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Abstract. We prove that a group homomorphism ¢: L. — G from a locally compact Haus-
dorff group L into a discrete group G either is continuous, or there exists a normal open
subgroup N C L such that ¢(N) is a torsion group provided that G does not include Q or
the p-adic integers Z,, or the Priifer p-group Z(p®°) for any prime p as a subgroup, and if
the torsion subgroups of G are small in the sense that any torsion subgroup of G is artin-
ian. In particular, if ¢ is surjective and G additionally does not have non-trivial normal
torsion subgroups, then ¢ is continuous. As an application, we obtain results concerning
the continuity of group homomorphisms from locally compact Hausdorff groups to many
groups from geometric group theory, in particular to automorphism groups of right-angled
Artin groups and to Helly groups.

1 Introduction

In the class of locally compact Hausdorff groups LCG, one has to distinguish be-
tween algebraic morphisms and continuous morphisms. We will always assume
that locally compact groups have the Hausdorff property. By Hom(L, G), we
denote the set of algebraic morphisms, i.e. group homomorphisms that are not
necessarily continuous, and by cHom(L, G), we denote the subset of continuous
group homomorphisms. We are interested in conditions on the discrete group G
such that Hom(LCG, G) = cHom(LCG, G), i.e. every algebraic homomorphism
¢: L — G is continuous for every locally compact group L. From a category the-
ory perspective, this is the question of whether or not the forgetful functor from
LCG to Grp is full.
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Questions concerning automatic continuity of group homomorphisms from lo-
cally compact groups into discrete groups have been studied for many years. A re-
markable result obtained by Dudley in [20] says that any group homomorphism
from a locally compact group into a free (abelian) group is continuous. Further re-
sults in this direction can be found in [3,13-15]. A characterization in terms of for-
bidden subgroups of G was obtained in [16]: Hom(LCG, G) = cHom(LCG, G)
if and only if G is torsion-free and does not contain QQ or the p-adic integers Z,
for any prime p as a subgroup.

By definition, a discrete group G is called lcH-slender if

Hom(LCG, G) = cHom(LCG, G).

In geometric group theory, it is common to investigate virtual properties of groups;
hence we call a group G virtually IcH-slender if it has a finite index IcH-slender
subgroup. Using [16], we obtain a characterization of virtually IcH-slender groups.

Corollary A. A group G is virtually IcH-slender if and only if G is virtually tor-
sion-free and does not include Q or the p-adic integers 7, for any prime p as
a subgroup.

Many groups from geometric group theory are not IcH-slender, but they are vir-
tually IcH-slender. Some examples of these groups are Coxeter groups and (outer)
automorphism groups of right-angled Artin groups.

The main focus of this article is on automatic continuity for surjective group
homomorphisms from locally compact groups into discrete groups. We know that
any surjective group homomorphism from a locally compact group into Z is con-
tinuous, but what happens if we replace the group Z by a slightly bigger group that
contains torsion elements, for example the infinite dihedral group Z x Z /27.?

Let Epi(L, G) be the set of surjective group homomorphisms and cEpi(L, G)
the subset consisting of continuous surjective group homomorphisms. The ques-
tion we address here is the following.

Question. Under which conditions on the discrete group G does the equality
Epi(LCG, G) = cEpi(LCG, G)
hold?

It was proven by Morris and Nickolas in [36] that if G is a non-trivial (finite)
free product 3k; ; G; of groups G;, then

Epi(LCG, sk G,-) - cEpi(LCG, %k Gi>.

iel iel
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Finite free products of groups are special cases of graph products of groups. Given
a finite simplicial graph I' = (V, E) and a collection of groups & = {G,, | u € V},
the graph product Gr is defined as the quotient

(3K Gu)/((IGo. Gul for (v, w} € E)).

uevVv

Kramer and the third author proved in [30] that if the vertex set of I" is not equal
toS U{w eV |{v,w} € E forall v € S}, where the subgraph generated by S is
complete, then Epi(LCG, Gr) = cEpi(LCG, Gr). Further, the second and third
author proved in [35] that if G is a subgroup of a CAT(0) group whose torsion
subgroups are finite and G does not have non-trivial finite normal subgroups, then
Epi(LCG, G) = cEpi(LCG, G) by geometric means.

Our main result is the following.

Theorem B. Let G be a discrete group. If

(1) G does not include Q or the p-adic integers Z, for any prime p as a sub-
group,

(i1) G does not include the Priifer p-group Z.(p®°) for any prime p as a subgroup
and

(iii) torsion subgroups in G are artinian,

then any group homomorphism ¢: L — G from a locally compact group L to G
is continuous, or there exists a normal open subgroup N C L such that ¢(N) is
a non-trivial torsion group.

If additionally

(iv) G does not have non-trivial torsion normal subgroups,
then Epi(LCG, G) = cEpi(LCG, G).

We want to remark that an open normal subgroup N in a non-discrete locally
compact group L is large in the sense that L /N is a discrete group. Thus a group
homomorphism ¢: L. — G from a locally compact group L to a discrete group G
with properties (i)—(iii) of Theorem B is continuous or the image is almost a torsion
group.

Many geometric groups, i.e. groups that admit a geometric action on a metric
space with additional geometry, are of our interest. Our main result is inspired by
the question if similar automatic continuity results as in the case of CAT(0) groups
hold for other geometric groups, in particular for metrically injective groups. We
call a group G metrically injective if it acts geometrically on an injective metric
space, i.e. a metric space that is an injective object in the category of metric spaces
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and 1-Lipschitz maps. Examples of metrically injective groups include Gromov-
hyperbolic groups [31], uniform lattices in GL,(R) (see [23]) and Helly groups
[10], in particular CAT(0) cocompactly cubulated groups, finitely presented graph-
ical C(4) — T'(4) small cancellation groups, type-preserving uniform lattices in
Euclidean buildings of type C, (see [10]), uniform lattices in GL, (Qp) (see [23])
and Artin groups of type FC [27].

As an application of Theorem B, we obtain an automatic continuity result for
group homomorphisms from locally compact groups to metrically injective groups
and many other groups from geometric group theory.

Corollary C (see Proposition 5.2). If G is a subgroup of

(1) a virtually IcH-slender group,

(2) a cocompactly cubulated CAT(0) group,

(3) a CAT(0) group whose torsion subgroups are artinian, e.g. a Coxeter group,
(4) a Gromov-hyperbolic group,

(5) a metrically injective group whose torsion subgroups are artinian, e.g. a Helly
group whose torsion subgroups are artinian,

(6) a finitely generated residually finite group whose torsion subgroups are artin-
ian, e.g. the (outer) automorphism group of a right-angled Artin group,

(7) a one-relator group,
(8) a finitely generated linear group in characteristic 0,
(9) the Higman group,

then any group homomorphism ¢: L — G from a locally compact group L is con-
tinuous or there exists a normal open subgroup N C L such that ¢(N) is a torsion
group.

If G does not have non-trivial torsion normal subgroups, then

Epi(LCG. G) = cEpi(LCG., G).

Furthermore, we show that we can generate new examples from these old ones
by taking extensions and graph products where the defining graph I is finite. More
precisely, let § denote the class of groups that do not contain Q or Z, or the Priifer
group Z(p°) for any prime number p and whose torsion subgroups are artinian.

Proposition D (see Proposition 5.10 and Proposition 5.13). The class § is closed
under taking extensions and graph products of groups.
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Structure of the proof of Theorem B

Given a locally compact group L, the connected component which contains the
identity, denoted by L°, is a closed normal subgroup. Thus we obtain a short ex-
act sequence of locally compact groups {1} — L°® — L — L/L° — {1}, where
L/L° is a totally disconnected locally compact group. In this way, the study of
group homomorphisms from a general locally compact group reduces to studying
group homomorphisms from connected locally compact groups and totally discon-
nected locally compact groups. The world of connected locally compact groups is
well understood. Iwasawa’s structure theorem [28, Theorem 13] tells us that the
puzzle pieces of these groups are compact groups and the real numbers. On the
other hand, any group with the discrete topology is a totally disconnected locally
compact group; hence there are no structure theorems for this class of groups, but
there is an important result by van Dantzig that says that any totally disconnected
locally compact group has an open compact subgroup [4, III, § 4, No. 6]. Iwasawa’s
and van Dantzig’s theorems are the key ingredients in the proof of Theorem B.

Given a group homomorphism ¢: L — G, where G satisfies conditions (i)—(iii),
in the first step, using Iwasawa’s structure theorem, we prove that ¢(L°) is a triv-
ial group. In the second step, using van Dantzig’s theorem and the fact that tor-
sion subgroups in G are artinian, we prove that, for the induced group homomor-
phism ¢: L/L° — (L), there exists a compact open subgroup K C L/L° which
is mapped to a minimal torsion normal subgroup. We then pull the subgroup ¢ (K)
back and show it is indeed open and also mapped to a torsion normal subgroup
under ¢. If condition (iv) is satisfied too, then the subgroup ¢ (K) is trivial. Hence
the maps ¢ and ¢ have open kernels and therefore are continuous.

2 Preliminaries

2.1 Locally compact groups

A locally compact group is a group endowed with a locally compact Hausdorff
topology such that the group operations are continuous. We will always assume
that locally compact groups have the Hausdorff property. The content of this sec-
tion and much more information can be found in various books on topological
groups, e.g. [45]. Examples of (connected) locally compact groups are R, the cir-
cle group U(1) = {x € C | |z| = 1} and SL, (R). Every group endowed with the
discrete topology is a totally disconnected locally compact group. The p-adic inte-
gers Zp and [ [y Z/2Z are examples of non-discrete totally disconnected locally
compact groups. Furthermore, the automorphism group of a locally finite con-
nected graph with the topology of pointwise convergence is also such a group.
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There are two results on locally compact groups which we need for the proof of
Theorem B.

Theorem 2.1. Let L be a locally compact group.

(1) (Iwasawa’s structure theorem [28, Theorem 13]) If L is connected, then
L=Hy-...-H,-K,

where each H; is isomorphic to R and K is a compact connected group.

(2) (van Dantzig’s theorem [4, 111, § 4, No. 6]) If L is totally disconnected, then L
has a compact open subgroup.

2.2 Torsion and divisible groups

Recall that a group G is called a forsion group if all its elements have finite order
and G is called forsion-free if every non-trivial element of G is of infinite order.
For a given group G, we denote by Tor(G) the subset of G consisting of all finite
order elements. If G is abelian, the subset Tor(G) is a (torsion) subgroup of G and
G/ Tor(G) is a torsion-free group [21, Theorem 1.2].

Lemma 2.2. Let G be a group and N C G a normal torsion-free subgroup, and
let m: G — G/ N be the canonical projection. If H € G/ N is torsion-free, then
n~V(H) is torsion-free.

Proof. Suppose there exists an # € 7! (H) with ord(%) < oo. Then 7 (h) also has
finite order, so w(h) = 1- N. But that means & € N, and since N is torsion-free,
we can therefore conclude # = 1, which means that 7~ (H) is torsion-free. O

The group of p-adic integers Z,, is a crucial poison group in the characterization
of IcH-slender groups given in [16, Theorem 1]. We recall a definition of this
important group: for a prime p, we denote the group of p-adic integers by Zp,
which is defined as the inverse limit of the inverse system

0« 7Z/pl < 7)p*7 < - <L) p" 7 < ---,

where each of the maps Z/p"~'7Z <« Z/p™Z reduces an integer mod p” to its
value mod p"~!. The group Zp is a torsion-free uncountable compact group
[46, p.9].

For a natural number n > 0, an element g € G is called n-divisible if there
exists an element # in G such that h" = g. If every element of G is n-divisible,
we call G n-divisible. We call g € G divisible if g is n-divisible for all natural
numbers n > 0, and G is said to be divisible if every element g € G is divisible.
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Examples of divisible groups include @, R and compact connected groups [37,
Corollary 2]. A non-example is the compact group Z,; nevertheless, it is g-divis-
ible for any prime ¢ € P — {p} (see [21, p. 40]).

The structure of quotients of Z, can be described using the following result.
Since we could not find a reference, we give a proof here which is based on [47].

Lemma 2.3. If H is a non-trivial subgroup of Zp, then Z,/H = T @ D, where
T is a finite cyclic group of p-power order and D is an abelian divisible group.

Proof. First we recall that any non-trivial closed subgroup of Z, is also open
[41, Proposition 7]. Hence we have the following equivalence:

a non-trivial subgroup B is open in Z, if and only if B is closed in Z,.

Now we show that, for a non-trivial subgroup H C Z,, the quotient H/H is
an abelian divisible group. Since multiplication by p, denoted by m,: Z, — Z,,
mp(g) = p - g is continuous and Z, is compact, the group p H is open, and fur-
thermore, the group pH + H = Upep (pH + h) is open and therefore closed
and contains H. Hence H = pH + H. We obtain

p-(H/H)=(p-H)/H = (pH + H)/H = H/H:

thus H /H is p-divisible. Furthermore, since H is closed, it is g-divisible for every
prime g # p (see [21, Lemma 6.2.3]). So H /H is g-divisible for all primes g and
therefore divisible.

It was proven in [21, Theorem 4.2.5] that a divisible subgroup of an abelian
group is a direct summand of that group. Thus there exists a group 7" such that

Z,/H=T®H/H.
It remains to prove that 7 is finite cyclic group of p-power order. We have
T~Z7,/H/H/H=T7,/H.

Again, the group H is an open subgroup, and therefore, U ¢<Z, g H is an open
cover of Z,,. Since Z, is compact, this cover has to be finite; hence Zp/ H is finite.
Now we consider the group homomorphism

mi=myom:Zy —>Zy/H=T&D >T.

Since the group 7 is finite, this group homomorphism is continuous [29, Theo-
rem 5.9]. Thus 7 has to be cyclic since the group Z, has a dense cyclic subgroup.
Further, the group Z, is g-divisible for any prime ¢ # p;hence n(Zp) = T is also
q-divisible for any prime ¢ # p. Hence T is a cyclic group of p-power order. 0O
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2.3 Abelian divisible groups

Some important divisible abelian groups are the Priifer p-groups Z(p°). Let p be
a prime. For each natural number n, consider the quotient group Z/ p"Z and the
embedding Z/ p"Z — 7./ p" T Z induced by multiplication by p. The direct limit
of this system is called the Priifer p-group Z(p°°). Each Priifer p-group Z(p°)
is divisible, abelian and every proper subgroup of it is finite and cyclic. Moreover,
the complete list of subgroups of a Priifer p-group is given by

0CZ/pLCL/p*L G- SL/p"L S-S ZL(p™).

For more information regarding these groups, we refer to [21, Chapter 1.3].

The structure of abelian divisible groups is completely understood, as can be
seen by the following theorem, which can be found in [21, Theorem 4.3.1].

Structure theorem for abelian divisible groups 2.4. An abelian divisible group
is the direct sum of groups, each of which is isomorphic either to the additive group
(Q, +) of rational numbers or to a Priifer p-group Z.(p™°) for a prime p.

In particular, this can be applied to homomorphisms from divisible groups (for
example R) into groups G that do not contain Q or the Priifer p-group Z(p°) for
any prime p.

Corollary 2.5. Let H be a divisible group, and let f: H — G be a group homo-
morphism. If G does not include Q and the Priifer p-group 7.(p®°) for any prime
p as a subgroup, then f(H) is trivial.

The very clever idea of the following proof was suggested to us by the anony-
mous referee.

Proof. Supposing to the contrary that f(H) is non-trivial, we select

go € f(H) —{1}.

Of course, f(H) is divisible since H is divisible, so assuming we have selected
gn € f(H), we select g,4+1 € f(H) such that g,(l”fll)! = g,. Now the subgroup
(g0,81,---) € f(H) is a non-trivial abelian divisible group, so by Theorem 2.4,
this subgroup must include a copy of Q or some Z(p°°), contradicting the as-
sumption that G, and therefore f(H ), does not include such subgroups. ]
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3 Virtually IcH-slender groups

A discrete group G is called locally compact Hausdorff slender (abbrev. IcH-
slender) if any group homomorphism from a locally compact group to G is con-
tinuous. This concept was first introduced by Conner and Corson in [13].

There are some obvious “poison subgroups” that prevent a group G from being
lcH-slender. These subgroups are Q, the p-adic integers Z,, the Priifer p-group
and torsion groups in general for the following reason.

There exist discontinuous homomorphisms from R to Q. For example, take
a Hamel basis B of R = @, p pQ; then the map that maps any linear combi-
nation Y ;. p bgp with coefficients g5 € Q to the sum of the coefficients in Q is
discontinuous regarding the standard topology on R. Similarly, one can construct
a discontinuous homomorphism from the compact circle group R/Z to the Priifer
p-group Z( p°°) for any prime p.

If G contains torsion, then G includes Z/ pZ as a subgroup for some prime p.
One can construct a discontinuous homomorphism from the compact group
[l Z/pZ by extending the homomorphism from @y Z/pZ to 7/ pZ, which
just takes the sum of all entries, via a vector space argument.

The p-adic integers Z, form a non-discrete compact group for any prime p.
Therefore, if G includes Z, for some p, then the identity homomorphism from
the non-discrete compact Z, to the discrete subgroup of G isomorphic to Z,, is
discontinuous.

The algebraic structure of IcH-slender groups was characterized by Corson and
the third author in [16, Theorem 1].

Theorem 3.1. A group G is IcH-slender if and only if G is torsion-free and does
not include Q or any p-adic integer group Z, as a subgroup.

We extend this concept to groups with torsion by studying virtually lcH-slender
groups, i.e. groups that contain a finite index IcH-slender subgroup.

Corollary E. A group G is virtually IcH-slender if and only if G is virtually tor-
sion-free and does not include Q or the p-adic integers 7., for any prime p as
a subgroup.

Proof. Suppose G is virtually torsion-free and does not include Q or any p-adic
integer group Z, as a subgroup, and let H be a finite index torsion-free subgroup
of G. Then H does not include Q or any p-adic integer group Z, as a subgroup,
so H is IcH-slender by [16, Theorem 1], and therefore, G is virtually lcH-slender.

Suppose now that G is virtually IcH-slender. Then G is virtually torsion-free.
Let H be a finite index IcH-slender subgroup of G. Without loss of the generality,
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we can assume that H is normal in G. Suppose that G includes a subgroup P
which is either isomorphic to Q or to the group of p-adic integers Z .

Since H has finite index in G, P/(P N H) =~ PH/H is a finite quotient group
of P.

Case 1: P =~ Q. Every quotient of Q is divisible; thus Q does not have a finite
non-trivial quotient group, so P/(P N H) must be trivial, and therefore, P C H,
which is a contradiction to the assumption that H is IcH-slender by [16, Theo-
rem 1].

Case 2: P = 7, for some prime p. Since P/P N H is finite, P N H must be
isomorphic to Z, (see [21, p. 18]), which is a contradiction to the assumption that
H is IcH-slender by Theorem 3.1. |

The class of virtually torsion-free groups includes the following groups:

* (outer) automorphism groups of right-angled Artin groups [11, Theorem 5.2],
Lemma 2.2, since Inn(Ar) is torsion-free,

« finitely generated linear groups in characteristic O (see [43]), in particular Cox-
eter groups [18, Corollary 6.12.12].

In Proposition 5.2, we will show that all these groups contain neither QQ nor Z,, for
any prime p as a subgroup; hence these groups are virtually IcH-slender.

4 Proof of Theorem B

We recall some concepts from abelian group theory. An abelian group is alge-
braically compact if it is an algebraic direct summand of a compact Hausdorff
abelian group (see [21, Section 6.1]). In particular, a compact abelian group is
algebraically compact since it is trivially a direct summand of itself. An abelian
group A is cotorsion if every short exact sequence of abelian groups,

0>ASBESC =0

with C torsion-free, splits (that is, there is a homomorphism 1/: C — B such that
7 o is identity) [21, Section 9.6]. Algebraically compact groups are cotorsion,
and the homomorphic image of a cotorsion group is cotorsion (see [21, p. 282] for
both assertions).

An abelian group is cotorsion-free if 0 is its only cotorsion subgroup (see [21,
p-500]). An abelian group is cotorsion-free if and only if it is torsion-free and does
not include a copy of Z,, or Q (see [21, Theorem 13.3.8]).

A torsion abelian group A is cotorsion if and only if it is of form A = B & D,
where B is bounded (that is, there exists some positive natural number n with
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nB = 0) and D is divisible [21, Corollary 9.8.4]. In particular, a finite abelian
torsion group is cotorsion.

Recall that a group H is called artinian if every non-empty collection of sub-
groups of H has a minimal element under subset partial order.

Lemma 4.1. Let A be an abelian group. The group A is artinian if and only if A
can be written as a direct sum A = J & @7, Z(p;®) of a finite abelian group J
and finitely many Priifer p;-groups.

Proof. By [21, Theorem 4.5.3], A is artinian if and only if A is a direct sum of
a finite number of so-called cocyclic groups, which are each isomorphic to either
7] p* or Z(p™>) for some prime p and some positive integer k by [21, Theo-
rem 1.3.3]. O

For the proof of Theorem B, we need one more additional lemma.

Lemma 4.2. Let ¢: K — G be a group homomorphism from a compact group
K into a discrete group G. Assume that G does not include Q, or the p-adic
integers Z, for any prime p, or the Priifer p-group Z(p°) for any prime p as
a subgroup. Also suppose that abelian torsion subgroups of G are artinian. Then
¢(K) is a torsion group.
Proof. For k € K, the subgroup m of K is a compact abelian group [45, Lem-
ma 4.4], therefore algebraically compact, therefore cotorsion. Thus the homomor-
phic image A = ¢({k)) is cotorsion. Let Tor(4) denote the torsion subgroup of A.
As A is an abelian subgroup of G, we know that Tor(A) is artinian, and there-
fore, Tor(A) is a direct sum of a finite abelian group and some Priifer groups by
Lemma 4.1. But G does not include any Priifer groups, so Tor(A) is finite.

Now Tor(A) is a finite abelian group, and therefore cotorsion. Since A/Tor(A)
is torsion-free, the short exact sequence

0 — Tor(A) > A — A/Tor(A) — 0

splits, and so we may write A = Tor(A4) & A/Tor(A). Now A/Tor(A) is torsion-
free, and it also does not include QQ or any Z, since it is isomorphic to a sub-
group of A (hence isomorphic to a subgroup of G). Therefore, A/Tor(A) is cotor-
sion-free. But A/Tor(A) is a homomorphic image of the cotorsion group A, and
therefore is itself cotorsion. Thus A /Tor(A) is trivial. In particular, Tor(A4) = A
and A is finite. More particularly, ¢ (k) has finite order. Hence ¢(K) is a torsion
group. |
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Proof of Theorem B. We will first show the part of the theorem in which the target
group only satisfies conditions (i)—(iii). The statement for a group also satisfying
the fourth condition will be an easy corollary of that case.

Let ¢: L — G be a group homomorphism from a locally compact group L into
a group G that satisfies conditions (i)—(iii) of Theorem B. Without loss of gen-
erality, we can assume ¢(L) = G since every subgroup of G satisfies (i)—(iii) of
Theorem B.

Step 1: ¢(L°) is trivial. Due to Iwasawa’s structure theorem (Theorem 2.1), we

can write the connected component L° as L° = Hy -...- Hy - K, where each H;

is isomorphic to R and K is a compact connected group. Due to Lemma 2.5,

the image ¢(H;) of each H; is trivial. Also, since K is compact connected, it is

divisible [37, Corollary 2], and therefore, ¢(K) is also trivial by Lemma 4.2.
Since ¢(L°) is trivial, ¢ descends to a homomorphism¢ : L/L° — G,

L ¢ s G
>~ 7

L/L°

Step 2: Apply van Dantzig’s theorem to L/L°. Since L/L° is a totally discon-
nected locally compact group, we apply van Dantzig’s theorem (Theorem 2.1) to
find at least one compact open subgroup K; € L/L°. This allows us to differen-
tiate the following two cases.

Case A. There exists a compact open subgroup K C L/L° such that ¢(K) is
trivial. Then 7 ~!(K) is open in L and completely inside the kernel of ¢, so ker(¢)
is open. Hence the map ¢ is continuous.

Case B. There is no such compact open subgroup. This case requires more sepa-
rate steps:

Step B.1: Find a “minimal” compact open subgroup Ko C L/L° using condi-
tion (iii). By Lemma 4.2, we know that, for every compact open subgroup K,
the image @(K) is a torsion group. We consider the following family of torsion
subgroups of G:

T ={¢(K) | K € L/L° compact open subgroup}.

Since torsion subgroups of G are artinian, the set 7 has a minimal element; we
choose one and call it ¢(Kp).

Step B.2: We now show that ¢(Ko) is a normal subgroup; hence the theorem holds
for t.d.l.c. groups. The group gKog™! is a compact open subgroup of L/L° for
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all g € L/L°, so gKog~! N Ky is as well. Thus we have ¢(gKog~' N Ko) C
@(Kp), and due to minimality, we have ¢(gKog ™! N K¢) = @(Kj). That means

¢(gKog™") = ¢(Ko) foreveryge L/L°,

and therefore, ¢(L/L®) is contained in the normalizer Nory /70(¢(Kp)). By as-
sumption, the map ¢ is surjective; therefore, G = @(L/L°) = Nor(¢(Kp)). We
now set No := ¢(Kp).
Step B.3: Get the desired result for ¢. The subgroup ! (¢(Kjp)) is an open nor-
mal subgroup in L/L°. Therefore, N := 7~ (¢! (¢(Kyp)) is an open normal sub-
group of L, due to the continuity of 7, and ¢(N) = @(K() which is torsion. This
concludes the proof if G satisfies conditions (i)—(iii).

If G additionally satisfies condition (iv), then ¢(/N) has to be trivial. But then
N C ker(¢), so the kernel is open and ¢ is continuous. o

If L is an almost connected locally compact group (that is, a locally compact
group where L/L° is compact) we can strengthen Theorem B.

Corollary 4.3. If G satisfies conditions (1) and (ii) of Theorem B and abelian tor-
sion subgroups are artinian, then for any homomorphism ¢: L — G from an al-
most connected locally compact group L to G, the image ¢(L) is a torsion group.

Proof. Analogous to Step 1 of the proof of Theorem B, we see, that ¢(L°) is
trivial. Since L/L° is compact the image @ (L /L°) is torsion by Lemma 4.2. But
then ¢(L) = @¢(L/L°) is also torsion. o

In particular, every homomorphism from an almost connected locally compact
group into a CAT(0) group has torsion image (for the proof, see the proof of Propo-
sition 5.2 (3)).

5 On discrete groups with properties (i)—(iii) of Theorem B

In this last section, we collect many groups that arise in geometric group theory
and satisfy conditions (i)—(iii) of Theorem B.
Let § denote the class of all groups G with the following three properties:
(i) G does not include Q or the p-adic integers Z, for any prime p as a sub-
group,
(i1) G does not include the Priifer p-group Z(p°°) for any prime p as a subgroup
and

(iii) torsion subgroups in G are artinian.
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The class § is closed under taking subgroups. Furthermore, this class is closed
under taking finite graph products of groups and group extensions, which we will
show in Section 5.3.

An algebraic property of a group that prohibits the existence of subgroups iso-
morphic to Q or Z(p°) is residual finiteness. We recall that a group G is said
to be residually finite if, for any g € G — {1}, there exists a finite group Fg and
a group homomorphism f: G — Fy such that f(g) # 1. It follows from the def-
inition that any subgroup of a residually finite group is also residually finite.

Lemma 5.1. Let G be a group. If G is residually finite, then G does not have non-
trivial divisible subgroups. In particular, a residually finite group does not contain
Q or the Priifer p-group Z.(p°°) for any prime p as a subgroup.

Proof. Assume that G has a non-trivial divisible subgroup D.For g € D — {15},
there exists a finite group F and a group homomorphism f: D — F such that
f(g) # 1F. Since D is divisible, there exists d € D such that 4°40F) = g, where
ord(F) is the cardinality of the group F. We obtain

f(g) = f@™) = f(@)™) = 1p.
This contradicts the fact that f(g) # 1F; thus D is trivial. ]

Our goal is to convince the reader that the class § is huge and contains many
geometric groups, i.e. groups with nice actions on metrically injective spaces or
Gromov-hyperbolic spaces or CAT(0) spaces. For a definition of a metrically in-
jective group, see Subsection 5.1, and for definitions and further properties of
Gromov-hyperbolic groups and CAT(0) groups, we refer to [7].

Proposition 5.2. If G is
(1) a virtually IcH-slender group,
(2) a cocompactly cubulated CAT(0) group,

(3) a CAT(0) group whose torsion subgroups are artinian, e.g. a Coxeter group,

(4) a metrically injective group whose torsion subgroups are artinian, e.g. a Helly
group whose torsion subgroups are artinian,

(5) a Gromov-hyperbolic group,

(6) a finitely generated residually finite group whose torsion subgroups are artin-
ian, e.g. the (outer) automorphism group of a right-angled Artin group,

(7) a one-relator group,
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(8) a finitely generated linear group in characteristic 0,
(9) the Higman group,

then G is in the class §.

Proof. First of all, we note that the groups in (2)—(9) are all finitely generated, in
particular countable. Thus these groups cannot have Z, as a subgroup since this
group is uncountable.

To (1). Let G be a virtually IcH-slender group. By Corollary A, the group G does
not include Q or Z,, for any prime p as a subgroup. Further, the group G is virtu-
ally torsion-free; in particular, G has a normal torsion-free subgroup H of finite in-
dex. Let T C G be a torsion subgroup. Consider themapw o t: T — G — G/H.
Since H is torsion-free, this map 7 o ¢ is injective, and therefore, 7" has to be finite.
Thus the group G is in the class §.

To (2) and (3). It is known that an abelian subgroup of a CAT(0) group is finitely
generated (see [18, Theorem 1.4.1]); thus a CAT(0) group does not have QQ as
a subgroup. Further, a CAT(0) group has only finitely many conjugacy classes of
finite subgroups [18, Theorem 1.4.1]; hence there is a bound on the order of finite
order elements in a CAT(0) group, and therefore, this group cannot have Z(p°)
as a subgroup. Furthermore, it is known that torsion subgroups in Coxeter groups
are finite [30, Proposition 7.4]. Finiteness of torsion subgroups of cocompactly
cubulated groups follows from [9, Corollary G].

Despite the fact that CAT(0) groups are very popular, the question regarding the
finiteness of torsion subgroups of general CAT(0) groups is still open.

To (4). See Section 5.1, in particular Lemma 5.6, Lemma 5.7 and Corollary 5.8.

To (5). Let G be a Gromov-hyperbolic group. It is known that torsion subgroups
of Gromov-hyperbolic groups are finite [22, Chapter 8, Corollary 36]; thus Z(p°)
is not a subgroup of G and any torsion subgroup of G is artinian. Further, it was
proven in [10, Corollary 6.8] that any Gromov-hyperbolic group is a Helly group.
Thus, by (4), the group G is in the class §.

To (6). By Lemma 5.1, we know that a residually finite group does not include Q
or Z(p®) as a subgroup. Hence a finitely generated residually finite group whose
torsion subgroups are artinian is in the class §.

Given a right-angled Artin group Ar, there exist a number m € N and an in-
jective group homomorphism Ar < GL,,(R) (see [26, Corollary 3.6]); thus any
right-angled Artin group is a finitely generated linear group, and as such, it is
residually finite [33]. Furthermore, it was proven in [1] that the automorphism
group of a finitely generated residually finite group is also residually finite; thus
Aut(Ar) is residually finite. It was proven in [12, Theorem 4.2] that also the outer



1032 D. Keppeler, P. Moller and O. Varghese

automorphism group of a right-angled Artin group is residually finite. Hence, by
Lemma 5.1, the (outer) automorphism group of a right-angled Artin group does
not include Q or Z( p°°) as a subgroup. Torsion subgroups in the (outer) automor-
phism group of a right-angled Artin group are finite, which follows from the fact
that this group is virtually torsion-free, as we already mentioned before.

To (7). Given a one-relator group G, there are two possibilities: (i) G has tor-
sion elements, (ii) G is torsion-free. In the first case, it was proven in [32, Theo-
rem IV.5.5] that G is hyperbolic; thus, by (3), this group is in the class §. If G is
torsion-free, then G does not include Q or Z, as a subgroup [39, Theorem 1].

To (8). Let G be a finitely generated linear group in characteristic 0. It was proven
in [43] that G is virtually torsion-free; hence torsion subgroups of G are always
finite. Further, it is known that G is residually finite [33]; thus, by (5), this group
is in the class §.

To (9). The Higman group was defined in [24] and is an amalgam of two torsion-
free groups [32, Theorem IV.2.7]; thus it is torsion-free by [44, § 6.2, Proposi-
tion 21]. Further, this group does not include Q as a subgroup, which follows from
[34, Theorem E]. O

5.1 Geometric groups

To prove the fact that a metrically injective group G is in the class &, we first need
to gather some information about these groups. The goal is to briefly introduce the
framework in which these groups are studied, state the results we need in order to
prove Proposition 5.2 (4) and give its proof.

Let (X, d) be a metric space. For an isometry f: X — X, the translation length
of f, denoted by | f|, is defined as | /| := inf{d(x, f(x)) | x € X}. We have the
following general classification of the isometries of a metric space X in terms of
Min(f) :={x € X | d(x, f(x)) =|f]|}. An isometry f is said to be parabolic
if Min( f) = 0 and semi-simple otherwise. In the latter case, f is elliptic if, for
any x € X, the subset { f"(x) | n € N} C X is bounded, and hyperbolic if it is
unbounded.

For a group G and a metric space X, a group action ®: G — Isom(X) is called
proper if, for each x € X, there exists a real number r > 0 such that the set
{g € G| P(g)(Br(x)) N Br(x) # @} is finite, and @ is called cocompact if there
exists a compact subset K € X such that &(G)(K) = X. In geometric group the-
ory, it is common to work with actions that have both properties; such an action is
called geometric.

The main idea of geometric group theory is, given a group G, to construct a ge-
ometric action on a metric space X with rich geometry and to use this geometry to
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prove algebraic results about the group G. Here the spaces will be metrically in-
jective spaces, while the algebraic property of the groups will be the occurrence of
subgroups isomorphic to Q, the p-adic integers Z,, or the Priifer p-group Z(p).

Before proving Proposition 5.2 (4), we need to discuss a few useful results. We
first need to study groups that are almost divisible, that is, there is an unbounded se-
quence (n;);en of natural numbers such that the group is n; divisible for each n;.
We note that the groups Q, the p-adic integers Z, and the Priifer p-group Z(p°)
are examples of almost divisible groups.

Proposition 5.3. Let ©: G — Isom(X) be a geometric action on a metric space X .
If, for any hyperbolic isometry ®(g) € ®(G), we have |D(g)"| > n - |D(g)| for all
n € N, then any almost divisible subgroup H < G is a torsion group.

Proof. First of all, we note that every isometry in ®(G) is semi-simple [7, Theo-
rem [1.6.2.10]. Further, it was shown in [7, Theorem I1.6.2.10] that if G acts geo-
metrically on a metric space X, then the infimum of translation lengths of hyper-
bolic isometries is always positive.

Let H € G be an almost divisible subgroup. Our goal is to prove that, for
h € H, the order of & has to be finite. First we can see that if ord(®(h)) < oo,
then ord(/) < oo since the action is proper, so in that case, / is a torsion element.
If ord(®(h)) = oo, then |D(h)| > 0 because otherwise the action would not be
proper. Now H is almost divisible, so there exists an unbounded sequence (7;);en
such that there exist elements d; € H with h = di"" . By assumption, we have

|@(h)| = [@(d]")| = |®(di)" | = ni - |D(di)].

But, since the sequence (7;);eN is unbounded, that means that the sequence of
translation lengths (|®(d;)|);en converges to zero, which in turn contradicts the
fact that the infimum of translation lengths of hyperbolic isometries is positive. O

The result of Proposition 5.3 gives us a tool to prove that a group which we are
interested in does not include Q or the p-adic integers Z,, as a subgroup.

Remark 5.4. The inequality condition on the translation lengths of hyperbolic
isometries is necessary since any finitely generated group G acts geometrically
on its Cayley graph Cay(G, S), where S is a finite generating set of G. There are
finitely generated groups that contain divisible torsion-free subgroups, e.g. Q, as
can be found in [25, Theorem IV]; there even exist finitely presented groups that
contain Q (see [2, Theorem 1.4, Proposition 1.10]).

Now we are interested in actions on metric spaces which satisfy the condition
on hyperbolic isometries from Proposition 5.3. One possibility for this is to study
actions on injective metric spaces.
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We say a metric space (X, d) is injective if it is an injective object in the cate-
gory of metric spaces and 1-Lipschitz maps. Examples of injective metric spaces
are R-trees or, more generally, finite-dimensional CAT(0) cube complexes with
the [°° metric (see [5] for more details). Following [23], we call a group G metri-
cally injective if it acts geometrically on an injective metric space.

A very important tool for studying these spaces are bicombings. Given a geo-
desic metric space (X, d), we call a map 0: X x X x [0,1] = X a bicombing
if the family of maps oy := o(x,y,-):[0,1] — X satisfies the following three
properties.

* Oyy i8 a constant-speed geodesic from x to y, that is, 0xy(0) = X, oxy(1) =y
and d(0xy(s),0xy(t)) = |t —s|d(x,y) fors,t € [0,1] and x, y € X.

* oyx(t) =o0xy(l —t)fort €[0,1]and x,y € X.
e d(oxy(t), 00w (@) < (1 —1)d(x,v)+td(y,w)fort € [0,1]and x,y,v,w € X.

Given an isometry y € Isom(X), we say the bicombing o is y-equivariant if
y(o(x,y,t)) =0o(y(x),y(y),t) forall x,y € X and ¢ € [0, 1]. It was proven in
[31, Proposition 3.8] that an injective metric space X always admits an Isom(X)-
equivariant bicombing.

We now want to construct “barycenter” maps for injective metric spaces to
prove the inequality for translation lengths of hyperbolic isometries of the pre-
vious proposition holds in injective metric spaces. Descombes and Lang observed
in [19] that the barycenter maps given in [38] for Busemann spaces translate to
metrically injective spaces. Here we include the complete construction of these
maps.

Lemma 5.5. Let X be an injective metric space.

(1) Foreveryn € N, there exists a map bar,,: X" — X such that, for all x1,...,xp,
ViseeesVn € X,
(a) d(bar,(x1,X2,...,Xp),bary (¥1,¥2,...,¥n)) < % Z?:l d(xi,yi),
(b) bary (x1,X2,...,Xn) = bary (Xz(1), Xz (2), - - -» Xr(n)) Jor every w € Sym(n)
and

(¢) y(bary(x1,x2,...,X,)) = bar,(y(x1), y(x2), ..., v(x,)) for every isom-
etry y € Isom(X).

(2) Let ¢ € Isom(X) be an isometry. For every n € N and x € X, the inequality
ol < +d(x, 9" (x)) holds.

Proof. Let X be an injective metric space and o an Isom(X )-equivariant bicomb-
ing. We first define bar;: X — X asbarj(x):=x forx € X andbary: X x X — X
as bary(x, y) := ny(%) for x, y € X. The maps bar; and bar, obviously satisfy
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conditions (a), (b) and (c). Now, assuming that bar,, has been defined and satisfies
the properties (a), (b) and (c), we define bar,41((x1, ..., X,+1)) as follows.
Foratuple z = (21,22....,2n. Zn+1) € X1, we set

20) = (ZlaZZa e ,Zj_l,Zj+1, e 7ZnaZn+1)'
We now define a sequence (y)ken, Where each yi = (yik..... Yu+1)k) € ) Cany
We start with yq := (x1,...,Xz+1). For kK > 2, yg is defined by recursively ap-

plying bary, to y ,Elll. More precisely,
Vik := barn()?]gll) fori e {1,...,n + 1}.
One can show that each sequence (y;x)ren fori = 1,...,n + 1is a Cauchy se-

quence and therefore convergent since X is complete (see [38, Section 1]). Addi-
tionally, one can show that

lim y;x = lim y; foralli,j e{l,....,n+1}.
k—o00 k—o00
Therefore, we can define

bary+1(xX1,...,Xp+1) := lim y; forsomei €{l,...,n+ 1},
k—o00

and the limit is independent of the choice of i; this can also be found in [38,
Section 1].

The fact that properties (b) and (c) are satisfied is immediate from the construc-
tion; checking property (a) is a lot more work and is done carefully in [38, Sec-
tion 1].

As an example, we can visualize the construction of bary (x) with

X = (xl,xz,x3,x4), Xx; € (Rz,goo)’

as follows:

X2
°

barz (X))
bars (. A§4)
bars (7{") tbars (%)
° : .b.ar4.(x)
bar3 (5\?)
bars (.)? 2))

x3e  bar3(())e ebar3(£))  ex;
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For the second part, let ¢ € Isom(X) be an isometry and n € N. For x € X, we
have

ol £ inf{d(y. 9(») | y € X}

< d(bar, (x, 9(x), 9> (x).....¢" " (x)),

(bar, (x, p(x), p*(x),....¢" ' (x))))
d(bary (x, 9(x), 9*(x).....¢" ' (x)),

bary (p(x), 9> (x), 9> (), ..., " (x)))
ML g (bar (v, 9(x), 9% (x), ... 0" (X)),

bar, (9" (x), p(x), 9*(x). ..., 9" 1(x)))

L 0" () + A, 0(0) + -+ d@" N (). 0" ()

n

= Laegm (o) .
n

(1)(e)

We note that the statement of the following lemma follows from various results
of [19]. For the sake of completeness, we give the proof of it here following the
ideas of [19].

Lemma 5.6. Suppose G is a metrically injective group and H < G a subgroup.
If H is almost divisible, then H is a torsion group. In particular, a metrically
injective group has neither Q nor Z, as a subgroup.

Proof. Let ®:G — Isom(X) be a geometric action of G on an injective met-
ric space X. Let ®(g) be a hyperbolic isometry and n € N. By Lemma 5.5, for
x € Min(®(g)"), the inequality

()] = -d(x, B(g)" (X)) = [ B(g)"

holds; hence n - |©(g)| < |®P(g)"|. It follows by Proposition 5.3 that any almost
divisible subgroup of G is a torsion group. Since both QQ and the p-adic integers
Zp are (almost) divisible and torsion-free, the group G has neither Q nor Z, as
a subgroup. |

We want to point out that an injective metric space is contractible [5, Chapter 2]
and it is geodesic [31, § 2]. Thus a metrically injective group is finitely presented
due to [7, Corollary 1.8.11]. Therefore, it cannot contain Z, since this group is
uncountable. However, as we noted in Remark 5.4, this is not enough on its own
to prevent the existence of subgroups isomorphic to Q.
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Lemma 5.7. The order of elements in torsion subgroups of a metrically injective
group is bounded. In particular, a metrically injective group does not include the
Priifer p-group Z.(p°°) for any prime p as a subgroup.

Proof. We show that G has finitely many conjugacy classes of finite subgroups.
We first use [31, Proposition 1.2] to see that any finite subgroup of G fixes a point.
Then we can use [7, Proposition 1.8.5] and obtain that there are only finitely many
conjugacy classes of isotropy subgroups; these are all finite due to the properness
of the action. Since every torsion element is mapped into such an isotropy sub-
group, its order then needs to be bounded since the kernel is also finite due to

properness.
Since the order of elements in the Priifer p-group Z(p°°) is unbounded, a met-
rically injective group cannot have this group as a subgroup. o

Helly graphs are discrete versions of injective metric spaces. More precisely,
a connected graph is called Helly if any family of pairwise intersecting combina-
torial balls has a non-empty global intersection. A group G is called Helly if it acts
geometrically by simplicial isometries on a Helly graph. For example, all Gromov-
hyperbolic groups are Helly as well as groups acting geometrically on a CAT(0)
cube complex; see [10, Proposition 6.1, Corollary 6.8].

Since a Helly group is also metrically injective [10, Theorem 1.5], we obtain
the following corollary.

Corollary 5.8. Any Helly group does not include Q or Z,, or Z(p®®) for any prime
p as a subgroup.

5.2 The class § and graph products

In this subsection, we show that the class § is closed under taking extensions and
graph products.

The following lemma shows that the property of a group to have only artinian
torsion subgroups is inherited by taking extensions.

Lemma 5.9. Let {1} — A SBEco {1} be a short exact sequence of groups.
If torsion subgroups of A and C are artinian, then torsion subgroups of B are
also artinian. In particular, if S, T are two groups whose torsion subgroups are
artinian, then the torsion subgroups of S x T are also artinian.

Proof. For a torsion subgroup H in B, we have a short exact sequence of torsion
groups
{1} - HNt(A) > H - n(H) — {1}.
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By assumption, the torsion groups H N ((A) and 7 (H) are artinian. Further, it is
known that being artinian is preserved by taking extensions [40, Theorem 7.3].
Hence the group H is artinian.

For the “in particular” statement, we consider the sequence

{1} > S >8SxT—>(SxT)/S = {1}

that is exact and the torsion subgroups of S and (S x 7')/S = T are artinian. Thus
the torsion subgroups of S x T are also artinian by the previous statement. o

Proposition 5.10. The class S is closed by taking extensions.

Proof. Let{l} — A SBEc - {1} be an exact sequence of groups, where A
and C are in the class §. Our goal is to show that B is also in the class §.

Suppose that QQ is a subgroup of B. Since Q is divisible, the image of Q un-
der 7 is also an abelian divisible group. By assumption, the group C is contained
in the class §, and therefore, any abelian divisible subgroup of C is trivial by
Theorem 2.4. Hence Q C ker(xw) = ((A) = A; this contradicts the fact that the
group A is in the class §. The same arguments hold for the group Z(p°°) since
this group is also divisible.

Suppose now that Zp, is a subgroup of B. The kernel of 7|z,,: Z, — C is non-
trivial since the group C is in the class §. Thus, by Lemma 2.3, we know that
m(Zp) = T x D, where T is a finite cyclic group of p-power order and D is an
abelian divisible group. By assumption, the group C is in the class ¥, and there-
fore, D has to be trivial. Thus ker(r|z,) € ker(w) = ((A) = A is an open sub-
group of p-power index of Z, by [29, Theorem 5.2]. It is therefore also a closed
subgroup and thus is isomorphic to Z, by [42, Proposition 2.7 (b)], which is a con-
tradiction to the assumption that A is in the class .

By assumption, the torsion subgroups of A and C are artinian; thus, by Lem-
ma 5.9, the torsion subgroups of B are artinian too. Hence the group B is in the
class §. |

Now we show that the class § is closed under taking graph products. We want
to do this with geometric means. This is inspired by [30].

Definition 5.11. Given a finite simplicial graph I' = (V, E) and a collection of
groups § = {Gy, | u € V}, the graph product Gr is defined as the quotient

(>|< Gu>/(([Gv, Gu] for {v, w} € E)).

ueV
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Given a graph product Gr, there exists a finite-dimensional right-angled build-
ing Xt on which Gr acts isometrically [17, Theorem 5.1]; see also [30, Sec-
tion 3.5].

Proposition 5.12. If a subgroup H < Gr of a graph product Gr acts locally el-
liptically on the associated building Xr, i.e. each element has a fixed point, then
H has a global fixed point and H is contained in a point stabilizer, which has the
form gGag™" for a maximal cligue A inT and a g € Gr.

Proof. This can be found in [30, Section 3.5] and [30, Lemma 3.6]. O

We are now ready to prove our final proposition.

Proposition 5.13. The class '§ is closed under taking graph products.

In particular, any finite direct or free product of the groups named in Corollary C
provides another example to which Theorem B can be applied.

Proof. Given a graph product Gr, let X1 denote the associated finite-dimensional
right-angled building. Such a building is a CAT(0) cube complex [17, Theorem 5.1,
Theorem 11.1], and therefore, we can apply [6] to see that every isometry of X is
semi-simple and that the infimum of translation lengths of hyperbolic isometries
is positive.

So now suppose Q is not a subgroup of all the vertex groups G, but a subgroup
of Gr. Then @ acts on XT via semi-simple isometries. Since XT is CAT(0), we
can apply [8, Theorem 2.5, Claim 7] to see that the action of Q has to be lo-
cally elliptic (since the infimum of translation lengths of hyperbolic isometries is
positive). Therefore, we can apply Proposition 5.12 to see that QQ is contained in
a vertex stabilizer. So there exists a complete subgraph A such that

Q € GA =Gy, X Gy, X---x Gy, forsomen e N

because stabilizers are conjugates of Ga and conjugating is an isomorphism of
groups. We can then obtain maps 7;: Q — Gy, fori € {1,...,n} by taking quo-
tients; m; is the canonical quotient map

Ga = GA/(Gyy X -+ X Gy X Gy, | X -+ X Gy,) = Gy,.

Each 7;(Q) needs to be an abelian divisible subgroup of G; and hence needs to

be trivial by Theorem 2.4. This cannot be the case however, so the assumption that

Gr contains Q was wrong. The same argument holds for the p-Priifer groups.
For Z,, we apply a similar argument to conclude that

Zp € GA =Gy, X Gy, x---x Gy, forsomen e N.
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This is possible since Z, is g-divisible for every prime g # p. We again obtain
maps 7;: Zp, — Gy, for i € {1,...,n}. Since no G; contains Z,, each m;(Zp)
needs to be a proper quotient of Z; thus there are finite groups 7; and abelian
divisible groups A; with ;(Z,) = T; x A; by Lemma 2.3. But, as above, A; has
to be trivial. But this is a contradiction since Z, is not finite.

Finally, to show that torsion subgroups of Gr are artinian, we reduce to the di-
rect product case as follows. Given a torsion subgroup H of G, we know it needs
to act locally elliptically on Gr since every element has finite order. Thus, due
to Proposition 5.12, the torsion group H is contained in g(Gy, X --- X Gvk)g_1
for some vertex groups G, for some k € N, 1 <i <k and some g € G. So
Gy, X -+ x Gy, contains a subgroup isomorphic to H . Since all the torsion sub-
groups in the vertex groups are artinian, we can apply Lemma 5.9 to see that the
torsion subgroups of Gy, X --- x Gy, are artinian too. Therefore, H is artinian
too, which is what we wanted to show. |
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