a set of
isometries. Let `x.S/ WD maxs2S¹d.x; sx/º for a given point x 2 X . For a subset
A � X , define

`A.S/ WD inf
x2A

`x.S/:

Note that x 2 X 7! `x.S/ 2 R is a continuous non-negative function.

2.1 Hyperbolic spaces and Loxodromic elements

Define the Gromov product

hx; yio D
d.x; o/C d.y; o/ � d.x; y/

2
for all x; y; o 2 X:

A geodesic metric space X is said to be hyperbolic if any geodesic triangle is
ı-thin: if d.o; p/ D d.o; q/ � hx; yio for two points p 2 Œo; x�, q 2 Œo; y�, then
d.p; q/ � ı. Then, for any x; y; z; o 2 X , we have

hx; yio � min¹hx; zio; hz; yioº � ı:

Assume that a finitely generated group G acts properly by isometry on a proper
hyperbolic spaceX . Then the induced action ofG on the Gromov boundary @X of
X is a convergence group action. Thus, any infinite order element fixes at least one
but at most two points in @X . So the elements in G are classified into three mu-
tually exclusive classes: elliptic isometries being finite order elements, parabolic
isometries with only one fixed point and loxodromic isometries with exactly two
fixed points. See [3] for a detailed discussion about convergence group actions and
relevant notions.

Equivalently, an isometry g on a proper hyperbolic space X is loxodromic if
it admits a .�; c/-quasi-geodesic 
 for some �; c > 0 so that 
; g
 have finite
Hausdorff distance. Such quasi-geodesics shall be referred to as .�; c/-quasi-axis.

Lemma 2.1 ([6, Lemma 9.2.2]). If an isometry g on X satisfies

d.o; go/ � 2ho; g2oigo C 6ı

for some point o 2 X , then g is loxodromic.

In hyperbolic spaces, it is a well-known fact that a sufficiently long local quasi-
geodesic is globally a quasi-geodesic. The following statement is a variant of this.
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Lemma 2.2 ([1, Lemma 1]). Let x1; x2; : : : ; xk for k � 3 be points in a ı-hyper-
bolic space such that, for any 2 � i � k � 2, we have

hxi�1; xiC1ixi
C hxi ; xiC2ixiC1

� d.xi ; xiC1/ � 3ı:

Then

d.x1; xk/ �

k�1X
iD1

d.xi ; xiC1/ � 2

k�1X
iD2

.hxi�1; xiC1ixi
C ı/:

The following immediate corollary will be used later.

Corollary 2.3. Under the assumption of Lemma 2.2, if

hxi�1; xiC1ixi
C hxi ; xiC2ixiC1

�
1

4
d.xi ; xiC1/ � ı;

then

d.x1; xk/ �
1

2

k�1X
iD1

d.xi ; xiC1/:

Lemma 2.4. If g; h are two isometries satisfying

1

4
min¹d.go; o/; d.ho; o/º � L � max¹hgo; h�1oio; hg�1o; hoioº C ı

for some point o 2 X and some L > 0, then

(1) gh is loxodromic.

(2) There exist constants �; c > 0 depending only on L and ı such that the con-
catenated path ˛ WD

S
i2Z.gh/

i .Œo; go� � gŒo; ho�/ is a .�; c/-quasi-geodesic.

Proof. The proof uses the well-known fact that long local geodesics are global
quasi-geodesics. To be precise, applying Lemma 2.2 to the points

x1 D o; x2 D go; x3 D gho; : : : ; x2nC1 D .gh/
no;

we have

d.x1; x2nC1/�

2nX
iD1

d.xi ; xiC1/� 2

2nX
iD2

.hxi�1; xiC1ixi
C ı/�

1

2

2nX
iD1

d.xi ; xiC1/

for n � 1. Note that Œo; go� � gŒo; ho� is a quasi-geodesic with parameters depend-
ing only on L; ı. These two facts imply that ˛ is a .�; c/-quasi-geodesic with
constants �; c depending on L; ı. The proof is complete.
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Define the asymptotic translation length of an isometry g as follows:

�.g/ WD lim
n!1

d.o; gno/

n

for some (thus any) point o 2 X .

Lemma 2.5 ([6, Proposition 10.6.4]). If g is a loxodromic element, then

j`X .g/ � �.g/j � 16ı:

We say that an element g 2 G preserves the orientation of the bi-infinite quasi-
geodesic 
 if ˛; g˛ have finite Hausdorff distance for any half-ray ˛ of 
 . It is
clear that a loxodromic element preserves the orientation of any quasi-axis.

Lemma 2.6. Suppose that a loxodromic isometry g has a .�; c/-quasi-axis 
 for
some �; c > 0. Then there exists a constant C D C.�; c; ı/ > 0 with the following
property. For any x 2 
 , there exists y 2 
 such that hx;gxiy <C , hy;gyigx <C .

The following lemma is well known with a proof included for completeness.

Lemma 2.7. There exists a constant C D C.�; c; ı/ > 0 for any �; c > 0 with the
following property. If a loxodromic element g admits a .�; c/-quasi-axis 
 , then
for any x 2 
 , we have j`X .g/ � d.x; gx/j � C .

Proof. By the Morse Lemma, any two .�; c/-quasi-axes 
 and g
 have bounded
Hausdorff distance depending only on �, c and ı. Thus, the inclusion of 
 intoS
i2Z g

i
 is a quasi-isometry with constants depending only on �; c; ı. We can
thus assume that the quasi-axis 
 is hgi-invariant.

Let �
 WX ! 
 be the shortest projection to a .�; c/-quasi-geodesic 
 . Note
that �
 enjoys the C -contracting for a constant C D C.�; c; ı/: if

diam.¹�
 .z/; �
 .w/º/ > C for some z; w 2 X;

then
max¹d.�
 .z/; Œz; w�/; d.�
 .w/; Œz; w�/º � C:

We then derive the following for any z; w 2 X :

diam.¹�
 .z/; �
 .w/º/C d.z; �
 .z//C d.w; �
 .w// � d.z; w/C 4C:

Let o 2 X so that d.o; go/ D `X .g/. Apply the above inequality for z D o and
w D go. Since 
 is hgi-invariant, �
 .�/ is hgi-equivariant. If d.o; 
/ > 2C , we
then obtain from the above inequality that d.�
 .o/; g�
 .o// < d.o; go/. This
contradicts the choice of o with d.o; go/ D `X .g/. Thus, d.o; 
/ � 2C .
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Without loss of generality, replacing o by its projection �
 .o/, we can assume
that o lies on 
 . Then jd.o; go/ � `X .g/j � 2C .

Let x 2 
 . Assume that the above constant C also satisfies Lemma 2.6. Up to
hgi-translations to x, we can assume that ho; goix � C and then hx; gxigo � C .
By hyperbolicity, max¹d.go; Œx; gx�/; d.x; Œo; go�/º � C C ı. Consequently,

jd.o; go/ � d.x; gx/j

� jd.o; x/C d.x; go/ � d.x; go/ � d.go; gx/j C 4C C 4ı

� 4C C 4ı:

The proof is complete.

2.2 Elementary subgroups

Recall that G acts properly on a proper hyperbolic space X . The limit set ƒH
of a subgroup H is the set of accumulation points in @X of any H -orbit in X .
A subgroup H in G is said to be elementary if its limit set contains at most two
points. See [3] for relevant discussion.

If ƒH consists of only one point p, then H is said to be a parabolic subgroup
and p is said to be a parabolic point. It is a well-known fact that, in a conver-
gence group action, a loxodromic element cannot fix a parabolic point. The (max-
imal) parabolic group plays the key role in Definition 2.10 of relatively hyperbolic
groups given in the next subsection. In the remainder of this subsection, we first
consider the elementary subgroup with exactly two limit points.

Let 
 be a quasi-axis for a loxodromic element h. The coarse stabilizer of the
axis defined as

E.h/ D ¹g 2 G W there exists r > 0 such that 
 � Nr.g
/; g
 � Nr.
/º

gives the maximal elementary subgroup containing h. Note that the subgroup

EC.h/ WD ¹g 2 G W there exists n > 0 such that ghng�1 D hnº

with index at most 2 is precisely the set of orientation-preserving elements inE.h/.
Let E�.h/ D E.h/ nEC.h/. Let E?.h/ be the torsion group of EC.h/. The

following result actually holds for a contracting element h.

Lemma 2.8. For a loxodromic element h, the following statements hold.

(1) ŒE.h/ W hhi� <1.

(2) We have

E.h/D¹g 2G W there exists n> 0 such that .ghng�1D hn/ or .ghng�1D h�n/º:
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(3) E?.h/ is a finite normal subgroup of E.g/.

(4) g2 2 E?.h/ for any g 2 E�.h/.

Proof. The first two statements are from [28, Lemma 2.11] which holds for any
contracting element h. The last two statements follow from [1, Lemma 4] where
only assertion (1) is used in the proof.

Lemma 2.9. Let h 2 G be a loxodromic element admitting a .�; c/-quasi-axis ˛.
Then there exists some D D D.�; c; ı/ > 0 such that

d.go; o/ � D for any g 2 E?.h/ and o 2 ˛:

Proof. By the Morse Lemma, there exists a constant D > 3ı depending only on
�; c; ı such that any two of g˛; ˛; g�1˛ have Hausdorff distance at mostD. Since
g 2 E?.h/ � EC.h/ preserves the orientation of ˛, we can assume further that
d.go; Œo; ˛C�˛/ � D and d.g�1o; Œo; ˛��˛/ � D.

Let x; y 2 ˛ such that d.go; x/; d.g�1o; y/ � D. Since x; y are on the op-
posite sides of o on ˛, we have d.o; Œx; y�/ � D by the Morse Lemma. Thus,
hx; yio � D, and then hgo; g�1oio � 3D. If we assume d.o; go/ > 4D, then
we have d.o; go/ � 2d.o; g2o/C 6ı. By Lemma 2.1, g is loxodromic. This is
a contradiction, so d.o; go/ � 4D.

2.3 Relatively hyperbolic groups

The notion of a relative hyperbolicity has a number of equivalent formulations
(see [3, 8, 9, 12, 21], etc.). See [18] for a survey of their equivalence. In this paper,
we define a relatively hyperbolic group which admits a cusp-uniform action on
a hyperbolic space.

Definition 2.10. Suppose G admits a proper and isometric action on a proper
hyperbolic space .X; d/ such that G does not fix a point in the Gromov bound-
ary @X . Denote by P the set of maximal parabolic subgroups in G. Assume that
there is a G-invariant system of disjoint (open) horoballs U centered at parabolic
points ofG such that the action ofG on the complement called the neutered space
X.U/ WD X nU is co-compact, where U WD

S
U2U U . Then the pair .G;P / is

said to be relatively hyperbolic, and the action of G on X is said to be cusp-
uniform.

We fix a G-invariant system U of horoballs and the neutered space X.U/ on
which G acts co-compactly. The following result is proved by [1, Lemma 6] in
hyperbolic groups. In the relative case, we follow their arguments closely.
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Lemma 2.11. Let h be a loxodromic element in G such that, for some point o 2 X
and �; c > 0, the path ˛ D

S
n2ZŒh

no; hnC1o� is a .�; c/-quasi-geodesic in X .
Then, for any given � > 0, there existsN D N.�; c; ı; �/ independent of the point
o such that, for any f … E.h/, we have

diam.˛ \NR.f ˛// � N � d.o; ho/;

where R WD � � d.o; ho/.

Remark. Along with Lemma 3.1, this is the other result which crucially uses cusp-
uniform actions.

Proof. First of all, since h is a loxodromic element and cannot fix any parabolic
point, we obtain that ˛ cannot be contained inside any horoball U 2 U . Thus,
the hhi-invariant set ˛ \X.U/ is a non-empty unbounded set. Namely, for any
x 2 ˛ \X.U/ and any i 2 Z, we have hix 2 ˛.

We argue by contradiction. Assume that diam.˛ \NR.f ˛// > N � d.o; ho/
for a constant N determined below. Let z; w; z0; w0 2 ˛ such that

d.z; w/ D diam.˛ \NR.f ˛// and d.z; f z0/; d.w; f w0/ � R:

By hyperbolicity, Œz; w�˛ and Œz0; w0�˛ contain subpaths ˇ1; ˇ2 respectively (af-
ter truncating an R-long segment at both ends) such that ˇ1; fˇ2 have Hausdorff
distance at most C D C.�; c; ı/ > 0 and, for i D 1; 2, we have

diam.ˇi / � diam.˛ \NR.f ˛// � 2R � .N � �/d.o; ho/:

Since ˛ is a .�; c/-quasi-geodesic, there exists a monotone increasing function
N 0 D N 0.�; c;N; �/ > 0 such that ˇ1 contains at least .N 0 C 1/ translates of
Œo; ho�. Moreover, we haveN 0 D N 0.�; c;N; �/!1 asN !1. Thus, ˇ1 con-
tains .N 0 C 1/ points x; hx; : : : ; hN

0

x 2 X.U/. Let y 2 ˇ2 be a point so that
d.x; fy/ � C .

Assume that C also satisfies the conclusion of Lemma 2.7 by taking the larger
one. Using Lemma 2.5, for 1 � i � N 0, we have

jd.x; hix/ � �.hi /j � C C 16ı; jd.fy; f hiy/ � �.hi /j � C C 16ı;

so
jd.x; hix/ � d.fy; f hiy/j � 2C C 32ı:

Thus, d.hix; f hiy/ � 3C C 32ı for each 1 � i � N 0.
SetN.x;y/D ]¹g 2G W d.x;gy/� 3C C 32ıºC 1. SinceG acts co-compactly

on the C -neighborhood of X.U/, we see that N.x; y/ over x; y 2 NC .X.U// is
uniformly bounded above by a constant N0 > 0.
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Choose N > 0 such that N 0 D N 0.�; c;N; �/ � N0, and consequently, we ob-
tain h�if hi D h�jf hj for 1 � i ¤ j � N 0. So f 2 E.h/ contradicts the as-
sumption. The result is thus proved.

Finally, let us mention the following result of Osin which holds for loxodromic
elements in any acylindrical action on hyperbolic spaces.

Lemma 2.12 ([22, Lemma 6.8]). There exists a finite number N0 > 0 such that
]E?.g/ � N0 for any loxodromic element g 2 G.

3 Short loxodromic elements

The goal of this section is to provide short loxodromic elements.
Let S D S�1 be a symmetric generating set of a non-elementary group H .

Recall that S�n0 WD ¹h 2 H W dS .1; h/ � n0º.
The following is a variant of [26, Lemma 5.3].

Lemma 3.1. For anyM > 0, there exists a positive integer n0 D n0.M/ > 0 such
that, for any finite symmetric generating set S of H , we have `X .S�n0/ > M .

Proof. Let U be an M -separated G-invariant system of horoballs centered at the
parabolic points. Recall that the action of G on X.U/ is proper and co-compact.
Let K � X.U/ be a compact set such that

S
g2G g.K/ D X.U/. Fix a point

p 2 K, and let a D diam.K/ depending on M . The proper action implies the set

A D ¹g 2 G W d.g.p/; p/ � 2aCM º

is a finite set. Since G is finitely generated, up to increasing the value of a, we can
assume that A generates G.

Consider the finite set H of conjugates of H which is generated by some finite
set S 0 � A. Since H is infinite, the proper action of H on X implies that, for
every H 0 2 H, there is some gH 0 2 H 0 with d.gH 0.p/; p/ > M C 2a. Since A
generates G and H is finite, the integer

n0 WD max¹dS .1; gH 0/ W S 0 � A; H 0 WD hS 0i 2 Hº

is finite.
Now let S be a finite generating set of H . If `X .S/ > M , then we are done:

`X .S
n0/ � `X .S/ > M . If there is some x 2 X with `x.S/ �M , then x 2 X.U/.

Indeed, assume that x 2 U for some U 2 U . By definition of `x.S/ �M , we
have d.s.x/; x/ �M for all s 2 S . The M -separation of U implies s.U / D U
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for all s 2 S , and so the center of U would be fixed by the non-elementary sub-
group H : a contradiction. Hence, it follows that x 2 X.U/.

Recalling that
S
g2G g.K/ D X.U/, we choose g 2 G with g.x/ 2 K. We

now show S 0 WD ¹gsg�1 W s 2 Sº � A. Indeed, for each s 2 S , we have

d.p; gsg�1.p// � d.p; g.x//C d.g.x/; gs.x//C d.gs.x/; gsg�1.p//

� d.p; g.x//C d.x; s.x//C d.g.x/; p/ � 2aCM:

Since S 0 � A generates H 0 WD gHg�1 2 H, by the definition of n0, there is
some integer 1 � k � n0 such that dS 0.1; gH 0/ D k. Thus,

gH 0 D .gs1g
�1/ � � � .gskg

�1/ D g.s1 � � � sk/g
�1

for si 2 S [ S�1. Now, by the triangle inequality, we have

d.g�1gH 0g.x/; x/ D d.gH 0g.x/; g.x//

� d.gH 0.p/; p/ � d.gH 0.p/; gH 0g.x// � d.g.x/; p/

D d.gH 0.p/; p/ � d.p; g.x// � d.g.x/; p/

> M C 2a � a � a DM:

Since g�1gH 0g D s1 � � � sk 2 S
�n0 , it follows that `x.S�n0/ > M .

The following result improves [19, Proposition 3.2].

Lemma 3.2. LetX be a ı-hyperbolic geodesic metric space andH a group of iso-
metries of X with a finite symmetric generating set S . Assume that `X .S/ > 28ı.
Then H contains a loxodromic element b 2 S�2 with the following property.

Let o 2 X such that j`o.S/ � `X .S/j � ı. There exist constants �0; c0; C0 > 0
depending only on ı such that

d.o; bo/ � `X .S/ � C0

and the path
˛ WD

[
n2Z

bnŒo; bo�

is a .�0; c0/-quasi-axis for b.

Proof. Set L0 D 4ı and then `o.S/ > 7L0. Denote by S0 the (non-empty) set of
elements s 2 S so that

d.o; so/ � `o.S/ � 2L0 � ı:

Let t 2 S such that `o.S/ D d.o; to/, and m 2 Œo; to� such that d.o;m/ D L0.
The main observation is as follows.
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Claim. There exists an isometry s 2 S0 such that s is either loxodromic with

ho; s2oiso � L0

or satisfies
max¹hto; soio; ht�1o; s�1oioº � L0:

Proof of the claim. Assume to the contrary that, for all s 2 S0, we have

max¹hto; soio; ht�1o; s�1oioº > L0: (3.1)

Moreover, we have that each s 2 S0 is either non-loxodromic or loxodromic with
ho; s2oiso > L0. If s 2 S0 is non-loxodromic, by Lemma 2.1, we have

ho; s2oiso �
1

2
d.o; so/ � 3ı �

1

2
.`o.S/ � 2L0 � ı/ � 3ı � L0:

Hence, for each s 2 S0, we have ho; s2oiso � L0. In particular, ht�1o; toio � L0.
By (3.1), we have that ht?o; s?oio > L0 for ? 2 ¹1;�1º. Letm1; m2 2 Œo; s?o�

for s 2 S0 so that d.o;m1/ D d.s?o;m2/ D L0. By hyperbolicity,

hs?o; toio � min¹hs?o; t?oio; ht�1o; toioº � ı � L0 � ı

which by the ı-thin triangle property implies d.m;m1/ � 3ı. Using again the
ı-thin triangle property with ho; .s?/2ois?o � L0, we obtain d.m2; s?m1/ � ı.

We shall derive `m.S/ < `X .S/, which is a contradiction. Indeed, for each
s 2 S0,

d.m; s?m/ � 2d.m;m1/C d.m1; s
?m1/

� 7ı C d.m1; m2/ � 7ı C d.o; s
?o/ � 2L0

� `o.S/ � 2L0 C 7ı � `o.S/ � ı:

If s 2 S n S0, then d.o; so/ � `o.S/ � 2L0 � ı, and thus

d.m; sm/ � 2d.o;m/C d.o; so/ � 2L0 C d.o; so/ < `o.S/ � ı:

We obtain the contradiction `m.S/ � `o.S/ � ı < `X .S/. The proof of the claim
is now complete.

By the above claim, there exists some s 2 S0 such that either

hso; s�1oio C ı � L0 C ı �
1

4
d.o; so/

or

max¹hto; soio; ht�1o; s�1oioº C ı � L0 C ı �
1

4
min¹d.o; so/; d.o; to/º:

Accordingly, we apply Lemma 2.4 to g D h D s or g D t , h D s. Then b D s or
b D t�1s is the desired loxodromic element with the .�0; c0/-quasi-axis ˛. The
proof is then completed by Lemma 2.4.
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4 Short loxodromic elements with large injectivity

Let o 2 X be a basepoint, and let � � 10, �; c > 0 be fixed constants. Denote by
C D C.�; c; ı/ the constant such that any quadrilateral with .�; c/-quasi-geodesic
sides is C -thin: any side is contained in the C -neighborhood of the other three
sides.

In this section, we make the following assumptions on f and b:

(i) the element b is loxodromic so that d.o; bo/ > C and ˛ WD
S
n2Z b

nŒo; bo�

is a .�; c/-quasi-axis;

(ii) the element f lies outside E.b/ and satisfies d.o; fo/ � �d.o; bo/;

(iii) the element b satisfies the conclusion of Lemma 2.11.

For large n � 0, we shall study when the elements of form h WD f bn are loxo-
dromic and their properties (Lemmas 4.2 and 4.4).

The following immediate estimate will be useful later on:

for all n � 1; n � d.o; bo/ � d.o; bno/ � ��1n � d.o; bo/ � c

� .��/�1n � d.o; fo/ � c: (4.1)

We emphasize that all the statements in this section are proved without involv-
ing any group action.

4.1 Loxodromic elements raising to power

Consider the points x D bm�no, y D b�mo for 0 � 2m < n on ˛, and then we
have hx D f bmo 2 f ˛. Consider two quasi-geodesics ˛ and f ˛ connected by
a geodesic Œo; fo�. To get a quasi-axis of h D f bn, we shall use the next lemma
to truncate the subpath containing Œo; fo� from the point y to hx of the union
˛ [ f ˛.

Lemma 4.1. There exist m D m.�; c; �; ı/ and n0 D n0.�; c; �; ı/ > 2m so that
h D f bn for any n > n0.�; c; �; ı/ has the following property:

max¹hx; hxiy ; hy; hyihxº � C

and d.y; hx/ � �d.o; bo/.

Proof. Consider the quadrilateral formed by the subpaths

Œx; o�˛; Œo; fo�; f Œo; bmo�˛;

and the geodesic Œx; hx� as depicted in Figure 1.
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b

b

b
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b

α

fα

hfα

b−no

Figure 1. Truncate the quadrilaterals y; o; fo; hx and hy; ho; hfo; h2x

Set N D N.�; c; ı; �/ given by Lemma 2.11. By (4.1), the distance d.o; bno/
grows linearly. Hence, we can choose the least integer m D m.�; c; ı/ > N and
then the least n0 D n0.�; c; �; ı/ so that the following holds:

min¹d.o; bmo/; d.o; bn�2mo/º � max¹Nd.o; bo/; 10C º (4.2)

for any n � n0.
Since R WD �d.o; bo/ � d.o; fo/ is as assumed, we can obtain

d.y; f ˛/ > R:

Indeed, assume to the contrary that d.y; f ˛/ � R. As d.o; f ˛/ � d.o; fo/ � R,
Lemma 2.11 implies that the diameter of ˛ \NR.f ˛/ is at most Nd.o; bo/.
However, ˛ \NR.f ˛/ contains two points y D b�mo; o with distance at least
Nd.o; bo/ by (4.2). This is a contradiction. As � � 1 and d.o; bo/ > C is as-
sumed, we have d.y; f ˛/ > R � d.o; bo/ > C . The C -thin quadrilateral prop-
erty then implies d.y; Œx; hx�/ � C , so we obtain hx; hxiy � d.y; Œx; hx�/ � C .

By symmetry, we can run the above argument for the quadrilateral with vertices
y; o; fo; hy and obtain hy; hyihx � C .

Note that d.y; hx/ � d.y; f ˛/ � R D �d.o; bo/. The proof is complete.

In what follows, let m D m.�; c; �; ı/ and n0 D n0.�; c; �; ı/ be given by
Lemma 4.1.
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Lemma 4.2. There exist constants �1; c1 > 0 depending only on ı; �; c > 0 with
the following property. For any n � n0, the element h WD f bn is loxodromic with
a .�1; c1/-quasi-axis ˇ defined as follows:

ˇ WD
[
i2Z

hi .Œx; y�˛Œy; hx�/: (4.3)

Proof. From the hypothesis at the beginning of this section, we have d.o; bo/ > C
and � � 10. By Lemma 4.1, for n � n0, we have

max¹hx; hxiy ; hy; hyixº � C

and d.y; hx/ � �d.o; bo/ � 10C . Note that d.x; y/ D d.o; bn�2mo/ � 10C by
inequality (4.2). Therefore,

hx; hxiy C hy; hyihx � 2C �
1

4
min¹d.x; y/; d.y; hx/º � ı;

so the assumption of Corollary 2.3 is verified for the sequence of points

: : : ; h�ix; h�iy; : : : ; x; y; hx; hy; : : : ; hjx; hjy; : : :

Hence, there exist the desired constants �1; c1 > 0 such that ˇ is a .�1; c1/-quasi-
geodesic. This proves that h is loxodromic.

4.2 Large injectivity

The crucial property in constructing free subgroups is the following property of
a loxodromic isometry h D f bn.

Definition 4.3. The element h has injective radius L > 0 if E.h/ contains a finite
subgroup F with ŒF WE?.h/�� 2 so thatE.h/D hhiF and, for any g 2E.h/ nF ,
we have `X .g/ > L � d.o; bo/.

Let N0 > 0 be given by Lemma 2.12 satisfying ]E?.h/ � N0, and let

D D D.�; c; ı/ > 0

be given by Lemma 2.9.

Lemma 4.4. For any L > 0, there exists n1 D n1.�; c; �; L; ı/ � n0 such that the
loxodromic element h D f bn for any n � n1 has injective radius L. Precisely,
there exists a subgroup F of E.h/ such that the following hold.

(1) ]F � 2N0 and `z.F / � 2D for any z 2 ˇ.

(2) For any g 2 E.h/ n F , we have `X .g/ > L � d.o; bo/.

(3) For any g 2 E.h/, there exist i 2 Z and t 2 F such that g D hi t .
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Proof. We keep the same notation as in the proofs of Lemmas 4.1 and 4.2. For any
h D f bn with n � n0, the path ˇ in (4.3) is a .�1; c1/-quasi-geodesic.

Recall that x D bm�no, y D b�mo. Denote by ˇ0 D Œx; y�˛Œy; hx� the funda-
mental domain for the action of hhi on ˇ. Let g 2 E.h/. By the Morse Lemma,
the finite Hausdorff distance dH .ˇ; gˇ/ <1 implies the existence of a constant
R D R.�1; c1; ı/ > 0 such that dH .ˇ; gˇ/ � R. Since d.o; bo/ > C is assumed,
the constant �1 defined as follows depends on �; c:

�1 WD
R

d.o; bo/
�
R

C
:

Let N D N.�; c; ı; �1/ > 0 be given by Lemma 2.11. By the linear growth of
d.o; bno/ in (4.1), there exists n1 > 0 depending only on �; �; c; ı such that the
second inequality

d.x; y/ � d.y; hx/ � d.o; bn�2mo/ � d.o; fo/ � 2d.o; bmo/

> 2Nd.o; bo/C 2R (4.4)

holds for any given h WD f bn with n > n1.
Since hiy lies on the .�1; c1/-quasi-geodesic ˇ, we have, for any i ¤ 0,

�1d.y; h
iy/ � d.y; hy/ � c1

� d.o; bno/ � 2md.o; bo/ � d.o; fo/ � c1:

Hence, by (4.1), for any L > 0, there exists a constant still denoted by

n1 D n1.�; c; �; L; ı/

such that
d.y; hiy/ > 2D C L � d.o; bo/ for all i ¤ 0 2 Z; (4.5)

where h D f bn for any n � n1.
By construction, the path ˇ in (4.3) is contained in the union

S
i2Z h

i˛ andS
i2Z h

i Œy; hx�. By the inequality (4.4) and dH .ˇ; gˇ/ � R, the path Œx; y�˛ con-
tains a subpath ˛0 of diameter at least Nd.o; bo/ such that g˛0 lies in the R-
neighborhood hi˛ for some i 2 Z. Recalling that ˛ is a .�; c/-quasi-axis for b,
Lemma 2.11 thus implies g�1hi 2 E.b/.

We claim that t WD g�1hi 2 E.h/ \E.b/ is of finite order. If this is not the
case, then E.h/ \E.b/ is an infinite subgroup. Thus, E.h/ \E.b/ act co-com-
pactly on the quasi-axis of both h and b, so the .�1; c1/-quasi-axis ˇ of h is
preserved by b up to finite Hausdorff distance. By definition of E.b/, we obtain
h D f bn 2 E.b/ and then f 2 E.b/. This contradicts the choice of f .
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To define the finite subgroup F , we consider two cases. If d.y; gy/ > D for
all g 2 E�.h/, set F WD E?.h/ and then `X .F / � D by Lemma 2.9. Otherwise,
there exists r 2 E�.h/ so that d.y; ry/ � D. In this case, F WD hE?.h/; ri has
order at most 2N0 and `y.F / � `y.E?.h//C d.y; ry/ � 2D.

We prove statements (2) and (3) first for the elements g 2 EC.h/. Then the
finite order element t 2 E?.h/ preserves the .�1; c1/-quasi-axis ˇ of h. By Lem-
ma 2.9, we have d.z; tz/ < D for any z 2 ˇ. Thus, any g 2 EC.h/ can be written
as g D hi t , where `z.t/ < D. Then statement (3) follows.

If an element g D hi t 2 EC.h/ does not belong to F , then we have i ¤ 0 and
d.y; gy/ > L � d.o; bo/ from (4.5), so statement (2) holds for g 2 EC.h/.

To complete the proof of (2) and (3), it remains to consider elements g 2E�.h/.
Since EC.h/ is of index 2 in E.h/ and the element r 2 E�.h/ chosen as above
reverses the orientation of ˇ, we have g � r 2 EC.h/. Applying the previous ar-
gument to gr , we can write g D hi .t � r�1/ for some t 2 E?.h/ and t � r�1 2 F .
If i ¤ 0, one deduces again from (4.5) that

d.y; gy/ � d.y; hiy/ � d.y; ty/ � d.y; ry/ � L � d.o; bo/:

By Lemma 2.7, we have `X .g/ � d.y; gy/ � C1 for a uniform C1 > 0. Since
d.o; bo/ > C , there is a constant L1 D L1.C; C1/ > 0 such that

`X .g/ � L � d.o; bo/ � C1 > L1d.o; bo/:

Therefore, all the statements are proved.

5 Proof of Theorem 1.1

We keep the notation from Section 4. Recall that S is a finite symmetric generating
set for a non-elementary subgroupH (see Section 2.2). By Lemma 3.1, there exists
some n0 D n0.28ı/ such that `X .S�n0/ > 28ı.

Choose a basepoint o 2 X such that j`o.S/ � `X .S/j � ı. Let �0 D �0.ı/,
c0 D c0.ı/, C0 D C0.ı/ � ı be given by Lemma 3.2. Thus, S�2n0 contains a lox-
odromic element b 2 H such that d.o; bo/ � `X .S/ � C0 and the path

˛ WD
[
n2Z

bnŒo; bo�

is a .�0; c0/-quasi-axis for b.
Since ].S�2n0/ � ]S , it suffices to prove Theorem 1.1 assuming the generating

set S with `X .S/ > max¹28ı; 3C0º. Note that

d.o; bo/ � `X .S/ � C0 � 2C0: (5.1)
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Since H is not virtually cyclic, S contains an element f such that f … E.b/.
Indeed, if not, any f 2 S would fix the set of fixed points of b, so it follows
from H D hSi that the limit set of H consists of two points. By the subgroup
classification in (the convergence action of)G, we obtain thatH would be virtually
cyclic. This is a contradiction.

Since f 2 S , we have

d.o; fo/ � `o.S/ � d.o; bo/C 2C0 � 2d.o; bo/

by (5.1). Set � D 2 and � D �0, c D c0 all depending only on ı. We apply the
results of Section 4 to the elements b and f .

Let m1 D m1.ı/ � 2, n1 D n1.ı/ be as given by Lemma 4.2, and make the
reference point at y D b�m1o on the quasi-axis ˇ in (4.3). Keep in mind that
d.o; bo/ D d.y; by/.

Set L WD 4.m1 C 6/ � 10. For any s 2 S , we have

d.o; so/ � `o.S/ � `X .S/C ı � 2C0 C d.o; bo/

by (5.1). Thus,

d.y; sy/ D d.b�m1o; sb�m1o/ � .2m1 C 1/d.o; bo/C 2C0

<
L

2
d.y; by/ (5.2)

For any t WD s�1s0 with s ¤ s0 2 S , this yields

d.y; ty/ < L � d.y; by/ D L � d.o; bo/: (5.3)

Choose n2 D n2.L; ı/ > n1 and F 6 E.h/ according to Lemma 4.4. The fol-
lowing result holds for h D f bn with any integer n � n2.

Lemma 5.1. Choose a largest subset S0 of S such that

sF ¤ s0F for any s ¤ s0 2 S0:

Then, for any s ¤ s0 2 S0, s�1s0 … E.h/.

Proof. By item (2) of Lemma 4.4, inequality (5.3) implies that s�1s0 must be
contained in F so sF D s0F . This contradicts the choice of S0.

LetC1 D C1.�1; c1; ı/ � ı such that any quadrilateral with .�1; c1/-quasi-geo-
desic sides is C1-thin. Recall t D s�1s0 for given s ¤ s0 2 S0. To apply the results
of Section 4 (in particular, Lemma 4.1) to the elements t � hn for n� 0, we have
to verify conditions (i), (ii), (iii) on t and h with the basepoint y.
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Namely, consider the basepoint y 2 X and � D L, � D �1, c D c1. The ele-
ment h D f bn with any integer n � n2 admits the .�1; c1/-quasi-axis ˇ of the
form (4.3). This verifies condition (i).

As mentioned earlier, 2d.o; bo/ � d.o; fo/, and the constants C0; m1 depend
only on ı. Note that d.y; hy/ D d.y; f bny/ D d.b�m1o; f bn�m1o/. So we can
choose the least integer n3 � n2 depending only on ı such that the last inequal-
ity in

d.y; hiy/ � ��11 .d.y; hy/ � c1/

� ��11 .d.o; bno/ � 2d.o; bm1o/ � d.o; fo/ � c1/

> max¹LC1; L2d.o; bo/º (5.4)

holds for any n� n3 and i ¤ 0 2 Z. Hence, d.y;hy/ > C1, d.y;hy/ > Ld.y; ty/
from (5.3) fulfill the requested conditions (ii) and (iii) on t; h.

Construct the free bases. Let us now fix h D f bn3 throughout the proof. By
the above discussion on t and h, we again apply the results of Section 4: let
m2 D m.�1; c1; L; ı/, k D n.�1; c1; L; ı/ be given by Lemma 4.1.

We define the free base as follows:

T D ¹shks�1 W s 2 S0º:

If we set � WD 2C k.n3 C 1/, then dS .1; shks�1/ � � and T � S�� . Recall that
]F � 2N0 from Lemma 4.4, so ]T D ]S0 � ]S=N0.

The goal is the following.

Lemma 5.2. The set T generates a free subgroup of rank ]T in H .

Remark. If the group H is torsion-free, then F is trivial and S0 D S can be cho-
sen in Lemma 5.1. In this case, we have ]T D ]S .

Proof. Let W be a non-empty reduced word over T [ T �1 written as follows:

W D .s1 � h
i1k � s�11 /.s2 � h

i2k � s�12 / � � � .sl � h
ilk � s�1l /

D s1 � .h
i1k � t1 � h

i2k � t2 � � � tl�1h
ilk/ � s�1l ;

where l > 1 and ti WD s�1i siC1 for 1 � i � l � 1.
First of all, let ǰ be the subpath of ˇ starting from y to hijky consisting of

ij � k copies of Œy; hy�ˇ . Let pj D Œy; tjy� be a geodesic labeled by tj .
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We choose zj ; wj on ǰ so that the initial subpath of ǰ until zj contains exactly
m2 copies of Œy; hy�ˇ , and the terminal path starting at wj contains exactly m2
copies of Œy; hy�ˇ . To be precise, set zj D hm2ky, wj D hij�m2y.

Furthermore, if j D 1, we let z1 be the initial point of ˇ1; if j D l , let wl be
the initial point of ˇl .

We now properly translate ǰ and pj for 1 � j � l so that ˇ1 originates at y,
and then the terminal points of ǰ followed by the initial points of pj in a way
produces the following concatenated path:


 D ˇ1 � p1 � ˇ2 � p2 � ˇ3 � � �pl�1 � ˇl :

(We refer the reader to Figure 1 for a similar illustration of cutting out quadri-
laterals, where x; y; hx; hy; h2x; h2y should be marked as z1; w1; z2; w2; z3; w3,
etc.)

By abuse of language, after translation, the corresponding points of zj ; wj on
ǰ are still denoted by zj ; wj , so we have a sequence of points z1; w1; z2; w2; : : : ;
zl ; wl on 
 . By the choice of z1; wl , the path 
 starts at z1 and ends at wl , labeled
by the word s�11 Wsl .

The key construction is then to cut quadrilaterals off 
 along Œwj ; zjC1� and
verify that ¹z1; w1; z2; w2; : : : ; zl ; wlº is a quasi-geodesic.

To truncate the quadrilaterals, we apply Lemma 4.1 to ǰ ; cj ; ǰC1; cjC1 in
order for 1 � j � l . For concreteness, set j D 1. Lemma 4.1 gives

hz1; z2iw2
; hw1; w2iz2

� C1 and d.w1; z2/ � Ld.y; hy/ � 10C1:

Since C1 � ı is assumed, we then derive

hz1; z2iw2
; hw1; w2iz2

�
1

4
d.w1; z2/ � ı: (5.5)

By inequality (5.4), we have d.z2; w2/ D d.y; hi2k�2m2y/ � LC1 � 10C1, so

hw1; w2iz2
; hz2; z3iw2

�
1

4
d.z2; w2/ � ı (5.6)

In conclusion, inequalities (5.5) and (5.6) verifying the assumption of Corol-
lary 2.3 hold for every four consecutive points in z1; w1; z2; w2; : : : ; zl ; wl . Thus,

d.z1; wl/ �
1

2

X
1�j�l

d.zj ; wj / � Ld.y; by/

By (5.2), we have d.y; s1y/C d.y; sly/ < Ld.y; by/. Thus,

d.o;Wo/ D d.z1; w1/ � d.y; s1y/ � d.y; sly/ > 0:

Hence, any non-empty reduced word W is mapped to a nontrivial isometry, so T
generates a free subgroup of rank ]T .
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We now finish the proof of Theorem 1.1. Summarizing the above discussion,
for each generating set S of H , we constructed a finite set T � S�� satisfying

]T �
1

2N0
]S

so that hT i is a free group of rank ]T . Thus,

].S�n�/ � .2]T � 1/n �

�
]S �N0

N0

�n
; (5.7)

and there exists c0 > 0 such that !.H; S/ � c0 for any finite symmetric set S .
Choose the least integer M DM.N0/ > 0 such that ]S=N0 � 1C

p
]S holds

for any S with log ]S > M . In this case, we thus obtain

!.H; S/ �
1

2�
log.]S/:

Otherwise, log ]S �M , and we have

!.H; S/ � c0 �
c0

M
log.]S/:

The proof of Theorem 1.1 is finished.
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