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Lower bound on growth of non-elementary
subgroups in relatively hyperbolic groups
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Abstract. This paper proves that, in a non-elementary relatively hyperbolic group, the
logarithm growth rate of any non-elementary subgroup has a linear lower bound by the
logarithm of the size of the corresponding generating set. As a consequence, any non-
elementary subgroup has uniform exponential growth.

1 Introduction

1.1 Results and background

Let S be a finite symmetric generating set of a group H and dg the corresponding
word metric. Write

S=":={heH:ds(1,h) <n} foralln € N U {0}.
The (logarithm) growth rate of H with respect to S is defined to be the following

limit: “n
w(H,S) = lim %,
n—00 n
which exists since f(S="T") < #(S=") - #(S="). In what follows, we always
consider finitely generated groups.
The spectrum of growth rates of a group H has attracted lots of research inter-

ests,
Q(H) = {w(H, S): S < 0o, (S) = H}.

For a group with exponential growth, the question of Gromov [14] whether Q(H )
admits the infimum O was open for twenty years and answered negatively by
Wilson [25] (see [2] also). He constructed the first examples of groups with non-
uniform exponential growth such that a sequence of two-element generating sets
has growth rates tending to 0.
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A group H has uniform exponential growth if inf Q(H) > 0. If a group has
uniform exponential growth, it is quite interesting to ask whether €2(H) obtains
the minimum. Sambusetti [24] showed that the answer was again negative for the
free products of any two non-Hopfian groups which are a special class of rela-
tively hyperbolic groups. However, the recent work by Fujiwara—Sela [11] obtains
a positive answer for hyperbolic groups by showing the set Q2(H ) is well-ordered,
so Q(H) admits a minimum. This settles a question of de la Harpe. The starting
point of their argument relies on the fact due to Arzhantseva—Lysenok [1] that the
growth rate w(H, S) is lower bounded by a linear function of the size of S.

Noting the simple fact w(H, S) < logfiS, the work of [1, 11] seem to suggest it
is worth understanding the following set:

w(H,S) B

OH) = {
Of course, ®(H) C [0, 1]. A number of inquiries could be made about the nature
of ®(H ). For instance, could the set ®(H ) always be infinite? If it is infinite, what
are the accumulation points of the set ®(H )? The purpose of this paper is not to
give complete answers to these questions. Instead, we collect here a few simple
observations to motivate further investigations.

A group H has purely exponential growth if % exp(nw) < 8" < C exp(nw)
for some C = C(S) > 0 independent of n > 1. This class of groups includes (rel-
atively) hyperbolic groups and many other groups (see [5, 28] for relevant discus-
sions). By taking 7, := S”, one sees' that

w(H,Ty)

— 1 asn — oo.
log 75

Thus, the upper bound 1 is an accumulation point for any group with purely expo-
nential growth. On the other hand, the growth tightness [13] of free groups implies
that 1 € ®(H ) if and only if H is a free group. Thus, it is interesting to ask whether
there exist examples with ®(H) C [0, 1 — €] for some € > 0.

The examples of Wilson also imply 0 € Q(H) for certain non-uniform ex-
ponential growth groups H. Analogous to the question of uniform exponential
growth, we can ask for which groups ®(H) admits a positive infimum. In fact,
inf ®(H') > 0 has been obtained for hyperbolic groups in [1].

The main result of this paper is a generalization of the previous results of
Arzhantseva—Lysenok [1] to the class of relatively hyperbolic groups. Since the
official introduction in the Gromov 1987 monograph [15], this class of groups has

! The authors learned this fact from Alex Furman.
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been well-studied in the last thirty years; see [3, 8,9, 12,21]. The important ex-
amples include Gromov-hyperbolic groups, geometrically finite Kleinian groups
(with variable negative curvature), infinitely ended groups, small cancellation quo-
tients of free products, limit groups, to name just a few.

Our main theorem establishes the positive lower bound on ®(H') for any non-
elementary subgroup in a relatively hyperbolic group. By definition, a subgroup H
is said to be non-elementary if its limit set contains at least three points. So an
elementary subgroup is either virtually cyclic or can be conjugated into a maximal
parabolic subgroup. See § 2.2 for details.

Theorem 1.1. Assume that G is a non-elementary relatively hyperbolic group.
Then there exists a constant k = k(G) € (0, 1] such that, for any non-elementary
subgroup H with a finite symmetric generating set S, we have

w(H,S) >k -logfsS.

Remark. Wilson’s example exhibits a sequence of 2-generator sets with growth
rate tending 0. This shows that the non-elementary assumption of H is necessary:
indeed, any group H can be realized as the maximal parabolic subgroup in a free
product of H with any nontrivial group.

A group G has locally uniform exponential growth if every finitely generated
subgroup of exponential growth has uniform exponential growth. Xie [26] has
proved that relatively hyperbolic groups have uniform exponential growth. As a di-
rect corollary of Theorem 1.1, we obtain a strengthening of Xie’s theorem.

Theorem 1.2. Any non-elementary finitely generated subgroup H of a non-ele-

mentary relatively hyperbolic group G has uniform exponential growth.
Moreover, (G, P) has locally uniform exponential growth if and only if every

maximal parabolic subgroup P € P has locally uniform exponential growth.

Recall that non-elementary relatively hyperbolic groups G are growth tight, so
non-Hopfian ones cannot realize its infimum of Q(G) (see [24, 27]). It is thus
interesting to know whether Fujiwara—Sela’s result [11] can generalize to torsion-
free toral relatively hyperbolic groups [16,17].2

2 This question has been answered for equationally Noetherian relatively hyperbolic groups by
Fujiwara’s preprint [10] (posted on 2 March 2021, one day earlier than ours on arXiv). One
ingredient is Theorem 1.2 which was also obtained independently and simultaneously by him.
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1.2 Connection with other works

There has been recent interest in studying the product set growth in various classes
of groups, starting in free groups [23], hyperbolic groups and acylindrical hyper-
bolic groups [7], free product of groups [4], and so on. We refer the reader to [4]
for further references and connection with approximate groups.

To be precise, let S be any set in a group G subject to the condition that S’ does
not generate a “small” subgroup. The Helfgott type growth (in the terminology
of [4]) wishes to have the following:

#(S%) = c- (8S)'

for some universal ¢, k > 0 depending only on G. By induction, it is easy to see
that if a group G has the Helfgott type growth, then Theorem 1.1 holds for this
group G. In this sense, Theorem 1.1 could be understood as an asymptotic version
of product set growth. Indeed, our proof boils down to a similar product growth
with high powers

#(S™%) > (#S)" foralli € N,

for a universal k¥ > 0; see formula (5.7). Even though, our Theorem 1.1 cannot
be deduced directly from the result [7, Theorem 1.9]. Their result does provide
certain product set growth only assuming the acylindrical action on hyperbolic
spaces. However, the large displacement assumption imposed on S there is hard
to verify in practice.

Very recently, Kropholler-Lyman—Ng obtained Theorem 1.2 independently as
[20, Proposition 4.12] during the writing of this paper. Similar to us, they made
a variant of Xie’s result as Lemma 3.1, and then ran the remaining argument in [26]
to get Theorem 1.2.

To conclude the introduction, let us mention briefly the proof of the main theo-
rems. We follow closely the strategy of [1] which appears to us quite robust. On
the other hand, we have to deal with several difficulties from the relative case.
They are resolved largely by adapting the work of Xie [26] (see Lemma 3.1)
and by a strengthening of Koubi’s result [19] (see Lemma 3.2). We believe that
Lemma 3.2 has independent interest and admits further applications.

Structure of the paper. This paper is organized as follows. Section 2 recalls
standard materials in Gromov’s hyperbolic geometry, Bowditch—Gromov’s defi-
nition of relatively hyperbolic groups. As mentioned above, the work of Xie and
Koubi are properly adapted and strengthened in Section 3. A notion of loxodromic
elements with large injectivity is introduced in Section 4 to streamline the strategy
of Arzhantseva—Lysenok. The proof of Theorem 1.1 is then completed in Sec-
tion 5.



Lower bound on the growth rate 803

2 Preliminary

Consider an isometric action of G on a metric space (X, d). Let S C G be a set of
isometries. Let £, (S) := maxses{d(x, sx)} for a given point x € X. For a subset
A C X, define
£4(S) := inf £,(S).
x€eA

Note that x € X + £,(S) € R is a continuous non-negative function.

2.1 Hyperbolic spaces and Loxodromic elements

Define the Gromov product

d(x,0)+d(y,0) —d(x,y)
(x,y)O: )

forall x,y,0 € X.

A geodesic metric space X is said to be hyperbolic if any geodesic triangle is
8-thin: if d(o, p) = d(0,q) < {x,y), for two points p € [0, x], ¢ € [0, y], then
d(p,q) < 6. Then, for any x, y,z,0 € X, we have

(x,¥)o = min{(x, z)o, (z, y)o} — 4.

Assume that a finitely generated group G acts properly by isometry on a proper
hyperbolic space X . Then the induced action of G on the Gromov boundary dX of
X is a convergence group action. Thus, any infinite order element fixes at least one
but at most two points in dX. So the elements in G are classified into three mu-
tually exclusive classes: elliptic isometries being finite order elements, parabolic
isometries with only one fixed point and loxodromic isometries with exactly two
fixed points. See [3] for a detailed discussion about convergence group actions and
relevant notions.

Equivalently, an isometry g on a proper hyperbolic space X is loxodromic if
it admits a (A, ¢)-quasi-geodesic y for some A,c > 0 so that y, gy have finite
Hausdorff distance. Such quasi-geodesics shall be referred to as (A, ¢)-quasi-axis.

Lemma 2.1 ([6, Lemma 9.2.2]). If an isometry g on X satisfies
d(0,0) > 2(0.g%0)go + 68

for some point o € X, then g is loxodromic.

In hyperbolic spaces, it is a well-known fact that a sufficiently long local quasi-
geodesic is globally a quasi-geodesic. The following statement is a variant of this.
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Lemma 2.2 ([1, Lemma 1]). Lef x1, X3, ..., X for k > 3 be points in a §-hyper-
bolic space such that, for any 2 <i <k — 2, we have

(Xi—1. X4 1)x + (X Xi42)x g < d(xi,Xi41) — 36.

Then
k=1 k-1
d(xi,xg) = Y d(xi,xit1) =2 ) ((Xi-1, Xi41)x; +6).
i=1 i=2

The following immediate corollary will be used later.

Corollary 2.3. Under the assumption of Lemma 2.2, if

1
(Xi—1, Xi+1)x; + (Xis Xi42) x4y < Zd(xi,xiﬂ) -4,

then
k—1

1
d(x1.x) = 5 > d(xixit1).

i=1

Lemma 2.4. If g, h are two isometries satisfying
1
1 min{d(go,0),d(ho,0)} = L > max{(go,h 100, (g7 0, ho)o} + 8

for some point o € X and some L > 0, then
(1) gh is loxodromic.

(2) There exist constants A, c > 0 depending only on L and § such that the con-
catenated path o := ;< (gh)' ([0, go] - glo. ho)) is a (A, ¢)-quasi-geodesic.

Proof. The proof uses the well-known fact that long local geodesics are global
quasi-geodesics. To be precise, applying Lemma 2.2 to the points

X1 =0, Xxp=go, x3=gho, ..., X1 = (gh)"o,
we have
2n 2n 1 2n
d(x1,X2n41) > z;d(xi,xz'ﬂ) —22;((Xi—1,xz‘+1)x,~ +4) > E;d(xi,xz'ﬂ)
1= 1= =

for n > 1. Note that [0, go] - g[o, ho] is a quasi-geodesic with parameters depend-
ing only on L,§. These two facts imply that « is a (4, ¢)-quasi-geodesic with
constants A, ¢ depending on L, §. The proof is complete. |
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Define the asymptotic translation length of an isometry g as follows:

. d(o,8"0)
(g) = nhm —

—>00

for some (thus any) point 0 € X.

Lemma 2.5 ([6, Proposition 10.6.4]). If g is a loxodromic element, then

[€x (g) — t(g)| < 168.

We say that an element g € G preserves the orientation of the bi-infinite quasi-
geodesic y if o, g have finite Hausdorff distance for any half-ray « of y. It is
clear that a loxodromic element preserves the orientation of any quasi-axis.

Lemma 2.6. Suppose that a loxodromic isometry g has a (A, ¢)-quasi-axis y for
some A, c > 0. Then there exists a constant C = C(A, ¢, 8) > 0 with the following
property. For any x €y, there exists y € y such that {(x,gx)y, <C, (y,8y)gx <C.

The following lemma is well known with a proof included for completeness.

Lemma 2.7. There exists a constant C = C(A,¢,§) > 0forany A, c > 0 with the
following property. If a loxodromic element g admits a (A, ¢)-quasi-axis y, then
forany x € y, we have |x(g) —d(x,gx)| < C.

Proof. By the Morse Lemma, any two (4, ¢)-quasi-axes y and gy have bounded
Hausdorff distance depending only on A, ¢ and §. Thus, the inclusion of y into
Uiez g'y is a quasi-isometry with constants depending only on A, c, 8. We can
thus assume that the quasi-axis y is (g)-invariant.

Let my: X — y be the shortest projection to a (A, ¢)-quasi-geodesic y. Note
that i, enjoys the C-contracting for a constant C = C(A, ¢, §): if

diam({my (z), my(w)}) > C forsome z,w € X,

then
max{d(my (z), [z, w]), d(my (w), [z, w])} < C.

We then derive the following for any z, w € X:
diam({my (2), my (w)}) + d(z, 7y (2)) + d(w, my(w)) < d(z,w) + 4C.

Let 0 € X so that d(o, go) = £x(g). Apply the above inequality for z = o and
w = go. Since y is (g)-invariant, 7y, (-) is (g)-equivariant. If d(o0, y) > 2C, we
then obtain from the above inequality that d(my(0), gmy(0)) < d(o, go). This
contradicts the choice of o0 with d (o, go) = €x(g). Thus, d(o,y) < 2C.
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Without loss of generality, replacing o by its projection y, (0), we can assume
that o lies on y. Then |d (0, go) — €x(g)| < 2C.

Let x € y. Assume that the above constant C also satisfies Lemma 2.6. Up to
(g)-translations to x, we can assume that (0, go)x < C and then (x, gx)go < C.
By hyperbolicity, max{d(go, [x, gx]),d(x, [0, go])} < C + §. Consequently,

|d (0, go) —d(x, gx)|
<ld(o,x) + d(x,go) —d(x,go) —d(go,gx)| +4C + 44
<4C + 46.

The proof is complete. |

2.2 Elementary subgroups

Recall that G acts properly on a proper hyperbolic space X. The limit set AH
of a subgroup H is the set of accumulation points in dX of any H-orbit in X.
A subgroup H in G is said to be elementary if its limit set contains at most two
points. See [3] for relevant discussion.

If AH consists of only one point p, then H is said to be a parabolic subgroup
and p is said to be a parabolic point. It is a well-known fact that, in a conver-
gence group action, a loxodromic element cannot fix a parabolic point. The (max-
imal) parabolic group plays the key role in Definition 2.10 of relatively hyperbolic
groups given in the next subsection. In the remainder of this subsection, we first
consider the elementary subgroup with exactly two limit points.

Let y be a quasi-axis for a loxodromic element /. The coarse stabilizer of the
axis defined as

E(h) = {g € G : there exists r > 0 such that y C N,(gy). gy C Ny(y)}
gives the maximal elementary subgroup containing /. Note that the subgroup
ET(h) :={g € G : there exists n > 0 such that gh"g~! = h"}

with index at most 2 is precisely the set of orientation-preserving elements in E (h).
Let E=(h) = E(h)\ ET(h). Let E*(h) be the torsion group of E¥(h). The

following result actually holds for a contracting element /.

Lemma 2.8. For a loxodromic element h, the following statements hold.

(1) [E(h) : (h)] < oo

(2) We have

E(h) ={g € G : there exists n > 0 such that (gh" g~ =h") or (gh" g~ =h™™)).
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(3) E*(h) is a finite normal subgroup of E(g).
(4) g% € E*(h) forany g € E~(h).

Proof. The first two statements are from [28, Lemma 2.11] which holds for any
contracting element /. The last two statements follow from [1, Lemma 4] where
only assertion (1) is used in the proof. |

Lemma 2.9. Let h € G be a loxodromic element admitting a (A, ¢)-quasi-axis o.
Then there exists some D = D(A,c,§) > 0 such that

d(go,0) < D forany g € E*(h)ando € a.

Proof. By the Morse Lemma, there exists a constant D > 3§ depending only on
A, ¢, 6 such that any two of go, «, g_loz have Hausdorff distance at most D. Since
g € E*(h) C E™(h) preserves the orientation of o, we can assume further that
d(go.[o,a+]e) < D and d(g o, [0,0_]¢) < D.

Let x,y € o such that d(go,x),d(g_lo,y) < D. Since x, y are on the op-
posite sides of o on «, we have d(o, [x, y]) < D by the Morse Lemma. Thus,
(x,y)o < D, and then (go,g '0), < 3D. If we assume d(o, go) > 4D, then
we have d(0, go) > 2d(o, g%0) + 6. By Lemma 2.1, g is loxodromic. This is
a contradiction, so d (0, go) < 4D. ]

2.3 Relatively hyperbolic groups

The notion of a relative hyperbolicity has a number of equivalent formulations
(see [3,8,9,12,21], etc.). See [18] for a survey of their equivalence. In this paper,
we define a relatively hyperbolic group which admits a cusp-uniform action on
a hyperbolic space.

Definition 2.10. Suppose G admits a proper and isometric action on a proper
hyperbolic space (X, d) such that G does not fix a point in the Gromov bound-
ary 0X. Denote by P the set of maximal parabolic subgroups in G. Assume that
there is a G-invariant system of disjoint (open) horoballs U centered at parabolic
points of G such that the action of G on the complement called the neutered space
X(U) := X \ U is co-compact, where U := | Jyyey U. Then the pair (G, P) is
said to be relatively hyperbolic, and the action of G on X is said to be cusp-
uniform.

We fix a G-invariant system U of horoballs and the neutered space X(U) on
which G acts co-compactly. The following result is proved by [1, Lemma 6] in
hyperbolic groups. In the relative case, we follow their arguments closely.
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Lemma 2.11. Let h be a loxodromic element in G such that, for some point 0 € X
and A, c > 0, the path o =\, cz[h"0, K" 10] is a (X, ¢)-quasi-geodesic in X.
Then, for any given 0 > 0, there exists N = N(A, ¢, §, 0) independent of the point
o such that, for any f ¢ E(h), we have

diam(e¢ N Ng(fa)) < N -d(o, ho),
where R := 6 -d (o, ho).

Remark. Along with Lemma 3.1, this is the other result which crucially uses cusp-
uniform actions.

Proof. First of all, since / is a loxodromic element and cannot fix any parabolic
point, we obtain that o cannot be contained inside any horoball U € U. Thus,
the (h)-invariant set « N X(U) is a non-empty unbounded set. Namely, for any
xeanNX(U)andanyi € Z, we have h' x € a.

We argue by contradiction. Assume that diam(e N Ng(fa)) > N -d(o, ho)
for a constant N determined below. Let z, w, z’, w’ € « such that

d(z,w) = diam(a N Ng(fa)) and d(z, fz'),d(w, fw’) < R.

By hyperbolicity, [z, w]y and [z, w']y contain subpaths 81, B2 respectively (af-
ter truncating an R-long segment at both ends) such that 81, ff, have Hausdorff
distance at most C = C(A,c,8) > 0 and, fori = 1,2, we have

diam(B;) > diam(a N Nr(fa)) —2R > (N — 60)d(o, ho).

Since « is a (A, ¢)-quasi-geodesic, there exists a monotone increasing function
N’ = N'(A,c,N,60) >0 such that 81 contains at least (N’ + 1) translates of
[0, ho]. Moreover, we have N = N’(A,c, N, 0) — ooas N — oo. Thus, 81 con-
tains (N’ + 1) points x,hx,...,hN x € X(U). Let y € B, be a point so that
d(x, fy) = C.

Assume that C also satisfies the conclusion of Lemma 2.7 by taking the larger
one. Using Lemma 2.5, for 1 <i < N’, we have

ld(x,h'x) —t(h)| < C + 168, |d(fy, fh'y)—t(h')| < C + 166,
SO ) )
|d(x,h'x) —d(fy, fh'y)| <2C + 328.

Thus, d(hix, fh'y) <3C + 328 foreach1 <i < N'.

Set N(x,y)=#{geG:d(x,gy) <3C + 326} + 1. Since G acts co-compactly
on the C-neighborhood of X(U), we see that N(x, y) over x,y € Nc(X(U)) is
uniformly bounded above by a constant Ny > 0.
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Choose N > 0 such that N’ = N’(A,c, N, 6) > Ny, and consequently, we ob-
tain A" fht =h™/ fh'/ for 1 <i # j < N’. So f € E(h) contradicts the as-
sumption. The result is thus proved. o

Finally, let us mention the following result of Osin which holds for loxodromic
elements in any acylindrical action on hyperbolic spaces.

Lemma 2.12 ([22, Lemma 6.8]). There exists a finite number No > O such that
BE*(g) < Ny for any loxodromic element g € G.

3 Short loxodromic elements

The goal of this section is to provide short loxodromic elements.

Let S = S™! be a symmetric generating set of a non-elementary group H.
Recall that S="0 := {h € H : ds(1,h) < ng}.

The following is a variant of [26, Lemma 5.3].

Lemma 3.1. For any M > 0, there exists a positive integer ng = no(M) > 0 such
that, for any finite symmetric generating set S of H, we have Ly (S="°) > M.

Proof. Let U be an M -separated G-invariant system of horoballs centered at the
parabolic points. Recall that the action of G on X(U) is proper and co-compact.
Let K C X(U) be a compact set such that UgeG g(K) = X(U). Fix a point
p € K, and let ¢ = diam(K) depending on M . The proper action implies the set

A={geG:d(g(p),p) <2a+ M}

is a finite set. Since G 1is finitely generated, up to increasing the value of a, we can
assume that A generates G.

Consider the finite set H of conjugates of H which is generated by some finite
set S” C A. Since H is infinite, the proper action of H on X implies that, for
every H' € HI, there is some gy € H' with d(gg/(p), p) > M + 2a. Since A
generates G and H is finite, the integer

no := max{ds(l,gg"): S' C A, H := (§’') € H}

is finite.

Now let S be a finite generating set of H. If {x(S) > M, then we are done:
Lx (S™0) > £x(S) > M. If there is some x € X with £, (S) < M, then x € X(U).
Indeed, assume that x € U for some U € U. By definition of £, (S) < M, we
have d(s(x),x) < M for all s € S. The M -separation of U implies s(U) = U
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for all s € S, and so the center of U would be fixed by the non-elementary sub-
group H: a contradiction. Hence, it follows that x € X(U).

Recalling that (J, ¢ g(K) = X(U), we choose g € G with g(x) € K. We
now show S’ := {gsg™! : 5 € S} C A. Indeed, for each s € S, we have

d(p.gsg~ (p)) < d(p.g(x)) + d(g(x), gs(x)) + d(gs(x), gsg" " (p))
<d(p,g(x))+d(x,s(x))+d(g(x),p) <2a+ M.

Since S’ C A generates H' := gH g_1 € H, by the definition of ng, there is

some integer | < k < ng such that dg/(1, gg’) = k. Thus,

gr = (gs18 ") (gskg ") = gls1 -+ sk)g "

for s; € S U S~!. Now, by the triangle inequality, we have

d(g” g g(x).x) = d(gmg(x). g(x))
> d(gn'(p). p) —d(gn'(p). gH'g(x)) — d(g(x), p)
=d(gn'(p), p) —d(p.g(x)) —d(g(x), p)
>M+2a—a—a=M.
Since g ggrg = s1--- 5k € S0, it follows that £, (S="0) > M. O

The following result improves [19, Proposition 3.2].

Lemma 3.2. Let X be a §-hyperbolic geodesic metric space and H a group of iso-
metries of X with a finite symmetric generating set S. Assume that £y (S) > 284.
Then H contains a loxodromic element b € S=? with the following property.

Let 0 € X such that |£,(S) — €x (S)| < 8. There exist constants Ay, co, Cop > 0
depending only on § such that

d(o,bo) = €x(S) — Co

and the path
a:= | b"[o.bo]

nez
is a (Ao, co)-quasi-axis for b.

Proof. Set Ly = 46 and then £,(S) > 7L¢. Denote by Sg the (non-empty) set of
elements s € S so that

d(o,50) > £,(S)—2Lo — .

Lett € S such that £,(S) = d(o,t0), and m € [o, to] such that d(o, m) = Ly.
The main observation is as follows.
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Claim. There exists an isometry s € Sq such that s is either loxodromic with
(07320)s0 <Ly
or satisfies
max{{r0, 500, (t 0,5 0)o} < Lo.
Proof of the claim. Assume to the contrary that, for all s € Sp, we have
max{(t0,50)o. (t 10,57 0)o} > Lo. 3.1

Moreover, we have that each 5 € Sy is either non-loxodromic or loxodromic with
(0,5%0)50 > Lg.If s € Sp is non-loxodromic, by Lemma 2.1, we have

1 1
(0,5%0)50 = Ed(o,so) — 36 > E(KO(S) —2Lo—368)—36 = Lo.

Hence, for each s € Sp, we have (o,szo)so > L. In particular, (Z_lo,to)o > Lo.
By (3.1), we have that (t*0, s*0), > Lo for x € {1,—1}. Letmy,mz € [0,5*0]
for s € Sp so that d(o,m1) = d(s*0,m3) = Lo. By hyperbolicity,
(s*0,10) = min{(s*0,1*0)0. (t Y0,10)o} —8 > Lo —§
which by the §-thin triangle property implies d(m,m1) < 3§. Using again the
§-thin triangle property with (0, (s*)?0)g+o > Lo, we obtain d(m,,s*my) < 6.

We shall derive ¢,,(S) < £x(S), which is a contradiction. Indeed, for each
NS So,

d(m,s*m) <2d(m,my) +d(my,s*my)
<78 +d(my,mp) <78+ d(o,s0) —2Lg
<Lo(S)—2Lo+ 75 <Lo(S)—4.
Ifs € §'\ So, then d(0,50) < £,(S) —2Lo — 8, and thus
d(m,sm) < 2d(o,m) + d(o,s0) < 2Ly + d(0,50) < £,(S) — 6.
We obtain the contradiction £,,(S) < £,(S) — 8 < £x(S). The proof of the claim

is now complete. o

By the above claim, there exists some s € S such that either

1
(so,s71o)g +8<Lo+6 < Zd(o,so)

or

-1

1
max{(to, s0),, {t” 0, s_lo)o} +86<Log+6< 1 min{d (o, s0), d(o,t0)}.

Accordingly, we apply Lemma2.4tog =h=sorg=t,h=s.Thenb = s or
b =t~ s is the desired loxodromic element with the (1¢, co)-quasi-axis . The
proof is then completed by Lemma 2.4. |
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4 Short loxodromic elements with large injectivity

Let 0 € X be a basepoint, and let 8 > 10, A, ¢ > 0 be fixed constants. Denote by
C = C(4,c, ) the constant such that any quadrilateral with (4, ¢)-quasi-geodesic
sides is C-thin: any side is contained in the C-neighborhood of the other three
sides.

In this section, we make the following assumptions on f and b:

(i) the element b is loxodromic so that d(0, bo) > C and « := |,z 0" [0, bo]
is a (A, ¢)-quasi-axis;

(ii) the element f lies outside E(b) and satisfies d(o, fo) < 0d(o, bo);
(ii1) the element b satisfies the conclusion of Lemma 2.11.

For large n > 0, we shall study when the elements of form /& := fb" are loxo-
dromic and their properties (Lemmas 4.2 and 4.4).
The following immediate estimate will be useful later on:

foralln > 1, n-d(o,bo) > d(o,b"0) > A -d(0,bo) — ¢
> (A0) " 'n-d(o, fo)—c. 4.1)
We emphasize that all the statements in this section are proved without involv-
ing any group action.
4.1 Loxodromic elements raising to power

Consider the points x = ™ "0, y = b™0 for 0 < 2m < n on «, and then we
have hx = fb™o € fa. Consider two quasi-geodesics @ and f« connected by
a geodesic [0, fo]. To get a quasi-axis of h = fb", we shall use the next lemma
to truncate the subpath containing [0, fo] from the point y to hx of the union
aU fa.

Lemma 4.1. There exist m = m(A,c,0,8) and ng = no(A,c,0,8) > 2m so that
h = fb" foranyn > no(A,c,0,8) has the following property:

max{(x, hx)y, (y, hy)nxy = C
and d(y, hx) > 0d(o, bo).
Proof. Consider the quadrilateral formed by the subpaths
[x.0la. 0. fol. flo.b™0la,

and the geodesic [x, hx] as depicted in Figure 1.
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hfo

Figure 1. Truncate the quadrilaterals y, 0, fo, hx and hy, ho, hfo, h*x

Set N = N(4,c,§,60) given by Lemma 2.11. By (4.1), the distance d (o, b"0)
grows linearly. Hence, we can choose the least integer m = m(A,c,8) > N and
then the least ng = no(A, ¢, 8, §) so that the following holds:

min{d (0, b™0), d(0,b"">"0)} > max{Nd (o, bo), 10C} 4.2)

for any n > ny.
Since R := 0d(o,bo) > d(o, fo) is as assumed, we can obtain

d(y, fa) > R.

Indeed, assume to the contrary that d(y, fa) < R. As d(o, fa) < d(o, fo) < R,
Lemma 2.11 implies that the diameter of & N Ng(f«) is at most Nd(o, bo).
However, o N Ng(fa) contains two points y = b~"™0, 0 with distance at least
Nd(o,bo) by (4.2). This is a contradiction. As 8 > 1 and d(o,bo) > C is as-
sumed, we have d(y, fa) > R > d(0,bo) > C. The C-thin quadrilateral prop-
erty then implies d(y, [x, hx]) < C, so we obtain (x, hx), < d(y, [x,hx]) < C.

By symmetry, we can run the above argument for the quadrilateral with vertices
v,0, fo,hy and obtain (y, hy)p, < C.

Note that d(y, hx) > d(y, fa) > R = 0d(o, bo). The proof is complete. O

In what follows, let m = m(A, ¢, 8,8) and no = no(4, c, 6, 6) be given by
Lemma 4.1.
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Lemma 4.2. There exist constants Ay, cq1 > 0 depending only on §, A, c > 0 with
the following property. For any n > ny, the element h := fb" is loxodromic with
a (A1, c1)-quasi-axis B defined as follows:

B = (x ylaly, hx]). (4.3)
i€Z
Proof. From the hypothesis at the beginning of this section, we have d (o, bo) > C
and 6 > 10. By Lemma 4.1, for n > ng, we have

max{(x, hx)y. (y.hy)x} = C
and d(y, hx) > 6d(o,bo) > 10C. Note that d(x, y) = d(o,b">™0) > 10C by
inequality (4.2). Therefore,
(. x)y + (v hy)a < 2C < 7 mindd(x, ), d(y, b)) — 5,
so the assumption of Corollary 2.3 is verified for the sequence of points
...,h_ix,h_iy,...,x,y,hx,hy,...,hjx,hjy,...

Hence, there exist the desired constants A1, c; > 0 such that 8 is a (A1, ¢1)-quasi-
geodesic. This proves that % is loxodromic. |

4.2 Large injectivity
The crucial property in constructing free subgroups is the following property of

a loxodromic isometry h = fb".

Definition 4.3. The element % has injective radius L > 0 if E(h) contains a finite
subgroup F with [F : E*(h)] <2sothat E(h) = (h) F and, forany g € E(h) \ F,
we have {x (g) > L - d(o, bo).

Let Ny > 0 be given by Lemma 2.12 satisfying f E* (k) < Np, and let
D =D(,c,8) >0
be given by Lemma 2.9.
Lemma 4.4. For any L > 0, there existsny = ny(A,c, 0, L,8) > ng such that the

loxodromic element h = fb"™ for any n > ny has injective radius L. Precisely,
there exists a subgroup F of E(h) such that the following hold.

(1) §F <2Ngand £;(F) < 2D forany z € B.
(2) Forany g € E(h) \ F, we have £Lx(g) > L -d(o, bo).
(3) Forany g € E(h), there existi € Z andt € F such that g = h't.
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Proof. We keep the same notation as in the proofs of Lemmas 4.1 and 4.2. For any
h = fb" with n > ny, the path 8 in (4.3) is a (11, c1)-quasi-geodesic.

Recall that x = ™ "0, y = b™"™0. Denote by Bo = [x, y]a[y, hx] the funda-
mental domain for the action of (h) on 8. Let g € E(h). By the Morse Lemma,
the finite Hausdorff distance dg (B, g8) < oo implies the existence of a constant
R = R(A1,c1,68) > O such that dg (B, gf) < R. Since d(o0, bo) > C is assumed,
the constant 07 defined as follows depends on A, ¢:

R R
<

d(o,bo) — C’

01 =

Let N = N(A,c¢,6,61) > 0 be given by Lemma 2.11. By the linear growth of
d(0,b"0) in (4.1), there exists n; > 0 depending only on 6, A, ¢, § such that the
second inequality

d(x,y) —d(y,hx) > d(0,b">"0) — d(o. fo) —2d(0.b™0)
> 2Nd(0,bo) + 2R (4.4)

holds for any given i := fb" withn > ny.
Since h'y lies on the (11, ¢1)-quasi-geodesic 8, we have, for any i # 0,

Ad(y.h'y) = d(y.hy) —c1
> d(o0,b"0) —2md(0,bo) —d(o, fo) — c;.

Hence, by (4.1), for any L > 0, there exists a constant still denoted by
ny=n1(A,c,0,L,6)

such that '
d(y,h'y) >2D + L-d(o,bo) foralli #0 € Z, 4.5)

where h = fb" forany n > nj.

By construction, the path f in (4.3) is contained in the union | J;cy hia and
Uiez h'[y. hx]. By the inequality (4.4) and dz (8. gB) < R, the path [x, y]q con-
tains a subpath oo of diameter at least Nd (o, bo) such that gog lies in the R-
neighborhood A« for some i € Z. Recalling that « is a (A, ¢)-quasi-axis for b,
Lemma 2.11 thus implies g~ A’ € E(b).

We claim that ¢ := g~'h’ € E(h) N E(b) is of finite order. If this is not the
case, then E(h) N E(b) is an infinite subgroup. Thus, £ (k) N E(b) act co-com-
pactly on the quasi-axis of both & and b, so the (11, c1)-quasi-axis 8 of & is
preserved by b up to finite Hausdorff distance. By definition of E(b), we obtain
h = fb"™ € E(b) and then f € E(b). This contradicts the choice of f.
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To define the finite subgroup F, we consider two cases. If d(y, gy) > D for
all g € E~(h), set F := E*(h) and then £x (F) < D by Lemma 2.9. Otherwise,
there exists r € E~(h) so that d(y,ry) < D. In this case, F := (E*(h),r) has
order at most 2N and £, (F) < £y, (E*(h)) + d(y,ry) <2D.

We prove statements (2) and (3) first for the elements g € E+(h). Then the
finite order element t € E*(h) preserves the (A1, ¢1)-quasi-axis 8 of . By Lem-
ma 2.9, we have d(z,tz) < D forany z € B. Thus, any g € E ¥ (h) can be written
as g = h't, where £,(t) < D. Then statement (3) follows.

If an element g = h't € ET(h) does not belong to F, then we have i # 0 and
d(y,gy) > L -d(o,bo) from (4.5), so statement (2) holds for g € ET(h).

To complete the proof of (2) and (3), it remains to consider elements g € £~ (h).
Since ET(h) is of index 2 in E(h) and the element r € E~(h) chosen as above
reverses the orientation of 8, we have g -r € E*(h). Applying the previous ar-
gument to g7, we can write g = h' (¢t - r—!) forsome t € E*(h)andt-r~! € F.
If i # 0, one deduces again from (4.5) that

d(y.gy) = d(y.h'y) —d(y.ty) —d(y.ry) = L -d(o.bo).

By Lemma 2.7, we have £x(g) > d(y, gy) — C; for a uniform C; > 0. Since
d(o,bo) > C, there is a constant L = L1(C, C1) > 0 such that

{x(g) = L-d(0o.bo) = C1 > L1d(0.bo).

Therefore, all the statements are proved. o

5 Proof of Theorem 1.1

We keep the notation from Section 4. Recall that S is a finite symmetric generating
set for a non-elementary subgroup H (see Section 2.2). By Lemma 3.1, there exists
some ng = n¢(288) such that £y (S="0) > 28§.

Choose a basepoint 0 € X such that |[{,(S) —€x(S)| <. Let 19 = A9(9),
co = co(8), Co = Co(8) > § be given by Lemma 3.2. Thus, S =20 contains a lox-
odromic element b € H such that d(o, bo) > €x(S) — Cp and the path

a:= | b"[0.bo]
nez

is a (Ao, co)-quasi-axis for b.
Since ff(S=2"0) > #S, it suffices to prove Theorem 1.1 assuming the generating
set S with £x (S) > max{28§, 3Co}. Note that

d(0,bo) > £x(S) — Co > 2Co. (5.1)
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Since H is not virtually cyclic, S contains an element f such that f ¢ E(b).
Indeed, if not, any f € S would fix the set of fixed points of b, so it follows
from H = (S) that the limit set of H consists of two points. By the subgroup
classification in (the convergence action of) G, we obtain that H would be virtually
cyclic. This is a contradiction.

Since f € §, we have

d(0, fo) < £,(S) < d(0.bo) +2Co < 2d(0, bo)

by (5.1). Set & = 2 and A = Ag, ¢ = ¢¢ all depending only on 5. We apply the
results of Section 4 to the elements » and f.

Let m; = m1(8) > 2, n1 = n1(8) be as given by Lemma 4.2, and make the
reference point at y = b~"10 on the quasi-axis f in (4.3). Keep in mind that
d(o,bo) = d(y,by).

Set L := 4(m; + 6) > 10. For any s € S, we have

d(0,50) < €,(S) <Lx(S)+ 8§ <2Co + d(o,bo)
by (5.1). Thus,
d(y,sy) =d(b™o,sb™™0) < (2m1 + 1)d(0,bo) + 2Cy
< %d(y,by) (5.2)
For any ¢ := s~ !s’ with s # s’ € S, this yields
d(y,ty) < L-d(y,by) = L -d(o, bo). (5.3)

Choose ny = np(L,8) > ny and F < E(h) according to Lemma 4.4. The fol-
lowing result holds for 4 = fb" with any integer n > ns.

Lemma 5.1. Choose a largest subset So of S such that
sF #s'F foranys # s € Sy.
Then, for any s # s’ € So, s~Ls" ¢ E(h).

Proof. By item (2) of Lemma 4.4, inequality (5.3) implies that s~'s’ must be
contained in F so sF = s’ F. This contradicts the choice of Sy. O

Let C; = C1(A1,c1,8) > & such that any quadrilateral with (11, ¢1)-quasi-geo-
desic sides is Cq-thin. Recall = s~ s’ for given s # s’ € Sp. To apply the results
of Section 4 (in particular, Lemma 4.1) to the elements ¢ - A" for n >> 0, we have
to verify conditions (i), (ii), (iii) on ¢ and & with the basepoint y.
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Namely, consider the basepoint y € X and 6 = L, A = A1, ¢ = c;. The ele-
ment 4 = fb" with any integer n > n, admits the (11, ¢1)-quasi-axis 8 of the
form (4.3). This verifies condition (i).

As mentioned earlier, 2d (0, bo) > d(o, fo), and the constants Cy, m1 depend
only on §. Note that d(y, hy) = d(y, fb"y) = d(b"™ o, fb" ™1 0). So we can
choose the least integer n3 > n, depending only on § such that the last inequal-
ity in

d(y.h'y) = A7Nd(y. hy) —c1)
> Al_l(d(o, b"0) —2d(0,b™'0) — d (o, fo) —c1)
> max{LCy, L?d (0, bo)} (5.4)

holds for any n > n3 andi # 0 € Z. Hence, d(y,hy) > C1,d(y,hy) > Ld(y,ty)
from (5.3) fulfill the requested conditions (ii) and (iii) on ¢, &.

Construct the free bases. Let us now fix # = fb"3 throughout the proof. By
the above discussion on ¢ and &, we again apply the results of Section 4: let
my =m(Ay,c1,L,8), k =n(Ay,c1, L,5) be given by Lemma 4.1.

We define the free base as follows:

T = {shks_1 :s € So}.

If we set k := 2 + k(nz + 1), then dg(1,sh¥s™!) <k and T C S=¥. Recall that
fF <2Ng from Lemma 4.4, so {T = §So > #1S/ Np.
The goal is the following.

Lemma 5.2. The set T generates a free subgroup of rank T in H.

Remark. If the group H is torsion-free, then F is trivial and So = S can be cho-
sen in Lemma 5.1. In this case, we have {7 = §S.

Proof. Let W be a non-empty reduced word over 7 U T ! written as follows:
W= (s1- B 57 (s2 - hP2K sy ) (s - WE s
TR (A RTTRY LUy UL syt

where [ > l and t; := sl._ls,-.H forl <i<I[l-—1.
First of all, let B8; be the subpath of 8 starting from y to hii*y consisting of
ij -k copies of [y, hy]g. Let p; = [y.1; y] be a geodesic labeled by ;.
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We choose z;, w; on f8; so that the initial subpath of B; until z; contains exactly
my copies of [y,hy]g, and the terminal path starting at w; contains exactly m2
copies of [y, hy]g. To be precise, set z; = hma2k y w; = hii—m2y.

Furthermore, if j = 1, we let z; be the initial point of By; if j =/, let w; be
the initial point of ;.

We now properly translate 8; and p; for 1 < j <[ so that 8; originates at y,
and then the terminal points of §; followed by the initial points of p; in a way
produces the following concatenated path:

y=pB1-p1-B2-p2-P3--pi-1- P
(We refer the reader to Figure 1 for a similar illustration of cutting out quadri-
laterals, where x, y, hx, hy, h%x, h2y should be marked as z1, wy, z2, w2, 23, W3,
etc.)

By abuse of language, after translation, the corresponding points of z;, w; on
,Bj are still denoted by z;, w;, so we have a sequence of points zy, wy, 22, w2, .. .,
z7, wy on y. By the choice of z, wy, the path y starts at z; and ends at wy, labeled
by the word sl_1 Wiy .

The key construction is then to cut quadrilaterals off y along [w;,z;41] and
verify that {zy, w1, z2, w2, ..., Z;, w; } is a quasi-geodesic.

To truncate the quadrilaterals, we apply Lemma 4.1 to B;,¢;, Bj+1.¢j+1 in
order for 1 < j < [. For concreteness, set j = 1. Lemma 4.1 gives

(21, 22)wy» (W1, w2)z, < C1 and  d(wy,z2) > Ld(y,hy) > 10Cy.

Since C; > § is assumed, we then derive

1

(21, 22)wo (W1, W2)z, < Zd(wl, Z2) — 6. (5.5)
By inequality (5.4), we have d(z2, w2) = d(y, h’2k=2m2y) > LC; > 10Cy, so

1
(W1, w2)z,, (22, 23)wr < Zd(zz, wp) — 4 (5.6)
In conclusion, inequalities (5.5) and (5.6) verifying the assumption of Corol-
lary 2.3 hold for every four consecutive points in z1, wy, z2, W3, . .., Z;, w;. Thus,

1
dzrw) z 5 Y dGowy) = Ld(y.by)
1<j<l

By (5.2), we have d(y, s1y) + d(y,s;y) < Ld(y,by). Thus,
d(o,Wo) = d(z1,w1) —d(y.s1y) —d(y.s1y) > 0.

Hence, any non-empty reduced word W is mapped to a nontrivial isometry, so T’
generates a free subgroup of rank 7. |
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We now finish the proof of Theorem 1.1. Summarizing the above discussion,
for each generating set S of H, we constructed a finite set 7 C S=F satisfying

1
T>—S
7 = 53
so that (T') is a free group of rank {{7". Thus,

jj(SS"K) > (24T — l)n > (]:IS'[;—NO)”’ (5.7)

0

and there exists ¢ > 0 such that w(H, S) > c¢ for any finite symmetric set S.
Choose the least integer M = M(Ng) > 0 such that §S/No > 1 4+ /#S holds
for any S with log S > M. In this case, we thus obtain

1
w(H,S) = —log(S).
2Kk
Otherwise, log S < M, and we have
co
w(H,S) > co> —log(fS).
M
The proof of Theorem 1.1 is finished.
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