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Abstract. We prove that a group homomorphism 'WL! G from a locally compact Haus-
dorff group L into a discrete group G either is continuous, or there exists a normal open
subgroup N � L such that '.N / is a torsion group provided that G does not include Q or
the p-adic integers Zp or the Prüfer p-group Z.p1/ for any prime p as a subgroup, and if
the torsion subgroups of G are small in the sense that any torsion subgroup of G is artin-
ian. In particular, if ' is surjective and G additionally does not have non-trivial normal
torsion subgroups, then ' is continuous. As an application, we obtain results concerning
the continuity of group homomorphisms from locally compact Hausdorff groups to many
groups from geometric group theory, in particular to automorphism groups of right-angled
Artin groups and to Helly groups.

1 Introduction

In the class of locally compact Hausdorff groups LCG, one has to distinguish be-
tween algebraic morphisms and continuous morphisms. We will always assume
that locally compact groups have the Hausdorff property. By Hom.L;G/, we
denote the set of algebraic morphisms, i.e. group homomorphisms that are not
necessarily continuous, and by cHom.L;G/, we denote the subset of continuous
group homomorphisms. We are interested in conditions on the discrete group G
such that Hom.LCG; G/ D cHom.LCG; G/, i.e. every algebraic homomorphism
'WL! G is continuous for every locally compact group L. From a category the-
ory perspective, this is the question of whether or not the forgetful functor from
LCG to Grp is full.
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Questions concerning automatic continuity of group homomorphisms from lo-
cally compact groups into discrete groups have been studied for many years. A re-
markable result obtained by Dudley in [20] says that any group homomorphism
from a locally compact group into a free (abelian) group is continuous. Further re-
sults in this direction can be found in [3,13–15]. A characterization in terms of for-
bidden subgroups of G was obtained in [16]: Hom.LCG; G/ D cHom.LCG; G/
if and only if G is torsion-free and does not contain Q or the p-adic integers Zp
for any prime p as a subgroup.

By definition, a discrete group G is called lcH-slender if

Hom.LCG; G/ D cHom.LCG; G/:

In geometric group theory, it is common to investigate virtual properties of groups;
hence we call a group G virtually lcH-slender if it has a finite index lcH-slender
subgroup. Using [16], we obtain a characterization of virtually lcH-slender groups.

Corollary A. A group G is virtually lcH-slender if and only if G is virtually tor-
sion-free and does not include Q or the p-adic integers Zp for any prime p as
a subgroup.

Many groups from geometric group theory are not lcH-slender, but they are vir-
tually lcH-slender. Some examples of these groups are Coxeter groups and (outer)
automorphism groups of right-angled Artin groups.

The main focus of this article is on automatic continuity for surjective group
homomorphisms from locally compact groups into discrete groups. We know that
any surjective group homomorphism from a locally compact group into Z is con-
tinuous, but what happens if we replace the group Z by a slightly bigger group that
contains torsion elements, for example the infinite dihedral group Z Ì Z=2Z?

Let Epi.L;G/ be the set of surjective group homomorphisms and cEpi.L;G/
the subset consisting of continuous surjective group homomorphisms. The ques-
tion we address here is the following.

Question. Under which conditions on the discrete group G does the equality

Epi.LCG; G/ D cEpi.LCG; G/

hold?

It was proven by Morris and Nickolas in [36] that if G is a non-trivial (finite)
free product

¨
i2I Gi of groups Gi , then

Epi
�

LCG;
©
i2I

Gi

�
D cEpi

�
LCG;

©
i2I

Gi

�
:
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Finite free products of groups are special cases of graph products of groups. Given
a finite simplicial graph � D .V;E/ and a collection of groups G D ¹Gu j u 2 V º,
the graph product G� is defined as the quotient�©

u2V

Gu

�
=hhŒGv; Gw � for ¹v;wº 2 Eii:

Kramer and the third author proved in [30] that if the vertex set of � is not equal
to S [ ¹w 2 V j ¹v;wº 2 E for all v 2 Sº, where the subgraph generated by S is
complete, then Epi.LCG; G�/ D cEpi.LCG; G�/: Further, the second and third
author proved in [35] that if G is a subgroup of a CAT.0/ group whose torsion
subgroups are finite and G does not have non-trivial finite normal subgroups, then
Epi.LCG; G/ D cEpi.LCG; G/ by geometric means.

Our main result is the following.

Theorem B. Let G be a discrete group. If

(i) G does not include Q or the p-adic integers Zp for any prime p as a sub-
group,

(ii) G does not include the Prüfer p-group Z.p1/ for any prime p as a subgroup
and

(iii) torsion subgroups in G are artinian,

then any group homomorphism 'WL! G from a locally compact group L to G
is continuous, or there exists a normal open subgroup N � L such that '.N / is
a non-trivial torsion group.

If additionally

(iv) G does not have non-trivial torsion normal subgroups,

then Epi.LCG; G/ D cEpi.LCG; G/.

We want to remark that an open normal subgroup N in a non-discrete locally
compact group L is large in the sense that L=N is a discrete group. Thus a group
homomorphism 'WL! G from a locally compact group L to a discrete group G
with properties (i)–(iii) of Theorem B is continuous or the image is almost a torsion
group.

Many geometric groups, i.e. groups that admit a geometric action on a metric
space with additional geometry, are of our interest. Our main result is inspired by
the question if similar automatic continuity results as in the case of CAT.0/ groups
hold for other geometric groups, in particular for metrically injective groups. We
call a group G metrically injective if it acts geometrically on an injective metric
space, i.e. a metric space that is an injective object in the category of metric spaces
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and 1-Lipschitz maps. Examples of metrically injective groups include Gromov-
hyperbolic groups [31], uniform lattices in GLn.R/ (see [23]) and Helly groups
[10], in particular CAT.0/ cocompactly cubulated groups, finitely presented graph-
ical C.4/ � T .4/ small cancellation groups, type-preserving uniform lattices in
Euclidean buildings of type QCn (see [10]), uniform lattices in GLn.Qp/ (see [23])
and Artin groups of type FC [27].

As an application of Theorem B, we obtain an automatic continuity result for
group homomorphisms from locally compact groups to metrically injective groups
and many other groups from geometric group theory.

Corollary C (see Proposition 5.2). If G is a subgroup of

(1) a virtually lcH-slender group,

(2) a cocompactly cubulated CAT.0/ group,

(3) a CAT.0/ group whose torsion subgroups are artinian, e.g. a Coxeter group,

(4) a Gromov-hyperbolic group,

(5) a metrically injective group whose torsion subgroups are artinian, e.g. a Helly
group whose torsion subgroups are artinian,

(6) a finitely generated residually finite group whose torsion subgroups are artin-
ian, e.g. the (outer) automorphism group of a right-angled Artin group,

(7) a one-relator group,

(8) a finitely generated linear group in characteristic 0,

(9) the Higman group,

then any group homomorphism 'WL! G from a locally compact group L is con-
tinuous or there exists a normal open subgroupN � L such that '.N / is a torsion
group.

If G does not have non-trivial torsion normal subgroups, then

Epi.LCG; G/ D cEpi.LCG; G/:

Furthermore, we show that we can generate new examples from these old ones
by taking extensions and graph products where the defining graph � is finite. More
precisely, let G denote the class of groups that do not contain Q or Zp or the Prüfer
group Z.p1/ for any prime number p and whose torsion subgroups are artinian.

Proposition D (see Proposition 5.10 and Proposition 5.13). The class G is closed
under taking extensions and graph products of groups.
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Structure of the proof of Theorem B

Given a locally compact group L, the connected component which contains the
identity, denoted by Lı, is a closed normal subgroup. Thus we obtain a short ex-
act sequence of locally compact groups ¹1º ! Lı ! L! L=Lı ! ¹1º, where
L=Lı is a totally disconnected locally compact group. In this way, the study of
group homomorphisms from a general locally compact group reduces to studying
group homomorphisms from connected locally compact groups and totally discon-
nected locally compact groups. The world of connected locally compact groups is
well understood. Iwasawa’s structure theorem [28, Theorem 13] tells us that the
puzzle pieces of these groups are compact groups and the real numbers. On the
other hand, any group with the discrete topology is a totally disconnected locally
compact group; hence there are no structure theorems for this class of groups, but
there is an important result by van Dantzig that says that any totally disconnected
locally compact group has an open compact subgroup [4, III, § 4, No. 6]. Iwasawa’s
and van Dantzig’s theorems are the key ingredients in the proof of Theorem B.

Given a group homomorphism 'WL!G, whereG satisfies conditions (i)–(iii),
in the first step, using Iwasawa’s structure theorem, we prove that '.Lı/ is a triv-
ial group. In the second step, using van Dantzig’s theorem and the fact that tor-
sion subgroups in G are artinian, we prove that, for the induced group homomor-
phism 'WL=Lı ! '.L/, there exists a compact open subgroupK � L=Lı which
is mapped to a minimal torsion normal subgroup. We then pull the subgroup '.K/
back and show it is indeed open and also mapped to a torsion normal subgroup
under '. If condition (iv) is satisfied too, then the subgroup '.K/ is trivial. Hence
the maps ' and ' have open kernels and therefore are continuous.

2 Preliminaries

2.1 Locally compact groups

A locally compact group is a group endowed with a locally compact Hausdorff
topology such that the group operations are continuous. We will always assume
that locally compact groups have the Hausdorff property. The content of this sec-
tion and much more information can be found in various books on topological
groups, e.g. [45]. Examples of (connected) locally compact groups are R, the cir-
cle group U.1/ D ¹x 2 C j jzj D 1º and SLn.R/. Every group endowed with the
discrete topology is a totally disconnected locally compact group. The p-adic inte-
gers Zp and

Q
N Z=2Z are examples of non-discrete totally disconnected locally

compact groups. Furthermore, the automorphism group of a locally finite con-
nected graph with the topology of pointwise convergence is also such a group.
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There are two results on locally compact groups which we need for the proof of
Theorem B.

Theorem 2.1. Let L be a locally compact group.

(1) (Iwasawa’s structure theorem [28, Theorem 13]) If L is connected, then

L D H0 � : : : �Hn �K;

where each Hi is isomorphic to R and K is a compact connected group.

(2) (van Dantzig’s theorem [4, III, § 4, No. 6]) If L is totally disconnected, then L
has a compact open subgroup.

2.2 Torsion and divisible groups

Recall that a group G is called a torsion group if all its elements have finite order
and G is called torsion-free if every non-trivial element of G is of infinite order.
For a given group G, we denote by Tor.G/ the subset of G consisting of all finite
order elements. If G is abelian, the subset Tor.G/ is a (torsion) subgroup of G and
G=Tor.G/ is a torsion-free group [21, Theorem 1.2].

Lemma 2.2. Let G be a group and N � G a normal torsion-free subgroup, and
let � WG ! G=N be the canonical projection. If H � G=N is torsion-free, then
��1.H/ is torsion-free.

Proof. Suppose there exists an h 2 ��1.H/with ord.h/ <1. Then �.h/ also has
finite order, so �.h/ D 1 �N . But that means h 2 N , and since N is torsion-free,
we can therefore conclude h D 1, which means that ��1.H/ is torsion-free.

The group of p-adic integers Zp is a crucial poison group in the characterization
of lcH-slender groups given in [16, Theorem 1]. We recall a definition of this
important group: for a prime p, we denote the group of p-adic integers by Zp,
which is defined as the inverse limit of the inverse system

0 Z=pZ Z=p2Z � � �  Z=pnZ � � � ;

where each of the maps Z=pn�1Z Z=pnZ reduces an integer mod pn to its
value mod pn�1. The group Zp is a torsion-free uncountable compact group
[46, p. 9].

For a natural number n > 0, an element g 2 G is called n-divisible if there
exists an element h in G such that hn D g. If every element of G is n-divisible,
we call G n-divisible. We call g 2 G divisible if g is n-divisible for all natural
numbers n > 0, and G is said to be divisible if every element g 2 G is divisible.
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Examples of divisible groups include Q, R and compact connected groups [37,
Corollary 2]. A non-example is the compact group Zp; nevertheless, it is q-divis-
ible for any prime q 2 P � ¹pº (see [21, p. 40]).

The structure of quotients of Zp can be described using the following result.
Since we could not find a reference, we give a proof here which is based on [47].

Lemma 2.3. If H is a non-trivial subgroup of Zp, then Zp=H Š T ˚D, where
T is a finite cyclic group of p-power order and D is an abelian divisible group.

Proof. First we recall that any non-trivial closed subgroup of Zp is also open
[41, Proposition 7]. Hence we have the following equivalence:

a non-trivial subgroup B is open in Zp if and only if B is closed in Zp:

Now we show that, for a non-trivial subgroup H � Zp, the quotient H=H is
an abelian divisible group. Since multiplication by p, denoted by mpWZp ! Zp,
mp.g/ D p � g is continuous and Zp is compact, the group pH is open, and fur-
thermore, the group pH CH D

S
h2H .pH C h/ is open and therefore closed

and contains H . Hence H D pH CH . We obtain

p � .H=H/ D .p �H/=H D .pH CH/=H D H=H I

thusH=H is p-divisible. Furthermore, sinceH is closed, it is q-divisible for every
prime q ¤ p (see [21, Lemma 6.2.3]). SoH=H is q-divisible for all primes q and
therefore divisible.

It was proven in [21, Theorem 4.2.5] that a divisible subgroup of an abelian
group is a direct summand of that group. Thus there exists a group T such that

Zp=H Š T ˚H=H:

It remains to prove that T is finite cyclic group of p-power order. We have

T Š Zp=H=H=H Š Zp=H:

Again, the group H is an open subgroup, and therefore,
S
g2Zp

gH is an open
cover of Zp. Since Zp is compact, this cover has to be finite; hence Zp=H is finite.

Now we consider the group homomorphism

� WD �2 ı �1WZp
�1
�! Zp=H Š T ˚D

�2
�! T:

Since the group T is finite, this group homomorphism is continuous [29, Theo-
rem 5.9]. Thus T has to be cyclic since the group Zp has a dense cyclic subgroup.
Further, the group Zp is q-divisible for any prime q ¤ p; hence �.Zp/ D T is also
q-divisible for any prime q ¤ p. Hence T is a cyclic group of p-power order.
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2.3 Abelian divisible groups

Some important divisible abelian groups are the Prüfer p-groups Z.p1/. Let p be
a prime. For each natural number n, consider the quotient group Z=pnZ and the
embedding Z=pnZ! Z=pnC1Z induced by multiplication by p. The direct limit
of this system is called the Prüfer p-group Z.p1/. Each Prüfer p-group Z.p1/
is divisible, abelian and every proper subgroup of it is finite and cyclic. Moreover,
the complete list of subgroups of a Prüfer p-group is given by

0 ¨ Z=pZ ¨ Z=p2Z ¨ � � � ¨ Z=pnZ ¨ � � � ¨ Z.p1/:

For more information regarding these groups, we refer to [21, Chapter 1.3].
The structure of abelian divisible groups is completely understood, as can be

seen by the following theorem, which can be found in [21, Theorem 4.3.1].

Structure theorem for abelian divisible groups 2.4. An abelian divisible group
is the direct sum of groups, each of which is isomorphic either to the additive group
.Q;C/ of rational numbers or to a Prüfer p-group Z.p1/ for a prime p.

In particular, this can be applied to homomorphisms from divisible groups (for
example R) into groups G that do not contain Q or the Prüfer p-group Z.p1/ for
any prime p.

Corollary 2.5. Let H be a divisible group, and let f WH ! G be a group homo-
morphism. If G does not include Q and the Prüfer p-group Z.p1/ for any prime
p as a subgroup, then f .H/ is trivial.

The very clever idea of the following proof was suggested to us by the anony-
mous referee.

Proof. Supposing to the contrary that f .H/ is non-trivial, we select

g0 2 f .H/ � ¹1º:

Of course, f .H/ is divisible since H is divisible, so assuming we have selected
gn 2 f .H/, we select gnC1 2 f .H/ such that g.nC1/ŠnC1 D gn. Now the subgroup
hg0; g1; : : : i � f .H/ is a non-trivial abelian divisible group, so by Theorem 2.4,
this subgroup must include a copy of Q or some Z.p1/, contradicting the as-
sumption that G, and therefore f .H/, does not include such subgroups.
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3 Virtually lcH-slender groups

A discrete group G is called locally compact Hausdorff slender (abbrev. lcH-
slender) if any group homomorphism from a locally compact group to G is con-
tinuous. This concept was first introduced by Conner and Corson in [13].

There are some obvious “poison subgroups” that prevent a group G from being
lcH-slender. These subgroups are Q, the p-adic integers Zp, the Prüfer p-group
and torsion groups in general for the following reason.

There exist discontinuous homomorphisms from R to Q. For example, take
a Hamel basis B of R D

L
b2B bQ; then the map that maps any linear combi-

nation
P
b2B bqb with coefficients qb 2 Q to the sum of the coefficients in Q is

discontinuous regarding the standard topology on R. Similarly, one can construct
a discontinuous homomorphism from the compact circle group R=Z to the Prüfer
p-group Z.p1/ for any prime p.

If G contains torsion, then G includes Z=pZ as a subgroup for some prime p.
One can construct a discontinuous homomorphism from the compact groupQ

N Z=pZ by extending the homomorphism from
L

N Z=pZ to Z=pZ, which
just takes the sum of all entries, via a vector space argument.

The p-adic integers Zp form a non-discrete compact group for any prime p.
Therefore, if G includes Zp for some p, then the identity homomorphism from
the non-discrete compact Zp to the discrete subgroup of G isomorphic to Zp is
discontinuous.

The algebraic structure of lcH-slender groups was characterized by Corson and
the third author in [16, Theorem 1].

Theorem 3.1. A group G is lcH-slender if and only if G is torsion-free and does
not include Q or any p-adic integer group Zp as a subgroup.

We extend this concept to groups with torsion by studying virtually lcH-slender
groups, i.e. groups that contain a finite index lcH-slender subgroup.

Corollary E. A group G is virtually lcH-slender if and only if G is virtually tor-
sion-free and does not include Q or the p-adic integers Zp for any prime p as
a subgroup.

Proof. Suppose G is virtually torsion-free and does not include Q or any p-adic
integer group Zp as a subgroup, and let H be a finite index torsion-free subgroup
of G. Then H does not include Q or any p-adic integer group Zp as a subgroup,
so H is lcH-slender by [16, Theorem 1], and therefore, G is virtually lcH-slender.

Suppose now that G is virtually lcH-slender. Then G is virtually torsion-free.
Let H be a finite index lcH-slender subgroup of G. Without loss of the generality,
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we can assume that H is normal in G. Suppose that G includes a subgroup P
which is either isomorphic to Q or to the group of p-adic integers Zp.

SinceH has finite index inG, P=.P \H/ Š PH=H is a finite quotient group
of P .
Case 1: P Š Q. Every quotient of Q is divisible; thus Q does not have a finite
non-trivial quotient group, so P=.P \H/ must be trivial, and therefore, P � H ,
which is a contradiction to the assumption that H is lcH-slender by [16, Theo-
rem 1].
Case 2: P Š Zp for some prime p. Since P=P \H is finite, P \H must be
isomorphic to Zp (see [21, p. 18]), which is a contradiction to the assumption that
H is lcH-slender by Theorem 3.1.

The class of virtually torsion-free groups includes the following groups:

� (outer) automorphism groups of right-angled Artin groups [11, Theorem 5.2],
Lemma 2.2, since Inn.A�/ is torsion-free,

� finitely generated linear groups in characteristic 0 (see [43]), in particular Cox-
eter groups [18, Corollary 6.12.12].

In Proposition 5.2, we will show that all these groups contain neither Q nor Zp for
any prime p as a subgroup; hence these groups are virtually lcH-slender.

4 Proof of Theorem B

We recall some concepts from abelian group theory. An abelian group is alge-
braically compact if it is an algebraic direct summand of a compact Hausdorff
abelian group (see [21, Section 6.1]). In particular, a compact abelian group is
algebraically compact since it is trivially a direct summand of itself. An abelian
group A is cotorsion if every short exact sequence of abelian groups,

0 �! A
i
�! B

�
�! C �! 0

with C torsion-free, splits (that is, there is a homomorphism  WC ! B such that
� ı  is identity) [21, Section 9.6]. Algebraically compact groups are cotorsion,
and the homomorphic image of a cotorsion group is cotorsion (see [21, p. 282] for
both assertions).

An abelian group is cotorsion-free if 0 is its only cotorsion subgroup (see [21,
p. 500]). An abelian group is cotorsion-free if and only if it is torsion-free and does
not include a copy of Zp or Q (see [21, Theorem 13.3.8]).

A torsion abelian group A is cotorsion if and only if it is of form A D B ˚D,
where B is bounded (that is, there exists some positive natural number n with



Automatic continuity for groups whose torsion subgroups are small 1027

nB D 0) and D is divisible [21, Corollary 9.8.4]. In particular, a finite abelian
torsion group is cotorsion.

Recall that a group H is called artinian if every non-empty collection of sub-
groups of H has a minimal element under subset partial order.

Lemma 4.1. Let A be an abelian group. The group A is artinian if and only if A
can be written as a direct sum A D J ˚

Lm
iD0Z.p1i / of a finite abelian group J

and finitely many Prüfer pi -groups.

Proof. By [21, Theorem 4.5.3], A is artinian if and only if A is a direct sum of
a finite number of so-called cocyclic groups, which are each isomorphic to either
Z=pk or Z.p1/ for some prime p and some positive integer k by [21, Theo-
rem 1.3.3].

For the proof of Theorem B, we need one more additional lemma.

Lemma 4.2. Let 'WK ! G be a group homomorphism from a compact group
K into a discrete group G. Assume that G does not include Q, or the p-adic
integers Zp for any prime p, or the Prüfer p-group Z.p1/ for any prime p as
a subgroup. Also suppose that abelian torsion subgroups of G are artinian. Then
'.K/ is a torsion group.

Proof. For k 2 K, the subgroup hki of K is a compact abelian group [45, Lem-
ma 4.4], therefore algebraically compact, therefore cotorsion. Thus the homomor-
phic image A D '.hki/ is cotorsion. Let Tor.A/ denote the torsion subgroup of A.
As A is an abelian subgroup of G, we know that Tor.A/ is artinian, and there-
fore, Tor.A/ is a direct sum of a finite abelian group and some Prüfer groups by
Lemma 4.1. But G does not include any Prüfer groups, so Tor.A/ is finite.

Now Tor.A/ is a finite abelian group, and therefore cotorsion. Since A=Tor.A/
is torsion-free, the short exact sequence

0! Tor.A/! A! A=Tor.A/! 0

splits, and so we may write A Š Tor.A/˚ A=Tor.A/. Now A=Tor.A/ is torsion-
free, and it also does not include Q or any Zp since it is isomorphic to a sub-
group of A (hence isomorphic to a subgroup of G). Therefore, A=Tor.A/ is cotor-
sion-free. But A=Tor.A/ is a homomorphic image of the cotorsion group A, and
therefore is itself cotorsion. Thus A=Tor.A/ is trivial. In particular, Tor.A/ D A
and A is finite. More particularly, '.k/ has finite order. Hence '.K/ is a torsion
group.
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Proof of Theorem B. We will first show the part of the theorem in which the target
group only satisfies conditions (i)–(iii). The statement for a group also satisfying
the fourth condition will be an easy corollary of that case.

Let 'WL! G be a group homomorphism from a locally compact group L into
a group G that satisfies conditions (i)–(iii) of Theorem B. Without loss of gen-
erality, we can assume '.L/ D G since every subgroup of G satisfies (i)–(iii) of
Theorem B.

Step 1: '.Lı/ is trivial. Due to Iwasawa’s structure theorem (Theorem 2.1), we
can write the connected component Lı as Lı D H1 � : : : �Hk �K, where each Hi
is isomorphic to R and K is a compact connected group. Due to Lemma 2.5,
the image '.Hi / of each Hi is trivial. Also, since K is compact connected, it is
divisible [37, Corollary 2], and therefore, '.K/ is also trivial by Lemma 4.2.

Since '.Lı/ is trivial, ' descends to a homomorphism ' W L=Lı ! G,

L G

L=Lı

'

� '

Step 2: Apply van Dantzig’s theorem to L=Lı. Since L=Lı is a totally discon-
nected locally compact group, we apply van Dantzig’s theorem (Theorem 2.1) to
find at least one compact open subgroup K1 � L=Lı. This allows us to differen-
tiate the following two cases.

Case A. There exists a compact open subgroup K � L=Lı such that '.K/ is
trivial. Then ��1.K/ is open in L and completely inside the kernel of ', so ker.'/
is open. Hence the map ' is continuous.

Case B. There is no such compact open subgroup. This case requires more sepa-
rate steps:

Step B.1: Find a “minimal” compact open subgroup K0 � L=Lı using condi-
tion (iii). By Lemma 4.2, we know that, for every compact open subgroup K,
the image '.K/ is a torsion group. We consider the following family of torsion
subgroups of G:

T D ¹ N'.K/ j K � L=Lı compact open subgroupº:

Since torsion subgroups of G are artinian, the set T has a minimal element; we
choose one and call it '.K0/.

Step B.2: We now show that '.K0/ is a normal subgroup; hence the theorem holds
for t.d.l.c. groups. The group gK0g�1 is a compact open subgroup of L=Lı for
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all g 2 L=Lı, so gK0g�1 \ K0 is as well. Thus we have N'.gK0g�1 \ K0/ �
N'.K0/, and due to minimality, we have N'.gK0g�1 \K0/ D N'.K0/. That means

N'.gK0g
�1/ D N'.K0/ for every g 2 L=Lı;

and therefore, N'.L=Lı/ is contained in the normalizer NorL=Lı. N'.K0//. By as-
sumption, the map ' is surjective; therefore, G D '.L=Lı/ D Nor. N'.K0//. We
now set N0 WD N'.K0/.

Step B.3: Get the desired result for '. The subgroup '�1.'.K0// is an open nor-
mal subgroup inL=Lı. Therefore,N WD ��1.'�1.'.K0// is an open normal sub-
group of L, due to the continuity of � , and '.N / D '.K0/ which is torsion. This
concludes the proof if G satisfies conditions (i)–(iii).

If G additionally satisfies condition (iv), then '.N / has to be trivial. But then
N � ker.'/, so the kernel is open and ' is continuous.

If L is an almost connected locally compact group (that is, a locally compact
group where L=Lı is compact) we can strengthen Theorem B.

Corollary 4.3. If G satisfies conditions (i) and (ii) of Theorem B and abelian tor-
sion subgroups are artinian, then for any homomorphism 'WL! G from an al-
most connected locally compact group L to G, the image '.L/ is a torsion group.

Proof. Analogous to Step 1 of the proof of Theorem B, we see, that '.Lı/ is
trivial. Since L=Lı is compact the image N'.L=Lı/ is torsion by Lemma 4.2. But
then '.L/ D N'.L=Lı/ is also torsion.

In particular, every homomorphism from an almost connected locally compact
group into a CAT.0/ group has torsion image (for the proof, see the proof of Propo-
sition 5.2 (3)).

5 On discrete groups with properties (i)–(iii) of Theorem B

In this last section, we collect many groups that arise in geometric group theory
and satisfy conditions (i)–(iii) of Theorem B.

Let G denote the class of all groups G with the following three properties:

(i) G does not include Q or the p-adic integers Zp for any prime p as a sub-
group,

(ii) G does not include the Prüfer p-group Z.p1/ for any prime p as a subgroup
and

(iii) torsion subgroups in G are artinian.
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The class G is closed under taking subgroups. Furthermore, this class is closed
under taking finite graph products of groups and group extensions, which we will
show in Section 5.3.

An algebraic property of a group that prohibits the existence of subgroups iso-
morphic to Q or Z.p1/ is residual finiteness. We recall that a group G is said
to be residually finite if, for any g 2 G � ¹1Gº, there exists a finite group Fg and
a group homomorphism f WG ! Fg such that f .g/ ¤ 1. It follows from the def-
inition that any subgroup of a residually finite group is also residually finite.

Lemma 5.1. Let G be a group. If G is residually finite, then G does not have non-
trivial divisible subgroups. In particular, a residually finite group does not contain
Q or the Prüfer p-group Z.p1/ for any prime p as a subgroup.

Proof. Assume that G has a non-trivial divisible subgroup D. For g 2 D � ¹1Gº,
there exists a finite group F and a group homomorphism f WD ! F such that
f .g/ ¤ 1F . SinceD is divisible, there exists d 2 D such that d ord.F / D g, where
ord.F / is the cardinality of the group F . We obtain

f .g/ D f .d ord.F // D f .d/ord.F /
D 1F :

This contradicts the fact that f .g/ ¤ 1F ; thus D is trivial.

Our goal is to convince the reader that the class G is huge and contains many
geometric groups, i.e. groups with nice actions on metrically injective spaces or
Gromov-hyperbolic spaces or CAT.0/ spaces. For a definition of a metrically in-
jective group, see Subsection 5.1, and for definitions and further properties of
Gromov-hyperbolic groups and CAT.0/ groups, we refer to [7].

Proposition 5.2. If G is

(1) a virtually lcH-slender group,

(2) a cocompactly cubulated CAT.0/ group,

(3) a CAT.0/ group whose torsion subgroups are artinian, e.g. a Coxeter group,

(4) a metrically injective group whose torsion subgroups are artinian, e.g. a Helly
group whose torsion subgroups are artinian,

(5) a Gromov-hyperbolic group,

(6) a finitely generated residually finite group whose torsion subgroups are artin-
ian, e.g. the (outer) automorphism group of a right-angled Artin group,

(7) a one-relator group,
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(8) a finitely generated linear group in characteristic 0,

(9) the Higman group,

then G is in the class G .

Proof. First of all, we note that the groups in (2)–(9) are all finitely generated, in
particular countable. Thus these groups cannot have Zp as a subgroup since this
group is uncountable.

To (1). Let G be a virtually lcH-slender group. By Corollary A, the group G does
not include Q or Zp for any prime p as a subgroup. Further, the group G is virtu-
ally torsion-free; in particular,G has a normal torsion-free subgroupH of finite in-
dex. Let T � G be a torsion subgroup. Consider the map � ı �WT ,! G� G=H .
SinceH is torsion-free, this map � ı � is injective, and therefore, T has to be finite.
Thus the group G is in the class G .

To (2) and (3). It is known that an abelian subgroup of a CAT.0/ group is finitely
generated (see [18, Theorem I.4.1]); thus a CAT.0/ group does not have Q as
a subgroup. Further, a CAT.0/ group has only finitely many conjugacy classes of
finite subgroups [18, Theorem I.4.1]; hence there is a bound on the order of finite
order elements in a CAT.0/ group, and therefore, this group cannot have Z.p1/
as a subgroup. Furthermore, it is known that torsion subgroups in Coxeter groups
are finite [30, Proposition 7.4]. Finiteness of torsion subgroups of cocompactly
cubulated groups follows from [9, Corollary G].

Despite the fact that CAT.0/ groups are very popular, the question regarding the
finiteness of torsion subgroups of general CAT.0/ groups is still open.

To (4). See Section 5.1, in particular Lemma 5.6, Lemma 5.7 and Corollary 5.8.

To (5). Let G be a Gromov-hyperbolic group. It is known that torsion subgroups
of Gromov-hyperbolic groups are finite [22, Chapter 8, Corollary 36]; thus Z.p1/
is not a subgroup of G and any torsion subgroup of G is artinian. Further, it was
proven in [10, Corollary 6.8] that any Gromov-hyperbolic group is a Helly group.
Thus, by (4), the group G is in the class G .

To (6). By Lemma 5.1, we know that a residually finite group does not include Q
or Z.p1/ as a subgroup. Hence a finitely generated residually finite group whose
torsion subgroups are artinian is in the class G .

Given a right-angled Artin group A� , there exist a number m 2 N and an in-
jective group homomorphism A� ,! GLm.R/ (see [26, Corollary 3.6]); thus any
right-angled Artin group is a finitely generated linear group, and as such, it is
residually finite [33]. Furthermore, it was proven in [1] that the automorphism
group of a finitely generated residually finite group is also residually finite; thus
Aut.A�/ is residually finite. It was proven in [12, Theorem 4.2] that also the outer
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automorphism group of a right-angled Artin group is residually finite. Hence, by
Lemma 5.1, the (outer) automorphism group of a right-angled Artin group does
not include Q or Z.p1/ as a subgroup. Torsion subgroups in the (outer) automor-
phism group of a right-angled Artin group are finite, which follows from the fact
that this group is virtually torsion-free, as we already mentioned before.

To (7). Given a one-relator group G, there are two possibilities: (i) G has tor-
sion elements, (ii) G is torsion-free. In the first case, it was proven in [32, Theo-
rem IV.5.5] that G is hyperbolic; thus, by (3), this group is in the class G . If G is
torsion-free, then G does not include Q or Zp as a subgroup [39, Theorem 1].

To (8). LetG be a finitely generated linear group in characteristic 0. It was proven
in [43] that G is virtually torsion-free; hence torsion subgroups of G are always
finite. Further, it is known that G is residually finite [33]; thus, by (5), this group
is in the class G .

To (9). The Higman group was defined in [24] and is an amalgam of two torsion-
free groups [32, Theorem IV.2.7]; thus it is torsion-free by [44, § 6.2, Proposi-
tion 21]. Further, this group does not include Q as a subgroup, which follows from
[34, Theorem E].

5.1 Geometric groups

To prove the fact that a metrically injective group G is in the class G , we first need
to gather some information about these groups. The goal is to briefly introduce the
framework in which these groups are studied, state the results we need in order to
prove Proposition 5.2 (4) and give its proof.

Let .X; d/ be a metric space. For an isometry f WX ! X , the translation length
of f , denoted by jf j, is defined as jf j WD inf¹d.x; f .x// j x 2 Xº. We have the
following general classification of the isometries of a metric space X in terms of
Min.f / WD ¹x 2 X j d.x; f .x// D jf jº. An isometry f is said to be parabolic
if Min.f / D ; and semi-simple otherwise. In the latter case, f is elliptic if, for
any x 2 X , the subset ¹f n.x/ j n 2 Nº � X is bounded, and hyperbolic if it is
unbounded.

For a group G and a metric space X , a group action ˆWG ! Isom.X/ is called
proper if, for each x 2 X , there exists a real number r > 0 such that the set
¹g 2 G j ˆ.g/.Br.x// \ Br.x/ ¤ ;º is finite, and ˆ is called cocompact if there
exists a compact subsetK � X such thatˆ.G/.K/ D X . In geometric group the-
ory, it is common to work with actions that have both properties; such an action is
called geometric.

The main idea of geometric group theory is, given a group G, to construct a ge-
ometric action on a metric space X with rich geometry and to use this geometry to
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prove algebraic results about the group G. Here the spaces will be metrically in-
jective spaces, while the algebraic property of the groups will be the occurrence of
subgroups isomorphic to Q, the p-adic integers Zp or the Prüfer p-group Z.p1/.

Before proving Proposition 5.2 (4), we need to discuss a few useful results. We
first need to study groups that are almost divisible, that is, there is an unbounded se-
quence .ni /i2N of natural numbers such that the group is ni divisible for each ni .
We note that the groups Q, the p-adic integers Zp and the Prüfer p-group Z.p1/
are examples of almost divisible groups.

Proposition 5.3. LetˆWG ! Isom.X/ be a geometric action on a metric spaceX .
If, for any hyperbolic isometryˆ.g/ 2 ˆ.G/, we have jˆ.g/nj � n � jˆ.g/j for all
n 2 N, then any almost divisible subgroup H � G is a torsion group.

Proof. First of all, we note that every isometry in ˆ.G/ is semi-simple [7, Theo-
rem II.6.2.10]. Further, it was shown in [7, Theorem II.6.2.10] that if G acts geo-
metrically on a metric space X , then the infimum of translation lengths of hyper-
bolic isometries is always positive.

Let H � G be an almost divisible subgroup. Our goal is to prove that, for
h 2 H , the order of h has to be finite. First we can see that if ord.ˆ.h// <1,
then ord.h/ <1 since the action is proper, so in that case, h is a torsion element.
If ord.ˆ.h// D1, then jˆ.h/j > 0 because otherwise the action would not be
proper. NowH is almost divisible, so there exists an unbounded sequence .ni /i2N

such that there exist elements di 2 H with h D dni

i . By assumption, we have

jˆ.h/j D jˆ.d
ni

i /j D jˆ.di /
ni j � ni � jˆ.di /j:

But, since the sequence .ni /i2N is unbounded, that means that the sequence of
translation lengths .jˆ.di /j/i2N converges to zero, which in turn contradicts the
fact that the infimum of translation lengths of hyperbolic isometries is positive.

The result of Proposition 5.3 gives us a tool to prove that a group which we are
interested in does not include Q or the p-adic integers Zp as a subgroup.

Remark 5.4. The inequality condition on the translation lengths of hyperbolic
isometries is necessary since any finitely generated group G acts geometrically
on its Cayley graph Cay.G; S/, where S is a finite generating set of G. There are
finitely generated groups that contain divisible torsion-free subgroups, e.g. Q, as
can be found in [25, Theorem IV]; there even exist finitely presented groups that
contain Q (see [2, Theorem 1.4, Proposition 1.10]).

Now we are interested in actions on metric spaces which satisfy the condition
on hyperbolic isometries from Proposition 5.3. One possibility for this is to study
actions on injective metric spaces.
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We say a metric space .X; d/ is injective if it is an injective object in the cate-
gory of metric spaces and 1-Lipschitz maps. Examples of injective metric spaces
are R-trees or, more generally, finite-dimensional CAT.0/ cube complexes with
the l1 metric (see [5] for more details). Following [23], we call a group G metri-
cally injective if it acts geometrically on an injective metric space.

A very important tool for studying these spaces are bicombings. Given a geo-
desic metric space .X; d/, we call a map � WX �X � Œ0; 1�! X a bicombing
if the family of maps �xy WD �.x; y; � /W Œ0; 1�! X satisfies the following three
properties.

� �xy is a constant-speed geodesic from x to y, that is, �xy.0/ D x, �xy.1/ D y
and d.�xy.s/; �xy.t// D jt � sjd.x; y/ for s; t 2 Œ0; 1� and x; y 2 X .

� �yx.t/ D �xy.1 � t / for t 2 Œ0; 1� and x; y 2 X .
� d.�xy.t/; �vw.t//� .1� t /d.x; v/C td.y;w/ for t 2 Œ0; 1� and x;y; v;w 2X .

Given an isometry 
 2 Isom.X/, we say the bicombing � is 
 -equivariant if

.�.x; y; t// D �.
.x/; 
.y/; t/ for all x; y 2 X and t 2 Œ0; 1�. It was proven in
[31, Proposition 3.8] that an injective metric space X always admits an Isom.X/-
equivariant bicombing.

We now want to construct “barycenter” maps for injective metric spaces to
prove the inequality for translation lengths of hyperbolic isometries of the pre-
vious proposition holds in injective metric spaces. Descombes and Lang observed
in [19] that the barycenter maps given in [38] for Busemann spaces translate to
metrically injective spaces. Here we include the complete construction of these
maps.

Lemma 5.5. Let X be an injective metric space.

(1) For every n2N, there exists a map barnWXn!X such that, for all x1; : : : ;xn;
y1; : : : ; yn 2 X ,

(a) d.barn.x1; x2; : : : ; xn/; barn.y1; y2; : : : ; yn// � 1
n

Pn
iD1 d.xi ; yi /,

(b) barn.x1;x2; : : : ;xn/D barn.x�.1/;x�.2/; : : : ;x�.n// for every � 2 Sym.n/
and

(c) 
.barn.x1; x2; : : : ; xn// D barn.
.x1/; 
.x2/; : : : ; 
.xn// for every isom-
etry 
 2 Isom.X/.

(2) Let ' 2 Isom.X/ be an isometry. For every n 2 N and x 2 X , the inequality
j'j � 1

n
d.x; 'n.x// holds.

Proof. Let X be an injective metric space and � an Isom.X/-equivariant bicomb-
ing. We first define bar1WX!X as bar1.x/ WD x for x 2X and bar2WX �X!X

as bar2.x; y/ WD �xy.12/ for x; y 2 X . The maps bar1 and bar2 obviously satisfy
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conditions (a), (b) and (c). Now, assuming that barn has been defined and satisfies
the properties (a), (b) and (c), we define barnC1..x1; : : : ; xnC1// as follows.

For a tuple z D .z1; z2; : : : ; zn; znC1/ 2 XnC1, we set

Oz.i/ WD .z1; z2; : : : ; zi�1; ziC1; : : : ; zn; znC1/:

We now define a sequence .yk/k2N , where each yk D .y1k; : : : ;y.nC1/k/2XnC1.
We start with y1 WD .x1; : : : ; xnC1/: For k � 2, yk is defined by recursively ap-
plying barn to Oy.i/

k�1
. More precisely,

yik WD barn. Oy
.i/

k�1
/ for i 2 ¹1; : : : ; nC 1º:

One can show that each sequence .yik/k2N for i D 1; : : : ; nC 1 is a Cauchy se-
quence and therefore convergent since X is complete (see [38, Section 1]). Addi-
tionally, one can show that

lim
k!1

yik D lim
k!1

yjk for all i; j 2 ¹1; : : : ; nC 1º:

Therefore, we can define

barnC1.x1; : : : ; xnC1/ WD lim
k!1

yik for some i 2 ¹1; : : : ; nC 1º;

and the limit is independent of the choice of i ; this can also be found in [38,
Section 1].

The fact that properties (b) and (c) are satisfied is immediate from the construc-
tion; checking property (a) is a lot more work and is done carefully in [38, Sec-
tion 1].

As an example, we can visualize the construction of bar4.x/ with

x D .x1; x2; x3; x4/; xi 2 .R
2; `1/;

as follows:

x1

x2

x3

x4

bar3. Ox.1// bar3. Ox.3//

bar3. Ox.4//

bar3. Ox.2//

bar3. Oy
.1/
1 / bar3. Oy

.3/
1 /

bar3. Oy
.4/
1 /

bar3. Oy
.2/
1 /

bar4.x/



1036 D. Keppeler, P. Möller and O. Varghese

For the second part, let ' 2 Isom.X/ be an isometry and n 2 N. For x 2 X , we
have

j'j
def
D inf¹d.y; '.y/ j y 2 Xº

� d.barn.x; '.x/; '2.x/; : : : ; 'n�1.x//;

'.barn.x; '.x/; '2.x/; : : : ; 'n�1.x////

(1) (c)
D d.barn.x; '.x/; '2.x/; : : : ; 'n�1.x//;

barn.'.x/; '2.x/; '3.x/; : : : ; 'n.x///

(1) (b)
D d.barn.x; '.x/; '2.x/; : : : ; 'n�1.x//;

barn.'n.x/; '.x/; '2.x/; : : : ; 'n�1.x///
(1) (a)
�

1

n
� .d.x; 'n.x//C d.'.x/; '.x//C � � � C d.'n�1.x/; 'n�1.x///

D
1

n
d.x; 'n.x//

We note that the statement of the following lemma follows from various results
of [19]. For the sake of completeness, we give the proof of it here following the
ideas of [19].

Lemma 5.6. Suppose G is a metrically injective group and H � G a subgroup.
If H is almost divisible, then H is a torsion group. In particular, a metrically
injective group has neither Q nor Zp as a subgroup.

Proof. Let ˆWG ! Isom.X/ be a geometric action of G on an injective met-
ric space X . Let ˆ.g/ be a hyperbolic isometry and n 2 N. By Lemma 5.5, for
x 2 Min.ˆ.g/n/, the inequality

jˆ.g/j �
1

n
d.x;ˆ.g/n.x// D

1

n
jˆ.g/nj

holds; hence n � jˆ.g/j � jˆ.g/nj. It follows by Proposition 5.3 that any almost
divisible subgroup of G is a torsion group. Since both Q and the p-adic integers
Zp are (almost) divisible and torsion-free, the group G has neither Q nor Zp as
a subgroup.

We want to point out that an injective metric space is contractible [5, Chapter 2]
and it is geodesic [31, § 2]. Thus a metrically injective group is finitely presented
due to [7, Corollary I.8.11]. Therefore, it cannot contain Zp since this group is
uncountable. However, as we noted in Remark 5.4, this is not enough on its own
to prevent the existence of subgroups isomorphic to Q.
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Lemma 5.7. The order of elements in torsion subgroups of a metrically injective
group is bounded. In particular, a metrically injective group does not include the
Prüfer p-group Z.p1/ for any prime p as a subgroup.

Proof. We show that G has finitely many conjugacy classes of finite subgroups.
We first use [31, Proposition 1.2] to see that any finite subgroup of G fixes a point.
Then we can use [7, Proposition I.8.5] and obtain that there are only finitely many
conjugacy classes of isotropy subgroups; these are all finite due to the properness
of the action. Since every torsion element is mapped into such an isotropy sub-
group, its order then needs to be bounded since the kernel is also finite due to
properness.

Since the order of elements in the Prüfer p-group Z.p1/ is unbounded, a met-
rically injective group cannot have this group as a subgroup.

Helly graphs are discrete versions of injective metric spaces. More precisely,
a connected graph is called Helly if any family of pairwise intersecting combina-
torial balls has a non-empty global intersection. A groupG is called Helly if it acts
geometrically by simplicial isometries on a Helly graph. For example, all Gromov-
hyperbolic groups are Helly as well as groups acting geometrically on a CAT.0/
cube complex; see [10, Proposition 6.1, Corollary 6.8].

Since a Helly group is also metrically injective [10, Theorem 1.5], we obtain
the following corollary.

Corollary 5.8. Any Helly group does not include Q or Zp or Z.p1/ for any prime
p as a subgroup.

5.2 The class G and graph products

In this subsection, we show that the class G is closed under taking extensions and
graph products.

The following lemma shows that the property of a group to have only artinian
torsion subgroups is inherited by taking extensions.

Lemma 5.9. Let ¹1º ! A
�
! B

�
! C ! ¹1º be a short exact sequence of groups.

If torsion subgroups of A and C are artinian, then torsion subgroups of B are
also artinian. In particular, if S; T are two groups whose torsion subgroups are
artinian, then the torsion subgroups of S � T are also artinian.

Proof. For a torsion subgroup H in B , we have a short exact sequence of torsion
groups

¹1º ! H \ �.A/! H ! �.H/! ¹1º:
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By assumption, the torsion groups H \ �.A/ and �.H/ are artinian. Further, it is
known that being artinian is preserved by taking extensions [40, Theorem 7.3].
Hence the group H is artinian.

For the “in particular” statement, we consider the sequence

¹1º ! S ! S � T ! .S � T /=S ! ¹1º

that is exact and the torsion subgroups of S and .S � T /=S Š T are artinian. Thus
the torsion subgroups of S � T are also artinian by the previous statement.

Proposition 5.10. The class G is closed by taking extensions.

Proof. Let ¹1º ! A
�
! B

�
! C ! ¹1º be an exact sequence of groups, where A

and C are in the class G . Our goal is to show that B is also in the class G .
Suppose that Q is a subgroup of B . Since Q is divisible, the image of Q un-

der � is also an abelian divisible group. By assumption, the group C is contained
in the class G , and therefore, any abelian divisible subgroup of C is trivial by
Theorem 2.4. Hence Q � ker.�/ D �.A/ Š A; this contradicts the fact that the
group A is in the class G . The same arguments hold for the group Z.p1/ since
this group is also divisible.

Suppose now that Zp is a subgroup of B . The kernel of �jZp
WZp ! C is non-

trivial since the group C is in the class G . Thus, by Lemma 2.3, we know that
�.Zp/ Š T �D, where T is a finite cyclic group of p-power order and D is an
abelian divisible group. By assumption, the group C is in the class G , and there-
fore, D has to be trivial. Thus ker.�jZp

/ � ker.�/ D �.A/ Š A is an open sub-
group of p-power index of Zp by [29, Theorem 5.2]. It is therefore also a closed
subgroup and thus is isomorphic to Zp by [42, Proposition 2.7 (b)], which is a con-
tradiction to the assumption that A is in the class G .

By assumption, the torsion subgroups of A and C are artinian; thus, by Lem-
ma 5.9, the torsion subgroups of B are artinian too. Hence the group B is in the
class G .

Now we show that the class G is closed under taking graph products. We want
to do this with geometric means. This is inspired by [30].

Definition 5.11. Given a finite simplicial graph � D .V;E/ and a collection of
groups G D ¹Gu j u 2 V º, the graph product G� is defined as the quotient�©

u2V

Gu

�
=hhŒGv; Gw � for ¹v;wº 2 Eii:
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Given a graph product G� , there exists a finite-dimensional right-angled build-
ing X� on which G� acts isometrically [17, Theorem 5.1]; see also [30, Sec-
tion 3.5].

Proposition 5.12. If a subgroup H � G� of a graph product G� acts locally el-
liptically on the associated building X� , i.e. each element has a fixed point, then
H has a global fixed point and H is contained in a point stabilizer, which has the
form gG�g

�1 for a maximal clique � in � and a g 2 G� .

Proof. This can be found in [30, Section 3.5] and [30, Lemma 3.6].

We are now ready to prove our final proposition.

Proposition 5.13. The class G is closed under taking graph products.

In particular, any finite direct or free product of the groups named in Corollary C
provides another example to which Theorem B can be applied.

Proof. Given a graph productG� , let X� denote the associated finite-dimensional
right-angled building. Such a building is a CAT.0/ cube complex [17, Theorem 5.1,
Theorem 11.1], and therefore, we can apply [6] to see that every isometry of X� is
semi-simple and that the infimum of translation lengths of hyperbolic isometries
is positive.

So now suppose Q is not a subgroup of all the vertex groups Gv but a subgroup
of G� . Then Q acts on X� via semi-simple isometries. Since X� is CAT.0/, we
can apply [8, Theorem 2.5, Claim 7] to see that the action of Q has to be lo-
cally elliptic (since the infimum of translation lengths of hyperbolic isometries is
positive). Therefore, we can apply Proposition 5.12 to see that Q is contained in
a vertex stabilizer. So there exists a complete subgraph � such that

Q � G� D Gv1
�Gv2

� � � � �Gvn
for some n 2 N

because stabilizers are conjugates of G� and conjugating is an isomorphism of
groups. We can then obtain maps �i WQ! Gvi

for i 2 ¹1; : : : ; nº by taking quo-
tients; �i is the canonical quotient map

G� ! G�=.Gv1
� � � � �Gvi�1

�GviC1
� � � � �Gvn

/ Š Gvi
:

Each �i .Q/ needs to be an abelian divisible subgroup of Gi and hence needs to
be trivial by Theorem 2.4. This cannot be the case however, so the assumption that
G� contains Q was wrong. The same argument holds for the p-Prüfer groups.

For Zp, we apply a similar argument to conclude that

Zp � G� D Gv1
�Gv2

� � � � �Gvn
for some n 2 N:
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This is possible since Zp is q-divisible for every prime q ¤ p. We again obtain
maps �i WZp ! Gvi

for i 2 ¹1; : : : ; nº. Since no Gi contains Zp, each �i .Zp/
needs to be a proper quotient of Zp; thus there are finite groups Ti and abelian
divisible groups Ai with �i .Zp/ Š Ti � Ai by Lemma 2.3. But, as above, Ai has
to be trivial. But this is a contradiction since Zp is not finite.

Finally, to show that torsion subgroups of G� are artinian, we reduce to the di-
rect product case as follows. Given a torsion subgroupH ofG� , we know it needs
to act locally elliptically on G� since every element has finite order. Thus, due
to Proposition 5.12, the torsion group H is contained in g.Gv1

� � � � �Gvk
/g�1

for some vertex groups Gvi
for some k 2 N, 1 � i � k and some g 2 G. So

Gv1
� � � � �Gvk

contains a subgroup isomorphic to H . Since all the torsion sub-
groups in the vertex groups are artinian, we can apply Lemma 5.9 to see that the
torsion subgroups of Gv1

� � � � �Gvk
are artinian too. Therefore, H is artinian

too, which is what we wanted to show.
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