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The Higman operations and embeddings
of recursive groups

Vahagn H. Mikaelian*

Communicated by Dessislava Kochloukova

Abstract. In the context of Higman embeddings of recursive groups into finitely presented
groups, we suggest an approach, termed theH -machine, which for certain wide classes of
groups allows constructive Higman embeddings of recursive groups into finitely presented
groups. The approach is based on Higman operations, and it explicitly constructs some
specific recursively enumerable sets of integer sequences arising during the embeddings.
Specific auxiliary operations are introduced to make the work with Higman operations
a simpler and more intuitive procedure. Also, an automated mechanism of constructive
embeddings of countable groups into 2-generator groups preserving certain “patterns” is
mentioned.

1 Introduction

1.1 Higman’s embedding theorem

In 1961, Higman proved that a finitely generated group can be embedded in a fi-
nitely presented group if and only if it is recursively presented [7] (see definitions
and notation in Section 2.1). In his work, Higman extensively uses specific recur-
sively enumerable sets of integer sequences which in some sense “code” defining
relations of groups. Our objective is to suggest an algorithm for construction of
such integer sequences for certain types of groups. This allows us to list wide
classes of groups for which Higman’s famous embedding construction can be con-
structive and effective.

The approach of [7] will be very briefly outlined in Section 3 below. For now,
let us just mention the main steps of Higman’s construction to distinguish those
parts to which our new algorithm concerns. A finitely generated group

G D hA j Ri D ha1; a2; : : : j r1; r2; : : :i

with recursively enumerable relations r1; r2; : : : can be constructively embedded
into a 2-generator group T D hb; c j r 01; r

0
2; : : :i where the relations r 01 D r

0
1.b; c/,
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r 02 D r
0
2.b; c/, . . . are certain words on letters b; c, and they also are recursively

enumerable. Then, for each r 0s , s D 1; 2; : : : , a unique sequence fs of integers
is compiled (see details in Section 3.2) so that the set ¹r 01; r

0
2; : : :º of relations is

“coded” by means of a set B D ¹f1; f2; : : :º of such sequences. Since the trans-
action from relations set R to sequences set B is done via just a few constructive
steps, the set B also is recursively enumerable.

The tedious part of [7] is to show that B is recursively enumerable if and only
if B can be constructed by some chain of special operators (H). And parallel to
application of those operations, a respective benign subgroup is being constructed
in the free group F3 D ha; b; ci of rank three (see Section 2.5). As this process
ends up on construction of B, the respective benign subgroup AB is obtained
inside F3.

In the final short step, the benign subgroup AB is used to get another benign
subgroup in the free group F2 D hb; ci of rank two. Then that new subgroup is
used to embed the group T (and hence also G) into a finitely presented group via
the “The Higman Rope Trick” (see [12, p. 219] and [22]).

1.2 Our algorithm for construction of B

In [7], Higman just relies on theoretical possibility for construction of B via oper-
ations (H), without any examples of such construction for particular groups. This
is understandable as the objective of the fundamental article [7] is much deeper,
and for its purposes, it is sufficient to know that such a construction of B is possi-
ble, provided that the set of Gödel numbers specifically constructed for the set R
is equal to the range of a certain partial recursive function described by Kleene’s
characterization (see references in Section 2.1 below).

However, it is rather strange that, after Higman’s result, there was no attempt
to explicitly find constructions of B by operations (H) for particular groups (at
least, we were unable to find them in the literature). Investigating the topic, we
noticed that such construction may be a doable task for many classes of groups,
such as the free abelian, metabelian, soluble, nilpotent groups, the additive group
of rational numbers Q, the quasicyclic group Cp1 , divisible abelian groups, etc.
(see examples in Section 3.3).

We suggest an H -machine algorithm with some generic tools that allow to ex-
plicitly construct B by operations (H) without any usage of Kleene’s characteriza-
tion, at all. In Example 4.11, we show how simple it is to apply the algorithm (see
Remark 4.12).

The advantage of this approach is that construction of the benign subgroup AB

and, thus, of the explicit embedding of the given G into a finitely presented group
becomes a manageable procedure.



The Higman operations 1069

To shorten the routine of work with basic Higman operations, we introduce
a few auxiliary operations which make the proofs not only shorter but also, we
hope, more intuitive to understand (see notation in Section 2.4).

Another embedding aspect we touch upon is the manner by which the initial
group G is constructively embedded into a 2-generator group T , and how the re-
lations of T can be obtained from those of G. In the literature, there is no shortage
in constructive embeddings of this type (in fact, the original method of [8] already
allows that). However, for our purposes, we need a method which not only makes
deduction of the relations of T from the relations ofG a trivial automated task, but
also preserves certain “patterns” in the relations (for illustration of the “patterns”,
see [16] and also examples in Section 3.3 below).

2 Definitions, references, preliminary constructions

2.1 Basic notation and references

For general group theory information, we refer to textbooks [10,19,21]. For back-
ground on free constructions, such as free products, free products with amalga-
mated subgroups, HNN-extension, we refer to [4, 12, 21]. See also the recent
note [15], where we apply some methods related to free constructions. We use
them here without restating the notation again. Information on varieties of groups
can be found in Hanna Neumann’s monograph [18].

We will study recursive groups in the language of Higman operations (H). Re-
call that a recursive (or recursively presented) groupG is that possessing a presen-
tation

G D hX j Ri D hx1; : : : ; xn; : : : j r1; r2; : : :i

with finite or countable set of generators X and with a recursively enumerable
set of defining relations R. That is to say, to each relation ri 2 R, one can as-
sign a Gödel number (see [7, Section 2] or [12, p. 218]) to interpret R via a set of
respective Gödel numbers, and then that set turns out to be the range of a partial re-
cursive function. By Kleene’s characterization, a partial recursive function is that
obtained from the zero function, the successor function and the identity function
using the operations of composition, primitive recursion and minimization (see
[5, 6, 20] for details).

Although Higman’s theorem is for finitely generated recursive groups, its analog
holds for embeddings of countably generated recursive groups into finitely pre-
sented groups. For, a countably generated recursive group can first be effectively
embedded into a finitely generated recursive group (see the remark proceeding the
corollary in [7, p. 456]). Thus, in embedding procedures, we will not take care of
the number of generators, as long as the relations are recursively enumerated.
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2.2 Sets of integer-valued functions and sequences of integers

Denote by E the set of all functions f WZ! Z with finite support

sup.f / D ¹i 2 Z j f .i/ ¤ 0º:

Whenm is any positive integer such that sup.f / � ¹0; 1; : : : ; m � 1º, then we can
interpret f as a sequence f D .n0; : : : ; nm�1/ of length m, assuming f .i/ D ni

for each index i D 0; : : : ; m � 1. The value f .i/ is called the i -th coordinate of f ,
or the coordinate of f at the index i . Say, f D .0; 0; 7;�8; 5; 5; 5; 5/ means that
f .2/ D 7, f .3/ D �8, f .i/ D 5 for i D 4; : : : ; 7, and f .i/ D 0 for any i � 1
or i � 8. Here the initial 0 is the 0th coordinate, and 7 is the 2nd coordinate.

Depending on the situation, we may interpret the same function by sequences
of different length by adding some zeros to it. Say, the above function f can be
interpreted as the sequence f D .0; 0; 7;�8; 5; 5; 5; 5; 0; 0; 0/ with three “new”
coordinates f .8/ D f .9/ D f .10/ D 0. And the constant zero function f .i/ D 0
may equally well be interpreted as f D .0/ or, say, as f D .0; 0; 0; 0/.

2.3 The Higman operations

Start by two specific subsets of E ,

Z D ¹.0/º; S D ¹.n; nC 1/ j n 2 Zº:

We are going to extensively use the following operations from [7]:

�; �I �; �; �; �; �; �; !m .for each m D 1; 2; : : :/; (H)

which we call Higman operations on subsets of E . The first two operations are
binary functions, and for any subsets A;B of E , they are defined as just the in-
tersection �.A;B/ D A \B and the union �.A;B/ D A [B of those sets. This
notation differs a little from the original notation �AB and �AB of [7] which in
our case would cause confusion when used in long formulas together with other
operations.

The other Higman operations are unary functions defined on any subset A of E

as follows.

� �.A/ consists of all f 2 E for which there is a g 2 A such that f .i/ D g.�i/.

� �.A/ consists of all f 2 E for which there is a g 2A such that f .i/D g.i � 1/.

� �.A/ consists of all f 2 E for which there is a g 2 A such that f .0/ D g.1/,
f .1/ D g.0/ and f .i/ D g.i/ for i ¤ 0; 1.

� �.A/ consists of all f 2 E for which there is a g 2 A such that f .i/ D g.2i/.
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� �.A/ consists of all f 2 E for which there is a g 2 A such that f .i/ D g.i/
for i ¤ 0.

� �.A/ consists of all f 2 E for which there is a g 2 A such that f .i/ D g.i/
for i � 0.

� � and � are called liberations of A in the sense that � liberates the sequences
on 0: for every g 2 A, it adds to our set A all the functions f which accept any
value at 0, but which coincide with g elsewhere. And � liberates the sequences
on positive integers: for every g 2 A, the operation � adds to A all the functions
which accept any values at positive indices, but which coincide with g on zero
and on all negative indices.

For a fixedm D 1; 2; : : : , the set !m.A/ consists of all f 2 E for which, for every
i 2 Z, there is a g D ti D .f .mi/; f .mi C 1/; : : : ; f .mi Cm � 1// 2 A. This
operation is called sequence building as it constructs the functions f by means of
some subsequences g of length m chosen from A. Since sup.f / is finite, either A

contains the zero function, or !m.A/ D ;.
We may agree to apply the unary Higman operations to individual functions

also: a set A D ¹f º may consist of a single function f only, so notations like
�f; �f; �f , etc., should cause no confusion.

To get familiar with these operations, the reader may check examples and basic
lemmas in [7, Section 2] or in [15, Section 2.2].

Following Higman [7], we denote by S the set of all subsets of E which can
be obtained from Z and S by any series of operations (H). The elements in S
play a key role in the study of recursively presented groups. One of our main tasks
below is going to be the discovery of many “natural” generic types of subsets of E

inside S .

2.4 Extra auxiliary operations

Our proofs will be much simplified by some auxiliary operations, each of which is
a combination of a few Higman operations on subsets A of E .

For a positive integer i , naturally denote by � iA D � � � � �A the result of ap-
plication of � for i times. Set the inverse ��1 D ��� as follows: f 2 ��1.A/

when there is a g 2 A such that f .i/ D g.i C 1/. This allows to define the nega-
tive powers of � . Setting �0A D A, we have the powers � i for any integer i 2 Z.
Clearly, � i just “shifts” a sequence g 2 A by ji j steps to the right or to the left
depending on the sign of i .

It is easy to verify that � i���iA consists of all functions f 2 A in which the
i -th coordinate is liberated. For briefness, denote �i D � i���i . Moreover, for a fi-
nite subset S D ¹i1; : : : ; imº � Z, denote the result of application of �i1

� � � �im
by
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�i1;:::;im
or by �S . That is, �SA is the set of all those functions f 2 E for which

there is some g 2 A such that f .i/ D g.i/ for each i … S .
Denote by � 0A D ���A the liberation of A on all negative coordinates, i.e.,

the set of all functions f 2 E for which there is some g 2 A such that f .i/ D g.i/
for each i � 0. Denote by �iA D �

i���iA the liberation of A on all coordinates
after the i -th coordinate and, similarly, denote by � 0iA D �

�i� 0� iA the liberation
of A on all coordinates before the i -th coordinate. In this notation, the original
Higman operation � is nothing but �0.

For any integers k < l , set s D l � k � 1. It is not hard to verify that the set
�k;lA D �

k.��/s�.��1�/�s��kA consists of all modified functions of A with
k-th and l-th coordinates “swapped”. More precisely, �k;lA is the set of all func-
tions f 2 E for which there is some g 2 A such that f .k/ D g.l/, f .l/ D g.k/
and f .i/ D g.i/ for each i ¤ k; l . In this notation, the Higman operation � is
nothing but �0;1.

Furthermore, since any permutation ˛ of a finite set S has a transposition de-
composition ˛ D .k1l1/ � � � .kmlm/, we may introduce the set

˛A D �k1;l1
� � � �km;lm

A

which can be obtained from A by respective permutation of coordinates for all
g 2 A. Clearly, ˛A is the set of all functions f for which there is a g 2 A such
that f .i/ D g.˛�1.i// for any i 2 Z.

For any finite set of indices S D ¹i1; : : : ; imº and for any A � E , define the ex-
tract �SA D �i1;:::;im

A to be the m-tuples set ¹.g.i1/; : : : ; g.im// j g 2 Aº. This
operation can be constructed using (H) as follows. Assume i1 < � � � < im for clar-
ity, and denote S 0 D ¹i1; i1 C 1; : : : ; im � 1; imºnS (the set of all integers from i1
to im except those in S ). The set A1 D �S 0�

0
i1
�im

A consists of functions from
A with all coordinates outside S liberated. And the set A2 D �SZ consists of
all functions which accept any integer values on S D ¹i1; : : : ; imº and which are
zero elsewhere. The intersection A3 D �.A1;A2/ consists of those functions f
for which there is some g 2 A such that f .i/ D g.i/ when i 2 S , and f .i/ D 0
elsewhere. To get �SA from A3, it remains to apply the appropriate permutation
˛ that re-distributes the coordinates of f 2 A3 at the indices i1; : : : ; im on the
0; 1; : : : ;m� 1 (here ˛ is a permutation of the union ¹i1; : : : ; imI0; 1; : : : ;m� 1º).

For any subset A � E , denote sup.A/ D
S
¹sup.f / j f 2 Aº. The point-wise

sum f C g of any functions f; g 2 E is defined as

.f C g/.n/ D f .n/C g.n/; n 2 Z:

For any subsets A;B � E , their sum ACB is the set ¹f C g j f 2 A; g 2 Bº.
The sum of three or more sets is defined in the same manner. We are going to use
this operation for cases when sup.A/ and sup.B/ are disjoint finite sets.
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The intersection of any three or more subsets, such as A;B;C � E , can be ex-
pressed by Higman operations as �.�.A;B/;C/. To have shorter notation, record
this as �3.A;B;C/. Similarly, define intersections �n and unions �n. In [7], Hig-
man denotes the same by �2ABC , but in our case, this would create confusion in
long formulas with many operations.

Investigating the subsets of E in S , in addition to standard operations (H), we
may often use the introduced auxiliary operations. This will shorten the proofs
without changing the actual set S , for we above have representation of each aux-
iliary operation via (H).

2.5 The benign subgroups

The concept of benign subgroups is the key group-theoretical notion used in [7]
to connect the sets in S with subgroups in free groups, needed in construction of
embeddings into finitely presented groups. A subgroup H in a finitely generated
group G is called a benign subgroup in G if G can be embedded in a finitely pre-
sented group K with a finitely generated subgroup L � K such that G \ L D H .
For basic properties and examples of benign subgroups, we refer to [7, Section 3]
or to [15, Sections 3.1 and 3.2].

Below, we reserve the letters K;L for these specific groups only. In particular,
if we have K;L for an “old” group and then we construct a “new” group with
a respective finitely presented overgroup and its finitely generated subgroup, we
may again denote them by the same letters K and L. Also, if we have two be-
nign subgroups, say, H1 and H2, we will denote the respective groups by K1; K2

and L1; L2. The context will tell us for which benign subgroups they are being
considered, and no misunderstanding will occur.

3 The main steps of embeddings of recursive groups

3.1 Embedding with “universal” words in a free group of rank 2

Any countable group G is embeddable into a 2-generator group T (see [8]). Hig-
man’s embedding construction [7] starts by some effective embedding ofG into an
appropriate T . In the recent note [16], we suggested a method of effective embed-
ding of any countable group G into a 2-generator group T such that the defining
relations of T are straightforward to deduce from relations of G. In fact, the very
first embedding construction [8] (based on free constructions) and some other em-
bedding constructions (based on wreath products, group extensions, etc.) already
allow finding the relations of T . However, we need a method that not only makes
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deduction of the relations of T from those of G an automated task, but also pre-
serves certain pattern in them, as we will see a little later; see Remark 3.8.

Let a countable group G be given as

G D F= NR D hA j Ri D ha1; a2; : : : j r1; r2; : : :i;

where F is a free group on a countable alphabet A and where NR D hr1; r2; : : :iF

is the normal closure of the set of all defining relations

rs.ais;1
; : : : ; ais;ks

/; s D 1; 2; : : : ;

in F .
In the free group F2 D hb; ci of rank 2, choose the words

ai .b; c/ D c
.bci /2b�1

.c�1/b D bc�ib�1c�ib�1cbcibcib�2c�1b; (3.1)

i D 1; 2; : : : . The map 
 W ai ! ai .b; c/ defines a correspondence

rs.ais;1
; : : : ; ais;ks

/! r 0s.b; c/ D rs
�
ais;1

.b; c/; : : : ; ais;ks
.b; c/

�
obtained by replacing each ais;j

in rs by the word ais;j
.b; c/, j D 1; : : : ; ks . In

fact, 
 defines an embedding of G into the 2-generator group

T D hb; c j r 01.b; c/; r
0
2.b; c/; : : :i

given by the relations r 0s.b; c/, s D 1; 2; : : : , on letters b; c (see [16, Theorem 1.1]).
If R is recursively enumerable, then the set R0 of all above relations r 0s.b; c/ also
is recursively enumerable. That is, T is a recursive group, in case G is.

And whenG is a torsion-free group, then (3.1) can be replaced by shorter words

Nai .b; c/ D c
.bci /2b�1

D bc�ib�1c�ib�1cbcibcib�1: (3.2)

Inserting these Nai .b; c/ in rs , we get shorter words r 00s .b; c/. Then 
 W ai ! Nai .b; c/

defines an embedding of G into the 2-generator group

T D hb; c j r 001 .b; c/; r
00
2 .b; c/; : : :i

(see [16, Theorem 3.2]).

Example 3.1. Let G D ha1; a2; : : : j Œak; al �; k; l D 1; 2; : : :i be the free abelian
group Z1 of countable rank with relations rs D rk;l D Œak; al �. SinceG is torsion-
free, we can use the shorter formula (3.2) to map each ai respectively to Nai .b; c/

in order to get the embedding of G into the 2-generator recursive group

T D hb; c j Œc.bck/2b�1

; c.bcl /2b�1

�; k; l D 1; 2; : : :i:
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3.2 The main construction of the Higman embedding

For free generators a; b; c, fix the free groupF3 D ha; b; ci in addition to the above
mentioned F2 D hb; ci. Denote by bi the conjugate bci

for any i 2 Z. Then, for
each function f 2 E define the product

bf D � � � b
f .�1/
�1 b

f .0/
0 b

f .1/
1 � � �

and the conjugate af D abf . Say, for f D .5; 2;�1/, we have

af D a
b5

0b2
1b�1

2 D c�2bcb�2cb�5
� a � b5c�1b2c�1b�1c2:

For any subset B of E , introduce the subgroup AB D haf j f 2 Bi in F3. In
particular, for the zero set B D Z, we get the subgroup

AZ D haf j f D .0/i D hai;

and for the set B D S , we get the subgroup

AS D haf j f 2 Si D hc�1b�.nC1/cb�n
� a � bnc�1bnC1c j n 2 Zi:

As is verified in [7, Lemma 4.4], AZ and AS are benign in F3, and the respective
K, L (check notation in Section 2.5) can easily be constructed for each of them.

The most part of [7] is occupied by proofs for [7, Theorems 3 and 4] which set
up the environment in which recursion is studied by group-theoretical means. By
[7, Theorem 4], a set B is recursively enumerable in E if and only if AB is benign
in F3, and by [7, Theorem 3], B is recursively enumerable in E if and only if it
belongs to S , i.e., it can be constructed from the basic sets Z and S using the
Higman operations (H). This means we can start from benign subgroups AZ and
AS , and as B is being built from Z and S by some series of operations (H), the
benign subgroupAB is being constructed step by step. Note that, after Section 2.4,
we are free to also use the new auxiliary operations we suggested there.

Each relation r 0s we constructed in Section 3.1 for our recursive 2-generator
group T D hb; c j R0i can be written as

r 0s.b; c/ D b
n0cn1 � � � bn2mcn2mC1 for some m D m.s/;

and this presentation will be unique if we also require n1; : : : ; n2m ¤ 0. Thus, r 0s
can be “coded” by the sequence of exponents fs D .n0; n1; : : : ; n2mC1/, and the
elements bf D bfs

and af D afs
can be defined for these particular f D fs . Say,

for b3cb�1c2, we have f D .3; 1;�1; 2/ and

bf D b
3
0b1b

�1
2 b2

3 with af D a
b3

0b1b�1
2 b2

3 :



1076 V. H. Mikaelian

The set B D ¹f1; f2; : : :º of all such sequences clearly is a subset of E , and
we can define the respective subgroup AB D haf j f 2 Bi D hafs

j s D 1; 2; : : :i

in F3. As we mentioned above, AB is benign in F3 if and only if B can be con-
structed from the basic sets Z and S using the Higman operations. This launches
the following massive procedure in [7]: the set B is written as an output of a series
of operations (H) started from Z and S . For each step, one of the following actions
may be taken.

(1) B1;B2 are already given, and B3 is obtained from them by any of the bi-
nary Higman operations �; � . Also given are the respective benign subgroups
AB1

; AB2
in F3, together with the respective groups K1; K2 and L1; L2 (see

the remark about notation in Section 2.5). Then AB3
is also benign and can

construct the respective K3 and L3.

(2) B1 is already given, and B2 is obtained from it by any of the unary Higman
operations �; �; �; �; �; �; !m for m D 1; 2; : : : . Also given are the respective
benign subgroup AB1

in F3, together with the respective groups K1 and L1.
Then AB2

is also benign, and we have a mechanism allowing us to construct
the K2 and L2.

This procedure eventually outputs our sequences set B together with AB , with the
respective group K and its subgroup L.

If, for a groupG (or for groups of a given generic type), we are able to explicitly
write the set B and are able to tell how B can be extracted from Z and S by
operations (H), then we have an embedding of F3 into a finitely presented group
K with a finitely generated group L such that F3 \ L D AB .

The final part of the Higman embedding is far shorter. By the proofs of [7,
Lemmas 5.1 and 5.2], the normal closure NR D hR0iF2 is benign in F2 if and only if
AB is benign in F3. The proofs of these lemmas also provide the finitely presented
group K with a finitely generated subgroup L such that K embeds F2, and also
F2 \ L D NR. Then “the Higman Rope Trick” (see the end of [7, Section 5], [12,
p. 219] or [22]) uses these K and L to embed T D hb; c j R0i, and thus also G,
into a finitely presented group using a free product with amalgamation and an
HNN-extension.

That is, if we are able to explicitly write B by the operations (H), then we can
construct the explicit embedding of G into a finitely presented group. This is what
we are going to do in the rest of this article.

3.3 Examples, the structure of sequences in B

Let us continue Example 3.1 by applying the constructions from the previous sec-
tion for the group Z1.
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Example 3.2. The group T in Example 3.1 has the relations

r 00s .b; c/ D r
00
k;l.b; c/ D Œc

.bck/2b�1

; c.bcl /2b�1

�

D bc�kb�1c�kb�1c�1bckbck�lb�1c�lb�1c�1bclbcl�k

b�1c�kb�1cbckbck�lb�1c�lb�1cbclbclb�1;

k; l D 1; 2; : : : . The respective sequence in E is

fs D fk;l D .1;�k;�1;�k;�1;�1; 1; k; 1; k � l;�1;�l;�1;�1; 1; l; 1; l � k;

� 1;�k;�1; 1; 1; k; 1; k � l;�1;�l;�1; 1; 1; l; 1; l;�1/:

As we see, each fk;l is a sequence of length 35 mostly filled by eleven entries 1
and by eleven entries �1, with the following exceptions only: two entries are k;
three entries are �k; three entries are l ; two entries are �l ; two entries are k � l ;
one entry is l � k (the case with k D l is not an exception, as ak commutes with
itself, and we will just have some coordinates k � k D 0 in the sequence above).
Denote the respective set of sequences as B D ¹fk;l ; k; l D 1; 2; : : :º.

Can this B be constructed by a series of operations (H)? For now let us just
simplify this question, postponing the full answer to Example 4.11. As we saw in
Section 2.4, if ˛ is any permutation of sup.B/, then B belongs to S if and only if
˛B belongs to S . In our case, sup.B/ is in the set ¹0; 1; : : : ; 34º of all 35 indices.
It is trivial to find the permutation

˛ D .0/.1 24 7 22 6/.2 11 30 9 32 10 14 3 25 33 29 8/

.4 12 15 27 31 28 20 18 17 34 21 5 13 16/.19 26/.23/

(we write the cycles of length 1 also) that reorders the indices so that all the sim-
ilar coordinates in fk;l are grouped, i.e., f̨k;l starts by 1 repeated eleven times,
followed by �1 repeated eleven times, then followed by two times k, etc.,

f̨k;l D
�
11� 1; 11��1; 2� k; 3��k; 3� l; 2��l; 2� .k � l/; l � k

�
; (3.3)

where 11 � 1 naturally means 1 repeated eleven times, etc. . . .

Remark 3.3. The above trick will be used below repeatedly: applying a permu-
tation ˛, we may transform the set B to such an ˛B in which coordinates are
grouped in the manner of (3.3). It is simpler to work with such an appropriately
permuted set ˛B keeping in mind that B belongs to S if and only if ˛B belongs
to S , as we saw in Section 2.4.
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Example 3.4. Let

G D
˝
a1; a2; : : :

ˇ̌ �
Œak; al �; Œau; av�

�
; k; l; u; v D 1; 2; : : :

˛
be the free metabelian group F1.M/ of countable rank in the variety of all met-
abelian groups M. It is easy to deduce that this torsion-free group can be embedded
into the 2-generator group

T D
˝
b; c

ˇ̌ �
Œc.bck/2b�1

; c.bcl /2b�1

�; Œc.bcu/2b�1

; c.bcv/2b�1

�
�
;

k; l; u; v D 1; 2; : : :
˛
:

Then the respective appropriately permuted sequences (see the previous remark)
will be

f̨k;l;u;v D .40 � 1; 49 � �1; 6 � k; 7 � �k; 6 � l;

6 � �l; 7 � u; 6 � �u; 6 � v; 6 � �v;

l � k; l � u; v � u; v � l; k � l; k � v; u � v/

(we omit the routine calculations).

Example 3.5. The additive group of rational numbers Q has a presentation

ha1; a2; : : : j a
s
s D as�1; s D 2; 3; : : :i;

where a generator ai corresponds to the fraction 1
iŠ

with i D 2; 3; : : : (see [9]). In
[16, Example 3.5], we gave the embedding of Q into the 2-generator group

T D hb; c j .cs/.bcs/2b�1

.c�1/.bcs�1/2b�1

; s D 2; 3; : : :i

D hb; c j .cs/bcsbc.c�1/bcs�1b; s D 2; 3; : : :i:

The respective appropriately permuted sequences (see Remark 3.3) then are

f̨s D
�
6 � 1; 6 � �1; 2 � s; 2 � �s; 1 � s; 2 � .s � 1/

�
;

or a little but shorter variant

f̨s D .5 � 1; 6 � �1; 2 � s;�s; 1 � s; s � 1/;

s D 2; 3; : : : (the omitted calculations are easy to verify).

Remark 3.6. In 1999, Bridson and de la Harpe posed in the Kourovka notebook
[11, Problem 14.10] in which they grouped a few questions as a “well-known
problem”. The questions mainly concern explicit embeddings of some countable
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groups into finitely generated or finitely presented groups. In particular, one of
the points of [11, Problem 14.10 (a)] asks to find an explicit embedding of Q into
a “natural” finitely presented group.

As the main steps outlined in Section 3 show, we are able to explicitly embed
a recursive group G into a finitely presented group, as soon as we have the explicit
embedding of G into the respective 2-generator group T D TG , have the set B

of integer sequences corresponding to defining relations of TG and also are able
to construct B from the sets Z and from S using the Higman operations (H).
Example 3.5 directly provides T for Q, and it gives B by means of f̨s .

The H -machine of Section 4 shows how to easily write down the operations
(H) if we know B. That is, a group answering [11, Problem 14.10] of Bridson and
de la Harpe can be constructed by a series of free constructions matching to the
series of Higman operations. Of course, the question is if that group can be called
a “natural” finitely presented group . . . .

Recently, a direct solution to the problem of Bridson and de la Harpe was found
by Belk, Hyde and Matucci in [3]. Moreover, one of the remarkable finitely pre-
sented groups constructed by them is the group TA which is 2-generator and also
simple [3].

Example 3.7. The quasicyclic Prüfer p-group G D Cp1 can be presented as

G D ha1; a2; : : : j a
p
1 ; a

p
sC1 D as; s D 1; 2; : : :i;

where each ai corresponds to the primitive .pi /-th root "i of unity [10]. As we
found in [16, Example 3.6], this group can be embedded into the 2-generator group

T D
˝
b; c

ˇ̌ �
c.bc/2b�1

.c�1/b
�p
;�

c.bcsC1/2b�1

.c�1/b
�p
cb.c�1/.bcs/2b�1

; s D 1; 2; : : :
˛
:

From the first single relation, we get the appropriately permuted sequence (see
Remark 3.3)

f̨0 D
�
.5p C 2/ � 1; 5p � �1; .p � 1/ � 2; p � �2

�
:

And from the remaining relations, we get the respective appropriately permuted
sequences

˛0fs D
�
.3p C 4/ � 1; .3p C 3/ � �1; s;�s; p � .s C 1/; p � .�s � 1/

�
;

s D 2; 3; : : : (the calculations are omitted). Clearly, ˛0 ¤ ˛.
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Examples similar to Example 3.2 and Example 3.4 are easy to construct for free
soluble groups, for free nilpotent groups and, more generally, for other types of
groups defined by commutator-based identities.

Further, since any divisible abelian group is a direct product of copies of Q and
of some Cp1 , it is not hard to use Example 3.5 and Example 3.7 to get sequences
of similar formats for them also. Moreover, every abelian group is a subgroup in
an abelian divisible group, so we get similar sequences for embeddings of any
countable abelian group (provided that its embedding into a countable divisible
abelian group is constructively, effectively given).

Remark 3.8. We could continue to collect examples with the same features, but it
already seems to be clear that there are numerous groups for which the respective
sequence sets have a similar “format”.

(1) Some coordinates in them have a fixed value (or one of pre-given fixed val-
ues). Say, the initial 0th coordinate is equal to 1 in each sequence f̨k;l in
Example 3.2.

(2) Some coordinates can accept any integer values k, like the 22nd coordinate k
in the sequence f̨k;l .

(3) Some coordinates are duplicates of certain other coordinates. Say, the 1st, 2nd,
. . . , 10th coordinates in f̨k;l all are the duplicates of the 0th coordinate 1. And
also the 23rd coordinate k is the duplicate of the 22nd coordinate k.

(4) Some coordinates are the opposites of certain other coordinates. Say, the 11th
coordinate �1 in f̨k;l is the opposite of the 10th coordinate 1. Also, the 27th
coordinate �k is the opposite of the 26th coordinate k.

(5) And some coordinates are obtained from other coordinates by arithmetical
operations. Say, the 33rd coordinate k � l in f̨k;l is the difference of the
22nd coordinate k and of the 28th coordinate l .

As we see now, construction of a set B 2 S by operations (H) in many cases
can be reduced to the following question: can we build a “machine” which con-
structs B by performing the five operations listed above, i.e., by assigning fixed
pre-given values to some coordinates, then copying those values to other coordi-
nates, then assigning the opposites, the sums or differences of those values to some
other coordinates? If yes, then constructive Higman embeddings are available for
the considered types of groups.

In the next section, we will step by step collect a positive answer to this question.
The reader may skip to Example 4.11 to see an application of the method.
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4 The H -machine

This is the main section of this note, and its objective is to show that S contains
some general kinds of subsets of E which can be constructed by generic operations
outlined in Remark 3.8. The reader not interested in the routine of proofs may skip
the details below.

4.1 Construction of sum of subsets with disjoint supports

For definition of the sum of subsets from S and of other auxiliary operations, we
refer to Section 2.4.

Lemma 4.1. If the sets Bk , k D 1; : : : ; m, all belong to S and their supports
Sk D sup.Bk/ are finite pairwise disjoint sets, then the sum B1 C � � � CBm also
belongs to S .

Proof. The set B�1 D .�S2
� � � �Sm

/B1 clearly consists of all functions from B1

with all coordinates from S2; : : : ; Sm liberated. This can be achieved by applying
some operations �i for finitely many times, so B�1 belongs to S . In a similar way,
we define the sets B�2 ; : : : ;B

�
m in S . It is easy to see that

B1 C � � � CBm D �m.B
�
1 ; : : : ;B

�
m/:

The analog of this lemma could be proved for the case of infinite supports, but
we restrict to this case for simplicity.

4.2 Construction of .n/ with restrictions on n

Denote by BC D ¹.n/ j n D 1; 2; : : :º the set of all functions with a single posi-
tive coordinate, and by B� D ¹.n/ j n D �1;�2; : : :º the set of all functions with
a single negative coordinate. Their union B˙ D ¹.n/ j n 2 Zn¹0ºº is the set of all
functions with a single non-zero coordinate.

Lemma 4.2. The sets BC, B� and B˙ belong to S .

Proof. A1 D !2�.�1Z; �S/ clearly consists of functions g in which, for every
i 2 Z, the subsequence ti D .g.2i/; g.2i C 1// is either of type .0; n/ or of type
.n; n � 1/, with n 2 Z. For any even n D 2; 4; : : : , we can apply !2 to the pairs

.n; n � 1/; .n � 2; n � 3/; : : : ; .2; 1/ 2 �S

to construct in A1 the sequence g D .n; n � 1; : : : ; 1/. The sequence

g0 D .0; n; n � 1; : : : ; 1; 0/



1082 V. H. Mikaelian

can be built by the pair .0; n/ 2 �1Z and the pairs

.n � 1; n � 2/; : : : ; .3; 2/; .1; 0/ 2 �S :

Clearly, ��1g0 D g, and so g 2 A2 D �.A1; �
�1A1/. In a similar manner, we

discover in A2 all the functions g D .n; n � 1; : : : ; 1/ for odd n D 1; 3; : : : . This
time, g is constructed by the pairs .n; n � 1/; .n � 2; n � 3/; : : : ; .1; 0/ 2 �S , and
g0 can be built by .0; n/ 2 �1Z with .n � 1; n � 2/; : : : ; .2; 1/ 2 �S . Thus, for any
n D 1; 2; : : : , the set A2 contains a function g with the property g.0/ D n.

Let us show that g.i/ < 0 is impossible for any g 2 A2. Assuming the con-
trary, suppose the least coordinate g.k/ < 0 of g is achieved at some index k.
If k is even, then the pair .g.k/; g.k C 1// in g 2 A1 has to be either of type
.n; n � 1/ 2 �S (which is impossible as g.k � 1/ – g.k/) or of type .0; n/ 2 �1Z

(which is impossible as g.k/ D 0 – 0). If k is odd, then the pair .g.k/; g.k C 1//
in g 2 ��1A1 has to be either of type ��1.n; n � 1/ or of type ��1.0; n/ (which
both again are impossible).

Next let us exclude those functions g 2 A2 for which g.0/ D 0. Clearly, we
have that A3 D �1�

0�S is the set of all those functions from E which coincide
with .n; n � 1/ on indices 0; 1 and which may have any coordinates elsewhere.
Then g.0/ > 0 for each g 2 �.A2;A3/, and the extract �0�.A2;A3/ is the set BC.

In a similar way, we can construct B�. And the union of the above is

B˙ D �.BC;B�/:

The reader may compare the above proof with the argument of [7, Lemma 2.1].
Let BkC or Bk� denote the set of all .n/ for which n > k or n < k, respec-

tively.

Lemma 4.3. For any integers k 2 Z the sets BkC and Bk� belong to S .

Proof. The set D1D �.�S ; ��BC/ consists of all pairs .nC 1;n/ for nD 1;2; : : : .
Then B1C is the extract �0D1. By induction, we construct in S the set

Dk D �.�S ; ��B.k�1/C/;

and the extract BkC D �0Dk . The case of Bk� is discussed analogously.

For an integer n 2 Z, denote by Nn the set ¹.n/º consisting of a single sequence
.n/ of length 1. More generally, denote Nn1;:::;nk

D ¹.n1/; : : : ; .nk/º the set con-
sisting of k functions of the above type.

Lemma 4.4. For any fixed integers n1; n2; : : : ; nk 2 Z, the set Nn1;:::;nk
belongs

to S .
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Proof. It is clear that N1 D ¹.1/º is in S , for �S D ¹.nC 1; n/ j n 2 Zº, and
so N1 D �.�S ; �Z/ consists of .0C 1; 0/ D .1; 0/ D .1/ only. Similarly, we have
that N2 D ¹.2/º is in S because N2 D �0�.�S ; ��N1/. By induction, we con-
struct all the N3;N4; : : : . The sets N�1;N�2; : : : can be obtained in a similar
way. Finally, N0 D ¹.0/º D Z. Taking the union of the required one-element sets
¹.n1/º; : : : ; ¹.nk/º, we finish the proof.

4.3 Duplication of the last term

Let B 2 S be any set of functions g which are zero after the k-th coordinate,
i.e., g.i/ D 0 for each i > k. Then, by Higman operations, we can “duplicate”
the k-th coordinate in all g 2 B. More precisely, for each g 2 B, let g0 be de-
fined as g0.i/ D g.i/ for all i ¤ k C 1, g0.k C 1/ D g.k/. In this notation, define
Bk;k D ¹g

0 j g 2 Bº.

Lemma 4.5. Let B 2 S be a set of functions g which are zero after the k-th
coordinate. Then the set Bk;k also belongs to S .

Proof. For simpler notation, assume k D 0 as the general case can be reduced to
this by shifting B by ��k , and then shifting back by �k after duplication of the
0th coordinate.

Denote by F1 the set of all functions from B with the 1st and 2nd coordi-
nates liberated, i.e., F1 D �1;2B. Let F2 be the set of all functions g 2 E in which
g.1/ D g.0/C 1, and the 2nd coordinate together with all the negative coordi-
nates are liberated, i.e., F2 D �

0�2S . Let F3 be the set of all functions g in which
g.2/ D g.1/ � 1, and the 0th coordinate together with all the negative coordinates
are liberated, i.e., F3 D �

0���S D � 01��S . Then the 2nd and 0th coordinates of
each function from F4 D �3.F1;F2;F3/ are equal.

To get the duplicated set B0;0 it remains to swap the 2nd and 1st coordinates
in F4, and then to erase the new 2nd coordinates. Namely, set F5 D �2�1;2F4 and
F6 D �

0
2Z, and take the intersection B0;0 D �.F5;F6/.

4.4 Construction of the pairs .n;�n/

Denote by BC;� D ¹.n;�n/ j n D 1; 2; : : :º the set of all couples .n;�n/ with
n D 1; 2; : : : . The objective of this section is to prove the following lemma.

Lemma 4.6. The set BC� belongs to S .

Our proof will follow from a series of steps, cases, examples below.



1084 V. H. Mikaelian

The set L1 D �2;3Z can be interpreted as the set of all 4-tuples

.0; 0;m; n/ (4.1)

with m; n 2 Z. Next C1 D �1;2�S can be interpreted as the set of all 4-tuples

.m; 0;m � 1; 0/;

while C2 D �1;2�
2S can be interpreted as the set of all 4-tuples

.0; n; 0; nC 1/:

Then the sum L2 D C1 C C2 is the set of all 4-tuples

.m; n;m � 1; nC 1/: (4.2)

The set L3 D !4�.L1;L2/ consists of g 2 E in which, for every i 2 Z, the sub-
sequence

ti D
�
g.4i/; g.4i C 1/; g.4i C 2/; g.4i C 3/

�
(4.3)

is of type (4.1) or of type (4.2) (not ruling out the zero 4-tuple which is of type
(4.1) for m D n D 0). Define a set M D �.L3; �

�2L3/.

Step 1. Start by showing that if g 2M, then g.k/ � 0 for any k D 4i; 4i C 2
with i 2 Z. Assume the contrary: m D g.k/ < 0 for some k of one of the above
types.

If k D 4i , i.e., m is the initial term of the 4-tuple ti in (4.3), then ti is of
type (4.2) because the tuples of type (4.1) have to start by a zero. Thus we have
g.4i C 2/ D m � 1 < 0.

Next assume k D 4i C 2. As g 2 ��2L3, there exists a g0 2 L3 such that
��2g0 D g. Then g0.4.i C 1// D g0.4i C 2C 2/ D g.4i C 2/ D m, i.e., the next
4-tuple of g0 also starts by negative numberm and has to be of type (4.2). But then
g0.4.i C 1/C 2/ D m � 1, and so g.4i C 2C 2/ D g.4.i C 1// D m � 1 < 0,
i.e., the .i C 1/-th sequence tiC1 in g starts by m � 1.

We got that, for any k D 4i and k D 4i C 2, from g.k/ < 0, it follows that
g.k C 2/ < 0, g.k C 4/ < 0, etc. because g.k C 2/ D m � 1, g.k C 4/ D m � 2,
etc. This leads to a contradiction as g 2 E cannot have infinitely many non-zero
coordinates.

In a similar way, we show that g.k/ � 0 for any k D 4i C 1; 4i C 3 for i 2 Z.

Example 4.7. Consider two functions g 2M of above types. First, the function

g D .4;�4; 3;�3I 2;�2; 1;�1/ (4.4)
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is constructed by two 4-tuples of type (4.2), and it can be presented as g D ��2g0

for
g0 D .0; 0; 4;�4I 3;�3; 2;�2I 1;�1; 0; 0/

which is constructed by one 4-tuple of type (4.1) and two 4-tuples of type (4.2).
Next consider another function

g D .0; 0; 4;�4I 3;�3; 2;�2I 1;�1; 0; 0/ (4.5)

constructed by one 4-tuple of type (4.1) and two 4-tuples of type (4.2), and this g
can be presented as g D ��2g0 for the function

g0 D .0; 0; 0; 0I 4;�4; 3;�3I 2;�2; 1;�1/

which is constructed by two 4-tuples of type (4.2) (and the zero 4-tuples of course).
Observe that, in these two functions, we took 4 and �4 to be the opposites of

each other, ignoring the case of a tuple, say, .4; 0;�5; 0/. We will cover that issue
later.

Step 2. We see that, from any positive g.k/, a chain of positive, descending coor-
dinates g.k/; g.k C 2/; g.k C 4/; : : : starts for k D 4i or k D 4i C 2. How may
this chain end?
Case 2.1. The chain achieves 1 (its last positive coordinate) at some index 4j ,
i.e., in the first half of some 4-tuple tj , like in (4.5); then the term g.4j C 2/

automatically is 1 � 1 D 0. Starting from the term g.4j C 4/ in tjC1, we may
have either zeros, or a new chain may begin from there.
Case 2.2. The chain achieves 1 at some index 4j C 2, i.e., in the second half of
some 4-tuple tj , like in (4.4). Then the next term g.4j C 2C 2/ D g.4.j C 1//

(which is 0 and which lies in the next tuple tjC1) may have two potential ways
to occur: either the next tuple is of type (4.1), i.e., it starts by two zeros, and after
them, we may have either zeros, or a new chain may begin there; or the next tuple is
of type (4.2) with an initial term g.4.j C 1// D 0. But then the .4.j C 1/C 2/-th
term of that tuple has to be 0 � 1 D �1. Since negative values are ruled out for
such coordinates, that is impossible.

The analogs of these arguments hold for negative, ascending chains

g.k/; g.k C 2/; g.k C 4/; : : :

starting at some g.k/ for a k D 4i C 1 or k D 4i C 3. Namely, the last negative
term �1 of such a term is achieved.
Case 2.3. Either at some 4j C 1, i.e., in the first half of some 4-tuple, like in (4.4);
then the next term g.4j C 3/ automatically is 1 � 1 D 0.
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Case 2.4. Or �1 is achieved at some index 4j C 3, i.e., in the second half of some
4-tuple, like in (4.5). Then the next tuple may be of type (4.1) only, i.e., it starts by
two zeros.

Step 3. The key feature of this construction is that the two chains we discuss
(the ascending and the descending chains residing inside some consecutive 4-
tuples) terminate simultaneously, i.e., the last 4-tuple tj either ends by .1;�1/
(i.e., tj D .2;�2; 1;�1/ or tj D .0; 0; 1;�1/), or tj D .1;�1; 0; 0/. Assume the
contrary, and arrive to contradiction in all cases occurring.

Case 3.1. Assume tj ends by .m;�1/ for an m � 2. Then, by Case 2.2 above,
the next 4-tuple tjC1 need start with two zeros. We get a contradiction because
m � 1 ¤ 0.

Case 3.2. Assume tj ends by .0;�1/ (that is,m D 0 in terms of the previous case).
Since g D ��2g0 2 L3, the .j C 1/-th 4-tuple in g0 starts by .0;�1/. Then that
4-tuple in g0 is of type (4.2), i.e., it ends by .0 � 1;�1C 1/ D .�1; 0/. So tjC1

in g starts by .�1; 0/, which is a contradiction as g.4.j C 1// D �1 cannot be
negative.

Case 3.3. Assume the last 4-tuple tj is .m;�1; 0; 0/ with m � 2 or m D 0. Since
�1 ¤ 0, then tj is of type (4.2). Then its 2nd term is m � 1, which is impossible
as m � 1 ¤ 0.

We get that, whenever a g 2M contains a couple .m; n/ with a positive m and
a negative n, we have n D �m (see the remark at the end of Example 4.7). In par-
ticular, if, for some g 2M, we have g.0/ > 0 and g.2/ < 0, then g.2/ D �g.2/.
Clearly, for any positive n, we can build a g 2M with g.0/ D n and g.2/ D �n.

Step 4. Denote by C3 D �2�
0M the set of all functions g 2 E which coincide

with some .n;�n/ with n D 0; 1; : : : and which have any coordinates elsewhere.
Then C4 D BC C �B� can be interpreted as the set of all couples .m; n/ with
positive m and negative n, and BC;� D �.C3;C4/ is the set of all couples .n;�n/
with n D 1; 2; : : : .

Thus, Lemma 4.6 is fully argued.
If needed, we can easily get the analogs of Lemma 4.6 not only for the couples

.n;�n/ for all n D 1; 2; : : : but for, say, n D k; k C 1; : : : , or for n from a given
finite set only.

4.5 Construction of the triples .p; q; p � q/ and .p; q; p C q/

Assume the set P consists of some pairs .p; q/. In this section, we show that if
P belongs to S , then the set consisting of all triples .p; q; p � q/ and the set
consisting of all triples .p; q; p C q/ also belong to S .
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For a fixed pair .p; q/, denote by P1 the set of 8-tuples of the following types:

.p; q; q; 0; 0; 0; 0; 0/; (4.6)

.0; 0; 0; 0; p; q; p; n/; (4.7)

.p; q;m; n; p; q;m � 1; n � 1/; (4.8)

.p; q;m; n; p; q;mC 1; nC 1/ (4.9)

for any m; n 2 Z, together with the zero function which we can interpret as the
8-tuple .0; 0; 0; 0; 0; 0; 0; 0/.

The set of 8-tuples of type (4.6) is in S since we can apply Lemma 4.5 to cou-
ples .p; q/ to duplicate the coordinate q. Similarly, the set of 8-tuples of type (4.7)
is also in S . The 8-tuples of type (4.8) can be obtained as follows: the set of all
8-tuples of type .0; 0;m; n; 0; 0;m � 1; n � 1/ can be obtained using a permuta-
tion ˛ of the set �2�S C �3�S . Then we take the sum of that set and the set of
all 8-tuples .p; q; 0; 0; p; q; 0; 0/. The case of 8-tuples of types (4.9) is covered in
a similar way. This means the combined set P1 of all 8-tuples of types (4.6)–(4.9)
is in S .

Thus, the intersection P2 D �.P1; �
�4P1/ also is in S . Using Higman opera-

tions on P2, we can construct .p; q; p � q/. Let us first explain the idea by simple
examples.

Example 4.8. Let p D 6 and q D 2. The sequence

g D .6; 2; 6; 4; 6; 2; 5; 3I 6; 2; 4; 2; 6; 2; 3; 1I 6; 2; 2; 0; 0; 0; 0; 0/

is constructed by two 8-tuples of type (4.8) and by one 8-tuple of type (4.6). And
g can be presented as g D ��4g0 for

g0 D .0; 0; 0; 0; 6; 2; 6; 4I 6; 2; 5; 3; 6; 2; 4; 2I 6; 2; 3; 1; 6; 2; 2; 0/

which is constructed by one 8-tuple type (4.7) and two 8-tuples of type (4.8). Note
that the 3rd coordinate in g is p � q D 6 � 2 D 4.

Yet another function

g D .0; 0; 0; 0; 6; 2; 6; 4I 6; 2; 5; 3; 6; 2; 4; 2I 6; 2; 3; 1; 6; 2; 2; 0/

is constructed by one 8-tuple of type (4.7) and by two 8-tuples of type (4.8). And
g can be presented as g D ��4g0 for

g0 D .0; 0; 0; 0; 0; 0; 0; 0I 6; 2; 6; 4; 6; 2; 5; 3I

6; 2; 4; 2; 6; 2; 3; 1I 6; 2; 2; 0; 0; 0; 0; 0/



1088 V. H. Mikaelian

which is constructed by two 8-tuples of type (4.8) and one 8-tuple of type (4.6)
(and the zero sequences of course). Note that the 11th coordinate in g is

p � q D 6 � 2 D 4:

As we see, using Higman operations, it is easy to obtain the triple .6; 2; 4/ from
any of the functions g constructed above. Using some loose wording, we could
say that we “mimic” the arithmetical operation 6 � 2 D 4 by means of Higman
operations (in the sense that we were able to build the triple .6; 2; 6 � 2/). We did
this using some descending chains of coordinates (at indices 4k C 2; 4k C 6; : : :)
starting by 6 and ending by 2.

The purpose of the numbers 6, 2 standing at some indices 8k, 8k C 1 or 8k C 4,
8k C 5 is the following. Besides the pair .6; 2/, our set P may also contain another
pair, say, .9; 1/. We want to construct in P the triple .6; 2; 4/ without adding the
unnecessary triple .6; 1; 5/ into P . That is, we need a descending chain starting
by 6 and ending by 2 (but not by 1). So those numbers 6; 2 guarantee that we
concatenate 8-tuple corresponding to the same pair .6; 2/ only.

Observe that p � q in each of above examples. When p < q, then we could
build ascending chains using 8-tuples of type 4.9. Say, if p D 3 and q D 9, the
sequence

g D .3; 9; 3;�6; 3; 9; 4;�5I 3; 9; 5;�4; 3; 9; 6;�3I

3; 9; 7;�2; 3; 9; 8;�1I 3; 9; 9; 0; 0; 0; 0; 0/

is constructed by three 8-tuples of type (4.9) and by one 6-tuple of type (4.6). And
g can be presented as g D ��4g0 for the function

g0 D .0; 0; 0; 0; 3; 9; 3;�6I 3; 9; 4;�5; 3; 9; 5;�4I

3; 9; 6;�3; 3; 9; 7;�2I 3; 9; 8;�1; 3; 9; 9; 0/

which is constructed by one 8-tuple of type (4.7) and three 8-tuples of type (4.9).
Note that the 3rd coordinate in g is p � q D 3 � 9 D �6.

After these examples, the formal proofs are simpler to understand. Assume
a pair .p; q/ is chosen and g is any non-zero function in P2. Since g 2 E , there is
a first 8-tuple

ti D
�
g.8i/; g.8i C 1/; g.8i C 2/; g.8i C 3/;

g.8i C 4/; g.8i C 5/; g.8i C 6/; g.8i C 7/
�

in which g has its first non-zero coordinate. Using arguments similar to those
in Section 4.4, we show that if ti is of type (4.8), then a descending chain of
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coordinates g.8i C 2/; g.8i C 6/; g.8i C 10/; : : : starts from ti . If p < q, then
this chain never ends, which is a contradiction to the fact that g 2 E has finitely
many non-zero coordinates. If p � q, then this chain ends either by the 8-tuple
.p; q; q; 0; 0; 0; 0; 0/ of type (4.6), or by the 8-tuple .p; q; q C 1; 1; p; q; q; 0/ of
type (4.8). This means that g.8i C 2/ is equal to p � q.

If ti is of type (4.9), then an ascending chain of coordinates starts from ti . If
p > q, we get a contradiction, and if p � q, we again get that g.8i C 2/ is equal
to p � q.

Finally, if ti is of type (4.7), we get a descending or ascending chain, and then
g.8i C 6/ is equal to p � q.

The “extremal” case when ti D .p; q; q; 0; 0; 0; 0; 0/ is of type (4.6) for a g is
possible only if the respective g0 either starts by .0; 0; 0; 0; p; q; p; n/ of type (4.7)
(i.e., pD q and nD 0, that is, we again have the equality p � qD p �pD nD 0),
or g0 starts by .p; q;m; n; p; q;m � 1; n � 1/ of type (4.8) (i.e., p D q D m D

n D 0, which leads to a contradiction, as then ti is a zero 8-tuple). The case when
ti is of type (4.9) is excluded in a similar way.

We see that a sequence g 2 P2 can consist of a few 8-tuples (holding a chain of
the above types) only. Now we need extract the required fragments .p; q; p � q/.

Clearly, �1P consists of sequences of type

h D .p; q; n2; n3; : : :/ with .p; q/ 2 P ;

and with only finitely many of the coordinates n2; n3; : : : being non-zero.
Denote P3 D �.P2; �1P / and choose any g 2 P3. Since g 2 P2, it is con-

structed by some 8-tuples of one of the types (4.6)–(4.9). Since also g 2 �1P , its
first non-zero 8-tuple occupies indices 0–7 and is of types (4.7) or (4.8) with one of
p; q being non-zero. Then, by our construction, g starts by the triple .p; q; p � q/.

The case when P does contain the couple .0; 0/ also is covered by our con-
struction because, in that case, the 8-tuple of type (4.6) with p D q D 0 is in P2,
and to P3 contains a sequence starting by .0; 0; 0/.

The extract set �0;1;2P3 is the set of triples

P1;2;1�2 D ¹.p; q; p � q/ j .p; q/ 2 P º:

The other set P1;2;1C2 can now be obtained in two ways. Either we can modify
the constructions above to adapt it for the triples .p; q; p C q/. Or we can use the
construction of Section 4.4 to build the set of P4 of triples .p; q;�q/. Then the
extract �0;2P4 is the set ¹.p; p � q/ j .p; q/ 2 P º. So we can directly apply the
already constructed proof to get the triples .p;�q; p � .�q// D .p;�q; p C q/
and finally replace �q by q.

We proved the following lemma.



1090 V. H. Mikaelian

Lemma 4.9. If the sets P belongs to S , then the sets P1;2;1�2 and P1;2;1C2 both
belong to S .

Combining Lemma 4.9 with Lemma 4.5 and Lemma 4.6, we get that if Q is a set
of some .q/, then Q 2 S implies that S contains the set of all couples .q; q/, the
set of all triples .q; q; 2q/ and the set of all couples .q; 2q/ (which is obtained from
the set of previous triples via the extract �0;2). Repeating this, we get the set of all
couples .q; s � q/ for any pre-given integer s, and q 2 Q.

Lemma 4.9 can also be generalized by taking any distinct indices instead of
0; 1; 2. Let B be any subset of E , and let p D g.i/ and q D g.j / be the i -th and
j -th coordinates of generic g 2 B. For an index k, different from i; j , denote by
Pi;j;i�j;k the set of all functions f 2 E for which there is a g 2 B such that f
coincides with g on all coordinates except the k-th, and f .k/ D p � q. In other
words, we replace the k-th coordinate in each g 2 B by p � q D g.i/ � g.j /. We
can similarly define the set Pi;j;iCj;k .

Lemma 4.10. If the set B belongs to S and, for fixed i; j , the set

P D ¹.p; q/ j g 2 B; p D g.i/; q D g.j /º

also belongs to S , then the sets Pi;j;i�j;k and Pi;j;iCj;k both belong to S .

Proof. Applying the appropriate permutation ˛, we can reorder the coordinates of
each g 2 B so that ˛g.0/ D p D g.i/, ˛g.1/ D q D g.j /, ˛g.2/ D g.k/. Then
R1 D �2˛B consists of all those reordered sequences with the 2nd coordinate
liberated.

Applying Lemma 4.9 to P , the set

P1;2;1�2 D ¹.p; q; p � q/ j .p; q/ 2 P º

is in S . Then R2 D �
0�2P1;2;1�2 consists of all g 2 E which coincide with

.p; q; p � q/ on indices 0; 1; 2 and which may have arbitrary coordinates else-
where. Then the intersection R3 D �.R1;R2/ consists of all sequences g from
R1 in which the 2nd coordinate is replaced by p � q D g.0/ � g.1/. It remains
to apply the permutation ˛�1 to get Pi;j;i�j;k D ˛

�1R3.
The proof for Pi;j;iCj;k is similar.

4.6 An application of the H -machine

Now we are in position to launch the H -machine to construct the series of sets B

mentioned in examples in Section 3.3 by Higman operations (H). Here we do that
for the group Z1.
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Example 4.11. For the free abelian group Z1 in Example 3.2, we have the set B

of sequences fk;l of length 35 constructed in Example 3.2. The following algo-
rithm constructs B by operations (H).

(1) Using the single permutation ˛ constructed in Example 3.2, bring the se-
quences fk;l to simpler form f̨k;l .

(2) Using Lemma 4.4, obtain the set ¹.1/º.

(3) Using Lemma 4.5 ten times, duplicate the 0th coordinate 1 to get the set A1

consisting of one 11-tuple .1; : : : ; 1/.

(4) Using Lemma 4.4, obtain the set ¹.�1/º.

(5) Using Lemma 4.5 ten times, duplicate the 0th coordinate �1 to get the set
A2 consisting of one 11-tuple .�1; : : : ;�1/.

(6) By Lemma 4.6, the set BC;� of all couples .k;�k/, k D 1; 2; : : : , is in S .
Construct the set A3 of all 5-tuples .k; k;�k;�k;�k/, k D 1; 2; : : : , i.e.,
duplicate in BC� the coordinate �k twice by Lemma 4.5, then rotate the
resulting set by �, duplicate the 0th coordinate k, and then rotate back by �
and shift by � .

(7) Similarly, construct the set A4 of all 5-tuples .l; l; l;�l;�l/, l D 1; 2; : : : .

(8) The sum A5 D A1 C �
11A2 C �

22A3 C �
27A4 consists of 32-tuples (in-

dexed by 0; 1; : : : ; 31): the above 11-tuples .1; : : : ; 1/, followed by 11-tuples
.�1; : : : ;�1/, followed by 5-tuple .k; k;�k;�k;�k/ and then followed by
5-tuple .l; l; l;�l;�l/ with any k; l D 1; 2; : : : .

(9) Using Lemma 4.10 on the set A5 for i D 22, j D 27, k D 32, we adjoin a
new 32nd entry (equal to the respective k � l) to sequences from A5. Re-
peating this step for k D 33, adjoin a 33rd entry k � l . Call the new set A6.

(10) Using Lemma 4.10 on A6 for i D 27, j D 22, k D 34, we adjoin a new
34th entry l � k to all sequences from A6. That is, we get the set of all
sequences ˛B.

(11) Apply the inverse ˛�1 of the permutation ˛ used in Example 3.2 to get the
set B of all fk;l .

(12) As a last step, use the definition in Section 2.4 to replace by Higman opera-
tions (H) each of the auxiliary operations

� i ; �i ; �S ; �i ; �
0
i ; �k;l ; ˛ D �k1;l1

� � � �km;lm
; �S ; additionC; �n

that we used in previous steps.
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Remark 4.12. Comparing the very similarly structured sequences of Example 3.2,
Example 3.4, Example 3.5 or Example 3.7, the reader can see how easy it would be
to adapt the above algorithm for free metabelian, soluble, nilpotent groups, for Q
(for [17]), for Cp1 , or for their direct products including divisible abelian groups,
and for any other constructively given subgroups therein.

Acknowledgments. Application of the methods that we present here allows to
build a group answering a question of Bridson and de la Harpe on embedding
of Q into a finitely presented group mentioned in the Kourovka notebook [11,
Problem 14.10 (a)]. Recently, a direct solution to that problem was found by Belk,
Hyde and Matucci in [3]; see Remark 3.6 for details. Another explicit embedding
will be given in [17]. It is a pleasure to me to thank the referee of the Journal of
Group Theory for careful work and for very helpful and encouraging remarks.
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